
Published as a conference paper at ICLR 2025

ZERO-SHOT NATURAL LANGUAGE EXPLANATIONS

Fawaz Sammani & Nikos Deligiannis
ETRO Department, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium
imec, Kapeldreef 75, B-3001 Leuven, Belgium
fawaz.sammani@vub.be, ndeligia@etrovub.be

ABSTRACT

Natural Language Explanations (NLEs) interpret the decision-making process
of a given model through textual sentences. Current NLEs suffer from a severe
limitation; they are unfaithful to the model’s actual reasoning process, as a separate
textual decoder is explicitly trained to generate those explanations using annotated
datasets for a specific task, leading them to reflect what annotators desire. In this
work, we take the first step towards generating faithful NLEs for any visual clas-
sification model without any training data. Our approach models the relationship
between class embeddings from the classifier of the vision model and their corre-
sponding class names via a simple MLP which trains in seconds. After training,
we can map any new text to the classifier space and measure its association with
the visual features. We conduct experiments on 38 vision models, including both
CNNs and Transformers. Our method outperforms supervised baselines on many
metrics, while remaining comparable on others. In addition to NLEs, our method
offers other advantages such as zero-shot image classification and fine-grained
concept discovery, each outperforming baseline methods. Finally, we also show
that our method achieves state-of-the-art results on zero-shot image captioning.

1 INTRODUCTION

Consider the example in Figure 1, where an image classifier incorrectly identifies the input image as a
volcano rather than a leatherback turtle. Why was this decision made and which features of the image
led to this prediction? When we apply popular attribution techniques such as the CAM family (Zhou
et al., 2015; Selvaraju et al., 2019; Jiang et al., 2021), the explanations are uninformative; perhaps
they indicate that the model focused on the main object, but they fail to provide deeper insight. What
specific elements within the attributed region influenced the prediction? What features of this image
category were significant? Existing attribution techniques offer high-level interpretations and do not
break down the reasoning behind the decision. On the other hand, Natural Language Explanations
(NLEs) (Park et al., 2018; Sammani et al., 2022) offer detailed interpretations in a textual format.
NLEs not only resolve the limitations of attribution methods but also present explanations in a more
human-friendly manner, accessible even to a layman user. As illustrated in Figure 1, the NLE reveals
that the classifier mistook the image for a volcano due to the bright red glow, resembling erupting
lava. This insight allows us to deduce that the classifier is not robust to color shifts.

However, current NLE models are explicitly trained to generate textual explanations using annotated
datasets. This renders NLEs as unfaithful, as they reflect what dataset annotaters desire rather than
the model’s true reasoning process. Other than that, NLE models are characterized with the shortcut
bias problem, as shown in Sammani & Deligiannis (2023), rendering the explanation meaningless
despite achieving state-of-the-art results on natural language generation metrics.

In this work, we aim to generate faithful NLEs in a zero-shot setting for a visual classifier model.
This boils down to the question: how can we access the visual features via any natural text? To
achieve this, we require an intermediary between visual features of the model, and natural language
text. Notably, the discrete labels of the classifier correspond to class names in text format, and the
classifier weights of each class serve as a embedding vector representation for that class. These
embeddings effectively encode semantics; similar objects are close together in the embedding space.
Figure 2 illustrates a visualization of those embeddings from a ResNet-50 model for certain classes,
using t-sne (van der Maaten & Hinton, 2008). As shown, ocean fish such as different types of sharks

1

Published as a conference paper at ICLR 2025

Ground-truth: leatherback turtle
Prediction: volcano

NLE (Ours): this is a volcano because it shows fire burning on the volcano lava flows, a bright red glow erupts

Grad-CAM Layer-CAM Smooth-CAM

Figure 1: Comparison between some attribution methods and a Natural Language Explanation (NLE)
for explaining the prediction of an image as a volcano

and rays form one cluster, while freshwater fish proximally form another cluster. Similarly, small
birds such as robin and jay form a distinct cluster, and so on. Given that discrete labels represent
class names, the classification layer of the vision model performs a closed-set visual-textual search
over all possible classes, with the predicted class being the one with the highest cosine similarity
between the visual features and class embeddings. The classification layer therefore retrieves the
class closest to the image. This implies that those class embeddings and the visual features share a
common space. Therefore, if we can learn a mapping from the available text data (class names) to the
vector embeddings of the classes (classifier weights), we have essentially learned the visual-semantic
space of the vision classifier, which then allows us to translate any new text (e.g., a new class, a
sentence, or a concept) into that embedding space and measure its association with the visual features.

Figure 2: t-sne visualization of a ResNet-
50 class weight embeddings

Once the mapping is learned, we employ an off-the-shelf
frozen language model and utilize inference-time prefix-
tuning (Li & Liang, 2021) to generate a NLE that maxi-
mize the similarity with the visual features. Additionally,
the learned mapping offers us with several other applica-
tions, such as concept discovery and zero-shot classifica-
tion.

To summarize, our contributions are as follows: 1) We
are the first to generate NLEs in a zero-shot manner for
visual classifiers that are also faithful to the model, achiev-
ing performance that is comparable to, and in many cases
surpasses supervised baselines. 2) We demonstrate the
effectiveness of our approach in three additional applica-
tions: zero-shot concept discovery, image classification
and image captioning, showing significant improvements
over baselines. 3) We evaluate a wide set of 38 vision
classifiers, including both CNNs and Transformers.

2 RELATED WORK

Natural Language Explanations: Early works on NLEs for vision and vision-language tasks
include Hendricks et al. (2016); Park et al. (2018); Marasović et al. (2020); Kayser et al. (2021).
The standard pipeline typically consists of a task model (e.g., a classifier) for prediction, coupled
with an explainer model (e.g., GPT-2 (Radford et al., 2019)) to generate an explanation for the
prediction. NLX-GPT (Sammani et al., 2022) proposed a unified approach, combining both models
into a single, compact system that simultaneously generates and explains answers in a single text
stream using a single causal language modeling objective, ensuring that the reasoning process for the
explanation aligns with that of the prediction. Building on this, Uni-NLX (Sammani & Deligiannis,
2023) further consolidates multiple tasks into one model, achieving the ability to perform seven tasks
simultaneously. Multimodal-CoT (Zhang et al., 2023) builds upon the Chain of Thought Prompting
technique and instead generates a rationale (explanation) prior to generating an answer, which serves
as a reasoning step for inferring the answer. In DeViL (Dani et al., 2023), an autoregressive generator
is trained on the conceptual captions image captioning dataset (CC3M) (Sharma et al., 2018) using

2

Published as a conference paper at ICLR 2025

ViT / CNN

cl
as

si
fie

r
Visual

Encoder Textual
Encoder

classifier

MLP

classifier
tench

goldfish

toilet
tissue

.

.

.

.

.

.

.

.

.

.

.

𝑓

𝑤!"#$%

𝑤&'()

𝑤!'*("!

MLP

an image of a tench
an image of a goldfish

…
an image of a toilet tissue

…

…

Textual
Encoder

𝑤&'()
𝑤!"#$%

𝑤!'*("!

minimize
distance

(a) (b) (c) (d)

ViT/CNN

𝑓

a freshwater fish

Textual Encoder

MLP
𝑤!"#

cosine
0.92

𝑓

𝑓

Inference: any new text (e.g., descriptor)

Figure 3: An overview of our method to learn class embeddings. (a) We transform the visual classifier
into a visual feature encoder and a text encoder paired with an MLP module that outputs classifier
weights. (b) The classifier weights, which are the class embeddings, serve as ground-truth data to
train the MLP module. (c) We learn the class embeddings by converting the class name into a text
prompt, encoding it with the text encoder and MLP module, aiming to minimize the distance between
the MLP output and the ground-truth data. (d) Once the MLP module is trained, we can map any
new text to the classifier embedding space, which now shares the same space as the visual features,
allowing us to measure the association between them. indicates that the module is frozen, while
indicates trainable.

a subset of features from different layers implemented by applying Dropout. However, all these
methods rely on annotated datasets consisting of (prediction-explanation) pairs. As a result, the
explanations generated reflect the reasoning of the annotators rather than that of the model. This
is particularly evident in DeVIL, which treats image captions as explanations. On the other hand,
our NLEs are generated in a zero-shot manner in a way that maximizes the classifier’s visual feature
space, ensuring that they are faithful to the classifier’s reasoning process.

Zero-Shot Textual Explanations: ZS-A2T (Salewski et al., 2023) is the work most closely related
to ours, as it translates attention maps into textual explanations in a zero-shot manner. There
are also several studies (Menon & Vondrick, 2023; Shtedritski et al., 2023) which offer concept-
based explanations (short textual descriptors) rather than full sentence-based explanations for model
predictions. However, all of these approaches are constrained to vision-language models that are
trained to learn a shared vision-language space through a contrastive objective, meaning they cannot
be applied to visual classifiers. In contrast, our NLEs are classifier-agnostic, do not depend on a
contrastive training objective, and provide full sentence-based explanations.

3 METHOD

Notations: Consider a visual classifier model M that we want to interpret, which can be of any
architecture (e.g., CNN, Transformer or Hybrid). M consists of a visual feature encoder MV , and a
classification layer W. MV maps an input image x into a feature vector f . That is: MV (x) = f ∈ Rd.
Usually, f is the result of average or max pooling, or is the result of the [CLS] token in some
Transformer models. The visual feature vector f is then fed to the classifier layer W ∈ Rd×C with C
classes. Therefore, the matrix W consists of all class embedding vectors which encode the semantics
of a class: W = [wc1 ,wc2 , . . . ,wC], and |W | = C. The prediction cp is given by argmax(f ·W).
Unlike the visual features f , note that W is fixed within the network and independent of the input
image x. We consider an off-the-shelf textual encoder MT capable of encoding sentences, with the
only exception that this textual encoder does not also encode image information (as in the case of the
CLIP textual encoder (Radford et al., 2021)). The textual encoder MT takes as an input a natural text
ti and produces a sentence embedding si of k dimensions. That is, MT (ti) = si ∈ Rk.

3.1 LEARNING CLASS EMBEDDINGS

The visual classifier M is a closed-set classifier. Our goal is to expand it into an open-set visual
classifier capable of understanding any natural text. Specifically, we want to access or query the

3

Published as a conference paper at ICLR 2025

classifier via text. The simplest approach is to align a text encoder with the visual features of
the classifier, and then access those features through text. This is the contrastive language-image
pretraining paradigm that CLIP (Radford et al., 2021) employs. However, this method is 1) not
faithful to the classifier and 2) poses significant technical challenges. More details are provided in
Section M of the appendix. To address these issues, we aim to learn a regression function that maps
text to the classifier’s embedding space. Note that this is an ill-posed problem, meaning there is either
no unique solution or the correct solution is difficult to determine. While we may not be able to learn
the exact ground-truth values of the d-dimensional class embedding vectors W, we can still capture
their underlying semantics.

The classification layer W contains class embeddings which share the same space as the visual
features f . Drawing an analogy with CLIP (Radford et al., 2021), W can be thought of as the output
of a text encoder that is trained to be aligned with the visual features f through an alignment loss
such as contrastive learning. However, in practice, MT is a pretrained off-the-shelf text encoder
that is not trained to align with f . Drawing inspiration from Christensen et al. (2023), we introduce
a small learnable module comprising a simple Multi-Layer-Perceptron (MLP), which is trained to
map text to the classifier embedding space (Figure 3a). We first map every textual class name ci,
where i = 1, 2, . . . , C, to a corresponding natural text prompt ti, specified as: an image of a {ci}.
For example, if ci is the class tench, then ti is: an image of a tench. Given that we want to learn a
mapping from ti to the class embedding wci ∈ W, the only ground-truth data available to us is W,
which are the fixed C class embeddings of the classifier (Figure 3b). For ImageNet-1k (Deng et al.,
2009), C = 1, 000, presenting a highly scarce data scenario. Nevertheless, as we will elaborate later,
this challenge can still be addressed using specific techniques. Each prompt ti is then encoded with
the text encoder MT to produce a text embedding representation si, which we feed to a shared MLP
layer. The regressed class embedding for the class ci is defined as ŵci = MLP(si). The prediction
cp can then given by argmax(f · Ŵ), where Ŵ = [ŵc1 , ŵc2 , . . . , ŵC].

The MLP is trained to minimize the distance between the regressed class embedding ŵci and the
ground-truth embedding wci (Figure 3c). Note that the only trainable module is the MLP, and
the visual classifier MV and text encoder MT are kept frozen. We employ the cosine distance
instead of other functions like L1 or Mean Squared Error (MSE) loss, as cosine loss incorporates
angular information. This approach yields improved performance, as demonstrated in the ablation
experiments in Section D of the appendix. The loss objective L is then given by:

L =

C∑
i=1

(
1− ŵci ·wci

∥ŵci∥∥wci∥

)
(1)

Training the MLP takes roughly 10 seconds on a single moderate GPU, and is therefore considered
negligible and can be applied instantly to any visual classifier model. Once the MLP is trained, we
can map any new text (e.g., a descriptor, new class, or sentence) to the class embedding space. This
mapped text now shares the same embedding space as the visual features f , and we can measure
the association of that new text to f (Figure 3d). It is worth noting, that in coarse or fine-grained
classification, some class names (e.g., “tench”) may be unfamiliar to a text encoder trained on general
language. However, because their corresponding class embedding is close to that of another class
that the text encoder understands (e.g., “goldfish”) (see Figure 2), the MLP can infer that “tench”
is a fish, even though the word “fish” is not part of the class name of “tench”. Furthermore, it is
important to note that we only use the class name, and no other supplementary information. More
details regarding this can be found in Section L of the appendix.

As mentioned, we are faced with an extremely scarce data scenario. We therefore utilize two simple
but highly effective data augmentation techniques, both which allow us to create training points which
are in proximity to the original training sample.

Input Dropout: This follows the conventional Dropout technique (Srivastava et al., 2014). We
randomly drop 50% of si (the input features to the MLP) with a probability of 0.3. The regressed
class embedding is then defined as ŵci = MLP(drop(si)). As shown in Section D of the appendix,
this simple technique already boosts performance by a large margin.

Learned Soft Dropout: We propose to implement a learned dropout mechanism, where instead
of completely zeroing out features randomly, we learn how to selectively scale them with values
between 0 and 1. We term this approach as Soft Dropout. We implement this via a Gated Linear

4

Published as a conference paper at ICLR 2025

Pretrained
Language

Model

this is a

sample
top-k words

this is a cat
this is a jacket
this is a water
this is a arm
this is a animal

cosine

cos
ine

Construct Target
Distribution

cat waterjacket armanimalhard smoke this on be

XE Loss

Prefix

Textual
Encoder

MLP

cat
jacket
water
arm
animal

ViT/CNN

𝑓

update prefix

𝑜!

𝑜!

Figure 4: An overview of how we update the prefix. The example is shown for the first timestep l = 1
at iteration i = 1, with K = 5 and a hard prompt set as {this is a}. cosine indicates cosine similarity.

Unit (GLU) activation function (Dauphin et al., 2016) on the MLP output. The regressed class
embedding is then defined as ŵci = GLU(MLP(drop(si))). Since GLU is applied independently
to each dimension of the MLP output, it scales different dimensions of the learned class embedding,
effectively associating the space around the training point to the corresponding class. As shown in
Section D of the appendix, this technique further provides significant improvements in performance
in such a scarce data scenario.

3.2 GENERATING ZERO-SHOT NLES

Once we establish the mapping function MLP which projects the textual features into the same space
as the visual features f , we can optimize an off-the-shelf pre-trained language model (PLM)—capable
of generating coherent text—to generate a NLE that maximizes the similarity with the visual features
f . We freeze the PLM to keep its powerful generation capability, and instead use prefix-tuning (Li &
Liang, 2021), an efficient-finetuning method which attaches learnable vectors in the embedding space
of the PLM. We follow an inference-time approach where we optimize learnable prefixes for each
sample individually. Unlike supervised models which require a single forward pass at inference, this
approach is more time-consuming. However, it allows for much greater flexibility in the generated
text, operates in an open-set environment (generating words outside the dataset corpus), and can be
adapted to any example or classifier on-the-fly. We build upon the approach introduced by Tewel
et al. (2021). An overview of this process is shown in Figure 4. Given a PLM (e.g., GPT-2), we
attach randomly initialized learnable prefixes to it to steer the frozen language model to generate
explanations of the classifier. Here, the learnable prefixes are set as initial key-value pairs in each
attention block of the Transformer, such that each generated word in the explanation can attend to
these prefixes. At each timestep l, we sample the top-K tokens from the PLM output vocabulary
distribution ol, which act as K continuation tokens of the currently generated explanation. These
K potential sentences are then passed to the text encoder MT , followed by the learned MLP to
produce K vectors that share the same embedding space as the visual features f . The cosine similarity
between each of those vectors and the visual features f is then computed, yielding K similarity scores
with the visual feature vector f . These scores, normalized with softmax, form a target distribution to
train against ol with the standard Cross-Entropy loss, and the prefixes of the PLM are updated with
backpropogation. We then run the PLM again with the updated prefixes and we sample from the
output distribution the most likely token. Namely, per timestep, K token are initially produced to
update the prefixes but one token is finally sampled (after the prefixes are updated) as the continuation
of the explanation. We run the above process for L timesteps. We set L as the maximum sequence
length we want for the explanation, or until the < . > token is reached. After these L timesteps, one
iteration will be concluded, and one explanation will be generated. Therefore, each iteration generates
one complete explanation. The sampled K tokens which have their continuation relevant to the
features f will have their scores increased during the generation process, while non-relevant tokens
will have their scores decreased. We train the prefixes for I iterations, producing I explanations.
Because the similarity between the MLP output and the visual features f is used to construct the
target distribution for training the prefixes, we choose a different similarity measure—not biased
toward the process and metric used to create these explanations—to select the best explanation from

5

Published as a conference paper at ICLR 2025

the I generated ones. Specifically, we select the explanation that maximizes the CLIP-Score as the
final explanation. More details are provided in Section I of the appendix.

4 EXPERIMENTS

In this section, we present both quantitative and qualitative experiments. Implementation details are
provided in Section I of the appendix. We evaluate a diverse set of 38 vision models. A selection
of these models is included here, with the remainder provided in the appendix. For CNNs, we
consider the following family of models (each with several variants): Residual Networks (ResNets)
(He et al., 2015), Wide ResNets (Zagoruyko & Komodakis, 2016), ResNeXts (Xie et al., 2016),
Densely Connected Networks (DenseNets) (Huang et al., 2016), EfficientNetv2 (Tan & Le, 2021),
ShuffleNetv2 (Ma et al., 2018), MobileNetv3 (Howard et al., 2019), ConvNeXts (Liu et al., 2022) and
ConvNeXtv2 (Woo et al., 2023). For Transformers, we consider the following family of models (each
with several variants): Vision Transformers (ViTs) (Dosovitskiy et al., 2021), Swin Transformer (Liu
et al., 2021), BeiT (Bao et al., 2022), DINOv2 (Oquab et al., 2024) and the hybrid Convolution-Vision
Transformer CvT (Wu et al., 2021). All models are pretrained on ImageNet-1K (Deng et al., 2009).
Models with the subscript pt indicate that the model was pretrained on ImageNet-21k before being
finetuned on ImageNet-1K. Models with a subscript v2 are trained with the new recipe from PyTorch
(Vryniotis, 2021). Finally, BEiT, DINOv2 and ConvNeXtv2 are pretrained in a self-supervised
manner before being finetuned on ImageNet-1k.

4.1 LEARNED CLASS EMBEDDINGS

To evaluate the learned class embeddings, we employ zero-shot image classification as a benchmark.
Since our approach can map any new text to class embeddings (i.e., class weights), we can treat new
unsen classes as input text. This implies that by mapping n new classes to class embeddings, we
effectively extend our classifier by n additional classes. It is important to note that we are referring to
the classical zero-shot classification paradigm (Lampert et al., 2014; Xian et al., 2017b), unlike CLIP
(Radford et al., 2021) which addresses zero-shot transfer. As a baseline, we compare against ICIS
(Christensen et al., 2023), the current state-of-the-art in zero-shot image classification using text-only
training. For a fair comparison, we re-implemented their method, utilizing the same text encoder,
dataset splits and class names as in our approach. We use the challenging ImageNet-1K dataset as
our benchmark, splitting its 1, 000 classes into 900 for training and 100 for testing. For validation
and hyperparameter tuning, we use 100 non-overlapping classes from the ImageNet-21K dataset.

Figure 5: t-sne embeddings on new unseen classes
from ImageNet-21K, for a ResNet-50

We follow the standard evaluation protocol for
zero-shot image classification which includes
two settings: the Generalized Zero-Shot Set-
ting and the Zero-Shot Setting. The Generalized
Zero-Shot Setting is the most important as it re-
flects real-world scenarios. In this setting, we
generate class weights for both the seen (train-
ing) classes, and the unseen (testing) classes.
For ImageNet, these are all the 1, 000 classes.
The image is then classified into one of these
classes by comparing its features f against all
these classes, and the class with the highest sim-
ilarity is predicted. “Train” refers to the results
on the training set, while “Test” refers to the
results on the testing set. We report the standard
Top-1 (@1) and Top-5 (@5) accuracy metrics.
In the Zero-Shot Setting, we generate weights
for the unseen (testing) classes only, and the im-
age is classified solely among the testing classes.
In the case of ImageNet, the image features f are compared only against the 100 testing classes,
and the class with the highest similarity is predicted. However, this setting is less realistic, as in
practice we do not know which classes are unknown. Results are presented in Table 1. Our method
significantly outperforms ICIS on the testing set in the generalized zero-shot setting and, in most

6

Published as a conference paper at ICLR 2025

Table 1: Quantitative Results on evaluating class embeddings via zero-shot image classification on
ImageNet-1K, compared to the baseline ICIS, for several visual classifiers.

Model Method Generalized Zero-Shot Setting Zero-Shot Setting

Train@1 Train@5 Test@1 Test@5 Test@1 Test@5

ResNet50 ICIS 74.18 91.76 13.04 51.68 49.80 77.04
Ours 66.77 89.34 33.28 66.20 50.88 77.62

ResNet101 ICIS 76.05 92.86 11.18 43.26 46.06 73.48
Ours 69.42 90.19 25.92 57.80 44.36 72.96

WideResNet50 ICIS 78.29 93.57 11.82 49.08 51.00 79.26
Ours 74.27 92.05 30.20 64.92 49.98 78.46

WideResNet101 ICIS 78.89 93.67 9.26 46.02 46.38 75.22
Ours 75.65 92.59 26.66 60.60 48.58 75.82

ResNeXt5032x4d
ICIS 77.54 93.32 8.78 44.00 44.24 74.52
Ours 72.44 90.97 29.96 63.00 46.90 74.96

MobileNetv3-L ICIS 74.22 91.53 3.30 21.44 39.56 65.56
Ours 68.26 89.84 18.90 43.42 39.32 66.00

ViT-B/16swag
ICIS 85.43 97.11 4.98 50.62 57.72 84.18
Ours 85.47 97.35 9.18 53.84 58.20 83.72

BEiT-L/16 ICIS 87.79 98.32 5.72 49.62 56.96 78.84
Ours 87.57 98.26 10.84 51.52 54.10 80.22

DINOv2-B ICIS 81.30 96.08 13.96 44.70 46.60 72.14
Ours 79.26 95.95 21.52 49.36 43.50 73.72

ConvNeXtV2-Bpt-384
ICIS 87.89 98.20 6.06 48.64 56.36 76.74
Ours 87.90 98.31 9.36 50.60 56.72 77.58

cases, in the zero-shot setting as well. As this is an ill-posed problem, the testing accuracies may
not be particularly high. This phenomenon is standard in zero-shot learning (Xian et al., 2017a),
especially on the challenging ImageNet dataset. Evaluation on other models are presented in Section
F of the appendix. We also present an analysis on test prompt sensitivity in Section E of the appendix.
In Figure 5, we present a t-sne visualization of the generated embeddings for new unseen classes taken
from ImageNet-21K. As seen, semantically similar classes are clustered together (e.g., water sports
cluster, people cluster). After tuning the hyperparameters of the MLP mapper, we train it on the full
set of classes (1, 000 for ImageNet) for further applications. In Section D of the appendix, we present
ablation studies on Input Dropout and Soft Dropout. Our findings show that Input Dropout boosts
top-1 zero-shot accuracy by 11.38% points, while Soft Dropout further boosts it by an additional
16.04% points. Therefore, these augmentations together provide a significant increase of 27.42%
points in top-1 zero-shot accuracy. We also present ablation studies on different text encoders.

4.2 ZERO-SHOT NLES

Baselines and Dataset: We use the ImageNet-X (Sammani & Deligiannis, 2023) dataset which
provides explanations for ImageNet categories, describing them with distinctive and physical features.
It consists of 141K training samples, 2K for validation and 1K for testing. As our method is zero-shot,
we only use the testing split for evaluation purposes. We compare against 4 supervised baseline
NLE models which are trained explicitly to generate those explanations: NLX-GPT (Sammani et al.,
2022) and Uni-NLX (Sammani & Deligiannis, 2023). The subscript ft means that the NLE model
is preceded by pretraining on 1M image- caption pairs before being finetuned on ImageNet-X. All
baselines are trained on the ImageNet-X training set.

Metrics: Supervised NLE models use natural language generation (NLG) metrics such as BLEU
(Papineni et al., 2002) to measure the n-gram overlap between the generated NLE and the ground-truth
one. We avoid evaluation using NLG metrics because it is challenging to expect an n-gram overlap
between the ground-truth annotation and a zero-shot explanation. As a result, we resort to using

7

Published as a conference paper at ICLR 2025

semantic-based evaluation metrics that, to the best of our ability, reflect faithfulness. Given a NLE
for an image x, we use the following metrics: CLIP-S: We use the CLIP-Score (Hessel et al., 2021),
a metric that leverages the powerful CLIP model as an external “judge” to assess the matching score
between an image-text pair. Here, we use the CLIP-S to judge how associated the image x is to its
NLE. That is, CLIP-S = CLIP(x, NLE). An NLE which truly reflects the image and its content,
is given a high matching score. LPIPS: Perceptual Similarity (Zhang et al., 2018) is a learned metric
trained with human input that has shown to correlate very well with human judgment. It measures
the similarity between two images semantically using deep network features rather than focusing
on pixel-level differences. To utilize this metric, we need two images. Taking advantage of the
remarkable ability of current text-to-image models in generating realistic images, we first generate
an image by re-formulating the NLE as a text prompt to the Stable Diffusion Text-to-Image model
(Rombach et al., 2021) to obtain xg (see Section I of the appendix for more details on this). We then
compare xg against the image x using the LPIPS metric: LPIPS(x, xg). The LPIPS score is low
when the two images share similar semantic features. The lower the LPIPS, the more the NLE truly
reflects the visual features. We use the trained LPIPS models1 based on AlexNet (A) and SqueezeNet
(S). Finally, Cosine is the cosine similarity between the visual features of the model we interpret
for the image x and that for xg: cos(MV (x),MV (x

g)). When the NLE is correct and faithful, the
synthesized image xg will activate the same visual features in the classifier as the original image
x that generated the NLE, resulting in a high cosine similarity score. Our method, including the 4
baselines follow exactly the same evaluation protocol, using the ImageNet-X test set.

We follow NLX-GPT and Uni-NLX where we generate both the prediction and explanation. As
highlighted in NLX-GPT, this is important to ensure that the prediction and explanation come from
the same reasoning process. Results are presented in Table 2. On all CNN models, our zero-shot
NLEs outperform supervised NLEs on all metrics while remaining comparable on the cosine metric.
On Transformer models, our zero-shot NLEs surpass the supervised NLEs on CLIP-S and perform
comparably (and sometimes better) across other metrics. Note that the cosine metric only captures the
geometric alignment (or direction) of these vectors in the Euclidean space. As a simple example, the
cosine similarity between: v1 = [1, 1, 0] and v2 = [2, 2, 0] , where v2 = 2v1 is, 1, indicating perfect
alignment. Therefore, the cosine metric is suboptimal for capturing semantically relevant alignment.
Evaluation on other models are presented in Section H of the appendix.

In Figure 6, we provide qualitative examples of images from different ImageNet categories. The first
row presents NLEs that are expressive and free from contextual errors. For example, we can see that
the rings presented on the snake’s skin are distinctive of the category king snake. In the second row,
we present examples where the NLEs are expressive but contain contextual errors. Despite these
mistakes, they still help users understand the reasoning process. For example, the model identifies a
vine snake based on its green, arrow-shaped head, and identifies a tree frog by its green, lizard-like
head. We can also reveal that a ResNet-50 has associated jellyfish with “glowing”. Upon inspecting
the ImageNet training images for the class jellyfish, we observe that most of them feature glowing
jellyfish. This suggests that the ResNet-50 model has taken a shortcut bias in learning this class.
Additional qualitative examples are provided in Section J of the appendix.

4.3 ZERO-SHOT FINE-GRAINED CONCEPT DISCOVERY

We present one more human-friendly interpretable approach to deep learning models, which is
fine-grained concept discovery where we aim to dissect the visual features into textual concepts in a
zero-shot manner. In this context, we refer to concepts as textual descriptors; short descriptions in
natural language that describe physical features of many objects in the world. This approach stems
from how humans reason. For example, to justify an image as an american robin, we would describe
the bird’s beak, orange belly, and black back. In this approach, we are given a set of predefined
concepts. We then query a visual classifier to determine whether these concepts are present in
the classifier’s visual features. Previously, this method was restricted to CLIP models (Menon &
Vondrick, 2023). Now, with our approach, it can be applied to any visual classifier. Manually writing
these textual concepts can be costly and does not scale to large class sets like ImageNet. To address
this, we leverage large language models (LLMs), which demonstrate remarkable world knowledge
across various domains, to generate these concepts. See Section K of the appendix for more details.

1https://github.com/richzhang/PerceptualSimilarity

8

Published as a conference paper at ICLR 2025

Table 2: Quantitative Results on our zero-shot NLEs compared to supervised baselines, on several
visual classifiers. Results are reported on the test set of ImageNet-X.

Model Metric NLX-GPT NLX-GPTft Uni-NLX Uni-NLXft Ours

ResNet50

CLIP-S ↑ 28.53 28.52 28.38 28.52 30.56
LPIPS(A) ↓ 0.721 0.719 0.720 0.716 0.706
LPIPS(S) ↓ 0.624 0.623 0.620 0.620 0.614
Cosine ↑ 0.703 0.704 0.703 0.710 0.708

ResNeXt5032x4d

CLIP-S ↑ 28.53 28.52 28.38 28.52 30.73
LPIPS(A) ↓ 0.717 0.717 0.720 0.719 0.707
LPIPS(S) ↓ 0.621 0.620 0.622 0.623 0.616
Cosine ↑ 0.680 0.677 0.677 0.677 0.676

DenseNet161

CLIP-S ↑ 28.53 28.52 28.38 28.52 30.56
LPIPS(A) ↓ 0.717 0.718 0.718 0.723 0.706
LPIPS(S) ↓ 0.620 0.620 0.620 0.624 0.616
Cosine ↑ 0.589 0.591 0.589 0.588 0.588

DINOv2-B

CLIP-S ↑ 28.53 28.52 28.38 28.52 30.15
LPIPS(A) ↓ 0.719 0.716 0.717 0.716 0.712
LPIPS(S) ↓ 0.622 0.621 0.619 0.619 0.619
Cosine ↑ 0.362 0.360 0.354 0.356 0.314

ViT-B/16pt

CLIP-S ↑ 28.53 28.52 28.38 28.52 30.92
LPIPS(A) ↓ 0.723 0.723 0.717 0.722 0.710
LPIPS(S) ↓ 0.624 0.626 0.619 0.624 0.621
Cosine ↑ 0.450 0.440 0.447 0.445 0.425

Prediction: barrow
because it shows tractor cart buckets
and other tools in the field at a farm

Prediction: apiary
because it shows honey bees
in the food bee factory at a
farm for Honeybee Foods

Prediction: airliner
because it shows the aircraft
flying overhead at a high speed
over an airport

Prediction: king snake
because it shows serpentine
ring on the snake skin

Ex
pr

es
si

ve
 &

N

o
C

on
te

xt
ua

l E
rr

or
s

Prediction: hermit crab
because it shows crab and turtle in
the shell

Prediction: vine snake
because it shows a green
arrow on top

Prediction: tree frog
because it shows the frog with its
head covered by a green lizard on top

Prediction: jellyfish
because it shows jellyfish glow
in a tube on the screen

Ex
pr

es
si

ve
 w

ith

C
on

te
xt

ua
l E

rr
or

s

Figure 6: Qualitative examples of our zero-shot NLEs on ImageNet for a ResNet-50 classifier.

Performing this application with our method is simple, and is illustrated in Figure 3d. Given a large
set of concepts U with |U | = Z, every concept uj is encoded using the text encoder MT followed by
the MLP to yield a concept embedding ŵuj

. That is, ŵuj
= MLP(MT(uj))). We then compute

the cosine similarity between the visual features f and ŵuj
, ∀j = 1, . . . , Z. We then take the top-B

scoring concepts. Qualitative results are shown in Figure 7 for different models. This allows us to
reveal what concepts different model features encode. Interestingly, we see that the BeiT-L models
assigns the top-concept for the “tench” prediction as “10 legs”. This classification arises from the
patchification process of the transformer, where multiple patches comprise of the fins of the fish,
which are identified as “10 legs” due to their physical appearance.

9

Published as a conference paper at ICLR 2025

ResNet-50:
tench, tinca tinca

WideResNet-101
tench, tinca tinca

BeiT/16-Large
tench, tinca tinca

because… because… because…

a variety of fish
a freshwater wish
brass or bronze
metal or plastic
wire mesh stretched

74.25
49.25
46.76
40.05

fish
a freshwater wish
large, elongated fish
a fish with a bright
orange or yellow color

87.75
68.0
57.75
57.25

10 legs
fish
a freshwater fish
leaves
brass or bronze

98.0

34.0
31.50
30.25

42.0

ResNet-50:
great white shark

WideResNet-101
great white shark

BeiT/16-Large
great white shark

because… because… because…

large, triangular fins
an underwater scene
large, predatory fish
one or two dorsal fins
large grey marine
mammal

73.50
71.25
71.25
70.75
70.0

large, predatory fish
one or two dorsal fins
large marine mammal
wings or fins
an underwater scene

91.0
79.25
79.00
78.25
77.50

large, predatory fish
powerful jaws
sharp teeth
large head
large fins

44.0
42.5
33.5
30.5
29.75

Figure 7: Qualitative examples of concept discovery on ImageNet for different classifiers. The cosine
similarity is scaled by 2.5 for all models, in order to stretch the range of the score distribution to [0, 1]

Finally, we conduct a quantitative evaluation of the detected concepts to assess their effectiveness and
faithfulness to the visual features. We use the top-detected concepts as supplementary information
to regress the class embeddings. If the detected concepts are faithful, they should lead to a better
regression of the class embeddings, and as a result a higher accuracy. Our baseline uses only the class
name to regress the class embeddings. That is, ŵci = MLP(MT(ti)) where ti is: an image of a
{class name}. For the evaluation, we change ti to tic which now include both the class name and
the detected concepts: tic = an image of a {class name, ub} where ub is a concept from the top-B
detected concepts. Results on ImageNet are presented in Table 3 on several models. As shown, the
detected concepts lead to significant improvements in accuracy, which shows the effectiveness and
faithfulness of the concepts to the visual features. In this experiment, we use B = 15 and average
the text encoder outputs to a single feature vector, before we feed it as input to the MLP. We also
found that setting B = 10 yields to approximately the same results (e.g., 73.61 Top-1 accuracy for a
ResNet-50). Evaluation on other models are provided in Section G of the appendix.

4.4 ADDITIONAL APPLICATIONS Table 3: Quantitative results of concept discovery

Model Baseline + Concepts

Top-1 Top-5 Top-1 Top-5

ResNet50 63.42 87.02 73.66 92.18
ResNet101 65.07 86.95 75.32 92.91
WideResNet50v2 73.51 90.10 81.06 95.64
WideResNet101v2 75.25 90.60 82.05 95.95
ResNeXt10164x4d 75.52 90.79 82.85 96.41
DenseNet161 67.84 88.58 75.37 93.11
EfficientNetv2-S 76.64 91.99 84.00 96.79
EfficientNetv2-M 77.82 92.37 85.03 97.17
ShuffleNetv2x2.0 68.02 86.87 75.04 92.64
MobileNetv3-L 63.32 85.20 71.76 90.62
ViT-B/32 68.66 85.76 75.31 92.34
ViT-B/16swag 77.84 93.00 84.42 97.48
ViT-L/32 69.83 86.66 76.47 92.97
ViT-L/16 72.35 88.58 79.44 94.51
Swin-S 75.40 90.66 82.45 96.34
ViT-B/16pt 76.90 92.77 82.40 96.79
BeiT-B/16 77.27 92.47 84.56 97.37
BEiT-L/16 79.90 93.58 87.06 98.22
DINOv2-B 73.49 91.29 81.99 96.37
CvT-21 74.16 90.10 81.04 95.15
ConvNeXt-B 76.54 91.66 83.72 96.79
ConvNeXt-Bpt 77.89 92.88 84.98 97.66
ConvNexTv2-B 77.31 91.83 84.58 97.11
ConvNexTv2-Bpt 78.93 93.32 85.96 97.87
ConvNeXtv2-Bpt-384 80.05 93.54 87.28 98.32

In Section B of the appendix, we also present
zero-shot image captioning experiments on the
COCO dataset (Lin et al., 2014) as an additional
application of our method, achieving new state-
of-the-art results while also showing the gener-
alizability of our method to datasets beyond Im-
ageNet. Furthermore, we present experiments
on zero-shot transfer to other datasets in Section
C of the appendix.

5 CONCLUSION

We proposed a zero-shot faithful NLE method
for visual classifiers. We also presented other
applications on zero-shot image classification
and fine-grained concept discovery. Note that
our work offers a solution to a wide range of
zero-shot applications that were previously re-
stricted to CLIP models. Our work removes
this limitation, and can now be applied to any
visual classifier. Additionally, our work offers
a method for annotating sparse autoencoder la-
tents trained on any visual classifier. Finally, as
with any research work, our method is accompa-
nied by its own set of limitations, which we
discuss in Section A of the appendix.

10

Published as a conference paper at ICLR 2025

ACKNOWLEDGEMENT

Fawaz Sammani is fully and solely funded by the Fonds Wetenschappelijk Onderzoek (FWO) (PhD
fellowship strategic basic research 1SH7W24N). N. Deligiannis acknowledges support from the
Francqui Foundation (2024-2027 Francqui Research Professorship on Trustworthy AI) and the
”Onderzoeksprogramma Artificiele Intelligentie (AI) Vlaanderen” programme.

REFERENCES

Peter Anderson, Basura Fernando, Mark Johnson, and Stephen Gould. Spice: Semantic propositional
image caption evaluation. In Computer Vision–ECCV 2016: 14th European Conference, Ams-
terdam, The Netherlands, October 11-14, 2016, Proceedings, Part V 14, pp. 382–398. Springer,
2016.

Jimmy Ba, Jamie Ryan Kiros, and Geoffrey E. Hinton. Layer normalization. ArXiv, abs/1607.06450,
2016.

Satanjeev Banerjee and Alon Lavie. Meteor: An automatic metric for mt evaluation with improved
correlation with human judgments. In IEEvaluation@ACL, 2005.

Hangbo Bao, Li Dong, Songhao Piao, and Furu Wei. BEit: BERT pre-training of image transformers.
In International Conference on Learning Representations, 2022.

Anders Christensen, Massimiliano Mancini, A. Sophia Koepke, Ole Winther, and Zeynep Akata.
Image-free classifier injection for zero-shot classification. 2023 IEEE/CVF International Confer-
ence on Computer Vision (ICCV), pp. 19026–19035, 2023.

M. Cimpoi, S. Maji, I. Kokkinos, S. Mohamed, , and A. Vedaldi. Describing textures in the wild. In
Proceedings of the IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), 2014.

Meghal Dani, Isabel Rio-Torto, Stephan Alaniz, and Zeynep Akata. Devil: Decoding vision features
into language. German Conference on Pattern Recognition (GCPR), 2023.

Yann Dauphin, Angela Fan, Michael Auli, and David Grangier. Language modeling with gated
convolutional networks. In International Conference on Machine Learning, 2016.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, K. Li, and Li Fei-Fei. Imagenet: A large-scale
hierarchical image database. 2009 IEEE Conference on Computer Vision and Pattern Recognition,
pp. 248–255, 2009.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit,
and Neil Houlsby. An image is worth 16x16 words: Transformers for image recognition at scale.
In International Conference on Learning Representations (ICLR), 2021.

Kaiming He, X. Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition.
2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778, 2015.

Lisa Anne Hendricks, Zeynep Akata, Marcus Rohrbach, Jeff Donahue, Bernt Schiele, and Trevor
Darrell. Generating visual explanations. In European Conference on Computer Vision (ECCV),
2016.

Dan Hendrycks and Kevin Gimpel. Gaussian error linear units (gelus). arXiv: Learning, 2016.

Jack Hessel, Ari Holtzman, Maxwell Forbes, Ronan Le Bras, and Yejin Choi. CLIPScore: A
reference-free evaluation metric for image captioning. In Marie-Francine Moens, Xuanjing Huang,
Lucia Specia, and Scott Wen-tau Yih (eds.), Proceedings of the 2021 Conference on Empirical
Methods in Natural Language Processing, pp. 7514–7528, Online and Punta Cana, Dominican
Republic, November 2021. Association for Computational Linguistics. doi: 10.18653/v1/2021.
emnlp-main.595.

11

Published as a conference paper at ICLR 2025

Andrew G. Howard, Mark Sandler, Grace Chu, Liang-Chieh Chen, Bo Chen, Mingxing Tan, Weijun
Wang, Yukun Zhu, Ruoming Pang, Vijay Vasudevan, Quoc V. Le, and Hartwig Adam. Searching
for mobilenetv3. 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp.
1314–1324, 2019.

Gao Huang, Zhuang Liu, and Kilian Q. Weinberger. Densely connected convolutional networks.
2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2261–2269,
2016.

Peng-Tao Jiang, Chang-Bin Zhang, Qibin Hou, Ming-Ming Cheng, and Yunchao Wei. Layercam: Ex-
ploring hierarchical class activation maps for localization. IEEE Transactions on Image Processing,
30:5875–5888, 2021. doi: 10.1109/TIP.2021.3089943.

Maxime Kayser, Oana-Maria Camburu, Leonard Salewski, Cornelius Emde, Virginie Do, Zeynep
Akata, and Thomas Lukasiewicz. e-vil: A dataset and benchmark for natural language explanations
in vision-language tasks. 2021 IEEE/CVF International Conference on Computer Vision (ICCV),
pp. 1224–1234, 2021.

Nitish Shirish Keskar, Bryan McCann, Lav Varshney, Caiming Xiong, and Richard Socher. CTRL
- A Conditional Transformer Language Model for Controllable Generation. arXiv preprint
arXiv:1909.05858, 2019.

Diederik Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In International
Conference on Learning Representations (ICLR), San Diega, CA, USA, 2015.

Christoph H. Lampert, Hannes Nickisch, and Stefan Harmeling. Attribute-based classification for
zero-shot visual object categorization. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 36(3):453–465, 2014. doi: 10.1109/TPAMI.2013.140.

Xiang Lisa Li and Percy Liang. Prefix-tuning: Optimizing continuous prompts for generation.
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the
11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers),
pp. 4582–4597, 2021.

Tsung-Yi Lin, Michael Maire, Serge J. Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr
Dollár, and C. Lawrence Zitnick. Microsoft coco: Common objects in context. In European
Conference on Computer Vision, 2014.

Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and Baining
Guo. Swin transformer: Hierarchical vision transformer using shifted windows. 2021 IEEE/CVF
International Conference on Computer Vision (ICCV), pp. 9992–10002, 2021.

Zhuang Liu, Hanzi Mao, Chaozheng Wu, Christoph Feichtenhofer, Trevor Darrell, and Saining Xie.
A convnet for the 2020s. 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 11966–11976, 2022.

Ilya Loshchilov and Frank Hutter. SGDR: Stochastic gradient descent with warm restarts. In
International Conference on Learning Representations, 2017.

Ningning Ma, Xiangyu Zhang, Hai-Tao Zheng, and Jian Sun. Shufflenet v2: Practical guidelines for
efficient cnn architecture design. In Proceedings of the European Conference on Computer Vision
(ECCV), September 2018.

Ana Marasović, Chandra Bhagavatula, Jae Sung Park, Ronan Le Bras, Noah A. Smith, and Yejin
Choi. Natural language rationales with full-stack visual reasoning: From pixels to semantic frames
to commonsense graphs. In Findings, 2020.

Sachit Menon and Carl Vondrick. Visual classification via description from large language models.
International Conference on Learning Representations, 2023.

12

Published as a conference paper at ICLR 2025

Maxime Oquab, Timothée Darcet, Théo Moutakanni, Huy V. Vo, Marc Szafraniec, Vasil Khali-
dov, Pierre Fernandez, Daniel HAZIZA, Francisco Massa, Alaaeldin El-Nouby, Mido Assran,
Nicolas Ballas, Wojciech Galuba, Russell Howes, Po-Yao Huang, Shang-Wen Li, Ishan Misra,
Michael Rabbat, Vasu Sharma, Gabriel Synnaeve, Hu Xu, Herve Jegou, Julien Mairal, Patrick
Labatut, Armand Joulin, and Piotr Bojanowski. DINOv2: Learning robust visual features with-
out supervision. Transactions on Machine Learning Research, 2024. ISSN 2835-8856. URL
https://openreview.net/forum?id=a68SUt6zFt.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. Bleu: a method for automatic
evaluation of machine translation. In Annual Meeting of the Association for Computational
Linguistics, 2002.

Dong Huk Park, Lisa Anne Hendricks, Zeynep Akata, Anna Rohrbach, Bernt Schiele, Trevor Darrell,
and Marcus Rohrbach. Multimodal explanations: Justifying decisions and pointing to the evidence.
2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 8779–8788,
2018.

Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. Language
models are unsupervised multitask learners. 2019.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, and Ilya Sutskever.
Learning transferable visual models from natural language supervision. In International Conference
on Machine Learning (ICML), 2021.

Nils Reimers and Iryna Gurevych. Sentence-bert: Sentence embeddings using siamese bert-networks.
In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing.
Association for Computational Linguistics, 11 2019.

Robin Rombach, A. Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-resolution
image synthesis with latent diffusion models. 2022 IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), pp. 10674–10685, 2021.

Leonard Salewski, A. Sophia Koepke, Hendrik P. A. Lensch, and Zeynep Akata. Zero-shot translation
of attention patterns in vqa models to natural language. In DAGM, 2023.

Fawaz Sammani and Nikos Deligiannis. Uni-nlx: Unifying textual explanations for vision and
vision-language tasks. 2023 IEEE/CVF International Conference on Computer Vision Workshops
(ICCVW), pp. 4636–4641, 2023.

Fawaz Sammani, Tanmoy Mukherjee, and Nikos Deligiannis. Nlx-gpt: A model for natural language
explanations in vision and vision-language tasks. 2022 IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), pp. 8312–8322, 2022.

Ramprasaath R. Selvaraju, Abhishek Das, Ramakrishna Vedantam, Michael Cogswell, Devi Parikh,
and Dhruv Batra. Grad-cam: Visual explanations from deep networks via gradient-based localiza-
tion. International Journal of Computer Vision (IJCV), 128:336–359, 2019.

Piyush Sharma, Nan Ding, Sebastian Goodman, and Radu Soricut. Conceptual captions: A cleaned,
hypernymed, image alt-text dataset for automatic image captioning. In ACL, 2018.

Aleksandar Shtedritski, C. Rupprecht, and Andrea Vedaldi. What does clip know about a red circle?
visual prompt engineering for vlms. 2023 IEEE/CVF International Conference on Computer Vision
(ICCV), pp. 11953–11963, 2023.

Kaitao Song, Xu Tan, Tao Qin, Jianfeng Lu, and Tie-Yan Liu. Mpnet: Masked and permuted
pre-training for language understanding. 2020.

Nitish Srivastava, Geoffrey E. Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov.
Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res., 15:
1929–1958, 2014.

Mingxing Tan and Quoc V. Le. Efficientnetv2: Smaller models and faster training. In International
Conference on Machine Learning (ICML), 2021.

13

https://openreview.net/forum?id=a68SUt6zFt

Published as a conference paper at ICLR 2025

Yoad Tewel, Yoav Shalev, Idan Schwartz, and Lior Wolf. Zerocap: Zero-shot image-to-text generation
for visual-semantic arithmetic. 2022 IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 17897–17907, 2021.

Yoad Tewel, Yoav Shalev, Roy Nadler, Idan Schwartz, and Lior Wolf. Zero-shot video captioning by
evolving pseudo-tokens. In 34th British Machine Vision Conference 2023, BMVC 2023, Aberdeen,
UK, November 20-24, 2023. BMVA, 2023.

Laurens van der Maaten and Geoffrey E. Hinton. Visualizing data using t-sne. Journal of Machine
Learning Research, 9:2579–2605, 2008.

Ramakrishna Vedantam, C. Lawrence Zitnick, and Devi Parikh. Cider: Consensus-based image
description evaluation. 2015 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 4566–4575, 2014.

Patrick von Platen, Suraj Patil, Anton Lozhkov, Pedro Cuenca, Nathan Lambert, Kashif Rasul,
Mishig Davaadorj, Dhruv Nair, Sayak Paul, William Berman, Yiyi Xu, Steven Liu, and Thomas
Wolf. Diffusers: State-of-the-art diffusion models. https://github.com/huggingface/
diffusers, 2022.

Vasilis Vryniotis. How to train state-of-the-art models using torchvi-
sion’s latest primitives, 2021. URL https://pytorch.org/blog/
how-to-train-state-of-the-art-models-using-torchvision-latest-primitives/.

Sanghyun Woo, Shoubhik Debnath, Ronghang Hu, Xinlei Chen, Zhuang Liu, In-So Kweon, and
Saining Xie. Convnext v2: Co-designing and scaling convnets with masked autoencoders. 2023
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 16133–16142,
2023.

Haiping Wu, Bin Xiao, Noel C. F. Codella, Mengchen Liu, Xiyang Dai, Lu Yuan, and Lei Zhang.
Cvt: Introducing convolutions to vision transformers. 2021 IEEE/CVF International Conference
on Computer Vision (ICCV), pp. 22–31, 2021.

Yongqin Xian, Christoph H. Lampert, Bernt Schiele, and Zeynep Akata. Zero-shot learning—a
comprehensive evaluation of the good, the bad and the ugly. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 41:2251–2265, 2017a.

Yongqin Xian, Bernt Schiele, and Zeynep Akata. Zero-shot learning — the good, the bad and the
ugly. 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3077–3086,
2017b.

Saining Xie, Ross B. Girshick, Piotr Dollár, Zhuowen Tu, and Kaiming He. Aggregated residual
transformations for deep neural networks. 2017 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 5987–5995, 2016.

Sergey Zagoruyko and Nikos Komodakis. Wide residual networks. In BMVC, 2016.

Zequn Zeng, Hao Zhang, Zhengjue Wang, Ruiying Lu, Dongsheng Wang, and Bo Chen. Conzic:
Controllable zero-shot image captioning by sampling-based polishing. 2023 IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), pp. 23465–23476, 2023.

Richard Zhang, Phillip Isola, Alexei A. Efros, Eli Shechtman, and Oliver Wang. The unreasonable
effectiveness of deep features as a perceptual metric. 2018 IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 586–595, 2018.

Zhuosheng Zhang, Aston Zhang, Mu Li, Hai Zhao, George Karypis, and Alexander J. Smola.
Multimodal chain-of-thought reasoning in language models. ArXiv, abs/2302.00923, 2023.

Bolei Zhou, Aditya Khosla, Àgata Lapedriza, Aude Oliva, and Antonio Torralba. Learning deep
features for discriminative localization. 2016 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 2921–2929, 2015.

14

https://github.com/huggingface/diffusers
https://github.com/huggingface/diffusers
https://pytorch.org/blog/how-to-train-state-of-the-art-models-using-torchvision-latest-primitives/
https://pytorch.org/blog/how-to-train-state-of-the-art-models-using-torchvision-latest-primitives/

Published as a conference paper at ICLR 2025

Bolei Zhou, Agata Lapedriza, Aditya Khosla, Aude Oliva, and Antonio Torralba. Places: A 10
million image database for scene recognition. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 2017.

Kaiyang Zhou, Jingkang Yang, Chen Change Loy, and Ziwei Liu. Learning to prompt for vision-
language models. International Journal of Computer Vision, 130:2337 – 2348, 2021.

15

Published as a conference paper at ICLR 2025

A LIMITATIONS AND ETHICAL CONCERNS

All research has inherent limitations, and this study is no exception. It is important to acknowledge
these constraints. We highlight two limitations of our method.

Our method may occasionally tend to focus on the general image features rather than specific ones.
Figure 8 illustrates such cases. In the first example, the “jars” in the background influence the model
to produce content related to “caffeine” and “garlic”, likely due to their proximity in the embedding
space to the word “jars.” In another instance, the upper text above the puzzle in the image resembles
a list of answers, leading the model to generate content associated with “tests.” Additionally, the
model hallucinates that the test is related to computers. Note that when the image is solely composed
of the main object without other distractions such as the background, the generated NLE is usually
meaningful (e.g., an image from the same “crossword puzzle” class in Figure 9). Our method can
also potentially generate inappropriate language, as seen in the final example. This occurs due to the
proximity of certain inappropriate terms to the word “cock” in the embedding space, which refers to
the bird resembling the crane in the image, but can also refer to the male’s genitalia.

Another limitation of our approach is its slower performance compared to supervised NLE models.
Our method relies on an inference-time approach, which results in the generation of a single NLE
taking approximately 35 seconds on a single RTX 3090 GPU. In contrast, supervised NLE models
are trained once, allowing for inference to occur in a single forward pass, making our approach more
time-consuming. Although this is the case, we emphasize that our approach offers greater flexibility,
operates effectively in an open-set environment, and can be adapted to any example or classifier
on-the-fly. We prioritize these key factors as they are more important in NLEs, thereby outbalancing
the increased explanation generation time.

prediction: pill_bottle
because…
it shows caffeine glass jars and a
teaspoon of garlic powder in the spice jar

prediction: crossword puzzle
because…
it shows the answers to test questions
on the basics of a computer

prediction: crane
because…
it shows the cock p***s d**k of a
crane

Figure 8: Qualitative examples of failure cases (first two examples) and inappropriate language (last
example) for NLEs produced.

B ZERO-SHOT IMAGE CAPTIONING

We present zero-shot image captioning as an additional application. We use the MLP trained to
synthesize the full 1,000 ImageNet class weights, and apply the method presented in Section 3.2
on images from the COCO dataset (Lin et al., 2014). We report results on the common “Karpathy
test split” benchmark using various vision classifiers. As baselines, we compare against the current
state-of-the-art systems on zero-shot image captioning, namely ZeroCap (Tewel et al., 2021) and
ConZIC(Zeng et al., 2023), both which use CLIP. We use the common NLG metrics for evaluation:
BLEU-4 (B@4) (Papineni et al., 2002), METEOR (M) (Banerjee & Lavie, 2005), CiDEr (C)
(Vedantam et al., 2014) and SPICE (S) (Anderson et al., 2016). Results are presented in Table 4.
Decoding features from BEiT-L achieves state-of-the-art results on CiDEr and SPICE, which are the
two most important metrics for evaluating image captioning systems. ViT-B/16pt performs best on
METEOR, while the baseline ZeroCap leads in BLEU-4. Notably, even with a basic ResNet-50 vision
encoder trained on ImageNet-1K of 1.2 million images, our approach surpasses baseline methods on
CiDEr and SPICE and achieves comparable results on other metrics, despite the fact that the baseline
methods use the far more powerful CLIP vision encoder, trained on 400 million image-text pairs.

16

Published as a conference paper at ICLR 2025

We also find that Transformer-based models offer an advantage over CNNs on this task. Note that
the COCO dataset differs in distribution from ImageNet in terms of context and object composition
in images, demonstrating the robust transferability of our method to new datasets in a completely
zero-shot manner.

Table 4: Zero-Shot Image Captioning Results on MSCOCO Karpathy Test Split

Method B@4 M C S
ZeroCap 2.6 11.5 14.6 5.5
ConZIC 1.3 11.5 12.8 5.2

Ours
ResNet50 1.7 11.2 14.9 6.6
ResNet101 1.8 11.3 15.5 6.6
DINOv2-B 1.8 11.6 16.2 7.1
ConvNeXtV2-Bpt-384 2.0 11.5 16.9 7.2
ViT-B/16pt 1.7 11.9 17.4 7.4
BEiT-L/16 1.8 11.7 17.6 7.6

C ZERO-SHOT TRANSFER

We investigate the performance of our method in zero-shot transfer, a scenario where a model trained
on one dataset can generalize to other datasets without additional training. Specifically, we use
the MLP trained to synthesize the 1,000 ImageNet class weights and test its ability to synthesize
class weights for other datasets. For this evaluation, we select the Places365 dataset (Zhou et al.,
2017) specializing in scene classification, and the DTD dataset (Cimpoi et al., 2014) specializing
in texture type classification. These datasets are particularly challenging; for instance, the powerful
CLIP model (Radford et al., 2021), trained on 400 million image-text pairs, achieves only 41.7%
top-1 zero-shot accuracy on DTD and 37.37% on Places365. We report the Test@1 and Test@5
Generalized Zero-Shot Accuracy on the full validation sets of the selected datasets. Notably, in this
context, the generalized zero-shot accuracy on the test data is equivalent to that in the zero-shot
setting, as the evaluation encompasses all unseen classes in the Places365 and DTD datasets. It is
important to note that the objective of this experiment is not to surpass CLIP’s performance, as our
method is fundamentally different and not directly comparable with CLIP. Unlike CLIP, our approach
is trained on text data only, without any image data, and utilizes only 1,000 samples—400,000×
fewer data than CLIP. Instead, the goal of this experiment is to demonstrate the zero-shot transfer
capabilities of our method. Results are presented in Table 5. We observe that state-of-the-art models
leveraging large-scale pretraining significantly outperform other models on this task, with BEiT-L
achieving the best results. We also observe a trend consistent with the existing out-of-distribution
(OOD) literature: models leveraging large-scale pretraining, particularly Transformers, demonstrate
superior OOD performance. This pattern holds true across both datasets.

Table 5: Zero-Shot Transfer Performance of different models to Places365 and DTD datasets

Model Places365 DTD
Test@1 Test@5 Test@1 Test@5

ResNet50 10.76 30.92 14.36 32.29
WideResNet101 13.02 33.89 12.77 31.97
ViT-B/32 13.89 34.41 15.74 33.24
ViT-L/16 14.17 33.91 15.53 32.39
ConvNeXt-Base 15.03 35.92 18.46 34.79
DINOv2-Base 16.66 40.88 17.66 40.05
ViT-B/16 (pt) 18.46 44.53 15.85 33.30
ConvNeXtV2-B (pt-384) 18.48 42.44 19.20 35.96
BEiT-L/16 19.18 43.59 20.27 37.13

17

Published as a conference paper at ICLR 2025

D ABLATION STUDIES

Table 6: Ablation studies of the method in Section
4.1, using ResNet-50

Ablation Top-1 Top-5
Learning Class Embeddings

Mean of Train Set 0.00 0.00
Random Values 0.00 0.20
Random Parameters 0.20 0.62
Baseline (MSE Loss) 3.12 35.56
Cosine Loss 5.86 40.64
+ Input Drop 17.24 54.38
+ Soft Dropout 33.28 66.20

Different text encoders
MPNet-B-QAv1 24.16 57.50
DistilRobertav1 25.34 57.62
MiniLM-L12v1 26.94 54.74
MPNet-Basev2 33.28 66.20

We present ablation studies on learning class
embeddings, demonstrating that each compo-
nent contributes non-trivially. In Table 6, we
start by showing results on simple baselines to
ensure that our method is not purely statistical
and demonstrates effective learning. For this
experiment, we use the ResNet-50 model and
report the top-1 and top-5 accuracy for the test
split used in Section 4.1. As shown, when the
class embedding of the test set is consistently
set to the mean of all class embeddings from the
training set, the MLP fails. We also include a
baseline where random values are sampled from
the minimum and maximum range of the train-
ing class embeddings, again showing that the
MLP fails. The same outcome occurs when
using randomly initialized parameters for the
MLP. Our main baseline uses the MSE dis-
tance loss to learn class embeddings. Replacing
the MSE with a cosine loss which incorporates
angular information improves top-1 accuracy by
approximately 3 points. Applying dropout to the input increases top-1 accuracy by 11 points, and the
addition of learned soft dropout significantly enhances performance by 16 points. Next, we ablate
different text encoders from Reimers & Gurevych (2019) using the Sentence Transformers library2.
As shown, the MPNet-Basev2 (Song et al., 2020) provides the best results.

E PROMPT ANALYSIS

In this section, we analyze the impact of prompt templates used at inference time. CLIP models
are known to be sensitive to prompt variations (e.g., adding the letter “a” can significantly improve
accuracy, as shown in Zhou et al. (2021)). To explore this, we evaluated our pretrained MLP for
ResNet50—trained with the prompt “an image of a class”—on the Generalized Zero-Shot accuracy
for unseen test classes using various prompts in the text encoder. Results are presented in Table 7
for several prompts, arranged in increasing order of sensitivity. Our findings reveal that, like CLIP
models, the MLP is also sensitive to prompt variations. Adding or changing one word can result in
degradation of zero-shot accuracy. However, this issue can be resolved by averaging the results of all
prompts, similar to the approach used by CLIP.

Table 7: Performance with different prompts at inference

Prompt Test@1 Test@5
an image of a {class} 33.28 66.20
an image of the {class} 32.92 65.02
an image of one {class} 31.98 64.06
an image of a large {class} 31.52 63.86
an image of a nice {class} 31.18 64.86
an image of a weird {class} 30.90 64.24
a cropped image of a {class} 30.22 63.42
a black and white image of the {class} 30.14 61.74

2https://sbert.net/

18

Published as a conference paper at ICLR 2025

F ADDITIONAL MODELS ON EVALUATING LEARNED CLASS EMBEDDINGS

In this section, we provide quantitative evaluation of the learned class embeddings for additional
models not included in the main manuscript, and compare them with the baseline ICIS. Results are
provided in Tables 8 and 9. Our method consistently outperforms ICIS by a large margin on the test
set in the generalized zero-shot accuracy settings, and in most cases, in the generalized setting as
well.

Table 8: Quantitative Results for additional models on evaluating class embeddings via zero-shot
image classification on ImageNet-1K, compared to the baseline ICIS, for several visual classifiers

Model Method Generalized Zero-Shot Setting Generalized Setting

Train@1 Train@5 Test@1 Test@5 Test@1 Test@5

ResNet50v2
ICIS 80.80 95.17 3.72 37.94 44.30 68.08
Ours 79.65 94.76 11.66 44.94 44.24 67.84

ResNet101v2
ICIS 82.09 95.70 1.30 28.60 39.24 63.52
Ours 81.41 95.50 6.10 37.80 40.28 64.76

WideResNet50v2
ICIS 81.56 95.51 1.32 30.34 41.32 65.58
Ours 80.49 95.33 10.66 43.04 42.82 65.88

WideResNet101v2
ICIS 82.99 95.78 0.84 32.86 43.04 66.60
Ours 82.62 95.80 8.98 43.78 44.96 68.88

ResNeXt5032x4d, v2
ICIS 81.72 95.31 1.78 31.98 40.30 66.00
Ours 81.07 95.06 6.16 40.66 39.42 67.92

ResNeXt10164x4d
ICIS 83.13 96.11 0.48 23.18 38.86 68.82
Ours 83.02 96.00 8.00 43.86 40.32 72.34

ResNeXt10132x8d
ICIS 79.18 94.16 11.36 45.64 49.06 73.82
Ours 75.88 92.96 27.44 60.78 48.84 73.88

ResNeXt10132x8d, v2
ICIS 82.95 95.98 2.56 30.32 41.88 66.96
Ours 82.32 95.91 11.46 44.12 44.12 70.04

DenseNet121 ICIS 72.24 90.84 9.40 41.84 43.30 69.90
Ours 69.08 89.99 19.24 49.24 44.38 68.04

DenseNet161 ICIS 76.07 93.28 9.16 42.08 45.42 73.46
Ours 73.00 92.54 21.44 52.88 45.88 74.26

EfficientNetv2-S ICIS 84.53 96.72 5.78 48.04 52.78 76.50
Ours 84.35 96.62 7.24 50.40 56.90 80.18

EfficientNetv2-M ICIS 85.38 96.94 7.10 50.36 56.18 77.16
Ours 85.31 96.99 10.40 50.82 53.00 77.70

ShuffleNetv2x2.0
ICIS 76.27 92.92 1.44 26.28 39.40 70.42
Ours 74.74 92.29 7.56 38.12 40.12 70.98

ConvNext-Tiny ICIS 82.78 96.16 2.34 25.94 33.12 57.14
Ours 82.33 96.11 2.78 26.48 33.48 56.20

ConvNext-Small ICIS 84.26 96.59 3.56 38.10 44.90 68.96
Ours 84.13 96.64 4.76 37.70 43.54 69.08

ConvNext-Base ICIS 84.58 96.82 4.72 43.22 49.26 71.98
Ours 84.44 96.80 5.50 45.40 51.50 74.20

G ADDITIONAL MODELS FOR EVALUATING CONCEPT DISCOVERY

In this section, we provide quantitative evaluation of concept discovery for additional models not
included in the main manuscript. Results are provided in Table 10. As shown, the detected concepts

19

Published as a conference paper at ICLR 2025

Table 9: Quantitative Results for additional models on evaluating class embeddings via zero-shot
image classification on ImageNet-1K, compared to the baseline ICIS, for several visual classifiers

Model Method Generalized Zero-Shot Setting Generalized Setting

Train@1 Train@5 Test@1 Test@5 Test@1 Test@5

ViT-B/32 ICIS 76.12 92.16 2.22 26.98 35.60 55.10
Ours 75.99 92.25 2.66 27.42 33.46 53.52

ViT-L/32 ICIS 77.35 92.89 1.80 28.20 36.70 58.80
Ours 77.31 93.01 2.52 29.50 36.98 58.82

ViT-L/16 ICIS 79.98 94.54 3.76 34.10 44.98 66.82
Ours 80.14 94.45 2.22 35.80 46.62 67.92

Swin-T ICIS 81.29 95.58 1.74 27.78 38.76 65.06
Ours 81.20 95.63 2.40 30.26 38.86 64.98

Swin-S ICIS 83.30 96.38 4.30 38.12 42.56 66.22
Ours 83.17 96.35 5.46 39.48 41.64 64.32

ViT-B/16pt
ICIS 83.82 96.71 16.80 53.70 51.46 80.48
Ours 83.21 96.67 20.08 57.66 52.22 81.62

BeiT-B/16 ICIS 85.18 97.34 3.70 42.72 49.72 78.32
Ours 85.20 97.50 5.94 47.14 53.02 79.20

DINOv2-S ICIS 77.17 94.24 17.22 44.54 43.58 69.82
Ours 76.08 94.14 21.42 49.02 46.56 71.22

CvT-21 ICIS 81.99 95.29 2.50 45.66 47.80 75.58
Ours 81.98 95.14 3.78 44.78 47.68 75.72

ConvNexT-Bpt
ICIS 85.77 97.55 6.72 42.46 50.08 72.72
Ours 85.59 97.64 8.56 49.98 53.48 76.12

ConvNexTv2-B ICIS 85.38 96.99 4.28 41.16 44.98 67.62
Ours 85.30 97.13 5.42 44.08 46.66 66.92

ConvNexTv2-Bpt
ICIS 86.77 97.77 6.08 49.16 56.34 78.46
Ours 86.61 97.88 9.78 52.30 56.38 77.98

lead to significant improvements in accuracy over the baseline, which shows the effectiveness of
those concepts, and that they are faithful to the visual features.

Table 10: Quantitative Results for additional models on concept discovery

Model Baseline +Concepts
Top-1 Top-5 Top-1 Top-5

ResNet50v2 72.85 89.78 80.25 95.31
ResNet101v2 73.88 89.73 81.40 95.76
WideResNet50 69.86 89.34 77.60 93.70
WideResNet101 70.75 89.39 77.97 93.95
ResNeXt5032x4d 68.19 88.17 76.22 93.27
ResNeXt5032x4d, v2 73.58 89.62 80.70 95.26
ResNeXt10132x8d 71.04 89.74 78.44 94.21
ResNeXt10132x8d, v2 75.24 90.73 82.39 96.22
DenseNet121 64.09 85.91 71.10 90.91
ConvNext-T 74.38 89.15 81.87 96.07
ConvNext-S 76.20 90.75 83.23 96.65
Swin-T 73.32 89.09 80.66 95.58
DINOv2-S 70.61 89.62 76.94 94.45

20

Published as a conference paper at ICLR 2025

H ADDITIONAL MODELS FOR EVALUATING NLES

In this section, we provide quantitative evaluation of NLEs for additional models not included in the
main manuscript. Results are provided in Table 11. Our zero-shot NLEs outperform the supervised
baselines on the CLIP-S metric, while achieving comparable or, in many cases, surpassing scores on
other metrics.

Table 11: Quantitative Results for additional models on our zero-shot NLEs compared to supervised
baselines. Results are reported on the test set of ImageNet-X.

Model Metric NLX-GPT NLX-GPTft Uni-NLX Uni-NLXft Ours

WideResNet50

CLIP-S ↑ 28.53 28.52 28.38 28.52 30.70
LPIPS(A) ↓ 0.719 0.718 0.717 0.715 0.710
LPIPS(S) ↓ 0.622 0.623 0.618 0.620 0.620
Cosine ↑ 0.649 0.641 0.642 0.647 0.635

WideResNet101

CLIP-S ↑ 28.53 28.52 28.38 28.52 30.66
LPIPS(A) ↓ 0.719 0.720 0.718 0.718 0.710
LPIPS(S) ↓ 0.622 0.624 0.620 0.623 0.618
Cosine ↑ 0.642 0.640 0.641 0.640 0.633

ConvNeXtV2-Bpt

CLIP-S ↑ 28.53 28.52 28.38 28.52 29.83
LPIPS(A) ↓ 0.720 0.718 0.719 0.717 0.716
LPIPS(S) ↓ 0.623 0.621 0.623 0.620 0.626
Cosine ↑ 0.458 0.443 0.444 0.445 0.364

BeiT-L/16

CLIP-S ↑ 28.53 28.52 28.38 28.52 30.04
LPIPS(A) ↓ 0.723 0.718 0.715 0.716 0.716
LPIPS(S) ↓ 0.623 0.619 0.620 0.618 0.622
Cosine ↑ 0.440 0.429 0.427 0.432 0.372

I IMPLEMENTATION DETAILS

Text-to-Image Model: For the semantic-based evaluation, we use the Stable Diffusion v1.5 model
(Rombach et al., 2021) from Hugging Face Diffusers library (von Platen et al., 2022), and precede the
text prompt by the word realistic, following best practices from the text-to-image community.
We perform this for the evaluation of both our method and the baselines. The NLE consists of
concepts or features in text format that describe the visual features (e.g., “serpentine ring on snake
skin”) and formed as a natural language expression. Therefore, they can be formulated as a prompt
that the text-to-image model can understand (e.g., “a realistic image showing serpentine rings on the
snake skin.”). Therefore, the synthesized image will depict an image incorporating these features.

Learning Class Embeddings: We begin by reminding readers that k represents the dimension of the
text features si produced by the text encoder MT , and d is the dimensions of the class embeddings
(and the visual features f). Our MLP is composed of two layers: W1 and W2. Each layer is followed
by a layer normalization (Ba et al., 2016). At the first layer, we use a GELU activation function
(Hendrycks & Gimpel, 2016) followed by a dropout layer with a probability of 0.5. When using the
learned soft dropout (see Section N), W1 ∈ Rk×2k and W2 ∈ R2k×d. Otherwise, W1 ∈ Rk×4d and
W2 ∈ R4d×d. Note that the GLU activation function implementing the learned soft dropout also uses
layer normalization, which we found to be important.

The MLP is trained with full batch gradient descent for 2500 epochs using the Adam Optimizer
(Kingma & Ba, 2015) with a learning rate of 5e-3 and a cosine annealing schedule (Loshchilov
& Hutter, 2017). On a single RTX3090 GPU, it takes roughly 10 seconds to train. All pretrained
classifiers are obtained from the torchvision library. The ImageNet-21K pretrained ViT and ConvNeXt
models, as well as all ConvNeXtv2 models are obtained from the timm library. The BeiT, DiNOv2
and CvT models are obtained from the huggingface library. We take the ImageNet class names
provided by caffe-tensorflow.

21

https://pytorch.org/vision/stable/models.html
https://github.com/huggingface/pytorch-image-models
https://github.com/huggingface/transformers
https://github.com/ethereon/caffe-tensorflow/blob/master/examples/imagenet/imagenet-classes.txt

Published as a conference paper at ICLR 2025

Generating NLEs: We use the smallest GPT-2 (Radford et al., 2019) model of 124M parameters
as our pretrained language model. The number of learnable prefixes is set to 5 in each attention
block of the GPT-2 model. As mentioned previously, the prefixes are set as key-value pairs such
that each generated word in the explanation can attend to these prefixes. For example, if we have Y
currently generated words, then at each timestep, the number of keys and value tokens in the attention
mechanism will always be (5 + Y), while the number of query tokens will be Y . Consequently, the
Y query tokens will always attend to both the Y key-value tokens and the 5 prefix tokens, resulting
in a total of (5 + Y) tokens to attend to. We train the prefixes with the Adam optimizer (Kingma &
Ba, 2015) with a learning rate of 0.01 and a weight decay of 0.3 with a cosine annealing schedule for
I = 20 iterations. Each iteration yields a generated sentence, and we select the sentence with the best
CLIP-Score as the final NLE. The number of K tokens sampled at each timestep is set to 512. We
use a maximum NLE length of 20. We follow Tewel et al. (2023) and sample one hard prompt at
each iteration, as contextual information for the language model, from the following list: [’Image of’,
’Picture of’, ’Photo of’, ’Image shows’, ’Picture shows’, ’Photo shows’, ’Image showing’, ’Picture
showing’, ’Photo showing’]. It is important to clarify that our task is not traditional image captioning,
as we do not train the model to explicitly map visual features to annotated captions from a dataset.
Instead, it can be regarded as faithful image captioning, which is also faithful NLEs, since we decode
the visual features sourced from the model’s internal representation, into language. To maintain
the language model’s coherent and fluent generation, we add the fluency loss from Tewel et al.
(2021) with a weight of 0.8. This is the cross-entropy loss between the language model distribution
ol at timestep l with the prefix and without the prefix. At each decoding step, we apply several
modifications to the model’s output probabilities: we discourage token repetition (Keskar et al., 2019)
by reducing the scores of repetitive words by a factor of 2.0. We also prevent the generation of
repeated n-grams of order 3 to avoid repetitive phrases, by setting their score to negative infinity
which eliminates those tokens from further sampling. We also enforce a minimum sequence length of
10 tokens by setting the <.> token score to 0, in order to prevent premature termination. We also
exclude specific tokens such as unneeded character symbols, from being generated. Finally, as the
sequence length approaches the target length, we promote ending it by increasing the score of the
<.> token.

J ADDITIONAL QUALITATIVE EXAMPLES

In Figure 9, we provide additional qualitative examples of the NLEs generated for a ResNet-50
classifier. It is interesting to see that in the first example from the first row, we can infer that the
model has encoded in its features the association of the“harvestman” spider with leaves and grassy
areas—an insight that could not be uncovered using any other attribution technique. We can also see
from the first example in the second row that the model associated the prediction of a “toucan” with
the bird’s colorful parts.

K GENERATING DESCRIPTORS FOR CONCEPT DISCOVERY WITH LLMS

We directly use the textual concepts provided by Menon & Vondrick (2023). This work
uses GPT-3.5 for generating the concepts, using the following prompt: ”What are useful vi-
sual features for distinguishing a {category name} in a photo?”, where {category name} is re-
placed by the class name in the dataset. Additionally, the work utilizes in-context examples
to guide the LLM in generating structured concepts that are short and distinctive. We refer
to https://github.com/sachit-menon/classify_by_description_release/
blob/master/generate_descriptors.py for the full script used in Menon & Vondrick
(2023) to generate concepts.

L CLASS EMBEDDINGS WITH SUPPLEMENTARY INFORMATION

We provide an ablation experiment on using supplementary information of the class, taken from the
original WordNet hierarchy. Specifically, we obtain two types of supplementary information: the
broad parent of the object, and the more specific type of it. For example, the broad parent of the class
“tench” is animal, and the specific type is fish. Similarly, the broad parent of the class “magpie” is
animal and the specific type is bird. This supplementary information assists the textual encoder in

22

https://github.com/sachit-menon/classify_by_description_release/blob/master/generate_descriptors.py
https://github.com/sachit-menon/classify_by_description_release/blob/master/generate_descriptors.py

Published as a conference paper at ICLR 2025

prediction: crossword puzzle
because…
it shows a vocabulary game with a
word counter

prediction: menu
because…
it shows items and prices, including price
information on the product or service menu

prediction: toucan
because…
it shows to be the orange, black or
white color

prediction: green lizard
because…
it shows lizard colors in the gardens
of a reptilian plant, which is green

prediction: band aid
because…
it shows an image that is shown to a
person using the product for curing
wounds healing

prediction: harvestman
because…
it shows spider in the genus, a species
that grows on seeds and leaves

Figure 9: Additional qualitative examples of our zero-shot NLEs on ImageNet for a ResNet-50
classifier.

better understanding the discriminative class names, particularly when it is unfamiliar with them, as
the text encoder was trained on natural text that may not include these specific names.

It is important to note, however, that we refrain from using any of this supplementary information
in our work. This is because the trained classifiers determine the parents implicitly on their own.
Utilizing this information would facilitate more structured learning and could be considered as
“unfair” or “biased”. However, we still provide results on this for future research that may be relevant
to our work. Results are presented in Table 12. As demonstrated, utilizing the broad parent does
not significantly impact performance. In contrast, employing the type parent increases the Top-1
accuracy by approximately 1.5 points and the Top-5 accuracy by about 4 points. This improvement
is attributed to the type parent (e.g., fish, bird) offering considerably more information to the text
encoder about the object compared to the broad parent (e.g., animal).

Table 12: Ablation Studies on WordNet with a ResNet-50

Top-1 Top-5

Only Class Names (Ours) 33.28 66.20

+ WordNet (not used)

Broad Parent 34.82 66.40
Type Parent 35.16 70.82

Finally, we also refrain from providing class descriptions as supplementary information, because
these descriptions would leak to the explanations, which is the task we aim to achieve. Additionally,
they would leak to other downstream tasks.

23

Published as a conference paper at ICLR 2025

M ADVANTAGES OVER CONTRASTIVE LANGUAGE-IMAGE PRETRAINING

An alternative option to our method is aligning a text encoder with visual features f obtained from
the frozen visual encoder MV , via contrastive language-image pretraining. We provide two intuitive
explanation of why our method of regressing class weights is better, efficient, and most importantly,
faithful:

1. The output distribution of the visual classification model M across all classes is given by
f.W , from which the prediction is then made. Therefore, the output distribution highly
depends on W , and not just the visual features f . By aligning a text encoder with the
visual features f , we would be changing W , as they would now be the output of the newly
aligned text encoder. Therefore, this approach is not faithful to the classification model, as it
completely changes its whole output distribution. Our method on the other hand preserves
the distribution by learning to regress the weights W .

2. Apart from the above fundamental problem, there is a significant technical challenge.
Pretraining with contrastive learning requires a huge set of image-caption pairs (400 million
at least) and a huge amount of computational resources, in order to reach the impressive
performance of CLIP models. Performing this for each different classification model is not
efficient, not ideal, and not desirable for users who wish to explain their classifiers. Our
method on the other hand, can be trained on any moderate GPU (or even, a high-performing
CPU), and takes around 10 seconds, which is considered negligible and can be applied to
any visual classifier on-the-fly.

N USING SOFT DROPOUT

For certain visual classifiers, we find that using learned soft dropout slightly harms performance.
We hypothesize that this occurs when the weight embedding space of the visual classifier is already
well-regularized, making additional regularization detrimental. In Table 13, we provide a complete
list of our models, indicating whether or not they utilize the learned soft dropout. 20/38 models use it,
while the remaining 18 does not. However, we note that the negative impact is minimal, and as such,
retaining this technique across all models remains acceptable.

Table 13: Usage of Learned Soft Dropout

Model Soft Dropout Model Soft Dropout
ResNet50 ✓ ResNet101 ✓
ResNet50v2 ✓ ResNet101v2 ✓
WideResNet50 ✓ WideResNet50v2 ✓
WideResNet101 ✓ WideResNet101v2 ✓
ResNeXt5032x4d ✓ ResNeXt5032x4d, v2 ✓
ResNeXt10164x4d ✓ ResNeXt10132x8d ✓
ResNeXt10132x8d, v2 ✓ DenseNet121 ✓
DenseNet161 ✓ EfficientNetv2-S ✓
EfficientNetv2-M ✗ ShuffleNetv2x2.0 ✗
ConvNeXt-Tiny ✗ ConvNeXt-Small ✗
ConvNeXt-Base ✓ MobileNetv3-L ✗
ViT-B/32 ✗ ViT-B/16v2 ✗
ViT-L/32 ✓ ViT-L/16 ✓
Swin-T ✗ Swin-S ✗
ViT-B/16pt ✓ BeiT-B/16 ✗
BeiT-L/16 ✗ DINOv2-S ✗
DINOv2-B ✗ CvT-21 ✗
ConvNeXt-Bpt ✗ ConvNeXtV2-B ✗
ConvNeXtV2-Bpt ✗ ConvNeXtV2-Bpt, 384 ✗

24

	Introduction
	Related Work
	Method
	Learning Class Embeddings
	Generating Zero-Shot NLEs

	Experiments
	Learned Class Embeddings
	Zero-Shot NLEs
	Zero-Shot Fine-Grained Concept Discovery
	Additional Applications

	Conclusion
	Limitations and Ethical Concerns
	Zero-Shot Image Captioning
	Zero-Shot Transfer
	Ablation Studies
	Prompt Analysis
	Additional Models on Evaluating Learned Class Embeddings
	Additional Models for Evaluating Concept Discovery
	Additional Models for Evaluating NLEs
	Implementation Details
	Additional Qualitative Examples
	Generating Descriptors for Concept Discovery with LLMs
	Class Embeddings with Supplementary Information
	Advantages over Contrastive Language-Image Pretraining
	Using Soft Dropout

