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Abstract
Large Language Models based Multi-Agent001
Systems (LLM-MAS) perform well in many do-002
mains, but we still lack a clear understanding of003
the collaboration mechanism among multiple004
LLM-based agents. This study aims to explore005
three key issues: (1) Can multi-agent outper-006
form single-agent systems? (2) Is scaling better007
for multi-agent systems? (3) How to credit008
agents and find potential effective structures?009
Specifically, we design five collaboration archi-010
tectures and evaluate their effectiveness across011
different LLMs and tasks. Our findings offer012
significant insights for understanding the col-013
laboration within MAS, building collaboration014
architectures among agents, and reducing sys-015
tem costs. Furthermore, our conclusion will016
inspire and provide new perspectives for future017
studies on LLM-MAS.018

1 Introduction019

Large Language Model-based Multi-agent Systems020

(LLM-MAS) specialize multiple LLMs into differ-021

ent agents and effectively simulate complex real-022

world environments through the interaction among023

these diverse agents (Guo et al., 2024). With proven024

outstanding abilities in contextual understanding,025

reasoning, and generation, LLMs empower agents026

to collaboratively plan, discuss, and make deci-027

sions, imitating human team cooperation to solve028

real world problems (Li et al., 2023; Hong et al.,029

2023; Wu et al., 2023).030

Recent research efforts have focused on explor-031

ing and optimizing the collaboration mechanisms032

of MAS driven by LLMs (Liang et al., 2023; Du033

et al., 2023; Chan et al., 2023), revealing two criti-034

cal challenges: architecture scaling and contribu-035

tion crediting. The challenge of architecture scal-036

ing encompasses expanding the number of agents037

and increasing their interaction frequency to solve038

more complex tasks (Zhang et al., 2023b; Chan039

et al., 2023; Li et al., 2024). However, while en-040

hancing system capabilities, scaling also leads to041
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a substantial rise in communication overhead, pre- 042

senting a notable challenge in maintaining system 043

efficiency (Zhang et al., 2023b; Yin et al., 2023). At 044

the same time, the challenge of contribution credit- 045

ing involves the accurate allocation of contributions 046

among agents, which is crucial for promoting col- 047

laboration and ensuring interpretability and robust- 048

ness within LLM-MAS systems (Liu et al., 2023b). 049

Evaluating LLM-MAS systems from the perspec- 050

tives of scaling and crediting not only diagnoses 051

their current shortcomings and limitations but also 052

directs future developments toward more efficient, 053

effective, and scalable multi-agent collaborations. 054

In this paper, to comprehensively evaluate the 055

multi-agent collaboration of large language mod- 056

els, we designed a unified evaluation procedure 057

and conducted systematic evaluations on 9 datasets 058

across 3 tasks. Specifically, we design five col- 059

laboration architectures that reflect different com- 060

munication patterns and the diversity of agent col- 061

laboration. This paper primarily investigates three 062

research questions (RQ): 063

RQ1: Can multi-agent outperform single- 064

agent systems? Different from single-agent sys- 065

tems, LLM-MAS involves multiple agents that in- 066

fluence each other with frequent and complex agent 067
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interactions. The interaction or communication pat-068

terns between agents, which we refer to as the col-069

laboration architectures, can significantly affect the070

system performance. Some researchers have ex-071

plored several optimal collaboration architectures072

(Chan et al., 2023; Chen et al., 2023b) and designed073

various LLM-based multi-agent systems. Yin et al.074

(2023) explored integrating different collaboration075

architectures to enhance system performance. How-076

ever, past studies primarily focused on exploring077

specific systems, lacking a comprehensive study on078

the general properties of LLM-MAS. Inspired by079

traditional multi-agent theory, we construct several080

collaboration architectures and use these architec-081

tures to build multiple multi-agent systems and082

conduct systematic studies in different scenarios.083

RQ2: Is scaling better for multi-agent sys-084

tems? Cost is a crucial but often overlooked limit-085

ing factor in LLM-based multi-agent research. In086

this study, we analyze the scale of MAS, including087

time step, agent number, and the threshold of early088

stopping, etc. Yin et al. (2023) discussed the the-089

oretical costs of some collaboration architectures.090

Li et al. (2024) systematically studied the effect of091

the agent number in a sampling-and-voting method.092

However, they did not consider the communication093

between agents. A question remains: How do we094

decide the scale or cost-related factors? Therefore,095

we systematically analyze the relationship between096

scale and performance in multi-agent.097

RQ3: How to credit agents and find potential098

effective structures We also address the credit-099

ing of communication paths in LLMs-based MAS,100

which has received less attention than agent role101

assignments. Current strategies primarily utilize102

LLMs for evaluating agent outputs through rank-103

ing or rating (Liu et al., 2023b; Jiang et al., 2023b;104

Qin et al., 2023). This type of method, despite its105

prevalence, faces challenges in accuracy. In con-106

trast, traditional multi-agent reinforcement learning107

(MARL) offers insights into collaboration through108

credit assignment, focusing on the distribution of109

rewards among agents based on their contributions.110

Inspired by MARL principles (Minsky, 1961; Sune-111

hag et al., 2018), we explore an LLM-independent112

method using Shapley value to quantify the contri-113

butions of each collaboration in the system proce-114

dure and pruning multi-agent systems.115

Our experiments provide insights into the multi-116

agent collaboration of large language models: 1)117

Multi-agent systems often outperform single-agent118

systems, and single-agent performance does not 119

determine multi-agent benefit. 2) More agents 120

will bring more benefits, and achieving agreement 121

among agents is crucial for better performance. 3) 122

Pruning communication paths based on crediting is 123

possible and reveals some aggregating information 124

and self-reflection structures among agents in the 125

collaboration strategy 126

Generally, our contributions are as follows: 127

• We introduce five collaborative multi-agent ar- 128

chitectures and conduct extensive experiments 129

in various scenarios to explore three crucial 130

questions regarding the multi-agent collabora- 131

tion of large language models. 132

• We investigate the connection between the 133

scale and performance of LLM-MAS and 134

provide an in-depth study of the agreement 135

changes of the system and the early stopping 136

mechanism. 137

• By quantifying the credits of communication 138

paths, we propose a Shapley value-based prun- 139

ing approach for LLM-MAS. This pruned 140

structure significantly reduces communication 141

costs across various datasets while achieving 142

superior performance and implies some poten- 143

tially effective structures. 144

2 Collaboration Architectures 145

Traditional multi-agent research (Esmaeili et al., 146

2016; Damba and Watanabe, 2007; Dorri et al., 147

2018; Horling and Lesser, 2004) has identified and 148

delineated various effective multi-agent architec- 149

tures, including Flat, Hierarchical, Holonic, and 150

Team. Each architecture possesses distinct advan- 151

tages and is suitable for specific scenarios. 152

Inspired by the multi-agent theory and recent 153

multi-agent research, we designed five unique col- 154

laboration architectures that reflect different com- 155

munication patterns and the diversity of agent col- 156

laboration. Figure 2 contains five types of collab- 157

oration architectures. There are three static col- 158

laboration architectures: FULL, CYCLE, and HI- 159

ERARCHICAL in Figure 2(a), and two dynamic 160

architectures, TEAM and RANK, in Figure 2(b). 161

• FULL Inspired by the Flat structure (Dorri 162

et al., 2018) of traditional multi-agent theory, 163

information can be freely passed from one 164

agent to another. In particular, when there are 165
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only two agents, the collaboration architec-166

ture degenerates into a typical debate archi-167

tecture. This kind of architecture simulates168

information propagation in unrestricted dis-169

cussions, facilitating the fast spread of infor-170

mation. However, such networks may lead to171

high costs.172

• CYCLE Inspired by Multi-Agent Debate173

(Liang et al., 2023), information is propa-174

gated among pairs of agents to reach a final175

agreement. This architecture simulates private176

conversation. It emphasizes how information177

gradually evolves and spreads over a limited178

number of interactions. This type of archi-179

tecture has less costs, but the time required180

for the system to reach an agreement may be181

longer.182

• HIERARCHICAL Inspired by the Hierarchi-183

cal structure (Damba and Watanabe, 2007)184

of the traditional multi-agent theory, informa-185

tion is propagated between nodes at different186

levels. This architecture simulates the Del-187

phi method1 in expert groups. This kind of188

architecture emphasizes aggregation and pro-189

cessing of the information.190

• TEAM Inspired by the Team structure (Parker,191

1993) of the traditional multi-agent, informa-192

tion flows between agents with different view-193

points(answers). This architecture simulates194

the propagation of information during a team195

discussion. This kind of architecture has no in-196

teraction between agents with the same view-197

point.198

• RANK Inspired by the idea of agent optimiza-199

tion in DyLAN (Liu et al., 2023b), informa-200

tion and messages are sorted before it is de-201

livered, and only top-k information can be202

passed to the next time step. This architecture203

simulates a review or screening process, such204

as editorial review or administrator approval,205

emphasizing the concern for information qual-206

ity.207

1Delphi method: soliciting experts’ opinions on a problem,
organizing and summarizing them, then anonymously feeding
them back to the experts, and soliciting opinions again until
they reach an agreement
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Figure 2: Collaboration Architectures

3 Experiments 208

This section introduces the dataset and LLM we 209

used, providing a data foundation for subsequent 210

problem analysis. 211

Tasks and Datasets. In our experiments, we 212

used a general evaluation procedure to assess the 213

performance of five architectures across three tasks, 214

including: 1) Math: GSM8K (Cobbe et al., 2021), 215

MATH (Hendrycks et al., 2021b), and SVAMP (Pa- 216

tel et al., 2021) datasets; 2) Knowledge: MMLU 217

(Hendrycks et al., 2021a), CommonsenseQA (Tal- 218

mor et al., 2019), and CommonsenseQA 2.0 (Tal- 219

mor et al., 2022); 3) Logic: LogiQA (Liu et al., 220

2020), LogiQA2.0 (Liu et al., 2023a), and ReClor 221

(Yu et al., 2020). 222

Model Details. We tested the proposed col- 223

laboration mechanism based on different models. 224

Considering cost and effectiveness, we selected 225

open-source models, e.g., Llama2-7b-Chat (Tou- 226

vron et al., 2023), Mistral-7b-Instruction (Jiang 227

et al., 2023a), and Starling-LM-7B-alpha (Zhu 228
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et al., 2023), for our experiments. Specifically, we229

downloaded the corresponding open-source mod-230

els on hugging face and deployed the APIs using231

Fastchat and vLLM (Kwon et al., 2023). These232

three LLMs will be combined with the five ar-233

chitectures to form 15 multi-agent systems. The234

maximum time step is six if not explicitly stated.235

Additionally, we conducted experiments on the236

quantized model of the larger model Mixtral-8x7B237

model2, which can be found in Appendix A.4.238

System Details. To reflect the difference be-239

tween the Agents, we set the temperature of each240

Agent to a different value between 0 and 1 during241

generation. By default, we used 3 Agents with242

temperatures of 1, 0.6, and 0.4. Inspired by social243

comparison theory and review collaboration (Xu244

et al., 2023c), we considered generating solutions,245

final answers, and reviewing other agents’ answers246

during generation. Complete prompt examples can247

be found in the appendix. Motivated by Liu et al.248

(2023b) and Practical Byzantine Fault Tolerance,249

when 2/3 of the agents in the system reached a con-250

sensus (i.e., the answer is the same), we made the251

system early stop, and the process stopped.252

4 Can multi-agent systems outperform253

single-agent systems?254

This section evaluates the multi-agent benefit. We255

conducted experiments with multi-agent systems256

composed of three LLMs and five collaboration257

architectures across nine datasets and analyzed the258

MAS performance according to the relative im-259

provement of multi-agent systems. Moreover, we260

investigated the impact of the possible factors of261

multi-agent synergy, i.e., collaboration architecture,262

LLM, and task.263

The benefit of MAS264

Final Success Rate (e.g., accuracy) is the most com-265

monly used metric for evaluating multi-agent sys-266

tems (Du et al., 2023; Chan et al., 2023; Liu et al.,267

2023b; Chen et al., 2023a), which offers the advan-268

tages of simplicity and intuitiveness. However, the269

final success rate is highly correlated with the LLM270

and Task and does not reflect multi-agent synergy.271

To examine the benefits of multi-agent synergy, a272

natural idea is to consider the relative improvement273

in accuracy, which we refer to as accuracy improve-274

2https://huggingface.co/TheBloke/Mixtral-8x7B-Instruct-
v0.1-GPTQ
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ment (∆acc). 275

∆acc =
Perfm − Perfs

Perfs
(1) 276

where Perfs and Perfm represent the perfor- 277

mance (accuracy) of the single-agent3 and system, 278

respectively. 279

Finding 1: Multi-agent collaboration often help, 280

and early stopping is necessary. 281

We plotted single-agent and multi-agent accu- 282

racy for all possible <Architecture, LLM, Task> 283

triplets, totaling 135 points, as shown in Figure 3. 284

A point above the red line indicates that the multi- 285

agent system outperforms the single-agent. As the 286

chart shows, 55.6% MAS showed improvement 287

compared to single-agent. With early stopping acti- 288

vated, this number increased to 80%. This finding 289

suggests that multi-agent approaches generally of- 290

fer improvements, and early stopping mechanisms 291

are crucial for maximizing system performance. 292

Detailed data are given in the Appendix A.2. 293

Finding 2: Every factor related to multi-agent 294

synergy influences the system significantly, and 295

single-agent performance does not determine multi- 296

agent benefit. 297

In this part, we investigated the effect of the 298

three factors: architecture, LLM, and task. To 299

study the effect of architecture, we formed a 300

vector of performances for all five architectures 301

in every possible <LLM, Task>. We averaged 302

these vectors to indicate the relative performance 303

of architectures. To minimize the influence 304

of LLM and task, we performed z-score nor- 305

malization or Min-max normalization on all 306

vectors before averaging. Let Perf(a,m, t) be 307

3We use the results generated by greedy decoding to repre-
sent single-agent accuracy.
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Metric
Single-Agent Multi-Agent

∆accAccuracy Accuracy

Normalization Min-Max Z-score Min-Max Z-score Min-Max Z-score

Architecture

Full

\ \

0.41 -0.21 0.41 -0.21
Cycle 0.51 0.10 0.51 0.10
Hierarchical 0.52 0.04 0.52 0.04
Rank 0.55 0.18 0.55 0.18
Team 0.46 -0.11 0.46 -0.11

LLM

Llama2 0.12 -0.79 0.10 -0.97 0.60 0.30
Mistral 0.31 -0.32 0.51 0.03 0.66 0.45
Starling 0.93 1.11 0.90 0.94 0.15 -0.75

Task

Math 0.56 0.08 0.46 -0.10 0.63 0.31
Knowledge 0.77 0.57 0.84 0.76 0.46 -0.10
Logic 0.23 -0.65 0.22 -0.66 0.41 -0.20

Table 1: The analysis for the possible factors of multi-agent synergy. It is important to note that these values are not
the actual accuracy of systems. They are the average values after Normalization across the different architectures
(or LLMs, tasks).

the performance of a multi-agent system com-308

posed of architecture and LLM on task, ˜Perf =309

(Perf(FULL),Perf(TEAM), ...,Perf(CYCLE))310

¯Perf =

∑
(m,t)∈M×T

Norm( ˜Perf(m, t))

|M||T |
(2)311

The experiment results in Table 1 show that312

(1) different architectures led to different improve-313

ments, and the Rank architecture achieved rela-314

tively the best results; (2) different LLMs led to315

different improvements, and Mistral achieved rela-316

tively the best results; (3) the effectiveness of the317

multi-agent approach also depended on the task.318

Math got the highest multi-agent benefits, which319

aligned with our expectations.320

Notably, it is challenging to predict multi-agent321

benefits based on single-agent performance. For322

example, although Starling performed best with323

the single agent, its multi-agent benefits were less324

than Mistral. Knowledge tasks generally had the325

highest accuracy, but the multi-agent method im-326

provement was less than Math. Besides, we plotted327

a scatter plot of single-agent performance and sys-328

tem improvement in the Appendix A.1, as shown in329

Figure 7, revealing no apparent correlation between330

Perfs and ∆acc.331

5 Is scaling better for multi-agent332

systems?333

This section examines and analyzes the relationship334

between scale and performance in MAS. In particu-335

lar, we considered the agent number and maximum336

communication rounds (time step) in MAS. Depart- 337

ing from Li et al. (2024), we focused on the scale 338

of MAS with dynamic interactions among agents 339

rather than the simple ensemble of answers. 340

Finding 3: Many hands may make light work. 341

More agents will bring more benefits. 342

In this part, we explored the impact of different 343

agent numbers in MAS. Due to max context length 344

and expensive cost, we did not compare systems 345

with more than five agents. 346

Table 2 shows the accuracy of different systems 347

on different datasets. We observed an overall im- 348

provement in LLM-based agents, consistent with 349

the findings of Li et al. (2024), which suggest that 350

adding more agents can lead to better system per- 351

formance. Although the performance did not con- 352

tinue to increase with five agents on the LOGIQA2 353

dataset, we believe that adding more and varied 354

agents will improve its performance. It is worth 355

pointing out that the only difference among the 356

agents here is temperatures. Theoretically, adding 357

agents with different roles or different LLMs will 358

better improve performance (Chan et al., 2023; Liu 359

et al., 2023b). 360

Finding 4: Agreement is strength. Achieving 361

agreement among agents is crucial for better per- 362

formance. 363

We calculated the system agreement at each time 364

step and the proportion of the correct answer in 365

each time step and shown the result in Figure 4. 366

Generally, the higher system agreement could lead 367

to better system performance. This observation 368
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Figure 5: The agreement and system performance. The x-axis represents the distance from the current time step to
the early stopping time step. For example, 0 represents the early stopping time step, 1 represents the next time step
after early stopping, and -1 represents the time step before early stopping. These data come from a MAS composed
of four agents based on Mistral.

Dataset MMLU GSM8K LOGIQA2

Architecture Full Rank Full Rank Full Rank

1 agent 44.0% 44.0% 46.0% 46.0% 39.0% 39.0%
2 agents 55.0% 55.0% 45.0% 41.0% 39.0% 44.0%
3 agents 64.0% 57.0% 47.0% 50.0% 47.0% 40.0%
4 agents 67.0% 67.0% 51.0% 57.0% 44.0% 42.0%
5 agents 67.0% 68.0% 52.0% 51.0% 45.0% 46.0%

Table 2: The performance of systems with different
agents. Every system here is conducted with Mistral
and applied early stopping.

may indicate that the benefit of MAS comes from369

the procedure in which agents collaborate and ulti-370

mately reach a consensus. Additionally, we found371

that different datasets had different performance-372

increasing speeds. Therefore, we wondered if the373

agreement threshold for early stopping is unique374

for different datasets.375

Considering that 95% of the data reached early376

stopping within ten time steps, we examined the377

ten time steps before and after reaching early stop-378

ping. As shown in Figure 5, we found that both379

MMLU and LogiQA2 reached their best perfor- 380

mance at the early stopping time step. At the same 381

time, GSM8K could further improve performance 382

after early stopping, suggesting that using 2/3 as 383

the early stopping threshold for GSM8K may not 384

be reasonable. To determine the source of this ob- 385

servation, we additionally tested 100 sampled data 386

of High school Mathematics Problems and Ele- 387

mentary Mathematics Problems in MMLU (named 388

EMATH and HMATH), and the results revealed 389

that EMATH showed a relatively small decrease 390

with FULL and fluctuating correction with RANK, 391

while HMATH showed a fluctuating increase in 392

both architectures. We speculated the threshold 393

might related to the task and its complexity. Math 394

problems had a higher threshold, and the more 395

challenging the tasks were, the higher the threshold 396

was. 397

6 Crediting and Pruning 398

In this section, we credit the relative importance 399

of communication paths to prune less significant 400
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Architecture
Math Knowledge Logic

Avg↑ Crel↓MATH SVAMP GSM8K CSQA CSQA2 MMLU LogiQA LogiQA2 ReClor

OPTIMIZED (Ours) 0.24 0.72 0.56 0.60 0.67 0.66 0.37 0.47 0.41 0.52 0.46

FULL 0.22 0.70 0.47 0.58 0.64 0.64 0.38 0.47 0.43 0.50 1.00
RANK 0.19 0.71 0.49 0.57 0.66 0.65 0.42 0.45 0.50 0.52 0.66

Table 3: The performance of systems conducted with FULL, RANK, and OPTIMIZED architecture on different
datasets. These systems were based on Mistral and built with 3 agents. Crel indicates the relative number of
communication paths, assume the path number of Full architecture to be 1.

ones and investigate the potential effective struc-401

tures within the MAS collaboration. Specifically,402

we sampled an additional 200 data points from403

GSM8K to prune the FULL architecture, which is404

chosen because other architectures are essentially405

subsets of it, and pruning it is most likely to reveal406

potentially effective structures.407

Credit assignment in MAS408

Recent LLM-MAS use LLMs to rank or rate the409

information output of agents, calculating contri-410

butions based on these rankings or scores. While411

this type of approach has achieved certain results412

in many related studies (Chan et al., 2023; Zhang413

et al., 2023b; Jiang et al., 2023b), ranking or rating414

text by LLMs remains an unsolved problem (Wang415

et al., 2023a; Shen et al., 2023). Inspired by Credit416

Assignment in MARL, we broke down the pruning417

of the collaboration architecture into identifying418

the relative importance and reward of each com-419

munication path between agents at any single time420

step.421

We use the Shapley value (Shapley and Corpo-422

ration, 1951) to indicate the relative importance.423

The Shapley value is a concept from cooperative424

game theory that offers a fair distribution of the425

total gains to the players (agents) based on their426

contributions to the alliance (MAS).427

Suppose the set of communication paths to428

Agent n at time step t is S. We defined the value429

function v(S) as the accuracy difference of Agent430

n4 between time step t-1 and t. Given N paths, the431

formula for the Shapley value of path i is:432 ∑
S⊆N\{i}

|S|!(|N | − |S| − 1)!

|N |!
(v(S ∪{i})− v(S))

(3)433

v(S ∪ {i}) is the value of the alliance contains434

path i and v(S) is the value of the alliance without435

path i. A higher Shapley value suggests a more436

significant importance or contribution of this path.437

4we calculated the accuracy in the picked 200 training data

Task

Figure 6: The pruned architecture. Contains only 46%
communication paths in the Full architecture.

After calculating the Shapley values of the com- 438

munication paths, we removed those paths where 439

Shapley values were lower than a certain threshold 440

(we took the threshold as 0.002 to eliminate those 441

paths with a small effect). This ensures an overall 442

improvement of each time step. After pruning a 443

time step, we used the pruned structure to optimize 444

the next step, continuing this process until there 445

was no positive reward path or the maximum time 446

step was reached. 447

Finding 6: Information aggregation and Self- 448

reflection. 449

An interesting phenomenon occurs in pruned 450

architecture: Information Aggregation and Self- 451

Reflection. Information aggregates to specific 452

agents and then spreads back to all agents, con- 453

sistent with hierarchical architecture. Furthermore, 454

we found that in the pruned architecture, agents 455

tend to communicate with others at early time steps 456

and tend to make a self-reflection, which aligns 457

with the method mentioned in Wang et al. (2023b), 458

at the later time steps. This may reduce the propa- 459

gation of misinformation after multiple rounds of 460

interaction. 461

Finding 5: The pruning architecture reduces cost 462

and outperforms other architectures in many in- 463

stances. 464

We extracted 200 data points from the GSM8K 465

training dataset and pruned the FULL architecture 466

with 3 agents for 8 time steps. We applied these 467

pruned architectures on all datasets, with the results 468

shown in Table 3. To align with other architectures, 469

7



we used only the first 6 time steps for evaluation.470

The pruned architectures performed well on the471

GSM8K and exhibited a certain degree of transfer472

ability on other datasets. Specifically, it outper-473

forms FULL and RANK on 7 datasets. It is worth474

noting that we deleted those paths with smaller475

benefits during pruning, which further reduces the476

cost. The pruned architecture only contains 46.2%477

communication paths in the FULL architecture.478

7 Related Work479

LLM-based multi-agent. In the last few years,480

researchers have conducted numerous studies on481

LLM-MAS. Some studies focus on approach-482

ing collaborative mechanisms to enhance systems.483

These studies, e.g., Debate (Du et al., 2023),484

MAD (Liang et al., 2023), Deepwide (Zhang et al.,485

2023b), and ChatEval (Chan et al., 2023), concen-486

trated on continuous debates among agents. Other487

studies focus on the decomposition of complex488

tasks, such as Camel (Li et al., 2023), ChatDev489

(Qian et al., 2023), AutoGen (Wu et al., 2023), and490

MetaGPT (Hong et al., 2023), exploring MAS for491

task division where different agents responsible for492

different sub-tasks. Additionally, a series of studies493

have explored how to use LLMs to simulate hu-494

man behavior. This includes strategic and sandbox495

games like Werewolf (Xu et al., 2023a,b), Avalon496

(Lan et al., 2023), Minecraft (Chen et al., 2023b;497

Gong et al., 2023), game theory simulation (Fu498

et al., 2023; Mao et al., 2023; Guo et al., 2023), and499

sociological simulation (Park et al., 2023; Zhang500

et al., 2023a). However, the scale, agent credit, and501

factors related to multi-agent synergy have also not502

been comprehensively studied.503

Collaboration Architecture of multi-agent.504

Traditional multi-agent research has proposed a505

variety of possible structures (Horling and Lesser,506

2004) such as Flat, Hierarchical, Holonic (Esmaeili507

et al., 2016), Team, and Congregation (Brooks and508

Durfee, 2003). In the past few years, some studies509

have leveraged the capabilities of LLMs to con-510

struct more complex MAS. Shi et al. (2023); Du511

et al. (2023); Liang et al. (2023) organized multi-512

ple LLM-based agents for fixed rounds of debates.513

Chen et al. (2023a) organized agents in the form of514

a Round-Table Conference. ChatLLM (Hao et al.,515

2023) and WideDeep (Zhang et al., 2023b) orga-516

nized agents into linear layers to enhance system517

capabilities. Zhang et al. (2023c) adopted a dy-518

namic acyclic graph structure during the reasoning519

process. Liu et al. (2023b) proposed a dynamic 520

architecture that can adjust according to different 521

queries. Yin et al. (2023) proposed four architec- 522

tures based on network topology. 523

Contribution of Agents. Evaluating the contri- 524

bution of LLM agents is crucial for optimizing 525

MAS. Credit assignment (Agogino and Tumer, 526

2004), introduced from traditional multi-agent, 527

studies how to measure the impact of actions on 528

global rewards. Extensive research has been delv- 529

ing into this problem, including implicit methods 530

like policy gradients and Q-learning algorithms 531

and explicit methods such as the Shapley value and 532

actor-critic architecture. LLM-MAS studies pri- 533

marily use extra LLMs for evaluation. Jiang et al. 534

(2023b); Qin et al. (2023); Liu et al. (2023b) rank- 535

ing outputs of agents to determine contributions. 536

Others calculate contributions based on LLM’s in- 537

termediate outcomes, such as the confidence evalu- 538

ation proposed by (Yin et al., 2023), which calcu- 539

lates the model’s confidence based on the variation 540

in responses. 541

8 Conclusion and Future Direction 542

This paper focuses on three main questions: explor- 543

ing the performance of multi-agent systems under 544

various scenarios, investigating the influence of 545

scale-related factors, and finding potential effective 546

structures by crediting communication paths. Our 547

empirical study offers significant insights for col- 548

laboration within MAS, finding that single-agent 549

performance does not decide the performance of 550

multi-agent synergy. Furthermore, our study at 551

scale suggests that adding more agents can lead to 552

better system performance, aligning with the con- 553

clusions from (Li et al., 2024). We observed that 554

the system agreement gradually increases as the 555

time step increases. We also pruned the FULL archi- 556

tecture based on the Shapley value, which achieved 557

the best results and demonstrated certain transfer- 558

ability and implied potential effective architecture. 559

Our empirical study on scaling and crediting can be 560

helpful in future studies of LLM-based multi-agent 561

systems. 562

Limitations 563

Our study also has some limitations. First, we did 564

not experiment with a MAS consisting of more 565

than five agents due to the limited context length 566

of the open-source model. We plan to use mod- 567

els that support longer contexts for systems with 568

8



more agents in the future. Besides, an interest-569

ing problem arises in Q2: Why does MAS show a570

performance decline after reaching early stopping571

on some datasets? According to our case study,572

this problem came from the accidentally generated573

error messages and the fast spreading of misin-574

formation. We plan to analyze this phenomenon575

systematically in the future. Lastly, considering the576

extra computational costs of Shaley value, using577

Information Gain and a simplified method from578

MARL may be better.579
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A Appendix878

A.1 The relation between single-agent879

performance and multi-agent benefit880

In section 4, we propose the finding that single-881

agent performance does not determine multi-agent882

benefit. To further verify this finding, we made a883

scatter plot of single-agent system’s accuracy with884

multi-agent benefit, as shown in Fig. 7. It can be885

found that there is no obvious correlation between886

them, which supports the conclusion of section 4.887
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Figure 7: Single-agent accuracy and system improve-
ment

A.2 System performance in every888

architecture, LLM, and dataset889

In section 4, we calculated the average influence890

of different factors, i.e., architecture, LLM, and891

dataset, but the absolute performance of each fac-892

tor was not shown. For this reason, we present all893

data in Table 4. Keep in mind that the table only894

contains results for the 3-agent system, consider-895

ing the cost, we did not conduct such extensive896

experiments for systems consisting of more agents.897

898

A.3 Shapley value of every path899

In section 6, we optimized FULL architecture with900

Shapley value, but we didn’t present the middle901

value of the optimization. Here, we show the Shap-902

ley value of every path in each optimization time903

step in Table 5. Noticing that each column depend904

on the optimized architecture at that time step.905

A.4 Results on bigger model906

We have done some experiments on larger systems907

and more capable LLM Mixtral-8x7B-Instruct-908

v0.1-GPTQ. The results are as follows:909

A.5 Agent prompt 910

We show the role prompt for each agent in Table 7 911

and Table 8. 912

12



LLM Architecture MATH GSM8K SVAMP CSQA CSQA2 MMLU LogicQA LogiQA2 ReClor

llama2

Single Agent 0.14 0.18 0.57 0.31 0.57 0.44 0.38 0.33 0.27
Full 0.10 0.26 0.61 0.40 0.56 0.44 0.45 0.33 0.37

Cycle 0.10 0.23 0.64 0.41 0.61 0.44 0.48 0.34 0.34
Hierarchical 0.12 0.22 0.59 0.42 0.52 0.47 0.48 0.34 0.34

Team 0.12 0.22 0.58 0.38 0.57 0.43 0.45 0.34 0.38
Rank 0.10 0.24 0.58 0.38 0.63 0.47 0.35 0.38 0.38

mistral

Single Agent 0.12 0.46 0.66 0.46 0.65 0.44 0.35 0.39 0.43
Full 0.22 0.48 0.70 0.58 0.64 0.64 0.38 0.47 0.43

Cycle 0.23 0.49 0.70 0.62 0.62 0.64 0.40 0.45 0.45
Hierarchical 0.20 0.50 0.71 0.61 0.61 0.69 0.40 0.43 0.48

Team 0.22 0.47 0.71 0.59 0.70 0.64 0.39 0.47 0.45
Rank 0.23 0.50 0.70 0.57 0.63 0.58 0.32 0.40 0.49

starling

Single Agent 0.34 0.75 0.80 0.71 0.68 0.64 0.36 0.55 0.56
Full 0.42 0.78 0.81 0.78 0.65 0.63 0.37 0.48 0.48

Cycle 0.36 0.77 0.81 0.80 0.67 0.65 0.40 0.51 0.49
Hierarchical 0.38 0.77 0.86 0.75 0.64 0.66 0.38 0.51 0.50

Team 0.38 0.76 0.83 0.79 0.63 0.65 0.39 0.50 0.49
Rank 0.42 0.75 0.85 0.77 0.68 0.70 0.40 0.57 0.58

Table 4: System accuracy on every system and dataset. Systems based on 3 agents. The max time step is 6.

Time Step 1 2 3 4 5 6 7 8

Path(0, 0) -0.043 0.009 0.006 -0.001 -0.009 0.008 0.010 -0.015
Path(1, 0) 0.033 0.002 0.001 -0.008 0.018 -0.003 0.000 0.000
Path(2, 0) 0.035 -0.031 -0.022 0.009 -0.004 -0.005 -0.005 0.000
Path(0, 1) 0.013 0.016 0.007 -0.003 -0.032 -0.009 -0.006 -0.013
Path(1, 1) 0.003 0.016 0.014 -0.005 0.021 0.016 -0.006 0.004
Path(2, 1) 0.000 -0.017 -0.006 0.013 -0.004 -0.007 0.002 -0.011
Path(0, 2) -0.008 0.025 0.019 0.002 -0.008 -0.008 0.010 -0.001
Path(1, 2) 0.015 0.010 0.014 -0.016 0.012 0.017 -0.020 -0.003
Path(2, 2) 0.008 -0.020 -0.033 0.014 -0.008 -0.003 0.000 0.004

Table 5: The Shapley value for every path in every time step during optimizing. the Path(i, j) denote the path from
agent i to agent j

Agent Number 1 2 3 4 5 6 7 8 9 10

MMLU 0.67 0.80 0.73 0.73 0.75 0.76 - - - -
GSM8k 0.68 0.74 0.77 0.77 0.76 0.79 0.81 0.78 0.79 0.8

LogiQA2 0.48 0.45 0.46 0.51 0.53 0.52 - - - -

Table 6: The result of Mixtral-8x7B-Instrument-v0.1-GPTQ with Full architecture
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[System Prompt]
You are an excellent and very capable domain question solver. You are now invited to an expert
group of processing and solving domain application questions. Your codename in the expert group
is Expert self.rrid. As a distinguished member of the expert group, you possess the capability to a
broad range of domain disciplines, allowing you to adapt and apply the appropriate methodologies
to the given questions.

[User Prompt]
### Task Description
Your task is to systematically address the domain application question presented below, decipher
complex question statements and elucidate your reasoning in a sequential, step-by-step fashion.
Carefully utilize the provided information to work through the question. Your answer should
be both concise and comprehensive, detailing the logical progression of your thought process.
Besides, the expert group have provided some potential answers to this question, you should
consider insights from these answers to enrich the quality and accuracy of your own answer.

### Given Question
Question: question

### Given Question Again
Read the given question again.
Question: question

### Answers by Other Experts
There are some potential answers provided by different experts for the same question. Consider
these responses to cross-verify your approach, broaden your understanding, and gain alternative
perspectives with diverse approaches to the question-solving process. This may help you ensure
consistency and accuracy in your methodology. However, we have not verified the correctness of
these answers, so be careful of the quality and relevance of these answers.
messages

### Output Format
start
Opinion: your opinion about other experts’ answers
Solution: your detailed, step-by-step solution, final answer is formatted as "[ final answer here ]"
end

The output start with your opinion about other experts’ answers, followed by your step-by-step
solution in the next line.
Remember that your final answer in the solution is surrounded by ’[’ and ’]’, which is formatted as
"[ final answer here ]".
Now take a deep breath and solve the question step by step.

Table 7: The prompt template for agent. We replace the colored slot with real text before querying the LLMs. Note
that we use a similar template when conducting single-agent-based experiments and ignore the Answers by Other
Experts.
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[System Prompt]
You are an excellent and very capable domain question solver. You are now invited to an expert
group of processing and solving domain application questions. Your codename in the expert group
is Expert self.rrid. As a distinguished member of the expert group, you possess the capability to a
broad range of domain disciplines, allowing you to adapt and apply the appropriate methodologies
to the given questions.

[User Prompt]
### Task Description
Your task is to systematically address the domain application question presented below, decipher
complex question statements and elucidate your reasoning in a sequential, step-by-step fashion.
Carefully utilize the provided information to work through the question. Your answer should
be both concise and comprehensive, detailing the logical progression of your thought process.
Besides, the expert group have provided some potential answers to this question, you should
consider insights from these answers to enrich the quality and accuracy of your own answer.

### Given Question
Question: question

### Given Question Again
Read the given question again.
Question: question

### Your Previous Answer
You have generated a previous answer ...
most recent answer, if it is transmitted.

### Answers by Other Experts There are some potential answers provided by different experts
for the same question. Consider these responses to cross-verify your approach, broaden your
understanding, and gain alternative perspectives with diverse approaches to the question-solving
process. This may help you ensure consistency and accuracy in your methodology. However, we
have not verified the correctness of these answers, so be careful of the quality and relevance of
these answers.
messages

### Output Format
start
Opinion: your opinion about other experts’ answers
Solution: your detailed, step-by-step solution, final answer is formatted as "[ final answer here ]"
end

The output start with your opinion about other experts’ answers, followed by your step-by-step
solution in the next line.
Remember that your final answer in the solution is surrounded by ’[’ and ’]’, which is formatted as
"[ final answer here ]".
Now take a deep breath and solve the question step by step.

Table 8: The prompt template for interaction between agents.
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