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ABSTRACT

In multi-task reinforcement learning, agents train on a fixed set of tasks and have
to generalise to new ones. Recent work has shown that increased exploration im-
proves this generalisation, but it remains unclear why exactly that is. In this paper,
we introduce the concept of reachability in multi-task reinforcement learning and
show that an initial exploration phase increases the number of reachable tasks the
agent is trained on. This, and not the increased exploration, is responsible for the
improved generalisation, even to unreachable tasks. Inspired by this, we propose a
novel method Explore-Go that implements such an exploration phase at the begin-
ning of each episode. Explore-Go only modifies the way experience is collected
and can be used with most existing on-policy or off-policy reinforcement learn-
ing algorithms. We demonstrate the effectiveness of our method when combined
with some popular algorithms and show an increase in generalisation performance
across several environments.

1 INTRODUCTION

Despite major advances in reinforcement learning (RL), it is fairly rare to encounter RL outside
of the academic setting. One of the remaining challenges of adopting it in the real world is the
ability of an agent to generalise to novel scenarios, that is, those not encountered during training.
For example, we do not want a house-cleaning robot to stop working when the owner moves their
couch. This is the main research question investigated in the zero-shot policy transfer setting (ZSPT,
Kirk et al., 2023). Here the agent trains on several variations of an environment, known as tasks,
and must generalise to new ones. This differs from the commonly studied single-task RL setting, in
which the agent trains and tests on the same environment instance.

There exists a surprising interaction between ZSPT generalisation and exploration of the training
environments. A single-task RL agent must trade off between exploring for better futures and ex-
ploiting what it already knows. Once a good enough policy is found, a single-task agent ceases
exploration to focus on collecting rewards. In multi-task RL, however, Jiang et al. (2023) have re-
cently demonstrated that more effective exploration, that never stops throughout the entire training
process, improves generalisation to unseen tasks.

However, it is not yet entirely clear in which tasks we can expect exploration to improve generalisa-
tion, nor is it clear when to use it to benefit generalisation the most.1 For example, exploration might
help a cleaning robot to know what to do when it is activated at an unusual location in the house.
Having seen more of the environment means the robot will be familiar with that area. However, if
the owner rearranges some furniture, the previous path to move might be blocked, and it is unclear
if and how more exploration would help in this situation.

In this paper, we address these questions by introducing the concept of reachability to multi-task
RL. We define a task to be reachable if it contains states and rewards that also appear in at least one
of the training tasks. Conversely, an unreachable task shares no states and/or rewards with any of the
training tasks. In the example above, activating the robot in an unusual location is a reachable task,
whereas moving the furniture creates an unreachable one. The key difference between the two is that
reachable tasks have states that can be explicitly encountered and optimised during training, whereas

1Jiang et al. (2023) do provide one possible explanation for why exploration can benefit generalisation, but
as we argue in Appendix A.2, this explanation does not cover all scenarios encountered in the ZSPT setting.
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unreachable ones do not. However, we argue that training on more reachable tasks results in a form
of implicit data augmentation. As data augmentation is frequently shown to improve generalisation
in a wide range of settings (Shorten & Khoshgoftaar, 2019; Feng et al., 2021; Zhang et al., 2021a;
Miao et al., 2023), we postulate this is responsible for the increase in test performance in unreachable
tasks. For example, the above robot might learn to steer around any furniture while navigating
throughout the house, which can become useful when some of it is moved. Our contributions are the
following:

• We introduce the concept of reachable and unreachable tasks in reinforcement learning and argue
that exploration can be used to increase the number of tasks on which the agent trains. Moreover,
we argue that training on these additional reachable tasks can improve generalisation, even to
unreachable ones.

• We propose a novel method called Explore-Go that can be combined with most existing on-policy
or off-policy RL algorithms. It leverages an exploration phase at the beginning of each episode
to artificially increase the number of tasks on which the agent trains. We show that Explore-Go
can improve generalisation performance to reachable and unreachable tasks when combined with
on-policy or off-policy methods.2

• We empirically show that generalisation performance is more correlated with the decision when
the agent explores and how many reachable tasks it can solve optimally, rather than how much it
explores and how many of the reachable states it is optimal in.

2 BACKGROUND

A Markov decision process (MDP) M is defined by a 6-tuple M = {S,A,R, T, p0, γ}. In this
definition, S denotes a set of states called the state space, A a set of actions called the action space,
R : S × A → R the reward function, T : S × A → P(S) the transition function where P(S)
denotes the set of probability distributions over states S, p0 : P(S) the starting state distribution
and γ ∈ [0, 1) a discount factor. The goal is to find a policy π : S → P(A) that maps states to
probability distributions over actions in such a way that maximises the expected cumulative dis-
counted reward Eπ[

∑∞
t=0 γ

trt], also called the return. The expectation Eπ is over the Markov chain
{s0, a0, r0, s1, a1, r1...} induced by policy π when acting in MDP M (Akshay et al., 2013). An
optimal policy π∗ achieves the highest possible return. The on-policy distribution ρπ : P(S) of the
Markov chain induced by policy π in MDPM defines the proportion of time spent in each state as
the number of episodes inM goes to infinity (Sutton & Barto, 2018).

2.1 CONTEXTUAL MARKOV DECISION PROCESS

A contextual MDP (CMDP, Hallak et al., 2015) is a specific type of MDP where the state space
S = S′ × C can in principle be factored into an underlying state space S′ and a context space C,
which affects rewards and transitions of the MDP. For a state s = (s′, c) ∈ S, the context c behaves
differently than the underlying state s′ in that it is sampled at the start of an episode (as part of the
distribution p0) and remains fixed until the episode ends. The context c can be thought of as the task
an agent has to solve and from here on out we will refer to the context as the task.

The zero-shot policy transfer (ZSPT, Kirk et al., 2023) setting for CMDPs M|C is defined by a
distribution over task space P(C) and a set of tasks Ctrain and Ctest sampled from the same dis-
tribution P(C). The goal of the agent is to maximise performance in the testing CMDPM|Ctest ,
defined by the CMDP induced by the testing tasks Ctest, but the agent is only allowed to train in the
training CMDP M|Ctrain . The learned policy is expected to perform zero-shot generalisation for
the testing tasks, without any fine-tuning or adaptation period.

3 THE INFLUENCE OF REACHABILITY ON GENERALISATION

In general, the task c can influence several aspects of the underlying MDP, like the reward function
or dynamics of the environment. As a result, several existing fields of study like multi-goal RL (task

2We provide code for our experiments at <redacted for review>.
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influences reward) or sim-to-real transfer (task influences dynamics and/or visual observations) can
be framed as special instances of the CMDP framework. To analyse which tasks can generalise to
each other, we assume the full state is observed in a representation s = ϕ(s′, c), such that two tasks
that behave the same3 are represented the same. This means tasks c only differ in the distribution of
their starting states s0 ∼ p0(c). Many interesting problems are represented in this fashion, including
several environments from the popular Procgen, DeepMind Control Suite and Minigrid benchmarks
(Cobbe et al., 2020; Tassa et al., 2018; Chevalier-Boisvert et al., 2023).

In this setting, the agent starts a task in a different state but may still share states st with other tasks
later in the episode. For example, if tasks have different starting positions but share the same goal,
or if the agent can manipulate the environment to resemble a different task. This is not necessarily
always true, though. An example of this is shown in Figure 1a: even if the agent in Task 1 moves
to the starting location in Task 2, the background colour will always be different. In this setting, we
can refer to tasks c ∈ C and states s ∈ S interchangeably, since we can think of any s as a starting
state and therefore as a task. From now on, we will refer to a set of tasks C as a set of starting states
S0.

3.1 REACHABILITY IN MULTI-TASK RL

To argue how exploration can benefit generalisation we introduce the reachability of tasks. To do
so, we first define the reachability of states in a CMDP M|Strain

0
. The set of reachable states

Sr(M|Strain
0

) (abbreviated with Sr from now on) consists of all states sr for which there exists a
sequence of actions that give a non-zero probability of ending up in sr when performed inM|Strain

0
.

Put differently, a state sr is reachable if there exists a policy whose probability of encountering that
state during training is non-zero. In complement to reachable states, we define unreachable states
su as states that are not reachable.

Using these definitions, we define (un)reachable tasks as tasks that start in a(n) (un)reachable state.
We define two instances of the ZSPT problem as follows:

Definition 1 (Reachable/Unreachable generalisation). Reachable/Unreachable generalisation
refers to an instance of the ZSPT problem where the start states of the testing environments Stest

0
are/are-not part of the set of reachable states during training, i.e. Stest

0 ⊆ Sr or Stest
0 ∩ Sr = ∅.

This definition has some interesting implications: due to how reachability is defined, in the reach-
able generalisation setting all states encountered in the testing CMDPM|Stest

0
are also reachable.

Note that the reverse does not have to be true: not all reachable states can necessarily be encoun-
tered inM|Stest

0
. Furthermore, we assume in the unreachable generalisation setting that all states

encountered inM|Stest
0

are also unreachable.4 Note that this is still considered in-distribution gener-
alisation since the starting states for both train and test tasks are sampled from the same distribution.

3.2 GENERALISATION TO REACHABLE TASKS

In the single-task setting, the goal is to maximise performance in the MDPM in which the agent
trains. There, it is sufficient to learn an optimal policy in all the states s ∈ S encountered by
this policy in M. This is because acting optimally in all the states encountered by the optimal
policy inM guarantees maximal return inM. Exploration thus only has to facilitate learning the
optimal policy on the on-policy distribution ρπ

∗
of M. In fact, once the optimal policy has been

found, learning to be optimal anywhere else inM would be a wasted effort that potentially allocates
approximation power to unimportant areas of the state space.

Recent work has shown that this logic does not transfer to the ZSPT problem setting (Jiang et al.,
2023). In this setting, the goal is not to maximise performance in the training CMDPM|Strain

0
, but

rather to maximise performance in the testing CMDPM|Stest
0

. Ideally, the learned policy will be
optimal over the on-policy distribution ρπ

∗
in this testing CMDP.

3Formally: iff for all underlying states s′ and actions a the reward and transition models are the same.
4This holds for ergodic CMDPs. However, in some non-ergodic CMDPs, it is possible that you can transi-

tion into the reachable set Sr after starting in an unreachable state, which we do not consider in this paper.
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Figure 1: (a) Illustrative CMDP with four training tasks, each with a different background colour
and starting position (circle). All tasks share the same goal location (green square in the middle). (b)
Performance of a baseline PPO agent and our Explore-Go agent on the CMDP. The agent trains on
the tasks in (a) and is tested in tasks with a completely new background colour. Shown are the mean
and 95% confidence interval over 100 seeds. Below are (c) the states along the optimal trajectories,
and (d) the reachable state space, categorised by their task (rows) and their optimal action (columns).

In general, this testing distribution is unknown. However, in the reachable generalisation setting,
the starting states during testing are (by definition) part of the reachable state space Sr. So, an
agent that learns to act optimally in as many of the reachable states as possible can improve its
performance during testing. In fact, if a policy were optimal on all reachable states, it would be
guaranteed to ‘generalise’ to any reachable task (see Appendix B for more detail). In this way, more
extensive exploration can help the agent train on more reachable states, which can result in increased
‘generalisation’ performance. One could argue generalisation is not the best term to use here, since
even a policy that completely overfits to the reachable state space Sr, for example, a tabular setting,
would exhibit perfect ‘generalisation’.

3.3 GENERALISATION TO UNREACHABLE TASKS

For unreachable generalisation, the states encountered in ρπ
∗

ofM|Stest
0

are not part of the reachable
space Sr ofM|Strain

0
, so it is not obvious on which parts of Sr our agent should train.

To investigate this, we define an example CMDP in Figure 1a. This CMDP consists of a cross-shaped
grid world with additional transitions that directly move the agent between adjacent end-points of
the cross (e.g., moving right at the end-point of the northern arm of the cross will move you to the
eastern arm). The goal for the agent (circle) is to move to the centre of the cross (the green square).
There are four training tasks which differ in the starting location of the agent and the colour of the

4
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background. In Figure 1c the states from the optimal trajectories are placed in the table according to
what task they are from (row) and what action is optimal (column).

To succeed in the single-task setting (consider just one of our four tasks), an agent only needs to
learn to act in the states along the optimal trajectory. Along the optimal trajectories, the colour of
the background is perfectly correlated with the optimal action, so a policy trained with a standard
RL algorithm will likely overfit to this correlation. As a result, this policy is unlikely to generalise
to new reachable states (empty cells from the same row/task in Figure 1c), and even less likely to
new unreachable states with an unseen background colour (a completely new row). We show this
empirically in Figure 1b where an agent trained with proximal policy optimisation (PPO, Schulman
et al., 2017, red) does not generalise to tasks with a new background colour (see Appendix C.1 for
more on this experiment).

Suppose now, we have a policy that has learned over the entire reachable state space (see Figure 1d).
This agent is more likely to learn to ignore the background colour, as it no longer correlates with the
optimal action. We see this ability to uncover the true relationships and generalise to new colours
when using our novel method PPO+Explore-Go (blue in Figure 1b), which effectively trains on all
reachable tasks (Explore-Go is further introduced in Section 4).

More generally, we can view the inclusion of additional reachable states (those in Figure 1d which
are not in Figure 1c) as a form of data augmentation. For example, the additional states from tasks
2, 3 and 4 in the first column in Figure 1d, can be viewed as simple visual transformations of the
state from Task 1 that do not affect the underlying meaning. Data augmentation is commonly used
to improve generalisation performance in a wide variety of settings and applications (Shorten &
Khoshgoftaar, 2019; Feng et al., 2021; Zhang et al., 2021a; Miao et al., 2023) and is thought to
work by reducing overfitting to spurious correlations (Shen et al., 2022), inducing model invariance
(Lyle et al., 2020; Chen et al., 2020) and/or regularising training (Bishop, 1995; Lin et al., 2022).
Considering the strong evidence of data augmentation’s effect on generalisation, we postulate that
generalisation to unreachable tasks can be improved by performing data augmentation in the form
of training on more reachable tasks.

Note that this data augmentation only works if we know the correct targets for the extra samples
(columns in Figure 1d). These targets can be optimal actions for policies, or expected returns for
(Q-)value functions. If the targets are not correct, the agent might still overfit to a spurious corre-
lation, or worse, learn the wrong function. From the model invariance perspective, not only does
training with the incorrect targets not learn the desired invariance, but it explicitly trains to not be
invariant. This will likely not improve generalisation and could instead drastically deteriorate it.

Extended exploration (as in Jiang et al., 2023) chooses trajectories that visit more states, but those
can sometimes provide poor target estimates. However, as we argue above, training on even a
small number of samples with incorrect targets can be harmful. Instead, the expected return is best
estimated using rollouts of the current policy. By treating the additional sample as the starting state
of a reachable task, we can rely on the RL algorithm to converge to an optimal policy from this
state, resulting in accurate targets. Most algorithms, both on- and even off-policy, collect mainly
on-policy data towards the end of training. This reduces training on exploratory data with incorrect
targets. The next section introduces our novel method Explore-Go, which achieves significantly
better generalisation with this approach.

4 EXPLORE-GO: TRAINING ON MORE REACHABLE TASKS

As argued in the previous section, training on more reachable tasks is more desirable for generali-
sation than extended exploration. We propose a novel method Explore-Go5 which effectively trains
from more reachable tasks by artificially increasing the diversity of the starting state distribution. It
achieves this by introducing an exploration period at the start of each training episode.

Our method is implemented by modifying a fundamental part of most RL algorithms: the collection
of rollouts. At the start of every episode, before the agent collects its experiences, Explore-Go

5The name Explore-Go is a variation of the popular exploration approach Go-Explore (Ecoffet et al., 2021).
In Go-Explore the agent teleports at the start of each episode to a novel state and then continuous exploration.
In our approach, the agent first explores until it finds a novel state and then goes and solves the original task.

5
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first enters a phase in which it explores the environment by following a pure exploration policy.
Pure exploration refers to an objective that ignores the rewards rt the agent encounters and instead
focuses purely on exploring new parts of the state space. This pure exploration phase will proceed
for k steps. Wherever the pure exploration phase ends will be treated by the agent as the starting
state of that episode. This means the rest of the episode continues as it would usually, including
any exploration that the agent might normally perform. To add some additional stochasticity to the
induced starting state distribution, the length of the pure exploration phase is uniformly sampled
between 0 and some fixed value K at the start of every episode. See Algorithm 1 in the appendix
for an example of a generic rollout collection protocol modified with Explore-Go.

The basic version of Explore-Go used in this paper does not use the experience collected during the
pure exploration phase in any way. In theory, this experience can be used by off-policy methods.
However, in Appendix D.1 we show that adding this experience to the replay buffer in deep Q-
learning (DQN, Mnih et al., 2015) does not improve performance. However, this experience can
be used to train a separate pure exploration agent in parallel to the main agent. In Appendix E we
provide the pseudo-code of this version of Explore-Go when combined with PPO.

Note that even though Explore-Go changes the distribution of the training data, it can be com-
bined with both off-policy and on-policy reinforcement learning methods. On-policy approaches
typically require (primarily) on-policy data for training, distributed along the on-policy state distri-
bution ρπθ (M|Strain

0
) of the current policy πθ. This means they won’t work with arbitrary changes

to the distribution of training data. However, Explore-Go only changes the distribution of the start-
ing states Strain

0 . So, we can think of Explore-Go as generating on-policy data for a modified MDP
that differs only in its starting state distribution. As such, it can be combined with most on-policy
approaches.

5 EXPERIMENTS

We perform an empirical evaluation of Explore-Go on some environments from two benchmarks:
an adaptation of Four Rooms from Minigrid (Chevalier-Boisvert et al., 2023) and Finger Turn and
Reacher from the DeepMind Control Suite (DMC, Tassa et al., 2018). These environments can all be
explored sufficiently with ϵ-greedy exploration and therefore for the pure exploration policy we sim-
ply sample uniformly from the action space (equivalent to setting ϵ = 1). Due to its discrete nature
and smaller size, we use the Four Rooms environment to demonstrate the versatility of Explore-Go.
This also allows us to enumerate all possible states and tasks and formulate optimal policies and
values, which we can use to further analyse our method. We evaluate Explore-Go when combined
with several on-policy, off-policy, value-based and/or policy-based RL algorithms: PPO (on-policy,
policy-based), DQN (off-policy, value-based) and soft actor-critic (SAC, off-policy, policy-based,
Haarnoja et al., 2018).

5.1 EXPLORE-GO WITH VARIOUS ALGORITHMS

We use the Four Rooms environment from Minigrid, modified to have a reduced action space,
smaller size, and to be fully observable (see Appendix C.2 for more details). The environment
consists of a grid-world of four rooms with single-width doorways connecting all of the rooms. The
agent starts in one of the rooms and must move to the goal location, which may be in a different
room. Tasks differ from each other in the starting location and orientation of the agent, the goal lo-
cation, and the position of the doorways connecting the four rooms. In our experiments, the agents
train on 40 different training tasks and are evaluated on either 120 reachable tasks or 120 unreach-
able tasks. In this environment, a task is reachable if and only if both the positions of the doorways
and the goal location are the same as at least one task in the training set. In Figure 2 we see that
Explore-Go improves the testing performance on unreachable tasks when combined with PPO, DQN
and SAC, whilst leaving the training performance mostly unaffected. The Explore-Go agent has a
maximum of K = 60 pure exploration steps at the start of each episode. For more experimental
details we refer to Appendix C.2.

6
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Figure 2: Training and unreachable testing performance of Explore-Go in the Four Rooms environ-
ment when combined with (a) SAC, (b) DQN and (c) PPO. Shown are the mean and 95% confidence
intervals for 100, 50 and 50 seeds, respectively.

5.2 REACHABLE STATES VS REACHABLE TASKS

Our method Explore-Go aims to create additional reachable tasks on which the agent trains. We
argue that this, and not simply more continued exploration, will improve generalisation. To inves-
tigate this, we compare Explore-Go with an exploration approach that is similar to what is used in
Jiang et al. (2023). One of their core algorithmic components is the temporally equalised explo-
ration (TEE) which assigns different fixed exploration coefficients to the parallel workers collecting
rollouts.6 This is necessary because, due to function approximation, the model may lose knowledge
acquired through exploration if it does not keep exploring throughout training.

In the following experiment, we analyse the DQN agent from the previous section, which collects
rollouts with 10 parallel workers. For the TEE agent, we assign each of the workers a different,
fixed value of ϵ (used in ϵ-greedy exploration). We assign ϵ according to the relation ϵi = ( i

N−1 )
α,

where ϵi is the exploration coefficient for worker i, N is the total number of workers (N = 10 in our
case) and α is a coefficient determining a bias towards more exploration (α < 1) or less exploration
(α > 1).

We compare Explore-Go with a baseline DQN agent using TEE with coefficient α = 0.1. This was
decided by evaluating multiple coefficients α and finding that DQN-TEE with coefficient α = 0.1
does the most exploration, and thus acts as an upper bound on the performance achievable with
this approach. (see Appendix D.2 for more results with different values of α). Figure 3 shows that
Explore-Go achieves significantly higher testing performance for both the reachable and unreachable
test sets, whilst training performance is largely similar.

In Figure 4 we show that despite discovering a larger fraction of the state-action space (Figure
4a), maintaining higher diversity in the replay buffer (Figures 4b and 4c), and learning the optimal
action on a larger fraction of the reachable state space (Figure 4d), TEE generalises worse than
Explore-Go (as seen in Figure 3). We refer to Appendix C.2 for more details on how these metrics
are calculated. This suggests that generalisation is not about how much you explore or how many
of the reachable states you are optimal in, but rather when you explore and how many reachable
tasks you can solve optimally. Our method Explore-Go leverages exploration at the start of every
episode to explicitly increase the number of tasks the agent trains on, resulting in consistently higher
generalisation performance.

6Their approach also uses ensembles and distributional RL in conjunction with UCB (Lattimore & Szepes-
vari, 2017) to explore the environment. We instead use ϵ-greedy since we find it works well in Four Rooms.
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Figure 3: Performance of DQN, DQN+Explore-Go and DQN+TEE with coefficient α = 0.1 in Four
Rooms on the (a) training set, (b) reachable test set and (c) unreachable test set. Shown are the mean
and 95% confidence intervals over 50 seeds.

5.3 SCALING UP TO DEEPMIND CONTROL SUITE

To further demonstrate the scalability and generality of our approach we evaluate Explore-Go on
some of the continuous control environments from the DeepMind Control Suite. In the DMC en-
vironments, at the start of every episode, the initial configuration of the robot body (and in some
environments, target location) is randomly generated based on some initial seed. Typically, the
DMC benchmark is not used for the ZSPT setting and training is done on the full distribution of
tasks (initial configurations). To turn the DMC benchmark into an instance of the ZSPT problem,
we define a limited set of seeds (and therefore initial configurations) on which the agents are allowed
to train. We then test on the full distribution. Note that only some of the environments test for un-
reachable generalisation: Reacher, Finger Turn, Manipulator, Stacker, Fish and Swimmer. For the
other environments, all tasks are reachable from one another. For more details on these experiments,
we refer to Appendix C.3.

In Figure 5 we show the training and testing performance of SAC and Explore-Go on Finger Turn
and Reacher. The Explore-Go agent has a maximum of K = 200 pure exploration steps at the start
of every episode. In the figure, we see it achieves higher test performance whilst leaving training
performance largely unaffected. In Appendix D.3 we also show the results for the Cheetah Run and
Walker Walk environments. However, there appears to be no significant generalisation gap between
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(b) State-action Diversity
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Figure 4: Comparing DQN, DQN+Explore-Go and DQN+TEE with coefficient α = 0.1 in Four
Rooms for (a) fraction of state-action space explored, (b) fraction of state-action or (c) state space
in the buffer and (d) fraction of states where the policy chooses the optimal action. Shown are the
mean and 95% confidence intervals over 10 seeds for (a)-(c) and 50 seeds for (d).
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Figure 5: Performance of SAC and Explore-Go on state-based (a) Finger Turn Easy and (b) Reacher
Easy. Shown are the mean and 95% confidence intervals over 10 seeds.

training and testing in either environment. Due to this, we focus on the Finger Turn and Reacher
environments for our main results.

The experiments above train on the original DMC configuration where the observation an agent
receives is a short vector-based state that includes all of the relevant information about the state of
the environment. It is also possible to train on DMC with images as observations. Figure 6 shows
the performance of Explore-Go on the Finger Turn and Reacher when training on the image-based
observations. As a baseline, we use RAD (Laskin et al., 2020) which is SAC with automatic ran-
dom cropping data augmentation. Figure 6 shows that Explore-Go can also improve generalisation
performance on Finger Turn and Reacher when training on image-based observations.

6 RELATED WORK

The contextual MDP framework is a very general framework that encompasses many fields in RL
that study zero-shot generalisation. Some approaches in this field try to improve generalisation by
increasing the variability of the training tasks through domain randomisation (Tobin et al., 2017;
Sadeghi & Levine, 2017) or data augmentation (Raileanu et al., 2021; Lee et al., 2020). Others try
to explicitly bridge the gap between the training and testing tasks through inductive biases (Kansky
et al., 2017; Wang et al., 2021) or regularisation (Cobbe et al., 2019; Tishby & Zaslavsky, 2015).
We mention only a small selection of approaches here, for a more comprehensive overview we refer
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Figure 6: Performance of RAD and Explore-Go on image-based (a) Finger Turn Easy and (b)
Reacher Easy. Shown are the mean and 95% confidence intervals over 10 seeds.
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to Appendix A.1 or the survey by Kirk et al. (2023). All these approaches use techniques that are
not necessarily specific to RL (representation learning, regularisation, etc.). In this work, we instead
explore how exploration in RL can be used to improve generalisation.

Next, we discuss related work on exploration in CMDPs. Zisselman et al. (2023) leverage explo-
ration at test time to move the agent towards states where it can confidently solve the task, thereby
increasing test time performance. Our work differs in that we leverage exploration during training
in order to increase the number of states from which the agent can confidently solve the test tasks.
More closely related is work by Jiang et al. (2023), Zhu et al. (2020) and Suau et al. (2024). Jiang
et al. (2023) do not make a distinction between reachable and unreachable generalisation and provide
intuition which we argue mainly applies to reachable generalisation (see Appendix A.2). Moreover,
their novel approach only works for off-policy algorithms, whereas ours can be applied to both off-
policy and on-policy methods. Zhu et al. (2020) learn a reset controller that increases the diversity of
the agent’s start states. However, they only argue (and empirically show) that this benefits reachable
generalisation. Suau et al. (2024) introduce the notion of policy confounding in out-of-trajectory
generalisation. The issue of policy confounding is complementary to our intuition for unreachable
generalisation. However, it is unclear how out-of-trajectory generalisation equates to reachable or
unreachable generalisation. Moreover, they do not propose a novel, scalable approach to solve the
issue.

7 CONCLUSION

Recent work shows that more thorough and prolonged exploration can improve generalisation to
unseen tasks in multi-task RL. This effect was explained as a result of encountering the same states
in testing as were seen during the additional exploration in training. To understand this phenomenon
better, we define the notion of reachability of states and tasks. This novel perspective makes it
clear the above explanation only applies to reachable tasks, whereas unreachable tasks only benefit
indirectly from the data augmentation that comes with training on more reachable tasks. It also
implies that continuous exploration (as in TEE) is not optimal for multi-task generalisation, as the
exploratory episodes find more reachable states, but do not learn the task starting from there.

Instead, we define the novel method Explore-Go, which begins each episode with a pure exploration
phase, before standard learning is resumed. This results in training on more reachable tasks, and thus
improves generalisation even to unreachable tasks by data augmentation. We show this empirically
in the Four Rooms environment: here TEE explores more states, keeps a more diverse replay buffer,
and learns a policy that is optimal in more reachable states than Explore-Go. However, Explore-Go
generalises better to both reachable and unreachable test tasks. This suggests that generalisation is
not about how much you explore or how many of the reachable states you are optimal in, but rather
when you explore and how many reachable tasks you can solve optimally.

As an added benefit, Explore-Go only requires a simple modification to the sampling procedure,
which can be applied easily to most RL algorithms, both on-policy and off-policy. We demonstrate
that the method increases multi-task generalisation in the Four Rooms environment with SAC, DQN
and PPO. We also show that Explore-Go scales up to more complex tasks from the DeepMind Con-
trol Suite, both on the underlying state and on images of the task. We hope to provide practitioners
with a simple modification that can improve the generalisation of their agents significantly.
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A RELATED WORK

A.1 EXTENDED RELATED WORK

A.1.1 GENERALISATION IN CMDPS

The contextual MDP framework is a very general framework that encompasses many fields in
RL that study zero-shot generalisation. For example, the sim-to-real setting often encountered in
robotics is a special case of the ZSPT setting for CMDPs (Kirk et al., 2023). An approach used
to improve generalisation in the sim-to-real setting is domain randomisation (Tobin et al., 2017;
Sadeghi & Levine, 2017; Peng et al., 2018), where the task distribution during training is explic-
itly increased in order to increase the probability of encompassing the testing tasks in the training
distribution. This differs from our work in that we don’t explicitly generate more (unreachable)
tasks. However, our work could be viewed as implicitly generating more reachable tasks through
increased exploration. Another approach that increases the task distribution is data augmentation
(Raileanu et al., 2021; Lee et al., 2020; Zhou et al., 2021). These approaches work by applying a
set of given transformations to the states with the prior knowledge that these transformations leave
the output (policy or value function) invariant. In this paper, we argue that our approach implicitly
induces a form of invariant data augmentation on the states. However, this differs from the other
work cited here in that we don’t explicitly apply transformations to our states, nor do we require
prior knowledge on which transformations leave the policy invariant.

So far we have mentioned some approaches that increase the number and variability of the training
tasks. Other approaches instead try to explicitly bridge the gap between the training and testing tasks.
For example, some use inductive biases to encourage learning generalisable functions (Zambaldi
et al., 2018; 2019; Kansky et al., 2017; Wang et al., 2021; Tang et al., 2020; Tang & Ha, 2021).
Others use regularisation techniques from supervised learning to boost generalisation performance
(Cobbe et al., 2019; Tishby & Zaslavsky, 2015; Igl et al., 2019; Lu et al., 2020; Eysenbach et al.,
2021). We mention only a selection of approaches here, for a more comprehensive overview we
refer to the survey by Kirk et al. (2023).

All the approaches above use techniques that are not necessarily specific to RL (representation learn-
ing, regularisation, etc.). In this work, we instead explore how exploration in RL can be used to
improve generalisation.

A.1.2 EXPLORATION IN CMDPS

There have been numerous methods of exploration designed specifically for or that have shown
promising performance on CMDPs. Some approaches train additional adversarial agents to help
with exploration (Flet-Berliac et al., 2021; Campero et al., 2021; Fickinger et al., 2021). Others try
to exploit actions that significantly impact the environment (Seurin et al., 2021; Parisi et al., 2021)
or that cause a significant change in some metric (Raileanu & Rocktäschel, 2020; Zhang et al.,
2021c;b; Ramesh et al., 2022). More recently, some approaches have been developed that try to
generalise episodic state visitation counts to continuous spaces (Jo et al., 2022; Henaff et al., 2022)
and several studies have shown the importance of this for exploration in CMDPs (Wang et al., 2023;
Henaff et al., 2023). All these methods focus on trading off exploration and exploitation to achieve
maximal performance in the training tasks as fast and efficiently as possible. However, in this paper,
we examine the exploration-exploitation trade-off to maximise generalisation performance in testing
tasks.

In Zisselman et al. (2023), the authors leverage exploration at test time to move the agent towards
states where it can confidently solve the task, thereby increasing test time performance. Our work
differs in that we leverage exploration during training time to increase the number of states from
which the agent can confidently solve the test tasks. Closest to our work is Jiang et al. (2023),
Zhu et al. (2020) and Suau et al. (2024). Jiang et al. (2023) don’t make a distinction between
reachable and unreachable generalisation and provide intuition which we argue mainly applies to
reachable generalisation (see Appendix A.2). Moreover, their novel approach only works for off-
policy algorithms, whereas ours could be applied to both off-policy and on-policy methods. In
Zhu et al. (2020), the authors learn a reset controller that increases the diversity of the agent’s start
states. However, they only argue (and empirically show) that this benefits reachable generalisation.
The concurrent work in Suau et al. (2024) introduces the notion of policy confounding in out-of-
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trajectory generalisation. The issue of policy confounding is complementary to our intuition for
unreachable generalisation. However, it is unclear how out-of-trajectory generalisation equates to
reachable or unreachable generalisation. Moreover, they do not propose a novel, scalable approach
to solve the issue.

A.2 DISCUSSION ON RELATED WORK

Jiang et al. (2023) argue that generalisation in RL extends beyond representation learning. They do
so with an example in a tabular grid-world environment. In the environment they describe the agent
during training always starts in the top left corner of the grid, and the goal is always in the top right
corner. During testing the agent starts in a different position in the grid-world (in their example, the
lower left corner). This is according to our definition an example of a reachable task. They then
argue (in the way we described in Section 3.2) that more exploration can improve generalisation to
these tasks.

They extend their intuition to non-tabular CMDPs by arguing that in certain cases two states that
are unreachable from each other, can nonetheless inside a neural network map to similar represen-
tations. As a result, even though a state in the input space is unreachable, it can be mapped to
something reachable in the latent representational space and therefore the reachable generalisation
arguments apply again. For this reason, the generalisation benefits from more exploration can go
beyond representation learning.

Relating it to the illustrative example we provide in Figure 1, we argue this intuition considers the
generalisation benefits one might obtain from learning to act optimally in more abstracted states.
For example, in Jiang et al. (2023)’s grid-world the lower states would have normally unseen values,
which is represented by increasing the number of columns on which we train in Figure 1c and 1d.
However, in Section 3.2 we argue that specifically unreachable generalisation can benefit as well
from training on more states belonging to the same abstracted states (represented by increasing the
number of rows on which we train in Figure 1c and 1d). Training on more of these states could
encourage the agent to learn representations that map different unreachable states to the same latent
representation (or equivalently, abstracted states). As such, we argue the generalisation benefits from
more exploration can in part be attributed to an implicit form of representation learning.

B GENERALISATION TO REACHABLE TASKS

In this section, we elaborate on why a policy that is optimal in all reachable states, is guaranteed to
perform well when testing on reachable tasks. As a first step, we point out a corollary of definition
1 about reachable states:

Corollary 0.1. Any state s′ that is reachable from a state s ∈ Sr(M|Strain
0

) in the reachable set,
has to be itself in the reachable set: s′ ∈ Sr(M|Strain

0
).

Why this is the case is clear to see with the definition of reachability in terms of sequences of actions:
concatenate the sequence of actions with a non-zero probability of ending up in s with the sequence
of actions with a non-zero probability of ending up in s′ when starting from s. This will result in a
sequence of actions with a non-zero probability of ending up in s′. In short, this corollary states that
you cannot leave the reachable set Sr(M|Strain

0
) through interaction with the environment.

From this logically follows the following corollary:

Corollary 0.2. An optimal policy π that achieves maximal return from any state in the reachable
state space Sr(M|Strain

0
), will have optimal performance in the reachable generalisation setting.

Recall that performance in a ZSPT problem is defined as the performance in the testing MDP
M|Stest

0
, which in the case of reachable generalisation, has a state space that consists only of reach-

able states (due to Corollary 0.1). It follows naturally that a policy that is optimal on the entire
reachable state space Sr(M|Strain

0
) also has to be optimal inM|Stest

0
.
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C EXPERIMENTAL DETAILS

C.1 ILLUSTRATIVE CMDP

Training is done on the four tasks in Figure 1a and unreachable generalisation is evaluated on new
tasks with a completely different background colour. For pure exploration, we sample uniformly
random actions at each timestep (ϵ-greedy with ϵ = 1). We compare Explore-Go to a baseline using
regular PPO. In Figure 1b we can see that the PPO baseline achieves approximately optimal train-
ing performance but is not consistently able to generalise to the unreachable tasks with a different
background colour. PPO trains mostly on on-policy data, so when the policy converges to the op-
timal policy on the training tasks it trains almost exclusively on the on-policy states in Figure 1c.
As we hypothesise, this likely causes the agent to overfit to the background colour, which will hurt
its generalisation capabilities to unreachable states with an unseen background colour. On the other
hand, Explore-Go maintains state diversity by performing pure exploration steps at the start of every
episode. As such, the state distribution on which it trains resembles the distribution from Figure
1d. As we can see in Figure 1b, Explore-Go learns slower, but in the end achieves similar training
performance to PPO and performs significantly better in the unreachable test tasks. We speculate
this is due to the increased diversity of the state tasks on which it trains.

ENVIRONMENT DETAILS

The training tasks for the illustrative CMDP are the ones depicted in Figure 1a. The unreachable
testing tasks consist of 4 tasks with the same starting positions as found in the training tasks (the end-
point of the arms) but with a white background colour. The states the agent observes are structured
as RGB images with shape (3, 5, 5). The entire 5 × 5 grid is encoded with the background colour
of the particular task, except for the goal position (at (2, 2)) which is dark green ((0,0.5,0) in RGB)
and the agent (wherever it is located at that time) which is dark red ((0.5,0,0) in RGB). The specific
background colours are the following:

• Training task 1: (0,0,1)

• Training task 2: (0,1,0)

• Training task 3: (1,0,0)

• Training task 4: (1,0,1)

• Testing tasks: (1,1,1)

Moving into a wall of the cross will leave the agent position unchanged, except for the additional
transitions between the cross endpoints. Moving into the goal position (middle of the cross) will
terminate the episode and give a reward of 1. All other transitions give a reward of 0. The agent is
timed out after 20 steps.

IMPLEMENTATION DETAILS

For PPO we used the implementation by Moon et al. (2022) which we adapted for PPO + Explore-
Go. The hyperparameters for both PPO and PPO + Explore-Go can be found in Table 1. The only
additional hyperparameter that Explore-Go uses is the maximal number of pure exploration steps K,
which we choose to be K = 8. Both algorithms use network architectures that flatten the (3, 5, 5)
observation and feed it through a fully connected network with a ReLU activation function. The
hidden dimensions for both the actor and critic are [128, 64, 32] followed by an output layer of size
[1] for the critic and size [|A|] for the actor. The output of the actor is used as logits in a categorical
distribution over the actions.

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Table 1: Hyper-parameters used for the illustrative CMDP experiment

Illustrative
Hyper-parameter Value
Total timesteps 50 000
Vectorised environments 4

PPO
timesteps per rollout 10
epochs per rollout 3
minibatches per epoch 8
Discount factor γ 0.9
GAE smoothing parameter (λ) 0.95
Entropy bonus 0.01
PPO clip range (ϵ) 0.2
Reward normalisation? No
Max. gradient norm .5
Shared actor and critic networks No

Adam
Learning rate 1× 10−4

Epsilon 1× 10−5

C.2 FOUR ROOMS

In all of our Four Rooms experiments, we will train on 40 different training tasks and test on either
a reachable or unreachable task set of size 120. The 40 training tasks differ in the agent location,
agent direction, goal location and the location of the doorways (see Figure 7 for some example tasks
in Four Rooms).

In this environment, reachability is regulated through variations in the goal location and location of
the doorways. If two states share their doorways and goal location, then they are both reachable
from one another. Conversely, if two states differ in either the doorways or goal location, they are
unreachable. The reachable task set is constructed by taking every training task and changing only
the agent location and agent direction (keeping the location of the doorways and goal location the
same). This is repeated four times to generate a total number of reachable tasks of 4×40 = 120. For
the unreachable task set, we take 40 different configurations of the doorways that all differ from the
ones in the training task. For each of those 40 different doorway configurations, we generate four
new goal locations, agent locations and agent directions. This also generates a total of 4× 40 = 120
unreachable tasks.

ENVIRONMENT DETAILS

The Four Rooms grid world used in our experiments is adapted from the Minigrid benchmark
(Chevalier-Boisvert et al., 2023) and differs in certain ways from the default Minigrid configura-
tion. For one, the action space is reduced from the default seven actions (turn left, turn right, move
forward, pick up an object, drop an object, toggle/activate an object, end episode) to just the first
three actions (turn left, turn right, move forward). Also, the reward function is changed slightly to
reward 1 for successfully reaching the goal and 0 otherwise (as opposed to the 1 − 0.9 ∗ ( step count

max steps )

given upon success by the default Minigrid environment). Additionally, the size of the environment
is reduced from the default 19 (8× 8 rooms) to 9 (3× 3 rooms).

Furthermore, the observation space is made fully observable and customised. Our agent receives a
4×9×9 tensor that is centred around the agent’s current location. The four binary-encoded channels
contain the following information:

• Channel 0: The location of the agent (always in the centre).
• Channel 1: The hypothetical location where the agent would move to given the current

direction it’s facing (and ignoring any collisions with walls).
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Training Testing

Figure 7: Some example tasks in the Four Rooms environment for reachable generalisation. For
unreachable generalisation both the goal and doorway locations would be different in testing.

• Channel 2: The location of the walls.

• Channel 3: The location of the goal.

The implementation of Four Rooms is also customised to allow for more control over the factors of
variation (topology, agent location, agent direction, goal location) during the generation of a task.
This acts functionally the same as the ReseedWrapper from Minigrid except that it allows for
more control and therefore easier design and construction of the training and testing sets. The code
for our Four Room implementation can be found at <redacted for review>.

EXPLORE-GO WITH DQN, PPO AND SAC

For the DQN, PPO and SAC experiments, we take the implementations from the Stable-Baselines3
(Raffin et al., 2021) repository and add Explore-Go to them (see code at <redacted for
review>). We adapt the SAC implementation to work with discrete action space. For the DQN
implementation, we also add support for double Q learning (van Hasselt et al., 2015). For all exper-
iments, the network architecture consists of three convolutional layers (see parameters in Table 2)
followed by some fully connected layers with ReLU activation functions (except for the last layer).
The number and width of the fully connected layers depend on the algorithm used. For DQN we
have three fully connected layers with hidden dimensions [512, 128, 64]. For PPO we have two
times three fully connected layers (one for the actor and one for the critic) with hidden dimensions
[512, 128, 64]. For SAC we have the same but with hidden dimensions [512, 256, 256]. A full list of
parameters can be found in Table 3 for DQN, Table 4 for PPO and Table 5 for SAC.

The hyperparameter K for Explore-Go that determines the maximum number of steps is chosen
by visually inspecting a random agent walking in the Four Rooms environment. The idea behind
the process is that we rather have K too big (interactions with the environment wasted), than too
small (doesn’t find diverse new starting positions). So we choose K = 60 for the Four Rooms
environment since we find that an average of 30 steps is enough for the agent to randomly explore a
decent proportion of the environment.

EXPLORE-GO, DQN AND TEE

For the experiments comparing Explore-Go with DQN and TEE, we use the same hyperparameters
as for the other DQN experiments. For the TEE approach, we use a coefficient of α = 0.1. For the
results with different values of TEE coefficient, we refer to Appendix D.2.
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When comparing Explore-Go, DQN and TEE we introduce four new metrics. The first measures
the fraction of state-action space that is explored (Figure 4a). This is calculated by enumerating all
possible state-actions in the reachable state space and keeping track of which ones are encountered
at some point during training. This measures how effective the exploration approach is (a higher
fraction means the agent explored more states). The second and third metrics measure the diversity
present in the replay buffer throughout training (Figures 4b and 4c). They do so, again, by enumer-
ating all possible state-actions (Figure 4b) or states (Figure 4c) in the reachable space and checking
which ones are present in the buffer at that time. The last metric measures how optimal the agent
is over the entire reachable space (Figure 4d). It measures this by enumerating all possible states in
the reachable space and checking for which ones the agent chooses an action that is optimal (there
can be multiple).

Table 2: Hyper-parameters for the CNN part in the Four Rooms experiment

CNN
Kernel size 3
Stride 1
Padding 1
Padding mode Circular
Channels 32

Table 3: Hyper-parameters for Four Rooms DQN

Four Rooms DQN
Hyper-parameter Value
Total timesteps 500 000
Vectorised environments 10
Buffer size 50 000
Batch size 256
Discount factor γ 0.99
Max. gradient norm 1
Gradient steps 1
Train frequency (steps) 10
Target update interval (steps) 10
Target soft update coefficient τ 0.01
Exploration initial ϵ 1
Exploration final ϵ 0.01
Exploration fraction ϵ 0.5

Adam
Learning rate 1× 10−4

Weight decay 1× 10−5
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Table 4: Hyper-parameters for Four Rooms PPO

Four Rooms PPO
Hyper-parameter Value
Total timesteps 1 500 000
Vectorised environments 10
Batch size 64
Discount factor γ 0.99
Max. gradient norm 0.5
# of epochs 10
# steps collected per rollout 5 120
Entropy coeff 0.0
Value function coeff 0.5
GAE coeff λ 0.95
Share feature extractor True
Clip range 0.2

Adam
Learning rate 1× 10−4

Table 5: Hyper-parameters for Four Rooms SAC

Four Rooms SAC
Hyper-parameter Value
Total timesteps 300 000
Vectorised environments 10
Buffer size 200 000
Batch size 256
Discount factor γ 0.99
Max. gradient norm 1
Gradient steps 10
Train frequency (steps) 10
Target update interval (steps) 10
Target soft update coefficient τ 0.005
Warmup phase 20 000
Share feature extractor False
Target entropy auto
Entropy coeff auto

Adam
Learning rate 5× 10−4

C.3 DEEPMIND CONTROL SUITE

For the DeepMind Control Suite we adapt the environment so that at the start of each episode the
initial configuration of the robot body and target location are drawn based on a given list of random
seeds. This allows us to control the task space of the environment so that we can define a limited
set of tasks on which the agent is allowed to train. To compute mean performance and confidence
intervals we average all our DMC experiments over 10 seeds for the agent. Each agent seed trains
on its own set of training tasks. For a training set of size N , agent i gets to train on tasks generated
with seeds {i∗N, i∗N+1, ..., i∗N+N−1}. Testing is always done on 100 episodes from the full
distribution. For the state-based experiments we train on N = 5 training tasks and for the image-
based experiments, we train on N = 30 training tasks. The code can be found at <redacted for
review>.
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The standard DMC benchmark has no terminal states and instead has a fixed episode length of 1000
after which the agent times out. However, for the Finger Turn and Reacher environments, an episode
length of 1000 is unnecessarily long. For these two environments, the goal is to position the robot
body in such a way that some designated part is located at a target location. Once it successfully
reaches this target location, the optimal policy is to do nothing. This means that in many of the
Finger Turn and Reacher episodes, the agent only moves in the first 100 or so steps and then does
nothing for 900 more. To simplify the training on these environments a bit we instead shorten the
episode length to 500.

For the state-based experiments, we use the Explore-Go and SAC implementation adapted from
Stable-Baselines3 (Raffin et al., 2021). Most of the hyperparameters for SAC are taken from (Zhu
et al., 2020), but a full list can be found in Table 6. For the image-based experiments, we add
Explore-Go to the RAD implementation from (Hansen & Wang, 2021) and use the hyperparameters
from (Laskin et al., 2020). For all DMC experiments, we use a maximum pure exploration duration
K = 200. We judged this to be high enough to generate diverse states in most environments.

Table 6: Hyper-parameters for Four Rooms SAC

DMC SAC
Hyper-parameter Value
Total timesteps 500 000
Vectorised environments 1
Buffer size 100 000
Batch size 128
Discount factor γ 0.99
Gradient steps 1
Train frequency (steps) 1
Target update interval (steps) 1
Target soft update coefficient τ 0.005
Warmup phase 10 000
Share feature extractor False
# of layers 2
Layer size 256
Target entropy auto
Entropy coeff auto

Adam
Learning rate 1× 10−3

D ADDITIONAL EXPERIMENTS

D.1 ADDING PURE EXPLORATION EXPERIENCE TO THE BUFFER

In Figure 8 we show an ablation of Explore-Go where we also add all the pure exploration experience
to the replay buffer (Explore-Go with PE, green). It shows that adding this experience to the buffer
makes the performance of Explore-Go worse. This could be due to the highly off-policy nature of
the pure exploration data.

D.2 TEE WITH DIFFERENT COEFFICIENTS α

TEE has an additional hyperparameter α that determines how much the individual rollout workers
are biased towards exploration (α < 1) or exploitation (α > 1). Figure 9 shows different values of
epsiloni for different values of α. Figure 10 shows the training and testing performance and Figure
11 the exploration effectiveness, buffer diversity and policy optimality for the various values of α.
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Figure 8: Performance of DQN, DQN+Explore-Go and DQN+Explore-Go where the pure explo-
ration is also added to the replay buffer. Performance is in the Four Rooms environment on the
(a) training set, (b) reachable test set and (c) unreachable test set. Shown are the mean and 95%
confidence intervals over 50 seeds.
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Figure 9: Exploration coefficients ϵi for 10 rollout workers for different values of α.

D.3 CHEETAH RUN AND WALKER WALK

Here we show the results for Cheetah Run and Walker Walk in Figure 12. We use the same hy-
perparameters as for the other DMC experiments, except we change the episode length back to the
original 1000 steps. For both environments we train on task sets of size N = 5. In the figure, we can
see that for both Cheetah Run and Walker Walk, there is effectively no generalisation gap between
training and testing (the solid and dotted lines mostly overlap). This means these environments are
not ideal for testing generalisation performance.
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Figure 10: Performance of DQN+TEE with coefficients α = [0.1, 0.5, 1, 2, 5] in Four Rooms on the
(a) training set, (b) reachable test set and (c) unreachable test set. Shown are the mean and 95%
confidence intervals over 10 seeds.
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(b) State-action Diversity
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(c) State Diversity
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Figure 11: Comparing DQN+TEE with coefficients α = [0.1, 0.5, 1, 2, 5] in Four Rooms for (a)
fraction of state-action space explored, (b) fraction of state-action or (c) state space in the buffer and
(d) fraction of states where the policy chooses the optimal action. Shown are the mean and 95%
confidence intervals over 10 seeds for (a)-(c) and 50 seeds for (d).
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Figure 12: Performance of SAC and Explore-Go on state-based (a) Cheetah Run and (b) Walker
Walk. Shown are the mean and 95% confidence intervals over 10 seeds.

E PSEUDO-CODE

Algorithm 1: Generic CollectRollouts + Explore-Go
Input: number of steps to collect N , pure exploration policy πPE , max number of pure

exploration steps K
k ← Uniform(0,K);
Drollout ← {};
num steps collected← 0;
while num steps collected < N do

if episode step < k then
Sample transition t using πPE ;

else
Sample transition t;
Add t to Drollout;
num steps collected += 1;

end if
episode step += 1;
if end of episode then

k ← Uniform(0,K);
episode step← 0;
Reset environment;

end if
end
Return Drollout;

Figure 13: An example of pseudo-code for Explore-Go combined with a generic rollout collection
function found in some form in most RL algorithms.
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Algorithm 2: PPO + Explore-Go
Input: PPO agent PPO, pure exploration agent PE, max number of pure exploration steps K
k ← Uniform(0,K);
i← 0 ▷ Counts steps within an episode;
for iteration = 0, 1, 2, ... do
DPPO ← {};
DPE ← {};
for step = 0, 1, 2, ..., T do

if i < k then
Sample transition t by running PE;
Add t to DPE ;

else
Sample transition t by running PPO;
Add t to DPPO;

end if
i← i+ 1;
if end of episode then

k ← Uniform(0,K);
i← 0;
Reset environment;

end if
end
Update PPO with trajectories DPPO;
(Optional) Update PE with trajectories DPE ;

end

Figure 14: An example of pseudo-code for Explore-Go combined with an on-policy method PPO.
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