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Niccolò Tosato1,2,∗, Lorenzo Basile2,∗, Emanuele Ballarin2,
Giuseppe de Alteriis3,4, Alberto Cazzaniga1, Alessio Ansuini1

1AREA Science Park, Italy
2University of Trieste, Italy

3King’s College London, UK
4University College London, UK

Abstract
Backpropagation has been criticised for its lack of biological realism. In this work, we show that
the internal representations obtained by the Forward-Forward algorithm can organise spontaneously
into category-specific ensembles exhibiting high sparsity. This situation is reminiscent of what has
been observed in cortical sensory areas, where neuronal ensembles are suggested to serve as the
functional building blocks for perception and action. Our findings suggest that the learning method
used by Forward-Forward may be more biologically plausible than Backpropagation, particularly
in terms of the emergent representations it produces.

1. Introduction

The Backpropagation (Backprop) algorithm lacks biological plausibility [23] – leading to many
attempts to address the issue. The most recent of such, the Forward-Forward (FF) algorithm [9],
eliminates the need to store neural activities and propagate error derivatives along the network.
This work investigates the presence of similarities between artificial and biological neuronal en-
sembles i.e. sets of a relatively low number of units that specifically and consistently co-activate in
presence of data samples of a given class [16].
Our experiments demonstrate that: 1) representations in FF show high levels of sparsity, and give
raise to well-defined neuronal ensembles (subsection 4.1), 2) the ensembles of related categories
often share units (subsection 4.2) as in their biological counterpart, and 3) representations of data
from categories not included in the training set (unseen categories) generate distinct ensembles;
these ensembles integrate with those from seen categories by sharing units (subsection 4.3). Though
optimising the cross-entropy loss with Backprop for the same classification task does not appear to
produce sparse ensembles, the phenomenon may not solely be due to the use of FF. In fact, similar
results are obtained by optimising the same goodness function of FF with Backprop. This suggests
that more focus should be put on the purpose and biological meaning of the loss function rather than
the training algorithm [22].

2. Related Work

2.1. Forward-Forward

The Forward-Forward algorithm involves two forward passes executed on different data, named
positive and negative data. During training, the objective of Forward-Forward is to maximise a
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Figure 1: A) Activation patterns in different layers of a FF model. B) Activation values of neurons
in a layer averaged across samples in class 5 (MNIST). Blue dots indicate units of the ensemble. C)
Activation map for all neurons in a layer, grouped by class. The barcodes mark different classes.

goodness function of the neural activations on positive data and minimise it on negative data. In
a simple image classification setting, one could encode a class label at the border of images, by
one-hot encoding it with a white pixel. Positive data are those for which the encoded label matches
the ground truth label, while the opposite holds for negative data.
Layers are trained separately and sequentially. Crucially, activations are normalised before being
passed to the subsequent layer, to prevent layers from relying on the goodness computed by their
predecessors. At test time, when a new unlabelled sample has to be classified, many copies of the
image are created, each with a different one-hot encoded label, and the predicted label is the one
that receives the highest goodness.

2.2. Neuronal ensembles

In Neuroscience, ensembles are defined as sparse groups of neurons that co-activate during sponta-
neous activity or in response to sensory stimuli. Ensembles – rather than single neurons – have long
been suggested to be emergent functional blocks of cortical activity [6–8, 26] and have a prominent
role in sensory processing, memory [10] and behaviour [2]. Single neurons can participate in more
than one ensemble, thus maximising the encoding potential of the network. These neurons of en-
sembles consistently and reliably encode the same inputs across multiple trials.
The idea of neuronal ensembles has inspired the development of computational models of sparsity
and redundancy in neural representations [19], [4], [5], [18].
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3. Methods

We compare the representations in three models: 1) a MLP classifier like the one in [9] trained with
Forward-Forward (FF), 2) the same classifier but trained end-to-end with Backprop to optimise
the same goodness function (BP/FF), 3) the same classifier trained with Backprop on the cross-
entropy loss (BP). The datasets we use to train and test the models described are MNIST [14],
FASHIONMNIST [24], SVHN [17] and CIFAR10 [1] (see section B for details).

3.1. Model trained with Forward-Forward (FF)

Our FF model is inspired by [9] – and trained according to the Forward-Forward algorithm. It
consists of three fully-connected layers, each composed by 1000 units in the case of MNIST and
FASHIONMNIST, and 3072 units in the case of SVHN and CIFAR10. Each linear layer is followed
by element-wise ReLU non-linearities. Both during training and inference, the layer-wise ℓ2 norm
is used as the goodness function of choice; correspondingly, ℓ2 normalisation is performed between
subsequent layers.
To define positive and negative data, a one-hot-encoded class vector is embedded at the top-left
corner of images (randomly assigned in the case of negative data). During training, the weights are
optimised by minimising the loss function L = log(1 + eGneg−Gpos), where Gneg and Gpos are,
respectively, the goodness value for negative and positive data. At inference time, for each layer,
the goodness values corresponding to every possible label are converted into probabilities using
softmax.

3.2. Model trained with Backpropagation on the goodness objective (BP/FF)

The architecture of the FF model can be trained seamlessly with Backpropagation on the same
goodness maximisation/minimisation objective. Positive and negative data are fed to the network
and the overall goodness of the internal representation is evaluated. The backward pass is then
executed. In this case, the goodness is optimised globally instead of layer-by-layer.

3.3. Model trained with Backpropagation on the cross-entropy loss (BP)

The FF and BP/FF models are also compared to a standard neural classifier with the same architec-
ture (BP), serving as a baseline. The only difference between BP and the other two is the addition
of a final softmax layer. The model is trained with Backprop on the cross-entropy loss.

3.4. Analysis of representations

We analyse representations of test set data correctly classified. The representation of a sample is a
n-dimensional vector composed by the activations (after the ReLU non-linearity) of all the units in
the layer. For each layer, we extract a representation matrix X of size (M,n), where M is the total
number of test samples (correctly classified) and n is the number of neurons in the layer considered.

Sparsity For each vector x we compute a sparsity following [11]: S(x) =

√
n− ∥x∥1

∥x∥2√
n−1

. When
S(x) = 1 the vector x contains only one non-zero component, the other limiting case is the one
in which all the components of x are equal in magnitude, where S(x) = 0. S(x) interpolates
smoothly between these two extremes. The sparsity of a layer is the average on its component
vectors S = 1

M

∑M
i=1 S(xi).
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Figure 2: Ensembles of similar classes in FASHIONMNIST share units. A) Ensembles in FF elicited
by two visually related inputs. Red circles indicate the shared units. B) Similarity of the ensembles:
|Ei∩Ej |
|Ei∪Ej | . The results are referred to a single training run.

Ensembles We consider a neuron as part of an ensemble for a category c if it activates consistently
when the network receives data that belongs to c. We consider category-specific representation ma-
trix Xc, of shape (Mc, n), where Mc is the number of correctly classified test images of c. Then, we
compute the average activation of each hidden unit across all these samples: xj = 1

Mc

∑Mc
i=1(Xc)ij ;

and the leave-one-out average of the averages LOOj = 1
n−1

∑
i ̸=j xj . We then classify a neuron i

as part of the ensemble (Ec) if xi > LOOi. An example of an average activation profile (xj) and its
ensemble is reported in Figure 1, B. When the sparsity S is low, ensembles are ill-defined. We will
consider values of S below 0.5 as not-sparse, and in these cases we do not define ensembles.

4. Results

4.1. Forward-Forward elicits sparse neuronal ensembles

The FF and BP/FF models exhibit typically high sparsity levels in their representations, in clear
contrast with BP. As an example, for MNIST we have S ≈ 0.9 (FF), S ≈ 0.9 (BP/FF) and S ≈ 0.3
(BP), in the first hidden layer. The trend identified by these values generalises well across all our
experiments (see Table 3).
When S > 0.5 we are typically able to identify ensembles composed by few participating units.
Figure 1, B shows an example of average neuron activations (xj), and its ensemble (blue dots).
Ensembles are category-specific, as evidenced by the barcode-like structure of the activation maps
in Figure 1, C. Other activation maps, across different layers and models are reported in section G,
section H for similar visualisations. The fraction of units that participate to ensembles is reported
in Table 4, where a slight increasing trend in the ensemble size with the complexity of the data is
observed.

4.2. Similar classes elicit ensembles with shared neurons

Visually related categories can be expected to share units of their ensembles in real brains [25]. This
is what we systematically observe in FF and BP/FF. An example is shown in Figure 2. Remarkably,
units can also be shared across two ensembles even if one of these refers to an unseen category (i.e.,
excluded from the training) as we show in Figure 3.
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4.3. Representations of unseen categories can elicit well-defined ensembles

Trained FF models respond to unseen categories with a well-defined ensemble. We repeatedly
train FF on FASHIONMNIST, removing one category at a time. In each case a new ensemble is
formed, with the same characteristics of the ”regular” ones, except a lower average activation (see
Figure 3 A). We also find that the ensembles of unseen categories share units with the ensembles
of seen categories, when the two are related by visual similarity (Figure 3, B). A more extensive
exploration of these cases is reported in section I.

A B

Figure 3: The representation of unseen categories forms a valid ensemble in FF trained on FASH-
IONMNIST. A) Activation patterns in response to the different categories in the first hidden layer.
The unseen category (Sandal), surrounded by red lines, produces a relatively weaker but well-
defined ensemble-like activation pattern. B) The unseen category integrates well with related seen
categories by sharing units. Number of units shared between category pairs (i, j): | E i ∩ Ej |. The
results are referred to a single training run.

5. Discussion and conclusions

Artificial neural networks trained with the Forward-Forward algorithm can elicit biologically plau-
sible representations in the form of sparse neuronal ensembles [16, 26]. The category-specific en-
sembles we find in Forward-Forward models share similarities with their biological counterparts as:
1) are composed of a few units, 2) can share units across visually/semantically related inputs [25],
3) can be formed in response to an unseen input category, and 4) when the unseen category is char-
acterised by a certain degree of visual similarity, the corresponding ensembles often share one or
more units. These results suggest that Forward-Forward can perform well in zero-shot classification
tasks, which is also a biologically relevant feat [13]. Overall, our findings – focused on the emerging
properties of representations – corroborate the idea that Forward-Forward might be a better model
than Backprop for learning in the cortex [9]. As shown in section 4, besides being a non biological
learning rule, Backprop elicits non-sparse and less biologically plausible representations.
We emphasise that biologically plausible learning algorithms should generate biologically plausible
representations. In this context, the emergence of sparse ensembles – similar to those we observed
– is likely an important requisite.
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Appendix A. Computational resources

Training and subsequent experiments were conducted on an NVIDIA DGX A100 system. The
system is equipped with 8 NVIDIA A100 GPUs, interconnected by NVLink technology, two AMD
EPYC 7742 64-core CPUs, 1TB of RAM, and a 3TB NVME storage configured in RAID-0. Each
GPU is equipped with 6912 CUDA cores, 432 Tensor cores and 40 GB of high-bandwidth memory.

Appendix B. Data

The MNIST dataset consists of pictures of handwritten Arabic numerals, from 0 to 9, each rep-
resented as a grayscale image of size 28 × 28. FASHIONMNIST has been designed as a drop-in
replacement to MNIST, offering a more challenging classification task. It consists of ten classes of
clothing items, still represented as grayscale images with a resolution of 28 × 28. Both datasets
provide 60000 training and 10000 test images, balanced in terms of per-class numerosity.
SVHN contains colored images of digits from house numbers, captured by Google StreetView. The
images are composed of 32 × 32 RGB-encoded pixels. This dataset is slightly larger than the pre-
vious two, as it contains 73257 data-points in the training set and 26032 in the test set.
The SVHN images have been cropped in order to center the digit of interest within the frame. How-
ever, the presence of adjacent digits and other distracting elements, that have been kept within the
images, introduces an additional layer of complexity when compared to MNIST and FASHIONM-
NIST, where the subjects are prominently displayed against a uniform black background. The CI-
FAR10 consists of 60000 coloured natural images categorised in 10 balanced classes. The dataset
is split in 50000 training images and 10000 test images. Each image, like SVHN has a resolution
of 32 × 32 for each channel. Compared to previous datasets, this is the most challenging one for a
fully connected network. The dataset split employed is provided by the TORCHVISION framework.

Appendix C. Classification accuracy

We evaluate the performances of our models. Table 1 contains results in terms of test set classifica-
tion accuracy for all combinations of models and datasets. While some of these accuracy values are
far from the state-of-the-art (i.e., respectively, 0.997 [3], 0.931 [24], 0.860 [21] and approximately
0.7 [15], for fully-connected networks), they are a solid ground on which to build our subsequent
investigations. Training details and hyperparameters for all models are reported in section D.

Table 1: Test-set classification accuracy. Results expressed as mean ± std. dev. over 10 runs with
independent randomised weight initialisation.

Dataset FF BP/FF BP

MNIST 0.94± 0.008 0.969± 0.001 0.982± 0.001
FASHIONMNIST 0.849± 0.002 0.877± 0.002 0.892± 0.004

SVHN 0.716± 0.002 0.799± 0.004 0.793± 0.145
CIFAR10 0.484± 0.004 0.521± 0.006 0.564± 0.004
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Appendix D. Training details

All our models (FF, BP/FF and BP), on all datasets (MNIST, FASHIONMNIST, SVHN and CI-
FAR10), have been optimised using Adam [12] with β1 = 0.9 and β2 = 0.999 implemented in
PYTORCH [20]. A hyperparameter search has been performed to achieve sufficient accuracy for
each model across all datasets. Every model was trained using batches of size 1024.

Table 2: Hyperparameters selected to train our models.

Model MNIST FASHIONMNIST SVHN CIFAR10

Epochs 1200 100 1000 1000
FF Learning rate 0.01 0.01 0.0001 0.0001

Epochs 300 300 200 200
BP/FF Learning rate 0.0001 0.0001 0.0001 0.0001

Epochs 80 80 80 80
BP Learning rate 0.0001 0.0001 0.0001 0.0001

Appendix E. Sparsity measures

Table 3: Average sparsity measured with the method described in subsection 3.4. Results are ex-
pressed as mean ± std. dev. computed over 10 runs with independent random weights initialization.

Model Layer MNIST FASHIONMNIST SVHN CIFAR10

1 0.922± 0.001 0.85± 0.002 0.83± 0.001 0.77± 0.001
FF 2 0.813± 0.019 0.605± 0.015 0.706± 0.001 0.728± 0.002

3 0.618± 0.074 0.628± 0.013 0.489± 0.004 0.566± 0.002

1 0.895± 0.005 0.81± 0.007 0.783± 0.003 0.753± 0.004
BP/FF 2 0.747± 0.013 0.851± 0.007 0.95± 0.003 0.932± 0.003

3 0.131± 0.011 0.065± 0.009 0.133± 0.011 0.135± 0.009

1 0.315± 0.003 0.352± 0.003 0.47± 0.02 0.478± 0.016
BP 2 0.193± 0.004 0.241± 0.005 0.524± 0.212 0.3± 0.18

3 0.225± 0.006 0.248± 0.006 0.232± 0.106 0.164± 0.006
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Appendix F. Average fraction of units

Table 4: Average fraction of units taking part in ensembles. Ensemble sizes are averaged across all
categories, divided by the number of neurons in a layer, and then expressed in %. Results expressed
as mean ± std. dev.. In the third layer of BP/FF, as well as in BP, the representation is not-sparse.

Model Layer MNIST FASHIONMNIST SVHN CIFAR10

1 3.69± 0.09 5.02± 0.14 10.3± 0.15 16.08± 0.09
FF 2 5.31± 0.35 18.46± 0.66 21.28± 0.23 21.2± 0.3

3 1.36± 0.36 20.59± 0.63 4.48± 0.52 4.86± 0.51

1 8.58± 0.23 13.24± 0.31 15.07± 0.16 13.3± 0.13
BP/FF 2 13.18± 0.67 8.45± 0.47 5.08± 0.19 5.55± 0.28

3 - - - -

Appendix G. Activation patterns in deeper layers

In subsection 4.1 we claimed that in FF and BP/FF the images of a given category activate con-
sistently a small set of units that we named ensembles, that share similarities to what is observed
in sensory cortices. We reported in Figure 1 the activation map for Layer 1 (the first hidden layer)
of FF trained on the MNIST dataset, and observed that very sparse ensembles emerge. In this sec-
tion we show, in a similar fashion, the representations for Layers 2 and 3 (Figure 4 and Figure 5,
respectively). We found high sparsity also for deeper layers of this specific network; a qualitatively
similar conclusion is reached for FF models trained on FASHIONMNIST, SVHN and CIFAR10. In
BP/FF models a similar sparsity levels are observed, with the exception of the last layer that turns
out to be not-sparse in each of the datasets we considered (see Table 4).
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Figure 4: Activation patterns in a Multi-Layer Perceptron trained with the Forward-Forward algo-
rithm, on the MNIST dataset. The image represents the activation map for neurons in Layer 2 for all
images, grouped by class. A blue dot in position (x, y) indicates that neuron x is activated by input
y; colorscale represents the intensity of such activation (incorrectly classified samples have been
removed). Horizontal bands mark different categories; dark blue vertical lines mark active neurons.
Each input category activates consistently a specific sets of neurons (ensemble). The sparsity mea-
sured according with the definition provided in subsection 3.4 is 0.84.

Figure 5: Activation reported as in Figure 4, for Layer 3. Notice that there are only few units that
activate significantly and do not play a role in discriminating categories. The role of this layer, in
this experiment, seems not related to the classification task. Despite the low number of active units,
the sparsity level of the representation is lower than that of Layer 2 (S = 0.67), due to the noise of
the inactive units.
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Appendix H. Activation patterns in different models

In Figure 1 C we show an example of activation map in Layer 1 of FF trained on MNIST. For
the purpose of a qualitative comparison, we show here analogous patterns for BP/FF and BP (see
Figure 6 and Figure 7).

Figure 6: Activation pattern in Layer 1 of the BP/FF model trained on the MNIST dataset. The
sparsity measure is 0.89, comparable with the correspondent first layer of the FF model.

Figure 7: Activation pattern in Layer 1 of the BP model trained on the MNIST dataset. The sparsity
measure is 0.32 (non-sparse representation), about 1

3 of the sparsity level measured in the analogous
experiment with FF and BP/FF.
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Appendix I. Further results on representations of unseen categories and their
ensembles

We showed in subsection 4.3 that a FF model trained on the FASHIONMNIST dataset – deprived of
one category – can respond at test time to this unseen category with a valid ensemble (Figure 3).
We report here the results of similar experiments, removing one category at a time. It turns out that,
in each of the ten possible cases (we performed a single run for each category), the representations
of the unseen category form a valid ensemble; we show three examples in Figure 8, different from
the example shown in (Figure 3). It is with this situation in mind that we refer to “the ensembles
related to unseen categories”.

Figure 8: Ensembles elicited by the FF model trained on FASHIONMNIST deprived of one cate-
gory (we show three examples: Pullover, Coat and Ankle boot). We report for the three
categories, the activation value of each neuron in the first hidden layer (Layer 1), averaged on all
images of the unseen category. Neuron index on the x axis; average activation on the y axis. Blue
dots indicate units that are considered active according to the method described in subsection 3.4.

When an unseen category forms a valid ensemble, it generally exhibits a high level of integration
with the ensembles associated with the categories encountered during training. This integration
implies that it can share common units with ensembles belonging to related categories. We show
in Figure 9 how the ensembles of missing categories (same examples as in Figure 8) integrate – by
sharing units – with the other ensembles. Overall, these result relates to biological neural networks
[25, 26], where ensembles appear to be the functional building block of brain representations even
in the absence of known stimuli.
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Figure 9: Shared units between the ensembles of unseen categories and the ensembles of categories
seen during training (stripes delimited by the red lines). The results for Pullover, Coat and
Ankle boot are shown.
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