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Abstract001

Multimodal large language models (MLLMs)002
have made significant strides, yet they face chal-003
lenges in the medical domain due to limited004
specialized knowledge. While recent medical005
MLLMs demonstrate strong performance in006
lab settings, they often struggle in real-world007
applications, highlighting a substantial gap be-008
tween research and practice. In this paper, we009
seek to address this gap at various stages of010
the end-to-end learning pipeline, including data011
collection, model fine-tuning, and evaluation.012
At the data collection stage, we introduce Semi-013
HVision, a dataset that combines human an-014
notations with automated augmentation tech-015
niques to improve both medical knowledge016
representation and diagnostic reasoning. For017
model fine-tuning, we trained PMC-Cambrian-018
8B-AN over 2400 H100 GPU hours, resulting019
in performance that surpasses public medical020
models like HuatuoGPT-Vision-34B (79.0%021
vs. 66.7%) and private general models like022
Claude3-Opus (55.7%) on traditional bench-023
marks such as SLAKE and VQA-RAD. In024
the evaluation phase, we observed that tradi-025
tional benchmarks cannot accurately reflect re-026
alistic clinical task capabilities. To overcome027
this limitation and provide more targeted guid-028
ance for model evaluation, we introduce the029
JAMA Clinical Challenge, a novel benchmark030
specifically designed to evaluate diagnostic rea-031
soning. On this benchmark, PMC-Cambrian-032
AN achieves state-of-the-art performance with033
a GPT-4 score of 1.29, significantly outper-034
forming HuatuoGPT-Vision-34B (1.13) and035
Claude3-Opus (1.17), demonstrating its supe-036
rior diagnostic reasoning abilities.037

1 Introduction038

Multimodal foundation models have demonstrated039

remarkable success across a wide range of appli-040

cations by integrating visual and textual informa-041

tion, showcasing their ability to process complex042

visual patterns alongside natural language (Yan043

et al., 2023; Liu et al., 2024b; Jin et al., 2024). 044

This success has led to increasing interest in apply- 045

ing these models to medical tasks that involve both 046

medical images and text-based descriptions. Re- 047

cent advances have focused on fine-tuning general 048

multimodal models on medical datasets composed 049

of image-text pairs, yielding promising results (Li 050

et al., 2024; Chen et al., 2024b). 051

However, despite these advancements, Multi- 052

modal Large Language Models (MLLMs), such as 053

Claude3 and GPT-4V, face significant challenges 054

in the medical domain due to their limited abil- 055

ity to understand domain-specific visual features. 056

Unlike general tasks, medical image interpreta- 057

tion requires both the identification and under- 058

standing of the semantics of an image, including 059

anatomical landmarks, and expert medical knowl- 060

edge, which are crucial for accurate diagnosis—a 061

level of complexity not typically required in gen- 062

eral vision-language tasks. Furthermore, medical 063

imaging spans multiple modalities—such as X-ray, 064

CT, MRI, and DSA—each requiring specialized 065

knowledge for proper interpretation. For instance, 066

white regions in CT scans and MRI images con- 067

vey entirely different meanings, underscoring the 068

need for modality-specific experts. General models 069

like GPT-4V lack comprehensive medical knowl- 070

edge, further limiting their effectiveness in such 071

specialized applications. Compounding these chal- 072

lenges, obtaining high-quality annotated medical 073

data is particularly difficult due to privacy con- 074

cerns and the significant costs of expert annota- 075

tion (Xie et al., 2024; Bustos et al., 2020; Lau 076

et al., 2018; Irvin et al., 2019; Johnson et al., 2019; 077

Ikezogwo et al., 2024). These factors limit the 078

scalability and performance of MLLMs in med- 079

ical applications, highlighting the urgent need for 080

more robust, domain-adapted models capable of 081

handling the unique complexities of medical mul- 082

timodal tasks. Therefore, some researchers have 083

explored the use of synthetic medical data to fine- 084
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Ultrasound showing a well-defined, 
heterogeneous, hypoechoic mass posterior to the 

cervical column.

Axial non-contrast enhanced bone-window CT showing a 
subcutaneous, well-defined mass with a calcified rim on the 

level of C3–C4. The mass originates from the ipsilateral 
facet joint which shows marked degeneration.

Human Annotated

Without Human Annotated

Construct Medical Multimodality Retriever

Text Open GuidelinesMultimdoality Cases

An incidental identification of an accessory right inferior 
hepatic vein, a common anatomical variant of the hepatic 
veins, is noted. This vein primarily drains the posterior 
portion of the right hepatic lobe, specifically segments VI 
and VII, directly into the inferior vena cava.

Multimodality Retriever

Retrieve

Refer

Train

An accessory segment VI hepatic vein 
was noted draining into the IVC with a 
membranous ostial narrowing. 
Angioplasty and stenting was 
planned… 

Inference

Compare

Compare With Other MLLM
PMC-Cambrian
C. IgG4-related diseaseThis case illustrates the 
diagnostic considerations of a patient with enlarged 
extraocular muscles. Although this most commonly 
occurs in thyroid eye disease, the patient was 
euthyroid and did not have the typical restrictive 
pattern of ocular dysmotility, whereby duction in the 
opposite direction of the enlarged muscle is 
impaired.1 Thyroid orbitopathy classically affects a 
combination of the inferior rectus, medial rectus, 
and/or levator palpebrae superioris.2 Isolated 
involvement of the lateral rectus, superior rectus,...

GPT4V
The diagnosis is likely A. Idiopathic inflammatory 
orbital myositis.
Reason:
Clinical Presentation: The patient has a history of 
painless diplopia with no other systemic symptoms 
(such as headache, scalp tenderness, or systemic 
autoimmune symptoms). The physical examination 
showed an isolated limitation of right eye abduction, 
which indicates a specific muscle involvement.
Imaging Findings: The MRI shows abnormal 
thickening and T2 hyperintensity of the right 

HuatuoGPT-Vision
The patient's symptoms and MRI findings are 
consistent with a diagnosis of 
thyroid-associated ophthalmopathy (TAO), 
also known as Graves' orbitopathy. The key 
features supporting this diagnosis include the 
progressive painless diplopia, isolated 
limitation of right eye abduction, abnormal 
thickening and enhancement of the right 
lateral rectus muscle on MRI, and negative 
results for infection and autoimmune disease 
tests…

Query Image

Query Text
A 60-year-old man presented with 
a 1-week history of progressive 
painless diplopia. He had a history 
of hypothyroidism and 
dyslipidemia, for which he took 
levothyroxine and rosuvastatin. 
He reported no changes in visual 
acuity or color vision; no ocular 
pain, erythema, or abnormal 
discharge; …
A. Idiopathic inflammatory orbital 
myositis
B. Lymphoma
C, IgG4-related disease
D. Thyroid orbitopathy

Figure 1: Our pipeline starts with two types of data: human-annotated and unannotated medical images. For the
human-annotated dataset, we employ GPT-4o to generate instruction-based QA pairs and reformat the existing
captions. In parallel, a multimodal retriever constructs a corpus by indexing data from OpenGuidelines (Chen
et al., 2023) and the augmented dataset. For the unannotated dataset, the system retrieves relevant guidelines or
similar cases, providing them as context to GPT-4o for generating instructions and augmented captions. Finally, we
benchmark our model’s performance against HuatuoGPT-Vision and GPT-4V, demonstrating its enhanced reasoning
and captioning capabilities.

tune general MLLMs into medical MLLMs, such085

as LLaVA-Med (Li et al., 2024) and HuatuoGPT086

Vision (Chen et al., 2024b), which have surpassed087

general-domain MLLMs on traditional benchmark088

datasets.089

Current medical datasets, particularly synthe-090

sis datasets, are often limited by the absence091

of detailed manual annotations, relying heavily092

on model-generated descriptions that fail to ad-093

equately integrate local and global image infor-094

mation. We found that the quality of synthesis095

data is concerning, as it lacks manual annotations096

and is dependent on general MLLMs that do not097

possess sufficient medical knowledge. This short-098

coming leads to increased hallucinations and di-099

minished performance (Pal et al., 2023). Addition-100

ally, we found that most existing medical bench-101

mark datasets, such as LLaVA-Med-VQA (Li et al.,102

2024) and PubmedVision (Chen et al., 2024b), ex-103

hibit poor quality and lack inference capacities,104

particularly in tasks that require specialized exper-105

tise. These datasets, which are primarily focused106

on PubMed image-caption pairs, also lack reason-107

ing and diagnostic reasoning datasets, resulting108

in the trained models lacking reasoning capabil-109

ities (Dorfner et al., 2024). In contrast, general110

domain models tend to perform well in reasoning111

but lack the medical domain knowledge necessary 112

for producing accurate and clinically relevant out- 113

comes (Yuksekgonul et al., 2023; Geirhos et al., 114

2020). In fact, there has been ongoing debate re- 115

garding whether medical LLMs or general LLMs 116

perform better in medical tasks (Lehman et al., 117

2023; Dorfner et al., 2024). Therefore, this paper 118

will also explore this discussion. 119

Furthermore, the quality of existing bench- 120

marks raises concerns. For instance, datasets like 121

SLAKE (Liu et al., 2021), VQA-RAD (Lau et al., 122

2018), and Path-VQA (He et al., 2020) focus heav- 123

ily on knowledge recall rather than assessing how 124

to use medical knowledge for inference. Our ex- 125

periments reveal that these benchmarks employ a 126

limited evaluation methodology that fails to ad- 127

equately assess the reasoning capabilities of the 128

models. Consequently, researchers tend to develop 129

medical LLMs in a direction that prioritizes these 130

benchmarks, leading to a paradox where medi- 131

cal MLLMs perform exceptionally well on these 132

benchmarks yet may not exhibit strong perfor- 133

mance in real-world medical tasks. This situation 134

calls into question the effectiveness of current eval- 135

uation methods in guiding medical MLLMs toward 136

improved real-world clinical performance. Here we 137

propose three key concerns: 1) Do medical MLLMs 138
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actually outperform general MLLMs in clinical139

tasks, as indicated by traditional benchmarks? 2)140

Do current evaluation methods effectively guide141

medical MLLMs toward enhancing real-world clin-142

ical performance? 3) How can we train a medical143

MLLM with robust diagnostic capabilities?144

Here, we hypothesize that improved benchmark145

datasets help enhance medical MLLMs, and we146

have built a comprehensive evaluation pipeline. To147

this end, we deploy an expert-in-the-loop pipeline148

to construct high-quality benchmark datasets to149

train medical MLLMs for knowledge inference.150

This involves conducting comprehensive evalua-151

tions using both traditional benchmarks and the152

JAMA Clinical Challenges benchmark, a real-153

world clinical challenge dataset focusing specif-154

ically on fine-grained reasoning and diagnostic155

tasks. We then design novel evaluation metrics to156

assess medical MLLMs and compare them with157

general MLLMs. Recognizing the limitations of158

current multimodal models, we develop Semi-159

HVision, a dataset that combines human anno-160

tations with automated augmentation techniques.161

This dataset is constructed using a multimodal re-162

triever, UniIR, which retrieves relevant medical163

guidelines based on image content and integrates164

human-labeled regions of interest (ROIs) to guide165

the model in understanding critical image areas.166

Lastly, to address the need for medical MLLMs167

with strong diagnostic abilities, we train PMC-168

Cambrian-AN, first pretraining it on 14 million169

image-text pairs from the PubMed dataset and then170

fine-tuning it on the SemiHVision dataset. This171

results in a model that excels in both knowledge re-172

tention and diagnostic reasoning, as demonstrated173

by its superior performance on the JAMA Clini-174

cal Challenges benchmark. Overall, this compre-175

hensive approach—through new datasets, bench-176

marks, and evaluation pipelines—ensures that med-177

ical MLLMs are not only effective in traditional178

tasks but also better equipped for real-world clini-179

cal applications, outperforming both public medi-180

cal and general MLLMs.181

• We design an expert-annotation-in-the-loop182

pipeline to generate SemiHVision as shown183

in Figure 11.184

• We train PMC-Cambrian-AN on PubMed and185

SemiHVision dataset to get a robust medical186

inference capabilities MLLM.187

1Case comes from https://www.eurorad.org/case/18708,
https://www.eurorad.org/case/17297

• It is commonly believed that models excelling 188

on traditional benchmarks will also perform 189

well in clinical tasks, with medical MLLMs 190

expected to outperform general ones. We pro- 191

pose a new evaluation pipeline to compare 192

PMC-Cambrian-AN with other medical and 193

general MLLMs on both traditional and new 194

benchmarks questions this assumption and 195

provides a more accurate evaluation of clinical 196

relevance. 197

2 Related Work 198

2.1 Existing Multimodal Medical Datasets 199

The construction of comprehensive medical multi- 200

modal datasets has garnered significant attention. 201

Previous efforts have primarily focused on col- 202

lecting images paired with clinical reports from 203

specialists, which provide detailed descriptions, 204

including disease types and reasoning. However, 205

many of these datasets have significant limitations. 206

For instance, MIMIC-CXR-JPG (Johnson et al., 207

2019) consists of 227,835 lung CT images, offer- 208

ing valuable insights but limited in broader med- 209

ical applications. PMC-OA (Lin et al., 2023) at- 210

tempts to address scalability with 1.65 million 211

image-caption pairs from the PMC dataset; how- 212

ever, the lack of detailed human-annotated cap- 213

tions for subfigures results in lower quality of in- 214

formation. Datasets such as PMC-CaseReport (Wu 215

et al., 2023), PMC-VQA (Zhang et al., 2023), and 216

LLaVA-Med VQA (Li et al., 2024) and PubMed- 217

Vision (Chen et al., 2024b) focus on unbalanced 218

modalities and body parts, further restricting appli- 219

cability. RadGenome-Chest CT (Zhang et al., 2024) 220

includes comprehensive annotations but still relies 221

heavily on paired image-text data, limiting scala- 222

bility. Early datasets like VQA-RAD, SLAKE, and 223

Path-VQA are constrained by small size and nar- 224

row focus. MedTrinity (Xie et al., 2024), although 225

featuring multiple modalities and detailed annota- 226

tions, relies on Med-LLaVA (Touvron et al., 2023) 227

for text generation, increasing the risk of dataset 228

hallucinations. Additionally, the dataset’s questions 229

are narrow in scope, leading to a lack of diversity 230

in QA pairs for instruction tuning. In contrast, our 231

work addresses these challenges by constructing 232

a large-scale medical dataset that includes diverse 233

modalities such as X-ray, CT, and MRI, integrating 234

human annotations, medical guidelines retrieved by 235

a multimodal retriever, and GPT-4o to ensure bal- 236

anced and comprehensive training across various 237
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medical tasks.

Dataset Image Retriever ROI Human

PMC-CaseReport × × ×
PMC-OA × × ×
LLaVA-Med VQA × × ×
PubMedVision × × ×
Medtrinity × ✓ ×
SemiHVision ✓ ✓ ✓

Table 1: Comparison of Medical Instruction Dataset238

2.2 Medical Multimodal Model239

In recent years, adapting multimodal foundation240

models to medical vision-language tasks has gained241

prominence due to their success in capturing com-242

plex visual features (Moor et al., 2023; Li et al.,243

2024). Current Medical Multimodal Large Lan-244

guage Models (MLLMs) typically pair a visual245

encoder with a text-only LLM, aligning image246

data with language understanding. Previous ef-247

forts, such as Med-Flamingo (Moor et al., 2023)248

and Med-PaLM (Tu et al., 2024), fine-tuned249

general multimodal models on smaller medical250

datasets, achieving notable results. Med-Flamingo251

enhanced OpenFlamingo-9B (Chen et al., 2024a)252

with medical data, while Med-PaLM adapted253

PaLM-E (Driess et al., 2023) using 1 million data254

points. Similarly, LLaVA-Med, Med-Gemini (Saab255

et al., 2024), and HuatuoGPT Vision utilized spe-256

cialized datasets and instruction tuning to refine257

medical question-answering tasks. Our work em-258

ploys Cambrian (Tong et al., 2024), a multimodal259

large language model with a vision-centric ap-260

proach, to bridge the gap between visual represen-261

tation and language understanding. Experimental262

results show that our model outperforms other state-263

of-the-art models across multiple tasks.264

3 SemiHVision265

3.1 Data Collection266

Data Source and Image Selection Strategy For267

the pretraining phase, we utilized the PubMed268

dataset, initially containing about 25 million sam-269

ples. After filtering out corrupted or too brief en-270

tries (fewer than 20 words), we reduced it to 14271

million samples suitable for effective training. In272

the fine-tuning phase, we incorporated the PMC273

dataset but faced significant imbalance due to many274

non-medical images; thus, we employed GPT-4o275

mini for classification to retain only medical con-276

tent. Despite these efforts, modalities like MRI and277

X-ray remained underrepresented. Consequently,278

we focused on datasets emphasizing CT, X-ray,279

MRI, histopathology, and pathology to cover a 280

wide range of anatomical regions, prioritizing those 281

with human-annotated information(The details are 282

shown in Appendix A.6 and Table 8). For 3D im- 283

ages, we used annotation information, such as slice 284

IDs, to select images and evenly sampled additional 285

slices to ensure each 3D image corresponded to no 286

more than 20 2D slices. Our experiments indicate 287

that utilizing all available slices from 3D images 288

results in diminished model performance, fur- 289

ther validating our selective approach in the 290

fine-tuning process. 291

Human Annotation Preprocessing While many 292

datasets include human annotations like brief re- 293

ports, the variability in these annotations poses chal- 294

lenges for model training. To address this, we lever- 295

aged GPT-4o to regenerate text based on images 296

and annotations, standardizing content into a con- 297

sistent representation for more effective learning. 298

Additionally, some annotations, such as those in 299

the Eurorad dataset, are notably lengthy, encom- 300

passing individual image descriptions, comprehen- 301

sive findings, and discussions. We segmented the 302

task into three components: generating findings for 303

individual images, consolidating these into over- 304

all image findings, and extending them to gener- 305

ate the discussion section(the details are shown 306

in Appendix A.7). Experimental results show that 307

incorporating these human-annotated datasets 308

enhances the model’s fine-grained reasoning ca- 309

pabilities, as human annotations highlight impor- 310

tant details, and GPT-4o’s augmentation generates 311

numerous fine-grained reasoning tasks. 312

3.2 Data Distribution Analysis 313

Unlike traditional methods for generating instruc- 314

tion datasets, we collected a broader range of 315

human-annotated data across multiple modali- 316

ties. We conducted a distribution analysis on ran- 317

domly sampled 200k entries from both the original 318

PMC and SemiHVision datasets. Expert annota- 319

tors classified the images into categories such as 320

X-ray, DSA, CT, MR, PET/SPECT, Ultrasound, 321

Histopathology, and others. Additionally, we em- 322

ployed GPT-4o for image classification, and to en- 323

sure accuracy, a random sample of 100 images was 324

reviewed by human experts, yielding a classifica- 325

tion accuracy of 73%. We focused on analyzing 326

higher-frequency modalities, as depicted in Fig- 327

ure 2. The analysis revealed that non-medical im- 328

ages constitute a significant portion of the original 329

PMC dataset, with simulated illustrations like sta- 330

4



Figure 2: A comparative distribution of image modalities between the original PMC dataset and the SemiHVision
dataset. The original PMC dataset contains a significant portion of non-medical content (58.03%), with a relatively
lower representation of key medical imaging modalities like MRI (1.80%) and X-ray (0.77%). In contrast, the
SemiHVision dataset demonstrates a more balanced distribution, with a substantial increase in clinically relevant
modalities such as CT (31.15%), MRI (21.31%), and X-ray (15.61%), while minimizing the presence of non-medical
images (6.69%).

tistical charts being the second largest category.331

In contrast, clinically critical modalities like CT,332

MRI, and X-ray were significantly underrepre-333

sented, highlighting the scarcity of these essential334

medical images in the PMC dataset. Despite prior335

filtering efforts, the low representation of modal-336

ities like MRI and X-ray means the final dataset337

still lacks sufficient numbers of these images. For338

the SemiHVision dataset, we performed a simi-339

lar sampling and distribution analysis. Unlike the340

PMC dataset, not all entries were classified using341

GPT-4o, as some, such as those from Quilt-1M,342

were already pre-labeled. The resulting distribu-343

tion demonstrates that SemiHVision contains a344

more balanced representation of clinically relevant345

modalities. Notably, modalities underrepresented346

in the PMC dataset, such as MRI and X-ray, have a347

much higher proportion in SemiHVision, ensuring348

more comprehensive coverage of medical knowl-349

edge essential for model training and expanding350

the scope of medical expertise.351

3.3 Data Construction Pipeline352

Our pipeline comprises three key stages for con-353

structing robust multimodal datasets for medical354

applications. In the first stage, we develop a multi-355

modal retrieval system by establishing two retrieval356

databases: a text-based OpenGuidelines repository357

and a collection of image-text pairs with human358

annotations from Eurorad and Radiopaedia. Both359

repositories are indexed for efficient retrieval. For360

images without human annotations, the retriever361

takes the image as input to fetch relevant guidelines362

and analogous cases. In the second stage, we lever-363

age GPT-4o to generate comprehensive clinical re-364

ports. For images with existing annotations, we365

augment these reports with additional context and 366

medical insights; for unannotated images, the re- 367

trieved guidelines are used to automatically gener- 368

ate detailed, domain-specific descriptions, ensuring 369

alignment with the medical context and reducing 370

the risk of hallucination. In the final stage, we con- 371

struct specialized medical question-answer pairs 372

based on both the image-caption pairs and the gen- 373

erated clinical reports. These QA pairs focus on 374

critical diagnostic reasoning and medical decision- 375

making, serving as high-quality instruction tuning 376

data to optimize the model’s ability to handle com- 377

plex medical queries. The entire process is illus- 378

trated in Figure 1. 379

To address the limitations of the general-purpose 380

MLLMs in generating precise medical content, we 381

developed a specialized medical retrieval system. 382

This system utilizes two datasets: the text-based 383

OpenGuidelines and a multimodal clinical case col- 384

lection from Eurorad and Radiopaedia, covering 385

a wide range of medical fields such as Abdomi- 386

nal Imaging, Uroradiology & Genital Male Imag- 387

ing, Paediatric Radiology, Neuroradiology, Muscu- 388

loskeletal System, Interventional Radiology, Head 389

& Neck Imaging, Genital (Female) Imaging, Chest 390

Imaging, Cardiovascular, Breast Imaging, and Hy- 391

brid Imaging. For images lacking individual cap- 392

tions but accompanied by an overall "image find- 393

ings" section, we employed GPT-4o to generate 394

detailed captions for each sub-image based on the 395

case-level descriptions, ensuring every image had 396

a detailed caption without hallucinations. Our re- 397

trieval system leverages the UniIR framework and 398

fusion scoring function. In datasets without human 399

annotations, our multimodal retriever fetches four 400

relevant guidelines or cases, including at least one 401
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pure text-based guideline for knowledge enrich-402

ment. We also incorporated human-annotated re-403

gions of interest (ROI) when available to guide404

GPT-4o in generating precise image captions based405

on both the ROI and the retrieved corpus. This406

methodology ensures a comprehensive understand-407

ing of each image and its medical context, en-408

hancing both the corpus and retrieval system with409

domain-specific expertise. We use this multimodal410

medical knowledge retrieval to generate our instruc-411

tion dataset (details are provided in Appendix A.1).412

4 PMC-Cambrian: Experimental on413

SemiHVision414

4.1 Training Setting415

During the training of PMC Cambrian, we em-416

ployed a two-stage process. First, we filtered the417

original PMC dataset by removing captions with418

fewer than 20 words, yielding a final dataset of 14419

million samples. We then pre-trained the model on420

this refined dataset using a learning rate of 1e-4 and421

an image token length of 512. DeepSpeed Stage422

2 was utilized, with a batch size of 8 and a gradi-423

ent accumulation step of 6. During this stage, we424

focused solely on training the adapter while freez-425

ing the other model components. The pre-training426

phase ran on four H100 GPUs for 420 hours.427

In the fine-tuning phase, we used the SemiHVi-428

sion dataset with a learning rate of 2e-5, while429

keeping the DeepSpeed Stage 2 configuration, with430

a batch size of 6 and a gradient accumulation step431

of 6. Unlike the pre-training phase, the full model432

parameters were trained. This fine-tuning process433

was conducted on 8 H100 GPUs for 90 hours. For434

instruction tuning, we divided the process into two435

phases: standard instruction tuning and the Anneal-436

ing phase which is the same as Llama3 (Dubey437

et al., 2024). The learning rate in Annealing phase438

is 1e-5. During the instruction tuning phase, we439

used non-human-annotated data, primarily GPT-4o-440

generated synthetic data. In the Annealing phase,441

we focused on human-annotated data, where GPT-442

4o applied further augmentation to enhance the443

dataset(The details are shown in Appendix A.2).444

4.2 Automatic Evaluation Pipeline445

We evaluate on traditional benchmark and our new446

benchmark data sets(The details are shown in Ap-447

pendix A.3). Although several methods exist for448

measuring textual similarity, such as F1 or ROUGE,449

both metrics have significant limitations in the med-450

ical domain. Therefore, we propose a very strict 451

evaluation pipeine by using two evaluation metrics: 452

the USMLE-Factuality score and the GPT-4o score. 453

For the GPT-4o score, directly allowing GPT-4o to 454

grade the answers is often ineffective, as GPT-4o 455

tends to favor answers that align with its preferred 456

linguistic style, which may not match our intended 457

criteria. Thus, we introduce a scoring framework 458

to evaluate model’s fine grained diagnostic ability 459

based on three aspects: Key Points, Inference, and 460

Evidence which is designed by doctors(The details 461

are shown in Appendix A.1). 462

5 Results 463

5.1 Traditional Benchmark Result 464

Table 2 shows that PMC-Cambrian models fine- 465

tuned on GPT-4o synthetic data significantly 466

outperform both general-purpose and medical- 467

specific models across various medical VQA bench- 468

marks. Specifically, PMC-Cambrian-8B achieves 469

an impressive 67.1% average accuracy, surpass- 470

ing all other tested models. Despite being larger, 471

HuatuoGPT-Vision-34B attains a slightly lower 472

average accuracy of 66.7%, indicating that PMC- 473

Cambrian-8B performs better even with fewer pa- 474

rameters. Compared to similar-sized models, PMC- 475

Cambrian-8B outperforms LLaVA-8B with Pub- 476

MedVision by 4.4%, highlighting the effectiveness 477

of our high-quality data. 478

We also tested a variant, PMC-Cambrian-20M, 479

which does not adopt the SemiHVision method. In- 480

stead of selecting slices from 3D medical images, 481

all slices were extracted and directly fed into the 482

model for training. Surprisingly, the performance 483

decreased, as reflected in its average accuracy of 484

63.8%. This decline is attributed to the fact that 485

many of the extracted slices were highly similar to 486

each other. Additionally, several slices did not con- 487

tain abnormal areas such as tumors, leading to the 488

generation of a large volume of "healthy" data for 489

the model. This oversampling of normal data nega- 490

tively impacted the model’s overall performance. 491

To demonstrate the importance of annealing, 492

we trained two models: PMC-Cambrian-8B-Mix, 493

which mixes GPT-4o synthetic data and human- 494

annotated data, and PMC-Cambrian-8B-AN, which 495

is first trained on GPT-4o synthetic data and 496

then annealed on human-annotated data. PMC- 497

Cambrian-8B-AN achieves an outstanding 79.0% 498

average accuracy, surpassing PMC-Cambrian-8B- 499

Mix (72.2%) and outperforming HuatuoGPT- 500

6



Model VQA-RAD SLAKE PathVQA PMC-VQA Avg.
GPT-4o-mini 45.9 59.0 37.9 33.3 44.0
Claude3-Opus 52.5 55.2 54.3 60.7 55.7
Med-Flamingo 45.4 43.5 54.7 23.3 41.7
RadFM 50.6 34.6 38.7 25.9 37.5
LLaVA-Med-7B 51.4 48.6 56.8 24.7 45.4
Qwen-VL-Chat 47.0 56.0 55.1 36.6 48.9
Yi-VL-34B 53.0 58.9 47.3 39.5 49.7
LLaVA-7B 52.6 57.9 47.9 35.5 48.5
LLaVA-13B 55.8 58.9 51.9 36.6 50.8
LLaVA-34B 58.6 67.3 59.1 44.4 57.4
LLaVA-8B 54.2 59.4 54.1 36.4 51.0
+ LLaVA_Med 60.2 61.2 54.5 46.6 55.6
+ PubMedVision 63.8 74.5 59.9 52.7 62.7
HuatuoGPT-Vision-34B 68.1 76.9 63.5 58.2 66.7
Our Model
PMC-Cambrian-8B-20M 67.8 76.1 57.8 53.6 63.8
PMC-Cambrian-8B 69.2 77.2 63.6 58.4 67.1
PMC-Cambrian-8B-Mix 74.2 81.3 76.3 59.1 72.2
PMC-Cambrian-8B-AN 86.1 87.7 80.4 61.9 79.0

Table 2: Performance comparison of various models on medical VQA benchmarks (VQA-RAD, SLAKE, PathVQA,
PMC-VQA) with average scores is presented. PMC-Cambrian-8B-20M refers to the model trained using all slices
from the 3D dataset. PMC-Cambrian-8B prioritizes human-annotated slices and selectively sampled portions
for training, using GPT-4o-generated synthetic data. PMC-Cambrian-8B-Mix is trained by combining both the
human-annotated datasets and the GPT-4o-generated synthetic datasets. PMC-Cambrian-8B-AN is the result after
annealing on human-annotated datasets based on PMC-Cambrian-8B.

Claude3-Opus GPT-4o-mini Huatuo-7B Huatuo-34B PMC-Cambrian PMC-Cambrian-AN

Accuracy 58.4 46.2 34.5 44.7 41.2 58.5
UMLS Factuality 0.18 0.16 0.13 0.16 0.11 0.23
GPT-4 Overall 1.17 0.91 1.08 1.13 0.78 1.29
GPT-4 Key-Points 1.27 0.99 1.11 1.01 0.82 1.28
GPT-4 Inference 1.56 1.13 1.06 1.06 0.63 1.32
GPT-4 Evidence 0.67 0.60 1.08 1.31 0.89 1.27

Table 3: UMLS-F and GPT-4 score on JAMA Clinical Challenge across 6 different models :Claude3-Opus, GPT-4o-
mini, Huatuo-GPT-Vision 7B, Huatuo-GPT-Vision 34B, PMC-Cambrian, PMC-Cambrian-AN.

Vision-34B by 18.4%. This performance gap501

emphasizes the superiority of PMC-Cambrian-502

8B-AN models, which integrate advanced med-503

ical data augmentation and optimization tech-504

niques. Compared to private models like Claude3-505

Opus (55.7%) and GPT-4o-mini (44.0%), PMC-506

Cambrian-8B-AN models consistently excel across507

all benchmarks, underscoring the importance of508

well-curated medical-specific datasets in enhanc-509

ing multimodal medical understanding.510

5.2 Diagnostic Benchmark Result511

Figure 3: This figure illustrates the proportion of ques-
tions assessing knowledge and inference in the Slake,
VQA-RAD, Path-VQA, and JAMA Clincial Challenge
datasets.

While current public medical multimodal large 512

language models (MLLMs) have demonstrated 513

superior performance over general-domain mod- 514

els in traditional benchmarks—occasionally even 515

surpassing advanced models like Claude3-Opus— 516

a critical question arises: Do medical MLLMs 517

actually outperform general MLLMs in clin- 518

ical tasks, as suggested by traditional bench- 519

marks? To investigate this, we evaluated six 520

models Claude3-Opus, GPT-4o-mini, Huatuo-7B, 521

Huatuo-34B, PMC-Cambrian, and PMC-Cambrian- 522

AN using the JAMA Clinical Challenge dataset and 523

our new evaluation pipeline (see Table 3). We as- 524

sessed both the accuracy and diagnostic reason- 525

ing capabilities of these models. Accuracy was 526

measured using standard methodologies for close- 527

ended QA tasks, while diagnostic reasoning was 528

evaluated through the automatic scoring pipeline 529

described in Section 4.4, which measures perfor- 530

mance across three key dimensions: Key Points, 531

Inference, and Evidence. Our results reveal that, 532

although public medical MLLMs perform well 533

on traditional benchmarks (e.g., PMC-Cambrian- 534
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AN achieving an accuracy score of 58.5%), they535

struggle with the JAMA dataset. For instance,536

Huatuo-34B excels in the Evidence dimension537

with the highest score of 1.31, surpassing Claude3-538

Opus’s score of 0.67, but exhibits weaker infer-539

ence capabilities, scoring only 1.06. This suggests540

that while Huatuo-34B’s larger size and medical-541

specific training enable it to memorize medical542

knowledge effectively, this does not translate into543

superior diagnostic reasoning. In contrast, Claude3-544

Opus, lacking domain-specific medical knowledge,545

achieves a strong inference score of 1.56, outper-546

forming all other models in this dimension. Addi-547

tionally, GPT-4o-mini, a general-purpose model,548

attains a higher inference score (1.13) than Huatuo-549

34B (1.06), indicating that inference capabilities550

may not be solely dependent on medical knowl-551

edge. Therefore, we conclude that medical MLLMs552

do not necessarily outperform general MLLMs in553

clinical tasks requiring diagnostic reasoning.554

Furthermore, we also did human evaluation: we555

engaged three medical professionals to review and556

assess a small sample of 20 questions drawn from557

the test sets. These doctors were asked to provide558

their preference for the rationales generated by two559

models (Claude3-Opus and SemiHVision) given560

the gold rationale. The result aligns with our au-561

tomatic evaluations on the small samples, where562

PMC-Cambrian-AN achieved a win rate of 0.57563

compared to Claude3-Opus which also proved that564

our automatic evaluation method is reliable.565

To address the concern How can we train a566

medical MLLM with robust diagnostic capabili-567

ties? We trained PMC-Cambrian using instruction568

tuning. Initially, PMC-Cambrian was capable of an-569

swering medical QA tasks but scored lower across570

all metrics particularly in inference (0.63) due to571

its lack of training on human-annotated diagnos-572

tic datasets. After applying the annealing process,573

the enhanced model PMC-Cambrian-AN achieved574

the highest overall performance, with a top GPT-575

4 overall score of 1.29. This significant improve-576

ment underscores the importance of incorporating577

human-annotated diagnostic datasets during train-578

ing, which substantially enhances diagnostic rea-579

soning capabilities. Our findings demonstrate that580

models like PMC-Cambrian-AN, which integrate581

high-quality, human-annotated diagnostic data, can582

outperform models trained solely on synthetic or583

unannotated data, such as PubMedVision.584

Another critical concern is: Do current evalua-585

tion methods effectively guide medical MLLMs586

toward improving real-world clinical perfor- 587

mance? To investigate this, we classified questions 588

from various datasets into two categories using 589

GPT-4o: Knowledge-Based Questions (requiring 590

minimal inference) and Inference-Based Ques- 591

tions (requiring reasoning to reach a diagnosis). 592

For PathVQA, GPT-4o’s domain-specific knowl- 593

edge was insufficient, leading to lower classifica- 594

tion accuracy. Domain experts classified 100 sam- 595

ples, achieving agreement scores above 0.7 for 596

SLAKE, VQA-RAD, and JAMA, but below 0.6 597

for PathVQA. To address this, three experts clas- 598

sified the PathVQA dataset, and their annotations 599

were averaged with GPT-4o’s output to derive the 600

final distributions in Figure 3. The results show 601

that knowledge-based questions dominate SLAKE 602

(78.1%), VQA-RAD (76.4%), PathVQA (69.2%), 603

and JAMA (44.9%). These findings indicate that 604

traditional benchmarks focus heavily on knowledge 605

recall, while real-world diagnostic tasks, such as 606

those in the JAMA dataset, emphasize inference 607

and reasoning. We conclude that current evalua- 608

tion methods may not effectively guide medical 609

MLLMs toward improving real-world clinical per- 610

formance, as they overlook the critical reasoning 611

skills required in clinical settings. 612

6 Conclusion 613

In conclusion, this paper highlights the diagnos- 614

tic and infer ability shortcomings of current med- 615

ical MLLMs, substantiating these issues through 616

comprehensive experiments. We identify the lack 617

of human-annotated diagnostic datasets as a key 618

reason behind the poor diagnostic performance of 619

medical MLLMs, as many existing datasets rely 620

on GPT-4-generated synthetic data not human an- 621

notated diagnosis datasets. To address this, we 622

propose a new instruction-tuning dataset, Semi- 623

HVision, and train PMC-Cambrian-AN, which 624

achieves state-of-the-art performance on traditional 625

benchmarks. Furthermore, we introduce the JAMA 626

Clinical Challenge benchmark and a new evalua- 627

tion pipeline to assess diagnostic reasoning, demon- 628

strating that PMC-Cambrian, trained with Semi- 629

HVision, outperforms both public medical MLLMs 630

and private general-domain models like Claude3- 631

Opus in diagnostic tasks. 632

7 Limitations and Ethical Considerations 633

Despite the promising results demonstrated by 634

PMC-Cambrian-AN, several limitations warrant 635
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consideration. Firstly, the coverage of anatomi-636

cal regions in our dataset is limited due to the637

scarcity of high-quality, human-annotated medical638

data. While we have incorporated multiple imag-639

ing modalities such as X-ray, CT, and MRI, the640

representation across different body parts remains641

uneven. This imbalance may affect the generaliz-642

ability of our model in diverse clinical scenarios,643

potentially limiting its performance on underrep-644

resented regions. Additionally, the model size is645

constrained to 8 billion parameters, which, while646

efficient for training and deployment, may restrict647

the ability to handle more complex reasoning tasks648

that require deeper understanding and broader con-649

text. Exploring larger model architectures could650

enhance diagnostic performance in future work.651

Moreover, the broader societal impacts of de-652

ploying PMC-Cambrian-AN necessitate careful653

consideration. Automated medical systems hold654

significant potential for improving healthcare effi-655

ciency and accuracy but could also influence the656

roles of medical professionals and patient care prac-657

tices. It is crucial to approach the implementation of658

such technological solutions with caution, ensuring659

they serve as a complement rather than a replace-660

ment to the expertise of healthcare professionals.661

Balancing technological advancement with ethi-662

cal considerations is essential to maximize benefits663

while mitigating potential risks in clinical practice.664
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A Appendix 848

A.1 Template Prompt 849

Generate Instruction Data In constructing our in- 850

struction dataset, we utilize both closed-ended and 851
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open-ended question formats. For closed-ended852

data, such as PMC-VQA, Amboss VQA, JAMA853

train VQA, Slake train VQA, VQA-RAD train,854

and Path VQA, we generate answer options only.855

For open-ended tasks, particularly from JAMA856

datasets, we also require the model to provide rea-857

soning along with the answers. Additionally, GPT-858

4o is employed to generate question-answer pairs859

(QAPs) based on the images and their correspond-860

ing augmented captions, with each caption paired861

with 3 to 10 QAPs depending on its length and862

complexity. The questions generated are carefully863

designed to be directly related to the images, en-864

suring that answers can either be explicitly found865

or inferred from the caption content. The template866

prompt deatils are shown in Table 5. This approach867

minimizes dataset’s hallucinations by grounding868

GPT-4o’s output in the information provided in the869

captions and image data. Furthermore, we utilize870

a multigranular informtaion, such as specific ROI,871

and the broader medical context that connects lo-872

cal and global abnormalities to improve model’s873

fine grained ability. By following this structured874

methodology, we ensure the generation of high-875

quality, clinically relevant instruction data that im-876

proves the accuracy and interpretability of the mod-877

els.878

Evaluation Pipeline Prompt: When evaluat-879

ing close QA, we only need to calculate accuracy.880

However, many open QA tasks, such as diagnostic881

reasoning questions in the JAMA Clinical Chal-882

lenge, present additional challenges. Although sev-883

eral methods exist for measuring textual similarity,884

such as F1 or ROUGE, both approaches have signif-885

icant limitations in the medical domain. Therefore,886

we propose a very strict evaluation pipeine by us-887

ing two evaluation metrics: the USMLE-Factuality888

score and the GPT-4o score. For the GPT-4o score,889

directly allowing GPT-4o to grade the answers is890

often ineffective, as GPT-4o tends to favor answers891

that align with its preferred linguistic style, which892

may not match our intended criteria. Thus, we in-893

troduce a scoring framework to evaluate model’s894

fine grained diagnostic ability based on three as-895

pects: Key Points, Inference, and Evidence which896

is designed by doctors(The details are shown in897

Appendix A.1):898

• Key Points assess whether the model’s an-899

swer includes the critical elements present in900

the ground truth.901

• Inference evaluates whether the diagnostic902

reasoning in the model’s answer is correct, 903

follows the same steps as the ground truth, 904

and whether any key steps are omitted. 905

• Evidence examines whether the model’s an- 906

swer provides the crucial evidence to support 907

its conclusions or diagnostic reasoning. 908

Finally, an average score will be calculated to 909

represent the overall quality of the answer. To fur- 910

ther reduce the influence of linguistic style on 911

GPT-4’s scoring, we propose revising all model- 912

generated answers through GPT-4, ensuring that 913

all outputs align with GPT-4’s own style distribu- 914

tion. During this revision, GPT-4 will only see the 915

model’s answer, without access to any other infor- 916

mation. 917

When scoring, GPT-4 will generate its own sum- 918

maries of Key Points, Inference, and Evidence 919

based on the ground truth. When assigning scores 920

to these aspects, GPT-4 will no longer see the orig- 921

inal answer but will only reference its summarized 922

Key Points, Inference, and Evidence. For further 923

details, please refer to Table 6, 7. 924

A.2 Instruction Tunning 925

We employed an annealing strategy in training 926

PMC-Cambrian-AN to enhance its diagnostic ca- 927

pabilities. Empirically, annealing on small amounts 928

of high-quality, human-annotated data significantly 929

boosts performance on key benchmarks. Similar to 930

Llama3, we performed annealing with a data mix 931

that prioritizes high-quality data in select domains, 932

excluding any training sets from commonly used 933

benchmarks. This approach allowed us to assess 934

the true few-shot learning capabilities and out-of- 935

domain generalization of PMC-Cambrian-AN. 936

We evaluated the efficacy of annealing on the 937

JAMA Clinical Challenge and other diagnostic rea- 938

soning benchmarks. The annealing process sub- 939

stantially improved the performance of the pre- 940

trained PMC-Cambrian-8B model, demonstrating 941

enhanced reasoning abilities and clinical applica- 942

bility. These improvements suggest that, even with 943

a model size constrained to 8 billion parameters, 944

strategic annealing with high-quality data can com- 945

pensate for limitations in model scale, enabling the 946

model to handle complex reasoning tasks requiring 947

deeper understanding. The whole training phase is 948

shown in figure 4. 949
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Model VQA-RAD (Finetuned) SLAKE (Finetuned) PathVQA (Finetuned) PMC-VQA (Finetuned) Avg.

Fine-tuning on the training set.
LLAVA-v1.5-LLAMA3-8B 63.3 68.9 85.2 50.3 66.9
LLAVA_Med-8B 66.3 69.5 90.7 52.7 69.8
HuatuoGPTVision-8B 68.9 84.1 93.0 57.3 75.8
PMC-Cambrian 88.3 91.1 92.7 88.6 90.2

Table 4: Finetuning results on VQA-RAD, SLAKE, PathVQA, and PMC-VQA datasets.

Figure 4: We apply three stages to train PMC-Cambrian.

A.3 Baseline & Benchmark950

Medical MLLMs: We evaluated three medical951

multimodal large language models (MLLMs): Med-952

Flamingo (Moor et al., 2023), RadFM (Wu et al.,953

2023), LLaVA-Med-7B (Li et al., 2024) and954

HuatuoGPTVision-34B (Chen et al., 2024b).955

General MLLMs: We assessed the latest models956

from the LLaVA series, including LLaVA-v1.6-7B,957

LLaVA-v1.6-13B, and LLaVA-v1.6-34B (Liu et al.,958

2024a). Additionally, we compared these models959

with Yi-VL-34B (Young et al., 2024) and Qwen-960

VL-Chat (Bai et al., 2023). Additionally, we also961

evaluated several closed-source models: GPT-4-O-962

Mini and Claude3-Opus.963

To evaluate the medical multimodal capabilities964

of the MLLMs, we employed two types of bench-965

marks:966

Medical VQA Benchmark: We used the test sets967

from VQA-RAD (Lau et al., 2018), SLAKE (Liu968

et al., 2021), PathVQA (He et al., 2020), and PMC-969

VQA (Zhang et al., 2023) to assess the models’970

medical question-answering abilities. The experi-971

ment settings are the same as HuatuoGPT Vision.972

New Diagnosis Reason Benchmark Task: To test973

the model’s inference and medical knowledge ca-974

pabilities, we will evaluate several medical multi-975

modal models on the JAMA Clinical Challenge976

datasets. The JAMA Clinical Challenge dataset977

presents complex real-world cases from the Jour-978

nal of the American Medical Association, challeng-979

ing models with diagnostic and management tasks980

based on clinical data and imaging. Together, these981

datasets provide rigorous benchmarks for assessing982

the diagnostic and decision-making performance983

of MLLMs in real-world clinical settings.984

A.4 Fine-tuned Results 985

To assess the impact of SemiHVision on down- 986

stream tasks, we applied fine-tuning using the 987

benchmark training sets. As illustrated in Table 4, 988

SemiHVision substantially enhances performance 989

in downstream medical tasks, providing notable 990

improvements across all four VQA tasks. 991

A.5 Factuality metrics: UMLS-F1 992

To evaluate the factual accuracy of LLM outputs, 993

we leverage the UMLS concept overlap metric. The 994

Unified Medical Language System (UMLS) (Bo- 995

denreider, 2004) enhances biomedical interoper- 996

ability by unifying a comprehensive collection of 997

biomedical terminologies, classification systems, 998

and coding standards. By reconciling semantic vari- 999

ances and representational disparities across dif- 1000

ferent biomedical repositories, UMLS facilitates 1001

standardized understanding. 1002

We employ the Scispacy library2 to identify and 1003

align medical named entities in texts with their 1004

corresponding UMLS concepts. Scispacy excels in 1005

entity recognition, enabling accurate association 1006

of named entities in LLM outputs with relevant 1007

UMLS concepts, a critical capability for assessing 1008

factual accuracy. 1009

Our analytical process utilizes precision and re- 1010

call metrics. Precision measures the proportion of 1011

shared concepts between the LLM output and the 1012

ground truth, indicating factual correctness. Re- 1013

call assesses how well the LLM output covers the 1014

concepts present in the ground truth, reflecting the 1015

relevance of the information. Formally, given the 1016

concept sets from the ground truth (Cref) and the 1017

2Using the Scispacy en_core_sci_lg model
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LLM output (Cgen), precision and recall are calcu-1018

lated as:1019

Precision =
|Cref ∩ Cgen|

|Cgen|
, (1)1020

Recall =
|Cref ∩ Cgen|

|Cref|
. (2)1021

The F1 score, derived from these precision and1022

recall values, provides a balanced measure of the1023

LLM output’s accuracy and relevance.1024

A.6 Data Source1025

The fine-tuning datasets include DeepLesion,1026

MIMIC-CXR-JPG, PadChest, Quilt, LLD-MMRI,1027

and MAMA-MIA, along with benchmark training1028

QA datasets such as VQA-RAD, Path VQA, PMC1029

VQA, and Slake VQA, covering multiple modali-1030

ties like CT, MRI, X-ray and so on. Additionally,1031

we expanded the dataset with data from Eurorad1032

and Radiopaedia to include more diverse modal-1033

ities as shown in table 8. Additionally, to enable1034

the model to support multiple languages, such as1035

Chinese, we randomly selected 300k datasets and1036

translated them into Chinese for training.1037

A.7 Human Evaluation and Case Study1038

Case Study for Evaluation We selected a case1039

from the JAMA Clinical Challenge to evaluate the1040

diagnostic reasoning capabilities of different mod-1041

els, as shown in Table 93. In the case we apply three1042

different colors: red, blue, brown to ask GPT-4O1043

to annotated key points, inference points and evi-1044

dence points. Our analysis revealed that Claude3-1045

Opus performed accurate inference but lacked de-1046

tailed evidential support. PMC-Cambrian was able1047

to generate diagnostic reasoning with comprehen-1048

sive evidence, incorporating most of the important1049

key points. In contrast, HuatuoGPTVision-34B and1050

HuatuoGPTVision-7B failed to capture the essen-1051

tial key points and were unable to effectively utilize1052

medical knowledge for detailed inference, despite1053

having access to extensive medical information that1054

could provide evidence.1055

Human Annotated Sample Training Data We1056

sampled a case from EURORAD4. For EURORAD1057

Dataset, there are serveral sections: Image Caption,1058

Clinical History, Image Findings and Discussion1059

3The case is sourced from
https://jamanetwork.com/journals/ jamaophthalmolo-
gy/fullarticle/2681464.

4The case is sourced from
https://www.eurorad.org/case/16705.

as shown in Table 10. The Image Caption provides 1060

a concise description of each image presented. The 1061

Clinical History records the patient’s medical back- 1062

ground and presenting symptoms. In the Imaging 1063

Findings section, experts analyze the images to 1064

arrive at a diagnostic conclusion, combining ob- 1065

servations from all available imaging modalities. 1066

The Discussion elaborates on the inference steps 1067

and presents the evidence supporting the diagnosis, 1068

along with relevant background information to aid 1069

in understanding how the conclusion was reached. 1070

We also present one sample for our SemiHVision 1071

dataset. 1072

Case Study for Multimodality Retriever We did 1073

a case study to prove the important of multimodal- 1074

ity retriever in our pipeline as shown in Table 11. 1075

The inclusion of a retriever in the image description 1076

task introduces a marked improvement in the speci- 1077

ficity and accuracy of the generated descriptions. 1078

Without the retriever, the model (GPT-4o) provides 1079

a generalized description of the image, identify- 1080

ing broad anatomical landmarks (heart, aorta, and 1081

vertebral column) and speculating on potential ab- 1082

normalities, such as a mass or vascular anomaly. 1083

While the description is coherent, it lacks precision, 1084

as the model does not have access to clinical guide- 1085

lines or related cases, resulting in a speculative 1086

rather than a diagnostic interpretation. 1087

In contrast, when the retriever is introduced, the 1088

model is supplemented with relevant clinical guide- 1089

lines and case data, significantly enhancing its diag- 1090

nostic accuracy. For example, in the case with the 1091

retriever, GPT-4o correctly identifies the subaor- 1092

tic ventricular septal defect (VSD) and provides 1093

a detailed explanation of its location, dimensions 1094

(2.7 cm), and potential clinical implications, such 1095

as abnormal blood flow and symptoms like short- 1096

ness of breath. The addition of retriever-assisted 1097

information allows the model to go beyond gen- 1098

eral observations and offer more specific, clinically 1099

relevant insights, directly aligning the image inter- 1100

pretation with known medical cases. 1101

13



Table 5: Generate Instruction Data Prompt Example Template.

System Prompt

Analyze the provided MRI image and generate a detailed and professional med-
ical report that describes only the abnormalities, significant features, or relevant
observations directly seen in the image. Use precise medical terminology and
maintain a formal tone. Do not include any introductory phrases, such as "The
provided image reveals," or any concluding remarks. Here are some relevant
medical guidelines and Clinical cases for you to generate.

Medical Guideline

Angioplasty (PTBA) of the hepatic vein is a safe and effective treatment for
Budd-Chiari syndrome (BCS) caused by hepatic venous outflow obstruction.
This study, conducted between September 1996 and October 2008, included 101
patients (52 males, 49 females) with a mean age of 31.3 years, all presenting
with symptomatic portal hypertension. Of these, 92 patients underwent success-
ful PTBA, targeting the right, left, or accessory hepatic veins, with a technical
success rate of 91%. PTBA significantly reduced hepatic venous pressure. . .

Instruction
Prompt

Your second task is to generate 1-2 valuable questions and their corresponding
answers that are relevant to the image’s content and it would be better that the
answers could be explicitly found within the discussion.

Clinical Case Image Findings: The patient underwent contrast-enhanced computed tomog-
raphy which showed features of a congested liver with flip-flop pattern of
enhancement. Hepatic veins show hypoattenuation on delayed phase. An ac-
cessory hepatic vein is also noted in segment VI. A diagnosis of Budd Chiari
syndrome (BCS) was made on the basis of the clinical and imaging features.
The patient was referred to the interventional radiology team for an endovascu-
lar rescue. On conventional venogram, the diagnosis of BCS was confirmed as
the hepatic veins were thrombosed. An accessory segment VI hepatic vein was
noted draining into the IVC. . .

Format Prompt
Return the results in the following format: Report: report content Ques-
tion:Question content Answer:Answer content. Don’t generate any other infor-
mation Here is the image and discussion:

Title:
Accessory right

inferior
hepatic vein

Discussion:Marked dilatation of the pulmonary trunk (6.7 cm) with the right
(5.4 cm) and left (4 cm) main branches. Lung window shows mild bilateral
diffuse faint groundglass centrilobular lung nodules that may reflect an underly-
ing infection. Scans through the upper abdomen revealed average size cirrhotic
liver and reflux of contrast into the IVC and hepatic veins with Incidental opaci-
fication of accessory right inferior hepatic vein...
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Table 6: Evaluation Pipeline Prompt Example Template.

Extract Key
Points

Based on the question and answer, summarize ten key points that you consider
to be the most crucial from the standard answer. Return the response in the
following format: {1.2.3....} Here is the question:{question} Here is the an-
swer:{answer} Please do not provide any additional information.

Key Points
1. Multifocal electroretinogram (ERG) showed reduced signal in the right eye
throughout the macula, confirming the diagnosis of AZOOR.2. Acute zonal
occult outer retinopathy (AZOOR) was first described by Gass in 1993...

Extract Diagnostic
Reasoning

Based on the question and answer, please provide a detailed summary of the
diagnostic reasoning from the standard answer. Return the response in the
following format: {1.2.3....} Here is the question:{question} Here is the an-
swer:{answer} Please do not provide any additional information.

Diagnostic
Reasoning

1. The patient is a 7-year-old boy with a slowly growing, asymptomatic lump
on the left lower neck since birth.2. Physical examination showed a yellowish,
hump-like mass with a hairy surface and cartilage-like consistency near the left
sternocleidomastoid muscle...

Extract Evidence

Based on the question and answer, please provide a detailed evidence list which
is proposed by correct answer. Return the response in the following format:
{1.2.3....} Here is the question:{question} Here is the answer:{answer} Please
do not provide any additional information.

Evidence

1. Slowly growing, asymptomatic lump on left lower neck since birth.2. Physical
examination revealed a yellowish, hump-like mass with hairy surface and
cartilage-like consistency.3. Ultrasonography indicated a hypoechoic, avascular,
bulging nodule with an anechoic tubular structure.4. MRI demonstrated a
protuberant nodule with diffuse...

Key Points Score

Act as a USMLE evaluator, your role involves assessing and comparing a medi-
cal student’s explanation to the provided target answer. Begin the assessment by
carefully reviewing the provided target answer. Then, based on following spe-
cific criteria, determine the score for the student’s answer. Please judge whether
medical student’s answer include these key points(or some other relevant points.
But the amount of points must be complete). For example, ground truth have
10 key points, if student answer include one key he will get 0.5 point(if the
answer include 5 points so should be 2.5). Medical student’s answer: {answer}
Key Points: {Key Point} Please only return a float number(from 0 to 5). You
should check each point one by one(shouldn’t judge based on language style
such as fluence and so on. Only judge based on whether the student’s answer
include correct or relevant and complete key points). Don’t generate any other
information.
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Table 7: Evaluation Pipeline Prompt Example Template.

Inference Score

Act as a USMLE evaluator, your role involves assessing and comparing a medi-
cal student’s explanation to the provided target answer. Begin the assessment
by carefully reviewing the provided target answer. Then, based on following
specific criteria, determine the score for the student’s answer. Please judge
whether medical student’s answer’s diagnostic reasoning is correct based on
ground truth. For example, ground truth have 10 steps, if student answer include
one correct step he will get 0.5 point(if student have other correct diagnostic
reasoning path it should also be correct. But the amount of evidence must be
complete. It means that each step is about 0.5 point if there are 10 steps). Medi-
cal student’s answer: {answer} Ground Truth: {diagnostic reasoning} Please
only return a float number(from 0 to 5). You should check each step one by
one(shouldn’t judge based on language style such as fluence and so on. Only
judge based on whether student’s diagnostic reason is correct or relevant). Don’t
generate any other information.

Evidence Score

Act as a USMLE evaluator, your role involves assessing and comparing a medi-
cal student’s explanation to the provided target answer. Begin the assessment
by carefully reviewing the provided target answer. Then, based on following
specific criteria, determine the score for the student’s answer. Please judge
whether medical student’s answer provide detail evidence such as ground truth.
For example, ground truth have 10 evidence, if student answer include one
evidence he will get 0.5 point(if student give other correct detail evidence, it is
also correct. But the amount of evidence must be complete.) Medical student’s
answer: {answer} Detail Evidence: {evidence} Please only return a float num-
ber(from 0 to 5). You should check each evidence one by one(shouldn’t judge
based on language style such as fluence and so on. Only judge based on whether
student propose correct and complete diagnostic evidence). Don’t generate any
other information.

Dataset Data Size Modality ROI Human Annotation Slice ID

Deeplesion 24,821 CT × × ×
PadChest 150,730 CT × ✓ -
Eurorad 691,370 CT,X-Ray,MRI...(Multi) ✓ ✓ ✓
MIMIC-CXR-JPG 620,113 X-Ray × ✓ -
LLD 30,390 MRI ✓ × ✓
MAMA-MIA 76,381 MRI ✓ × ✓
PMC-VQA 152,603 CT,X-Ray,MRI...(Multi) × ✓ -
Path-VQA 19,654 Pathology × ✓ -
PMC-Instruct 619,606 CT,X-Ray,MRI...(Multi) × ✓ -
Quilt 1,017,416 Histopathology × ✓ -
Radiopaedia 1,131,614 CT,X-Ray,MRI...(Multi) ✓ ✓ ✓
SLAKE 9,835 CT,X-Ray,MRI × ✓ -
VQA-RAD 1,798 X-Ray,MRI × ✓ -
AMBOSS & JAMA 45,820 Multi & Only Text ✓ ✓ -
Chinese Data 300,000 Multi - - -

Table 8: Data Source.
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Table 9: Sample Case in JAMA Clinical Challenge.

Question: A woman in her mid-20s presented with subacute bilateral vision loss that was worse in the left
eye. Her medical history was remarkable for type 1 diabetes diagnosed at 16 years of age and proliferative
diabetic retinopathy in both eyes that had been treated with panretinal photocoagulation 7 years earlier.
She had undergone pars plana vitrectomy with endolaser to treat a tractional retinal detachment in her right
eye 2 years before this presentation. She also had a history of hypertension and chronic kidney disease, and
she was 15 weeks into pregnancy. Visual acuity was 20/50 OD and 20/100 OS. Intraocular pressure was
normal bilaterally, and no relative afferent pupillary defect was detected. Findings of an anterior segment
examination were normal. The patient was in no apparent distress and denied any headache, chest pain, or
focal weakness. Ophthalmoscopic examination (Figure) revealed mild optic nerve head edema that was
greater in the left eye than the right eye with associated nerve fiber layer hemorrhage in the left eye. Nerve
fiber layer infarctions, dot and blot hemorrhages, and lesions caused by panretinal photocoagulation also
were seen bilaterally. Optical coherence tomography showed macular edema that involved the center of
the macula in both eyes (Figure, inset). A. Obtain a fluorescein angiogram B. Determine blood glucose
level and perform glycated hemoglobin test C. Measure heart rate, respiratory rate, and blood pressure
D. Perform immediate computed tomography of the head Answer with the option’s letter from the given
choices directly and give me the reason. Answer with the option’s letter from the given choices directly
and give me the reason
Diagnostic Reason: Malignant hypertension with papillopathy C. Measure heart rate, respiratory rate, and
blood pressure The patient was found to have hypertension, with a blood pressure of 195/110 mm Hg. Heart
and respiratory rates were normal. Measurement of the arterial blood pressure may be performed rapidly
in the clinic with a sphygmomanometer and is essential to rule out malignant hypertension, which is a
potentially life-threatening cause of vision loss. Although the differential diagnosis for bilateral optic nerve
edema is broad, workup should always include assessment of blood pressure when appropriate, because
a hypertensive emergency (also known as malignant hypertension) may cause substantial morbidity or
mortality if not diagnosed and treated promptly. Findings may include macular star, macular edema,
serous retinal detachment, intraretinal hemorrhage, and optic disc edema with or without associated
hemorrhage.1,2 Optic nerve head edema may occur with systolic blood pressures as low as 160 mm
Hg, with the median onset occurring at 188 mm Hg.3 The macular edema associated with hypertensive
retinopathy may be distributed more nasally, as was seen in this patient.4 This patient had mild optic nerve
edema despite high systemic blood pressure and substantial macular edema. This less-pronounced optic
nerve edema likely was attributable to optic nerve atrophy at baseline. Proliferative diabetic retinopathy
and panretinal photocoagulation can be associated with optic atrophy, and atrophic optic nerves tend to
become less edematous than healthy optic nerves.5-7 Regarding the other choices above, a fluorescein
angiogram (choice A) would be expected to show leakage from the optic nerve and macula, but such
findings are already available from the optical coherence tomography, which showed intraretinal and
subretinal fluid. Although assessment of serologic levels of glucose and glycated hemoglobin (choice B) is
important in the management of diabetic retinopathy, results from such tests are not immediately available
and have less bearing on the immediate management of the case (this patient’s glycated hemoglobin level
was 10.5% [to convert to a proportion of total hemoglobin, multiply by 0.01]).
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Performing computed tomography (choice D) would be a reasonable later step, especially if the patient’s
blood pressure was found to be normal, to rule out an intracranial mass. In addition to hypertension,
other causes of optic nerve head edema exist. Papilledema (when optic nerve head edema is secondary
to increased intracranial pressure) is often bilateral and may be caused by intracranial mass lesions,
meningitis, cerebral venous thrombosis, or intracranial hypertension, or it may be idiopathic. Bilateral
optic nerve head edema also may be caused by diabetic papillopathy (which is a rare cause of optic disc
edema, but which is bilateral in up to 50% of cases8,9) and toxic optic neuropathies. Optic disc drusen are
frequently bilateral and may cause so-called pseudopapilledema.10 Severe hypertension resulting in acute
retinopathy and optic nerve head edema is considered a hypertensive emergency because of its association
with end-organ damage, namely, damage to the retina and optic nerve. This case serves as a reminder
that, although the differential diagnosis for optic nerve head edema is broad, immediately assessing the
patient’s blood pressure to evaluate for hypertensive emergency in the eye clinic may be critical, because
this treatable condition could lead to substantial morbidity or mortality if diagnosis is delayed. The patient
was admitted to the medicine service for management of hypertension. At an ophthalmology follow-up
examination 3 months later, her blood pressure was 128/73 mm Hg and her visual acuity was 20/40 OD
and 20/60 OS, close to her visual acuity before this acute event. On examination, the optic nerve head
edema had resolved, and optical coherence tomography showed resolution of macular edema.
PMC-Cambrian: Malignant hypertension with papillopathy C. Measure heart rate, respiratory rate, and
blood pressure The key to the correct diagnosis is the presence of bilateral optic neuropathy in a pregnant
woman. The patient’s history of hypertension and chronic kidney disease, along with the findings of
bilateral optic neuropathies, suggested a systemic etiology. A fluorescein angiogram (choice A) would not
be the next step because the patient was asymptomatic and had no signs of retinal ischemia. A glycated
hemoglobin test (choice B) would not be indicated because the patient had no signs of diabetic retinopathy.
A computed tomography scan of the head (choice D) would not be appropriate because the patient had
a normal examination and no signs of intracranial hemorrhage. Besides hypertension, other causes of
optic nerve head edema exist. Papilledema, which is optic nerve head edema secondary to increased
intracranial pressure, is often bilateral and may result from intracranial mass lesions, meningitis, cerebral
venous thrombosis, intracranial hypertension, or it may be idiopathic. Bilateral optic nerve head edema
can also be caused by diabetic papillopathy—a rare cause of optic disc edema that is bilateral in up to
50% of cases¹—and toxic optic neuropathies. Optic disc drusen, which are frequently bilateral, may lead
to so-called pseudopapilledema. Severe hypertension causing acute retinopathy and optic nerve head
edema is considered a hypertensive emergency due to its association with end-organ damage, specifically
affecting the retina and optic nerve. This case emphasizes that, although the differential diagnosis for optic
nerve head edema is extensive, promptly assessing the patient’s blood pressure in the eye clinic to evaluate
for a hypertensive emergency is critical. Immediate evaluation is crucial because this treatable condition
could lead to significant morbidity or mortality if diagnosis is delayed. The patient was admitted to the
medical service for hypertension management. At an ophthalmology follow-up examination three months
later, her blood pressure was 128/73 mm Hg, and her visual acuity improved to 20/40 in the right eye
(OD) and 20/60 in the left eye (OS), nearing her visual acuity before this acute event. Upon examination,
the optic nerve head edema had resolved, and optical coherence tomography showed a resolution of the
macular edema.
Claude3-Opus: This case presents several concerning features that make measuring vital signs the most
urgent next step: Bilateral optic nerve edema (worse in left eye) in a young pregnant woman with:

• Type 1 diabetes

• Hypertension

• Chronic kidney disease

• Active pregnancy (15 weeks)
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The key concern here is POSTERIOR REVERSIBLE ENCEPHALOPATHY SYNDROME (PRES),
which is:

• A neurological condition characterized by vasogenic edema

• Commonly associated with severe hypertension

• More common in pregnant women

• Can present with visual symptoms and optic nerve edema

• Can be life-threatening if not treated promptly

Why other options are less appropriate:

• A (Fluorescein angiogram): Contraindicated in pregnancy

• B (Blood glucose/HbA1c): While important for diabetic management, not the most urgent concern
given the presentation

• D (Head CT): While eventually needed if PRES is suspected, vital signs should be checked first as
they’ll guide immediate management

The vital signs are crucial because:

• They will help determine if this is a hypertensive emergency requiring immediate intervention.

• They’re non-invasive and provide immediate critical information

The findings will guide the urgency and direction of further workup

• If severely elevated blood pressure is found, immediate treatment could prevent serious complications
for both mother and fetus

• This represents a potential medical emergency where checking vital signs is the most appropriate
first step to guide immediate management decisions.

Huatuo-GPT-Vision-34B: The patient, who has a history of type 1 diabetes and is currently 15 weeks
pregnant, presents with optic nerve head edema, macular edema, and hemorrhages in both eyes; therefore,
it is crucial to assess her blood glucose levels and perform a glycated hemoglobin (HbA1c) test to evaluate
and manage her glycemic control status, as this evaluation is essential to identify any acute changes or
complications related to her pregnancy and existing diabetes, since poor glycemic control can lead to
rapid progression of diabetic retinopathy, exacerbate ocular conditions, and pose significant risks to both
maternal and fetal health—including the potential for congenital anomalies, preeclampsia, and worsening
of chronic kidney disease—thus, timely assessment and adjustment of her diabetes management plan are
vital to prevent further vision loss and ensure the well-being of both the mother and the developing fetus.
Huatuo-GPT-Vision-7B:B. Determine blood glucose level and perform glycated hemoglobin test Rea-
soning: The patient has a history of type 1 diabetes, which is known to cause diabetic retinopathy leading
to vision loss as seen in the images provided (optic nerve head edema with hemorrhage). The presence
of macular edema also suggests ongoing or poorly controlled diabetes affecting her eyes. A fluorescein
angiogram would be useful for assessing vascular abnormalities but may not directly address the under-
lying issue related to poor glycemic control. Measuring heart rate, respiratory rate, and blood pressure
are important general assessments but do not specifically relate to the ophthalmic findings presented
here. Immediate computed tomography of the head might be considered if there was suspicion of other
complications like intracranial pathology; however, it’s less relevant given the current clinical context
focused on eye examination results linked to diabetes management issues.
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GPT-o-mini:Correct Answer: C. Measure heart rate, respiratory rate, and blood pressure. Reason: Mea-
suring blood pressure is critical in this scenario to identify malignant hypertension, a potentially life-
threatening condition that can lead to vision loss through optic nerve and retinal damage. Immediate
assessment of blood pressure helps rule out hypertensive emergencies, allowing for timely intervention.
Expert Comment:PMC-Cambrian and Claude3-Opus accurately recognized the urgency of measuring
vital signs to assess for malignant hypertension in this patient, who presents with bilateral optic nerve
edema and a history of hypertension and chronic kidney disease during pregnancy. Their reasoning reflects
a proper understanding of the need for immediate intervention to prevent serious complications. On the
other hand, Huatuo-GPT-Vision-34B and Huatuo-GPT-Vision-7B focused on assessing glycemic control
by selecting to determine blood glucose levels and perform a glycated hemoglobin test. While managing
diabetes is important, they failed to prioritize the immediate life-threatening condition suggested by the
patient’s symptoms, thus overlooking the critical need to rule out a hypertensive emergency. GPT-4o-mini
could get the correct answer and some key points but lack lots of detail evidence to prove it.

Table 10: Human Annotated Sample Case.

Image Caption: 1. Sagittal T2-weighted image shows a large high signal intensity cystic mass (red
arrow) with a nodular, low signal intensity component (yellow arrow). Normal left ovary with follicles
(white arrow) is seen posteriorly – negative beak sign. 2. Sagittal T2-weighted image shows a large high
signal intensity cystic mass (red arrow) arising from right ovary (white arrow) – positive beak sign. There
is another small, nodular, low signal intensity component (yellow arrow). 3. Axial T1-weighted image
shows a large cystic mass (red arrow). The lesion has parts of low signal intensity (yellow arrow) and
its content is slightly hyperintense (asterisk). 4. Axial fat-suppressed post-contrast T1-weighted image
shows wall enhancement (red arrow) and solid component enhancement (yellow arrow) and its content
is hypointense (asterisk). 5. Diffusion-weighted MR image (b1000) shows hyperintensity of the solid
component (yellow arrow). 6. Axial ADC map from diffusion-weighted MR image (Fig. 1e) demonstrates
marked hypointensity of the solid component (yellow arrow), in keeping with dense cellularity of the
lesion.
Clinical History: A 21-year-old G0P0 woman with no medical history was referred to our institution
for a sonographically detected cystic right adnexal mass. She has a history of pelvic discomfort without
other complaints. Physical examination was normal. Laboratory findings were also normal except for an
elevated CA 125 65.2 U/mL (normal <35.0).
Image Findings: MRI examination revealed a cystic tumour arising from the right ovary with 7.5 cm. On
T2-weighted images, the signal intensity of the cyst content was high and two small nodular peripheral
solid components were detected, adhering to its internal wall, with low signal (Fig. 1a, b). The normal
left ovary was present with follicles (Fig. 1a). On pre-contrast T1-weighted images, the mass exhibited
slightly high signal intensity (Fig. 1c). On contrast-enhanced fat-suppressed T1-weighted images, wall
enhancement and solid component enhancement were detected (Fig. 1d). Finally, the ADC map (Fig.
1f) from diffusion-weighted image (Fig. 1e) demonstrates marked hypointensity of the solid component,
in keeping with its dense cellularity. Surgical excision was proposed and accepted by the patient. The
histopathological investigation revealed a typical ovarian serous borderline tumour.
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Discussion: Borderline ovarian tumours are uncommon ovarian neoplasms, intermediate between benign
and malignant types, corresponding to 5% of all epithelial ovarian tumours. [1, 2] Serous borderline
tumour represents the most common type of borderline tumours arising in the ovary, and typically, it is
confined to the adnexa and presents an indolent course. [3] However, up to 6.8% of these tumours can
progress to low grade serous carcinoma. [3] Serous borderline tumours are divided into typical (90%)
and borderline tumours with micro-papillary patterns (5%–10%). [4] These neoplasms usually present as
bilateral adnexal masses with more proliferation of papillary projections than do benign cystadenomas,
they are often seen in younger patients, and laboratory findings show the serum CA-125 level mildly
elevated. [2, 3, 5, 6] The peak age of presentation is 45 years. [5] Small tumours usually do not cause
symptoms and are often detected as an incidental finding on sonography. [7] Larger or more advanced
neoplasms might cause pain or pelvic discomfort. The diagnosis of this type of tumour is based on
histopathological examination. As they are staged using the same ovarian cancer staging of malignant
ovarian neoplasms [5], MRI plays a crucial rule in this evaluation. There are no pathognomonic imaging
features of borderline ovarian tumours and they frequently resemble a benign lesion. Nevertheless, some
pathologic and MR imaging studies suggested that large papillary projections are highly suggestive of
borderline or malignant neoplasms. [1, 8] The preferred treatment is bilateral oophorectomy. Fertility
sparing procedures such as unilateral oophorectomy or cystectomy are related with a higher incidence
of recurrence when compared with bilateral oophorectomy (10-20% vs. approximately 5% for radical
surgery). [3, 4] Young age (<30 years) has also been found to be a risk factor for recurrent disease in
patients treated conservatively. As in this case, patients should be instructed to complete child-bearing
within a short time frame following initial diagnosis, due to the high risk of recurrence. [3] The most
important feature in predicting an adverse outcome in serous borderline tumours is the presence of serous
lesions involving the peritoneum (so-called invasive implants). [3, 4] Tumours without invasive implants,
as in this case, have been considered to be nonaggressive tumours, associated with a good prognosis and
high survival rate. Follow-up using ultrasound imaging is mandatory, with particular attention paid to
the remaining ovary in conservatively treated young patients. [4] Written informed patient consent for
publication has been obtained.
SemiHVision(only a sample for one image):
User:What type of imaging technique is shown in Fig. 1a of the provided image?
GPT:The image shows a T2-weighted MRI scan.
User:Where is the cystic tumour located according to the image?
GPT:The cystic tumour is arising from the right ovary
User:What is the size of the cystic tumour?
GPT:The cystic tumour is 7.5 cm in size.
User:What does the red arrow in the image indicate?
GPT:The red arrow indicates the normal left ovary with follicles.
User:What does the yellow arrow in the image point to?
User:The yellow arrow points to one of the small nodular peripheral solid components adhering to the
internal wall of the cystic tumour.
User:What characteristic of the cyst content is shown by the high signal intensity in the T2-weighted
image?
User:The high signal intensity indicates that the cyst content is fluid-filled.
User:What is shown by the asterisk (*) in the image?
User:The asterisk (*) indicates the cystic tumour arising from the right ovary.
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Table 11: Human Annotated Sample Case.

Prompt(without retriever): Generate the Image description based on the image.
GPT-4o: The image is a sagittal CT scan, likely of the thoracic or abdominal region. The scan shows
various soft tissue structures, including major organs. The blue arrow points toward a specific structure,
possibly a blood vessel or part of an organ. This could indicate an abnormality such as a mass, an aortic
aneurysm, or an area of vessel narrowing or dissection. In the background, major anatomical landmarks
like the heart, aorta, and vertebral column are visible, as well as some portions of the liver or spleen.
The areas of high contrast indicate dense structures, such as bones, while softer tissues are seen in
varying shades of gray, highlighting different densities. This scan could be used to evaluate conditions
like vascular abnormalities, tumors, or other pathologies in the chest or upper abdominal region. Further
clinical information would be necessary to confirm the exact diagnosis.
Prompt(with retriever): Generate the Image description based on the image. Here are some medical
guidelines and Clinical cases for you.

Case Discussion: A case of asymmetric hypertrophic cardiomyopathy with mild subaortic stenosis and
partial systolic anterior motion of the mitral valve. Since the pressure gradient obtained by phase contrast
imaging was rather low, echocardiographic reevaluation and/or follow-up was recommended. The case
also demonstrates a typical pattern of myocardial fibrosis in the basal and midventricular septal segments
at the anterior and posterior right ventricular insertion points.
GPT-4o: The image is a coronal oblique CT scan of the thoracic region, focused on the heart and its
surrounding structures. The blue arrow indicates a subaortic ventricular septal defect (VSD), measuring
approximately 2.7 cm. This congenital heart defect refers to an abnormal opening in the interventricular
septum (the wall separating the left and right ventricles of the heart), located just below the aortic
valve. The surrounding anatomy includes parts of the heart chambers, likely showing the left and right
ventricles, as well as nearby vascular structures such as the aorta. The defect appears to allow abnormal
communication between the ventricles, which could lead to altered blood flow dynamics, potentially
causing symptoms such as shortness of breath, fatigue, or heart failure if left untreated.
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