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Abstract

Large Language Models based Multi-Agent
Systems (LLM-MAS) perform well in many do-
mains, but we still lack a clear understanding of
the collaboration mechanism among multiple
LLM-based agents. This study aims to explore
three key issues: (1) Can multi-agent outper-
form single-agent systems? (2) Is scaling better
for multi-agent systems? (3) How to credit
agents and find potential effective structures?
Specifically, we design five collaboration archi-
tectures and evaluate their effectiveness across
different LLMs and tasks. Our findings offer
significant insights for understanding the col-
laboration within MAS, building collaboration
architectures among agents, and reducing sys-
tem costs. Furthermore, our conclusion will
inspire and provide new perspectives for future
studies on LLM-MAS.

1 Introduction

Large Language Model-based Multi-agent Systems
(LLM-MAS) specialize multiple LLMs into differ-
ent agents and effectively simulate complex real-
world environments through the interaction among
these diverse agents (Guo et al., 2024). With proven
outstanding abilities in contextual understanding,
reasoning, and generation, LLMs empower agents
to collaboratively plan, discuss, and make deci-
sions, imitating human team cooperation to solve
real world problems (Li et al., 2023; Hong et al.,
2023; Wu et al., 2023).

Recent research efforts have focused on explor-
ing and optimizing the collaboration mechanisms
of MAS driven by LLMs (Liang et al., 2023; Du
et al., 2023; Chan et al., 2023), revealing two criti-
cal challenges: architecture scaling and contribu-
tion crediting. The challenge of architecture scal-
ing encompasses expanding the number of agents
and increasing their interaction frequency to solve
more complex tasks (Zhang et al., 2023b; Chan
et al., 2023; Li et al., 2024). However, while en-
hancing system capabilities, scaling also leads to
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Figure 1: Illustrations of single-agent system and multi-
agent system.

a substantial rise in communication overhead, pre-
senting a notable challenge in maintaining system
efficiency (Zhang et al., 2023b; Yin et al., 2023). At
the same time, the challenge of contribution credit-
ing involves the accurate allocation of contributions
among agents, which is crucial for promoting col-
laboration and ensuring interpretability and robust-
ness within LLM-MAS systems (Liu et al., 2023b).
Evaluating LLM-MAS systems from the perspec-
tives of scaling and crediting not only diagnoses
their current shortcomings and limitations but also
directs future developments toward more efficient,
effective, and scalable multi-agent collaborations.

In this paper, to comprehensively evaluate the
multi-agent collaboration of large language mod-
els, we designed a unified evaluation procedure
and conducted systematic evaluations on 9 datasets
across 3 tasks. Specifically, we design five col-
laboration architectures that reflect different com-
munication patterns and the diversity of agent col-
laboration. This paper primarily investigates three
research questions (RQ):

RQ1: Can multi-agent outperform single-
agent systems? Different from single-agent sys-
tems, LLM-MAS involves multiple agents that in-
fluence each other with frequent and complex agent



interactions. The interaction or communication pat-
terns between agents, which we refer to as the col-
laboration architectures, can significantly affect the
system performance. Some researchers have ex-
plored several optimal collaboration architectures
(Chan et al., 2023; Chen et al., 2023b) and designed
various LLM-based multi-agent systems. Yin et al.
(2023) explored integrating different collaboration
architectures to enhance system performance. How-
ever, past studies primarily focused on exploring
specific systems, lacking a comprehensive study on
the general properties of LLM-MAS. Inspired by
traditional multi-agent theory, we construct several
collaboration architectures and use these architec-
tures to build multiple multi-agent systems and
conduct systematic studies in different scenarios.

RQ2: Is scaling better for multi-agent sys-
tems? Cost is a crucial but often overlooked limit-
ing factor in LLM-based multi-agent research. In
this study, we analyze the scale of MAS, including
time step, agent number, and the threshold of early
stopping, etc. Yin et al. (2023) discussed the the-
oretical costs of some collaboration architectures.
Li et al. (2024) systematically studied the effect of
the agent number in a sampling-and-voting method.
However, they did not consider the communication
between agents. A question remains: How do we
decide the scale or cost-related factors? Therefore,
we systematically analyze the relationship between
scale and performance in multi-agent.

RQ3: How to credit agents and find potential
effective structures We also address the credit-
ing of communication paths in LLMs-based MAS,
which has received less attention than agent role
assignments. Current strategies primarily utilize
LLMs for evaluating agent outputs through rank-
ing or rating (Liu et al., 2023b; Jiang et al., 2023b;
Qin et al., 2023). This type of method, despite its
prevalence, faces challenges in accuracy. In con-
trast, traditional multi-agent reinforcement learning
(MARL) offers insights into collaboration through
credit assignment, focusing on the distribution of
rewards among agents based on their contributions.
Inspired by MARL principles (Minsky, 1961; Sune-
hag et al., 2018), we explore an LLM-independent
method using Shapley value to quantify the contri-
butions of each collaboration in the system proce-
dure and pruning multi-agent systems.

Our experiments provide insights into the multi-
agent collaboration of large language models: 1)
Multi-agent systems often outperform single-agent

systems, and single-agent performance does not
determine multi-agent benefit. 2) More agents
will bring more benefits, and achieving agreement
among agents is crucial for better performance. 3)
Pruning communication paths based on crediting is
possible and reveals some aggregating information
and self-reflection structures among agents in the
collaboration strategy
Generally, our contributions are as follows:

* We introduce five collaborative multi-agent ar-
chitectures and conduct extensive experiments
in various scenarios to explore three crucial
questions regarding the multi-agent collabora-
tion of large language models.

* We investigate the connection between the
scale and performance of LLM-MAS and
provide an in-depth study of the agreement
changes of the system and the early stopping
mechanism.

* By quantifying the credits of communication
paths, we propose a Shapley value-based prun-
ing approach for LLM-MAS. This pruned
structure significantly reduces communication
costs across various datasets while achieving
superior performance and implies some poten-
tially effective structures.

2 Collaboration Architectures

Traditional multi-agent research (Esmaeili et al.,
2016; Damba and Watanabe, 2007; Dorri et al.,
2018; Horling and Lesser, 2004) has identified and
delineated various effective multi-agent architec-
tures, including Flat, Hierarchical, Holonic, and
Team. Each architecture possesses distinct advan-
tages and is suitable for specific scenarios.
Inspired by the multi-agent theory and recent
multi-agent research, we designed five unique col-
laboration architectures that reflect different com-
munication patterns and the diversity of agent col-
laboration. Figure 2 contains five types of collab-
oration architectures. There are three static col-
laboration architectures: FULL, CYCLE, and Hi-
ERARCHICAL in Figure 2(a), and two dynamic
architectures, TEAM and RANK, in Figure 2(b).

* FULL Inspired by the Flat structure (Dorri
et al., 2018) of traditional multi-agent theory,
information can be freely passed from one
agent to another. In particular, when there are



only two agents, the collaboration architec-
ture degenerates into a typical debate archi-
tecture. This kind of architecture simulates
information propagation in unrestricted dis-
cussions, facilitating the fast spread of infor-
mation. However, such networks may lead to
high costs.

* CYCLE Inspired by Multi-Agent Debate
(Liang et al., 2023), information is propa-
gated among pairs of agents to reach a final
agreement. This architecture simulates private
conversation. It emphasizes how information
gradually evolves and spreads over a limited
number of interactions. This type of archi-
tecture has less costs, but the time required
for the system to reach an agreement may be
longer.

* HIERARCHICAL Inspired by the Hierarchi-
cal structure (Damba and Watanabe, 2007)
of the traditional multi-agent theory, informa-
tion is propagated between nodes at different
levels. This architecture simulates the Del-
phi method' in expert groups. This kind of
architecture emphasizes aggregation and pro-
cessing of the information.

* TEAM Inspired by the Team structure (Parker,
1993) of the traditional multi-agent, informa-
tion flows between agents with different view-
points(answers). This architecture simulates
the propagation of information during a team
discussion. This kind of architecture has no in-
teraction between agents with the same view-
point.

* RANK Inspired by the idea of agent optimiza-
tion in DyLAN (Liu et al., 2023b), informa-
tion and messages are sorted before it is de-
livered, and only top-k information can be
passed to the next time step. This architecture
simulates a review or screening process, such
as editorial review or administrator approval,
emphasizing the concern for information qual-

1ty.

'Delphi method: soliciting experts’ opinions on a problem,
organizing and summarizing them, then anonymously feeding
them back to the experts, and soliciting opinions again until
they reach an agreement
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Figure 2: Collaboration Architectures

3 Experiments

This section introduces the dataset and LLM we
used, providing a data foundation for subsequent
problem analysis.

Tasks and Datasets. In our experiments, we
used a general evaluation procedure to assess the
performance of five architectures across three tasks,
including: 1) Math: GSMS8K (Cobbe et al., 2021),
MATH (Hendrycks et al., 2021b), and SVAMP (Pa-
tel et al., 2021) datasets; 2) Knowledge: MMLU
(Hendrycks et al., 2021a), CommonsenseQA (Tal-
mor et al., 2019), and CommonsenseQA 2.0 (Tal-
mor et al., 2022); 3) Logic: LogiQA (Liu et al.,
2020), LogiQAZ2.0 (Liu et al., 2023a), and ReClor
(Yu et al., 2020).

Model Details. We tested the proposed col-
laboration mechanism based on different models.
Considering cost and effectiveness, we selected
open-source models, e.g., Llama2-7b-Chat (Tou-
vron et al., 2023), Mistral-7b-Instruction (Jiang
et al., 2023a), and Starling-LM-7B-alpha (Zhu



et al., 2023), for our experiments. Specifically, we
downloaded the corresponding open-source mod-
els on hugging face and deployed the APIs using
Fastchat and vLLM (Kwon et al., 2023). These
three LLMs will be combined with the five ar-
chitectures to form 15 multi-agent systems. The
maximum time step is six if not explicitly stated.
Additionally, we conducted experiments on the
quantized model of the larger model Mixtral-8x7B
model?, which can be found in Appendix A .4.
System Details. To reflect the difference be-
tween the Agents, we set the temperature of each
Agent to a different value between 0 and 1 during
generation. By default, we used 3 Agents with
temperatures of 1, 0.6, and 0.4. Inspired by social
comparison theory and review collaboration (Xu
et al., 2023c), we considered generating solutions,
final answers, and reviewing other agents’ answers
during generation. Complete prompt examples can
be found in the appendix. Motivated by Liu et al.
(2023b) and Practical Byzantine Fault Tolerance,
when 2/3 of the agents in the system reached a con-
sensus (i.e., the answer is the same), we made the
system early stop, and the process stopped.

4 Can multi-agent systems outperform
single-agent systems?

This section evaluates the multi-agent benefit. We
conducted experiments with multi-agent systems
composed of three LLMs and five collaboration
architectures across nine datasets and analyzed the
MAS performance according to the relative im-
provement of multi-agent systems. Moreover, we
investigated the impact of the possible factors of
multi-agent synergy, i.e., collaboration architecture,
LLM, and task.

The benefit of MAS

Final Success Rate (e.g., accuracy) is the most com-
monly used metric for evaluating multi-agent sys-
tems (Du et al., 2023; Chan et al., 2023; Liu et al.,
2023b; Chen et al., 2023a), which offers the advan-
tages of simplicity and intuitiveness. However, the
final success rate is highly correlated with the LLM
and Task and does not reflect multi-agent synergy.
To examine the benefits of multi-agent synergy, a
natural idea is to consider the relative improvement
in accuracy, which we refer to as accuracy improve-

*https://huggingface.co/TheBloke/Mixtral-8x7B-Instruct-
v0.1-GPTQ

(a) Results without early stopping (b) Results with early stopping
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Figure 3: The scatter plot comparing multi-agent to
single-agent performance.

ment (Agee).

_ Perf,, —Perf;

A
ace Perfy

ey

where Perf, and Perf,, represent the perfor-
mance (accuracy) of the single-agent’ and system,
respectively.

Finding 1: Multi-agent collaboration often help,
and early stopping is necessary.

We plotted single-agent and multi-agent accu-
racy for all possible <Architecture, LLM, Task>
triplets, totaling 135 points, as shown in Figure 3.
A point above the red line indicates that the multi-
agent system outperforms the single-agent. As the
chart shows, 55.6% MAS showed improvement
compared to single-agent. With early stopping acti-
vated, this number increased to 80%. This finding
suggests that multi-agent approaches generally of-
fer improvements, and early stopping mechanisms
are crucial for maximizing system performance.
Detailed data are given in the Appendix A.2.

Finding 2: Every factor related to multi-agent
synergy influences the system significantly, and
single-agent performance does not determine multi-
agent benefit.

In this part, we investigated the effect of the
three factors: architecture, LLM, and task. To
study the effect of architecture, we formed a
vector of performances for all five architectures
in every possible <LLM, Task>. We averaged
these vectors to indicate the relative performance
of architectures. To minimize the influence
of LLM and task, we performed z-score nor-
malization or Min-max normalization on all
vectors before averaging. Let Perf(a,m,t) be

3We use the results generated by greedy decoding to repre-
sent single-agent accuracy.



. Single-Agent Multi-Agent
Metric Accuracy Accuracy Agce
Normalization Min-Max Z-score | Min-Max Z-score | Min-Max Z-score
Full 0.41 -0.21 0.41 -0.21
Cycle 0.51 0.10 0.51 0.10
Architecture | Hierarchical \ \ 0.52 0.04 0.52 0.04
Rank 0.55 0.18 0.55 0.18
Team 0.46 -0.11 0.46 -0.11
Llama2 0.12 -0.79 0.10 -0.97 0.60 0.30
LLM Mistral 0.31 -0.32 0.51 0.03 0.66 0.45
Starling 0.93 1.11 0.90 0.94 0.15 -0.75
Math 0.56 0.08 0.46 -0.10 0.63 0.31
Task Knowledge 0.77 0.57 0.84 0.76 0.46 -0.10
Logic 0.23 -0.65 0.22 -0.66 0.41 -0.20

Table 1: The analysis for the possible factors of multi-agent synergy. It is important to note that these values are not
the actual accuracy of systems. They are the average values after Normalization across the different architectures

(or LLMs, tasks).

the performance of a multi-agent system com-
posed of architecture and LLM on task, Perf =
(Perf(FuLL),Perf(TEAM),...,Per£(CYCLE))

> Norm(Perf(m,t))
(m,t)EMXT
IMI|T]

The experiment results in Table 1 show that
(1) different architectures led to different improve-
ments, and the Rank architecture achieved rela-
tively the best results; (2) different LLMs led to
different improvements, and Mistral achieved rela-
tively the best results; (3) the effectiveness of the
multi-agent approach also depended on the task.
Math got the highest multi-agent benefits, which
aligned with our expectations.

Notably, it is challenging to predict multi-agent
benefits based on single-agent performance. For
example, although Starling performed best with
the single agent, its multi-agent benefits were less
than Mistral. Knowledge tasks generally had the
highest accuracy, but the multi-agent method im-
provement was less than Math. Besides, we plotted
a scatter plot of single-agent performance and sys-
tem improvement in the Appendix A.1, as shown in
Figure 7, revealing no apparent correlation between
Perfg and Ay

Perf =

2

5 Is scaling better for multi-agent
systems?

This section examines and analyzes the relationship
between scale and performance in MAS. In particu-
lar, we considered the agent number and maximum

communication rounds (time step) in MAS. Depart-
ing from Li et al. (2024), we focused on the scale
of MAS with dynamic interactions among agents
rather than the simple ensemble of answers.

Finding 3: Many hands may make light work.
More agents will bring more benefits.

In this part, we explored the impact of different
agent numbers in MAS. Due to max context length
and expensive cost, we did not compare systems
with more than five agents.

Table 2 shows the accuracy of different systems
on different datasets. We observed an overall im-
provement in LLM-based agents, consistent with
the findings of Li et al. (2024), which suggest that
adding more agents can lead to better system per-
formance. Although the performance did not con-
tinue to increase with five agents on the LOGIQA2
dataset, we believe that adding more and varied
agents will improve its performance. It is worth
pointing out that the only difference among the
agents here is temperatures. Theoretically, adding
agents with different roles or different LLMs will
better improve performance (Chan et al., 2023; Liu
et al., 2023b).

Finding 4: Agreement is strength. Achieving
agreement among agents is crucial for better per-
formance.

We calculated the system agreement at each time
step and the proportion of the correct answer in
each time step and shown the result in Figure 4.
Generally, the higher system agreement could lead
to better system performance. This observation
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of four agents based on Mistral.

Dataset | MMLU | GSM8K | LOGIQA2
Architecture | Full ~ Rank | Full Rank | Full  Rank
lagent | 44.0% 44.0% | 46.0% 46.0% | 39.0% 39.0%
2agents | 55.0% 55.0% | 45.0% 41.0% | 39.0% 44.0%
3agents | 64.0% 57.0% | 47.0% 50.0% | 47.0% 40.0%
4agents | 67.0% 67.0% | 51.0% 57.0% | 44.0% 42.0%
Sagents | 67.0% 68.0% | 52.0% 51.0% | 45.0% 46.0%

Table 2: The performance of systems with different
agents. Every system here is conducted with Mistral
and applied early stopping.

may indicate that the benefit of MAS comes from
the procedure in which agents collaborate and ulti-
mately reach a consensus. Additionally, we found
that different datasets had different performance-
increasing speeds. Therefore, we wondered if the
agreement threshold for early stopping is unique
for different datasets.

Considering that 95% of the data reached early
stopping within ten time steps, we examined the
ten time steps before and after reaching early stop-
ping. As shown in Figure 5, we found that both

MMLU and LogiQA?2 reached their best perfor-
mance at the early stopping time step. At the same
time, GSM8K could further improve performance
after early stopping, suggesting that using 2/3 as
the early stopping threshold for GSM8K may not
be reasonable. To determine the source of this ob-
servation, we additionally tested 100 sampled data
of High school Mathematics Problems and Ele-
mentary Mathematics Problems in MMLU (named
EMATH and HMATH), and the results revealed
that EMATH showed a relatively small decrease
with FULL and fluctuating correction with RANK,
while HMATH showed a fluctuating increase in
both architectures. We speculated the threshold
might related to the task and its complexity. Math
problems had a higher threshold, and the more
challenging the tasks were, the higher the threshold
was.

6 Crediting and Pruning

In this section, we credit the relative importance
of communication paths to prune less significant
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| MATH SVAMP GSMSK | CSQA CSQA2 MMLU | LogiQA LogiQA2 ReClor | Avg?

Crell/

OPTIMIZED (Ours) | 024 0.72 0.56 | 0.60 067  0.66 | 037 0.47 041 | 052 046
FuLL 022 070 047 | 058 064  0.64 0.38 047 043 | 050 1.00
RANK 019 071 049 | 057 066 065 0.42 045 0.50 | 0.52 0.6

Table 3: The performance of systems conducted with FULL, RANK, and OPTIMIZED architecture on different
datasets. These systems were based on Mistral and built with 3 agents. C\ indicates the relative number of
communication paths, assume the path number of Full architecture to be 1.

ones and investigate the potential effective struc-
tures within the MAS collaboration. Specifically,
we sampled an additional 200 data points from
GSMSK to prune the FULL architecture, which is
chosen because other architectures are essentially
subsets of it, and pruning it is most likely to reveal
potentially effective structures.

Credit assignment in MAS

Recent LLM-MAS use LLMs to rank or rate the
information output of agents, calculating contri-
butions based on these rankings or scores. While
this type of approach has achieved certain results
in many related studies (Chan et al., 2023; Zhang
et al., 2023b; Jiang et al., 2023b), ranking or rating
text by LLMs remains an unsolved problem (Wang
et al., 2023a; Shen et al., 2023). Inspired by Credit
Assignment in MARL, we broke down the pruning
of the collaboration architecture into identifying
the relative importance and reward of each com-
munication path between agents at any single time
step.

We use the Shapley value (Shapley and Corpo-
ration, 1951) to indicate the relative importance.
The Shapley value is a concept from cooperative
game theory that offers a fair distribution of the
total gains to the players (agents) based on their
contributions to the alliance (MAS).

Suppose the set of communication paths to
Agent n at time step ¢ is S. We defined the value
function v(.S) as the accuracy difference of Agent
n* between time step t-1 and t. Given N paths, the
formula for the Shapley value of path i is:

> ‘S!(‘N’u_wts' — (s uin - ()
SCN\{i}

3)
v(S U {i}) is the value of the alliance contains
path i and v(.9) is the value of the alliance without
path i. A higher Shapley value suggests a more
significant importance or contribution of this path.

“we calculated the accuracy in the picked 200 training data

3093448

Figure 6: The pruned architecture. Contains only 46%
communication paths in the Full architecture.

After calculating the Shapley values of the com-
munication paths, we removed those paths where
Shapley values were lower than a certain threshold
(we took the threshold as 0.002 to eliminate those
paths with a small effect). This ensures an overall
improvement of each time step. After pruning a
time step, we used the pruned structure to optimize
the next step, continuing this process until there
was no positive reward path or the maximum time
step was reached.

Finding 6:
reflection.

An interesting phenomenon occurs in pruned
architecture: Information Aggregation and Self-
Reflection. Information aggregates to specific
agents and then spreads back to all agents, con-
sistent with hierarchical architecture. Furthermore,
we found that in the pruned architecture, agents
tend to communicate with others at early time steps
and tend to make a self-reflection, which aligns
with the method mentioned in Wang et al. (2023b),
at the later time steps. This may reduce the propa-
gation of misinformation after multiple rounds of
interaction.

Information aggregation and Self-

Finding 5:  The pruning architecture reduces cost
and outperforms other architectures in many in-
stances.

We extracted 200 data points from the GSM8K
training dataset and pruned the FULL architecture
with 3 agents for 8 time steps. We applied these
pruned architectures on all datasets, with the results
shown in Table 3. To align with other architectures,



we used only the first 6 time steps for evaluation.
The pruned architectures performed well on the
GSMBSK and exhibited a certain degree of transfer
ability on other datasets. Specifically, it outper-
forms FULL and RANK on 7 datasets. It is worth
noting that we deleted those paths with smaller
benefits during pruning, which further reduces the
cost. The pruned architecture only contains 46.2%
communication paths in the FULL architecture.

7 Related Work

LLM-based multi-agent. In the last few years,
researchers have conducted numerous studies on
LLM-MAS. Some studies focus on approach-
ing collaborative mechanisms to enhance systems.
These studies, e.g., Debate (Du et al., 2023),
MAD (Liang et al., 2023), Deepwide (Zhang et al.,
2023b), and ChatEval (Chan et al., 2023), concen-
trated on continuous debates among agents. Other
studies focus on the decomposition of complex
tasks, such as Camel (Li et al., 2023), ChatDev
(Qian et al., 2023), AutoGen (Wu et al., 2023), and
MetaGPT (Hong et al., 2023), exploring MAS for
task division where different agents responsible for
different sub-tasks. Additionally, a series of studies
have explored how to use LLMs to simulate hu-
man behavior. This includes strategic and sandbox
games like Werewolf (Xu et al., 2023a,b), Avalon
(Lan et al., 2023), Minecraft (Chen et al., 2023b;
Gong et al., 2023), game theory simulation (Fu
etal., 2023; Mao et al., 2023; Guo et al., 2023), and
sociological simulation (Park et al., 2023; Zhang
et al., 2023a). However, the scale, agent credit, and
factors related to multi-agent synergy have also not
been comprehensively studied.

Collaboration Architecture of multi-agent.
Traditional multi-agent research has proposed a
variety of possible structures (Horling and Lesser,
2004) such as Flat, Hierarchical, Holonic (Esmaeili
et al., 2016), Team, and Congregation (Brooks and
Durfee, 2003). In the past few years, some studies
have leveraged the capabilities of LLMs to con-
struct more complex MAS. Shi et al. (2023); Du
et al. (2023); Liang et al. (2023) organized multi-
ple LLM-based agents for fixed rounds of debates.
Chen et al. (2023a) organized agents in the form of
a Round-Table Conference. ChatLLM (Hao et al.,
2023) and WideDeep (Zhang et al., 2023b) orga-
nized agents into linear layers to enhance system
capabilities. Zhang et al. (2023c) adopted a dy-
namic acyclic graph structure during the reasoning

process. Liu et al. (2023b) proposed a dynamic
architecture that can adjust according to different
queries. Yin et al. (2023) proposed four architec-
tures based on network topology.

Contribution of Agents. Evaluating the contri-
bution of LLM agents is crucial for optimizing
MAS. Credit assignment (Agogino and Tumer,
2004), introduced from traditional multi-agent,
studies how to measure the impact of actions on
global rewards. Extensive research has been delv-
ing into this problem, including implicit methods
like policy gradients and Q-learning algorithms
and explicit methods such as the Shapley value and
actor-critic architecture. LLM-MAS studies pri-
marily use extra LLMs for evaluation. Jiang et al.
(2023b); Qin et al. (2023); Liu et al. (2023b) rank-
ing outputs of agents to determine contributions.
Others calculate contributions based on LLM’s in-
termediate outcomes, such as the confidence evalu-
ation proposed by (Yin et al., 2023), which calcu-
lates the model’s confidence based on the variation
in responses.

8 Conclusion and Future Direction

This paper focuses on three main questions: explor-
ing the performance of multi-agent systems under
various scenarios, investigating the influence of
scale-related factors, and finding potential effective
structures by crediting communication paths. Our
empirical study offers significant insights for col-
laboration within MAS, finding that single-agent
performance does not decide the performance of
multi-agent synergy. Furthermore, our study at
scale suggests that adding more agents can lead to
better system performance, aligning with the con-
clusions from (Li et al., 2024). We observed that
the system agreement gradually increases as the
time step increases. We also pruned the FULL archi-
tecture based on the Shapley value, which achieved
the best results and demonstrated certain transfer-
ability and implied potential effective architecture.
Our empirical study on scaling and crediting can be
helpful in future studies of LLM-based multi-agent
systems.

Limitations

Our study also has some limitations. First, we did
not experiment with a MAS consisting of more
than five agents due to the limited context length
of the open-source model. We plan to use mod-
els that support longer contexts for systems with



more agents in the future. Besides, an interest-
ing problem arises in Q2: Why does MAS show a
performance decline after reaching early stopping
on some datasets? According to our case study,
this problem came from the accidentally generated
error messages and the fast spreading of misin-
formation. We plan to analyze this phenomenon
systematically in the future. Lastly, considering the
extra computational costs of Shaley value, using
Information Gain and a simplified method from
MARL may be better.
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A Appendix

A.1 The relation between single-agent
performance and multi-agent benefit

In section 4, we propose the finding that single-
agent performance does not determine multi-agent
benefit. To further verify this finding, we made a
scatter plot of single-agent system’s accuracy with
multi-agent benefit, as shown in Fig. 7. It can be
found that there is no obvious correlation between
them, which supports the conclusion of section 4.
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Figure 7: Single-agent accuracy and system improve-
ment

A.2 System performance in every
architecture, LLM, and dataset

In section 4, we calculated the average influence
of different factors, i.e., architecture, LLM, and
dataset, but the absolute performance of each fac-
tor was not shown. For this reason, we present all
data in Table 4. Keep in mind that the table only
contains results for the 3-agent system, consider-
ing the cost, we did not conduct such extensive
experiments for systems consisting of more agents.

A.3 Shapley value of every path

In section 6, we optimized FULL architecture with
Shapley value, but we didn’t present the middle
value of the optimization. Here, we show the Shap-
ley value of every path in each optimization time
step in Table 5. Noticing that each column depend
on the optimized architecture at that time step.

A.4 Results on bigger model

We have done some experiments on larger systems
and more capable LLM Mixtral-8x7B-Instruct-
v0.1-GPTQ. The results are as follows:
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A.5 Agent prompt

We show the role prompt for each agent in Table 7
and Table 8.



LLM | Architecture | MATH GSMS8K SVAMP CSQA CSQA2 MMLU LogicQA LogiQA2 ReClor

Single Agent | 0.14 0.18 0.57 031 057 0.44 0.38 0.33 0.27
Full 0.10 0.26 0.61 040 0.6 0.44 0.45 0.33 0.37

Cycle 0.10 0.23 064 041 0.61 0.44 0.48 0.34 0.34

llama2 | fierarchical | 0.12 0.22 0.59 042 052 0.47 0.48 0.34 0.34
Team 0.12 0.22 0.58 038 057 0.43 0.45 0.34 0.38

Rank 0.10 0.24 0.58 038  0.63 0.47 0.35 0.38 0.38

Single Agent | 0.12 0.46 066 046  0.65 0.44 0.35 0.39 0.43

Full 0.22 0.48 070 058  0.64 0.64 0.38 0.47 0.43

. Cycle 0.23 0.49 070 062 062 0.64 0.40 0.45 0.45
mistral | Hierarchical | 0.20 0.50 0.71 0.61 0.61 0.69 0.40 0.43 0.48
Team 0.22 0.47 0.71 059 070 0.64 0.39 0.47 0.45

Rank 0.23 0.50 070 057  0.63 0.58 0.32 0.40 0.49

Single Agent | 0.34 0.75 080 071  0.68 0.64 0.36 0.55 0.56

Full 0.42 0.78 0.81 078  0.65 0.63 0.37 0.48 0.48

A Cycle 0.36 0.77 0.81 080  0.67 0.65 0.40 0.51 0.49
starling | Hierarchical | 0.38 0.77 08 075  0.64 0.66 0.38 0.51 0.50
Team 0.38 0.76 0.83 079  0.63 0.65 0.39 0.50 0.49

Rank 0.42 0.75 0.85 077  0.68 0.70 0.40 0.57 0.58

Table 4: System accuracy on every system and dataset. Systems based on 3 agents. The max time step is 6.

Time Step ‘ 1 2 3 4 5 6 7 8

Path(0,0) | -0.043 0.009 0.006 -0.001 -0.009 0.008 0.010 -0.015
Path(1,0) | 0.033 0.002 0.001 -0.008 0.018 -0.003 0.000 0.000
Path(2,0) | 0.035 -0.031 -0.022 0.009 -0.004 -0.005 -0.005 0.000
Path(0,1) | 0.013 0.016 0.007 -0.003 -0.032 -0.009 -0.006 -0.013
Path(1,1) | 0.003 0.016 0.014 -0.005 0.021 0.016 -0.006 0.004
Path(2,1) | 0.000 -0.017 -0.006 0.013 -0.004 -0.007 0.002 -0.011
Path(0,2) | -0.008 0.025 0.019 0.002 -0.008 -0.008 0.010 -0.001
Path(1,2) | 0.015 0.010 0.014 -0.016 0.012 0.017 -0.020 -0.003
Path(2,2) | 0.008 -0.020 -0.033 0.014 -0.008 -0.003 0.000 0.004

Table 5: The Shapley value for every path in every time step during optimizing. the Path(i, j) denote the path from
agent i to agent j

AgentNumber | 1 2 3 4 5 6 7 8 9 10

MMLU 0.67 0.80 0.73 0.73 0.75 0.76 - - - -
GSM8k 068 074 077 0.77 0776 0.79 081 0.78 0.79 0.8
LogiQA2 048 045 046 051 053 052 - - - -

Table 6: The result of Mixtral-8x7B-Instrument-v0.1-GPTQ with Full architecture
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[System Prompt]

You are an excellent and very capable domain question solver. You are now invited to an expert
group of processing and solving domain application questions. Your codename in the expert group
is Expert self.rrid. As a distinguished member of the expert group, you possess the capability to a
broad range of domain disciplines, allowing you to adapt and apply the appropriate methodologies
to the given questions.

[User Prompt]

### Task Description

Your task is to systematically address the domain application question presented below, decipher
complex question statements and elucidate your reasoning in a sequential, step-by-step fashion.
Carefully utilize the provided information to work through the question. Your answer should
be both concise and comprehensive, detailing the logical progression of your thought process.
Besides, the expert group have provided some potential answers to this question, you should
consider insights from these answers to enrich the quality and accuracy of your own answer.

### Given Question
Question: question

### Given Question Again
Read the given question again.
Question: question

### Answers by Other Experts

There are some potential answers provided by different experts for the same question. Consider
these responses to cross-verify your approach, broaden your understanding, and gain alternative
perspectives with diverse approaches to the question-solving process. This may help you ensure
consistency and accuracy in your methodology. However, we have not verified the correctness of
these answers, so be careful of the quality and relevance of these answers.

messages

### Output Format

start

Opinion: your opinion about other experts’ answers

Solution: your detailed, step-by-step solution, final answer is formatted as "[ final answer here "
end

The output start with your opinion about other experts’ answers, followed by your step-by-step
solution in the next line.

Remember that your final answer in the solution is surrounded by ’[* and ’]’, which is formatted as
"[ final answer here ]".

Now take a deep breath and solve the question step by step.

Table 7: The prompt template for agent. We replace the colored slot with real text before querying the LLMs. Note
that we use a similar template when conducting single-agent-based experiments and ignore the Answers by Other
Experts.
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[System Prompt]

You are an excellent and very capable domain question solver. You are now invited to an expert
group of processing and solving domain application questions. Your codename in the expert group
is Expert self.rrid. As a distinguished member of the expert group, you possess the capability to a
broad range of domain disciplines, allowing you to adapt and apply the appropriate methodologies
to the given questions.

[User Prompt]

### Task Description

Your task is to systematically address the domain application question presented below, decipher
complex question statements and elucidate your reasoning in a sequential, step-by-step fashion.
Carefully utilize the provided information to work through the question. Your answer should
be both concise and comprehensive, detailing the logical progression of your thought process.
Besides, the expert group have provided some potential answers to this question, you should
consider insights from these answers to enrich the quality and accuracy of your own answer.

### Given Question
Question: question

### Given Question Again
Read the given question again.
Question: question

### Your Previous Answer
You have generated a previous answer ...
most recent answer, if it is transmitted.

### Answers by Other Experts There are some potential answers provided by different experts
for the same question. Consider these responses to cross-verify your approach, broaden your
understanding, and gain alternative perspectives with diverse approaches to the question-solving
process. This may help you ensure consistency and accuracy in your methodology. However, we
have not verified the correctness of these answers, so be careful of the quality and relevance of
these answers.

messages

### Output Format

start

Opinion: your opinion about other experts’ answers

Solution: your detailed, step-by-step solution, final answer is formatted as "[ final answer here ]"
end

The output start with your opinion about other experts’ answers, followed by your step-by-step
solution in the next line.

Remember that your final answer in the solution is surrounded by ’[* and ’]’, which is formatted as
"[ final answer here |".

Now take a deep breath and solve the question step by step.

Table 8: The prompt template for interaction between agents.
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