
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

TRAINING ON MORE REACHABLE TASKS FOR
GENERALISATION IN REINFORCEMENT LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

In multi-task reinforcement learning, agents train on a fixed set of tasks and have
to generalise to new ones. Recent work has shown that increased exploration im-
proves this generalisation, but it remains unclear why exactly that is. In this paper,
we introduce the concept of reachability in multi-task reinforcement learning and
show that an initial exploration phase increases the number of reachable tasks the
agent is trained on. This, and not the increased exploration, is responsible for the
improved generalisation, even to unreachable tasks. Inspired by this, we propose a
novel method Explore-Go that implements such an exploration phase at the begin-
ning of each episode. Explore-Go only modifies the way experience is collected
and can be used with most existing on-policy or off-policy reinforcement learn-
ing algorithms. We demonstrate the effectiveness of our method when combined
with some popular algorithms and show an increase in generalisation performance
across several environments.

1 INTRODUCTION

Despite major advances in reinforcement learning (RL), it is fairly rare to encounter RL outside
of the academic setting. One of the remaining challenges of adopting it in the real world is the
ability of an agent to generalise to novel scenarios, that is, those not encountered during training.
For example, we do not want a house-cleaning robot to stop working when the owner moves their
couch. This is the main research question investigated in the zero-shot policy transfer setting (ZSPT,
Kirk et al., 2023). Here the agent trains on several variations of an environment, known as tasks,
and must generalise to new ones. This differs from the commonly studied single-task RL setting, in
which the agent trains and tests on the same environment instance.

There exists a surprising interaction between ZSPT generalisation and exploration of the training
environments. A single-task RL agent must trade off between exploring for better futures and ex-
ploiting what it already knows. Once a good enough policy is found, a single-task agent ceases
exploration to focus on collecting rewards. In multi-task RL, however, Jiang et al. (2023) have re-
cently demonstrated that more effective exploration, that never stops throughout the entire training
process, improves generalisation to unseen tasks.

However, it is not yet entirely clear in which tasks we can expect exploration to improve generalisa-
tion, nor is it clear when to use it to benefit generalisation the most.1 For example, exploration might
help a cleaning robot to know what to do when it is activated at an unusual location in the house.
Having seen more of the environment means the robot will be familiar with that area. However, if
the owner rearranges some furniture, the previous path to move might be blocked, and it is unclear
if and how more exploration would help in this situation.

In this paper, we address these questions by introducing the concept of reachability to multi-task
RL. We define a task to be reachable if it contains states and rewards that also appear in at least one
of the training tasks. Conversely, an unreachable task shares no states and/or rewards with any of the
training tasks. In the example above, activating the robot in an unusual location is a reachable task,
whereas moving the furniture creates an unreachable one. The key difference between the two is that
reachable tasks have states that can be explicitly encountered and optimised during training, whereas

1Jiang et al. (2023) do provide one possible explanation for why exploration can benefit generalisation, but
as we argue in Appendix A.2, this explanation does not cover all scenarios encountered in the ZSPT setting.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

unreachable ones do not. However, we argue that training on more reachable tasks results in a form
of implicit data augmentation. As data augmentation is frequently shown to improve generalisation
in a wide range of settings (Shorten & Khoshgoftaar, 2019; Feng et al., 2021; Zhang et al., 2021a;
Miao et al., 2023), we postulate this is responsible for the increase in test performance in unreachable
tasks. For example, the above robot might learn to steer around any furniture while navigating
throughout the house, which can become useful when some of it is moved. Our contributions are the
following:

• We introduce the concept of reachable and unreachable tasks in reinforcement learning and argue
that exploration can be used to increase the number of tasks on which the agent trains. Moreover,
we argue that training on these additional reachable tasks can improve generalisation, even to
unreachable ones.

• We propose a novel method called Explore-Go that can be combined with most existing on-policy
or off-policy RL algorithms. It leverages an exploration phase at the beginning of each episode
to artificially increase the number of tasks on which the agent trains. We show that Explore-Go
can improve generalisation performance to reachable and unreachable tasks when combined with
on-policy or off-policy methods.2

• We empirically show that generalisation performance is more correlated with the decision when
the agent explores and how many reachable tasks it can solve optimally, rather than how much it
explores and how many of the reachable states it is optimal in.

2 BACKGROUND

A Markov decision process (MDP) M is defined by a 6-tuple M = {S,A,R, T, p0, γ}. In this
definition, S denotes a set of states called the state space, A a set of actions called the action space,
R : S × A → R the reward function, T : S × A → P(S) the transition function where P(S)
denotes the set of probability distributions over states S, p0 : P(S) the starting state distribution
and γ ∈ [0, 1) a discount factor. The goal is to find a policy π : S → P(A) that maps states to
probability distributions over actions in such a way that maximises the expected cumulative dis-
counted reward Eπ[

∑∞
t=0 γ

trt], also called the return. The expectation Eπ is over the Markov chain
{s0, a0, r0, s1, a1, r1...} induced by policy π when acting in MDP M (Akshay et al., 2013). An
optimal policy π∗ achieves the highest possible return. The on-policy distribution ρπ : P(S) of the
Markov chain induced by policy π in MDPM defines the proportion of time spent in each state as
the number of episodes inM goes to infinity (Sutton & Barto, 2018).

2.1 CONTEXTUAL MARKOV DECISION PROCESS

A contextual MDP (CMDP, Hallak et al., 2015) is a specific type of MDP where the state space
S = S′ × C can in principle be factored into an underlying state space S′ and a context space C,
which affects rewards and transitions of the MDP. For a state s = (s′, c) ∈ S, the context c behaves
differently than the underlying state s′ in that it is sampled at the start of an episode (as part of the
distribution p0) and remains fixed until the episode ends. The context c can be thought of as the task
an agent has to solve and from here on out we will refer to the context as the task.

The zero-shot policy transfer (ZSPT, Kirk et al., 2023) setting for CMDPs M|C is defined by a
distribution over task space P(C) and a set of tasks Ctrain and Ctest sampled from the same dis-
tribution P(C). The goal of the agent is to maximise performance in the testing CMDPM|Ctest ,
defined by the CMDP induced by the testing tasks Ctest, but the agent is only allowed to train in the
training CMDP M|Ctrain . The learned policy is expected to perform zero-shot generalisation for
the testing tasks, without any fine-tuning or adaptation period.

3 THE INFLUENCE OF REACHABILITY ON GENERALISATION

In general, the task c can influence several aspects of the underlying MDP, like the reward function
or dynamics of the environment. As a result, several existing fields of study like multi-goal RL (task

2We provide code for our experiments at <redacted for review>.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

influences reward) or sim-to-real transfer (task influences dynamics and/or visual observations) can
be framed as special instances of the CMDP framework. To analyse which tasks can generalise to
each other, we assume the full state is observed in a representation s = ϕ(s′, c), such that two tasks
that behave the same3 are represented the same. This means tasks c only differ in the distribution of
their starting states s0 ∼ p0(c). Many interesting problems are represented in this fashion, including
several environments from the popular Procgen, DeepMind Control Suite and Minigrid benchmarks
(Cobbe et al., 2020; Tassa et al., 2018; Chevalier-Boisvert et al., 2023).

In this setting, the agent starts a task in a different state but may still share states st with other tasks
later in the episode. For example, if tasks have different starting positions but share the same goal,
or if the agent can manipulate the environment to resemble a different task. This is not necessarily
always true, though. An example of this is shown in Figure 1a: even if the agent in Task 1 moves
to the starting location in Task 2, the background colour will always be different. In this setting, we
can refer to tasks c ∈ C and states s ∈ S interchangeably, since we can think of any s as a starting
state and therefore as a task. From now on, we will refer to a set of tasks C as a set of starting states
S0.

3.1 REACHABILITY IN MULTI-TASK RL

To argue how exploration can benefit generalisation we introduce the reachability of tasks. To do
so, we first define the reachability of states in a CMDP M|Strain

0
. The set of reachable states

Sr(M|Strain
0

) (abbreviated with Sr from now on) consists of all states sr for which there exists a
sequence of actions that give a non-zero probability of ending up in sr when performed inM|Strain

0
.

Put differently, a state sr is reachable if there exists a policy whose probability of encountering that
state during training is non-zero. In complement to reachable states, we define unreachable states
su as states that are not reachable.

Using these definitions, we define (un)reachable tasks as tasks that start in a(n) (un)reachable state.
We define two instances of the ZSPT problem as follows:

Definition 1 (Reachable/Unreachable generalisation). Reachable/Unreachable generalisation
refers to an instance of the ZSPT problem where the start states of the testing environments Stest

0
are/are-not part of the set of reachable states during training, i.e. Stest

0 ⊆ Sr or Stest
0 ∩ Sr = ∅.

This definition has some interesting implications: due to how reachability is defined, in the reach-
able generalisation setting all states encountered in the testing CMDPM|Stest

0
are also reachable.

Note that the reverse does not have to be true: not all reachable states can necessarily be encoun-
tered inM|Stest

0
. Furthermore, we assume in the unreachable generalisation setting that all states

encountered inM|Stest
0

are also unreachable.4 Note that this is still considered in-distribution gener-
alisation since the starting states for both train and test tasks are sampled from the same distribution.

3.2 GENERALISATION TO REACHABLE TASKS

In the single-task setting, the goal is to maximise performance in the MDPM in which the agent
trains. There, it is sufficient to learn an optimal policy in all the states s ∈ S encountered by
this policy in M. This is because acting optimally in all the states encountered by the optimal
policy inM guarantees maximal return inM. Exploration thus only has to facilitate learning the
optimal policy on the on-policy distribution ρπ

∗
of M. In fact, once the optimal policy has been

found, learning to be optimal anywhere else inM would be a wasted effort that potentially allocates
approximation power to unimportant areas of the state space.

Recent work has shown that this logic does not transfer to the ZSPT problem setting (Jiang et al.,
2023). In this setting, the goal is not to maximise performance in the training CMDPM|Strain

0
, but

rather to maximise performance in the testing CMDPM|Stest
0

. Ideally, the learned policy will be
optimal over the on-policy distribution ρπ

∗
in this testing CMDP.

3Formally: iff for all underlying states s′ and actions a the reward and transition models are the same.
4This holds for ergodic CMDPs. However, in some non-ergodic CMDPs, it is possible that you can transi-

tion into the reachable set Sr after starting in an unreachable state, which we do not consider in this paper.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Task: 1 2

3 4
(a) Illustrative CMDP

10 20 30 40 50
Step (1e3)

0.2

0.4

0.6

0.8

1.0

Un
di

sc
ou

nt
ed

 M
ea

n
Re

tu
rn

Illustrative CMDP Performance

Algorithm
PPO
PPO+Explore-Go (ours)

Evaluation Type
Train
Test

(b) Performance of PPO and
PPO+Explore-Go (ours).

Optimal Action
Down Left Right Up

Task 1

Task 2

Task 3

Task 4

(c) States along optimal trajectory

Optimal Action
Down Left Right Up

Task 1

Task 2

Task 3

Task 4

(d) Full state space

Figure 1: (a) Illustrative CMDP with four training tasks, each with a different background colour
and starting position (circle). All tasks share the same goal location (green square in the middle). (b)
Performance of a baseline PPO agent and our Explore-Go agent on the CMDP. The agent trains on
the tasks in (a) and is tested in tasks with a completely new background colour. Shown are the mean
and 95% confidence interval over 100 seeds. Below are (c) the states along the optimal trajectories,
and (d) the reachable state space, categorised by their task (rows) and their optimal action (columns).

In general, this testing distribution is unknown. However, in the reachable generalisation setting,
the starting states during testing are (by definition) part of the reachable state space Sr. So, an
agent that learns to act optimally in as many of the reachable states as possible can improve its
performance during testing. In fact, if a policy were optimal on all reachable states, it would be
guaranteed to ‘generalise’ to any reachable task (see Appendix B for more detail). In this way, more
extensive exploration can help the agent train on more reachable states, which can result in increased
‘generalisation’ performance. One could argue generalisation is not the best term to use here, since
even a policy that completely overfits to the reachable state space Sr, for example, a tabular setting,
would exhibit perfect ‘generalisation’.

3.3 GENERALISATION TO UNREACHABLE TASKS

For unreachable generalisation, the states encountered in ρπ
∗

ofM|Stest
0

are not part of the reachable
space Sr ofM|Strain

0
, so it is not obvious on which parts of Sr our agent should train.

To investigate this, we define an example CMDP in Figure 1a. This CMDP consists of a cross-shaped
grid world with additional transitions that directly move the agent between adjacent end-points of
the cross (e.g., moving right at the end-point of the northern arm of the cross will move you to the
eastern arm). The goal for the agent (circle) is to move to the centre of the cross (the green square).
There are four training tasks which differ in the starting location of the agent and the colour of the

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

background. In Figure 1c the states from the optimal trajectories are placed in the table according to
what task they are from (row) and what action is optimal (column).

To succeed in the single-task setting (consider just one of our four tasks), an agent only needs to
learn to act in the states along the optimal trajectory. Along the optimal trajectories, the colour of
the background is perfectly correlated with the optimal action, so a policy trained with a standard
RL algorithm will likely overfit to this correlation. As a result, this policy is unlikely to generalise
to new reachable states (empty cells from the same row/task in Figure 1c), and even less likely to
new unreachable states with an unseen background colour (a completely new row). We show this
empirically in Figure 1b where an agent trained with proximal policy optimisation (PPO, Schulman
et al., 2017, red) does not generalise to tasks with a new background colour (see Appendix C.1 for
more on this experiment).

Suppose now, we have a policy that has learned over the entire reachable state space (see Figure 1d).
This agent is more likely to learn to ignore the background colour, as it no longer correlates with the
optimal action. We see this ability to uncover the true relationships and generalise to new colours
when using our novel method PPO+Explore-Go (blue in Figure 1b), which effectively trains on all
reachable tasks (Explore-Go is further introduced in Section 4).

More generally, we can view the inclusion of additional reachable states (those in Figure 1d which
are not in Figure 1c) as a form of data augmentation. For example, the additional states from tasks
2, 3 and 4 in the first column in Figure 1d, can be viewed as simple visual transformations of the
state from Task 1 that do not affect the underlying meaning. Data augmentation is commonly used
to improve generalisation performance in a wide variety of settings and applications (Shorten &
Khoshgoftaar, 2019; Feng et al., 2021; Zhang et al., 2021a; Miao et al., 2023) and is thought to
work by reducing overfitting to spurious correlations (Shen et al., 2022), inducing model invariance
(Lyle et al., 2020; Chen et al., 2020) and/or regularising training (Bishop, 1995; Lin et al., 2022).
Considering the strong evidence of data augmentation’s effect on generalisation, we postulate that
generalisation to unreachable tasks can be improved by performing data augmentation in the form
of training on more reachable tasks.

Note that this data augmentation only works if we know the correct targets for the extra samples
(columns in Figure 1d). These targets can be optimal actions for policies, or expected returns for
(Q-)value functions. If the targets are not correct, the agent might still overfit to a spurious corre-
lation, or worse, learn the wrong function. From the model invariance perspective, not only does
training with the incorrect targets not learn the desired invariance, but it explicitly trains to not be
invariant. This will likely not improve generalisation and could instead drastically deteriorate it.

Extended exploration (as in Jiang et al., 2023) chooses trajectories that visit more states, but those
can sometimes provide poor target estimates. However, as we argue above, training on even a
small number of samples with incorrect targets can be harmful. Instead, the expected return is best
estimated using rollouts of the current policy. By treating the additional sample as the starting state
of a reachable task, we can rely on the RL algorithm to converge to an optimal policy from this
state, resulting in accurate targets. Most algorithms, both on- and even off-policy, collect mainly
on-policy data towards the end of training. This reduces training on exploratory data with incorrect
targets. The next section introduces our novel method Explore-Go, which achieves significantly
better generalisation with this approach.

4 EXPLORE-GO: TRAINING ON MORE REACHABLE TASKS

As argued in the previous section, training on more reachable tasks is more desirable for generali-
sation than extended exploration. We propose a novel method Explore-Go5 which effectively trains
from more reachable tasks by artificially increasing the diversity of the starting state distribution. It
achieves this by introducing an exploration period at the start of each training episode.

Our method is implemented by modifying a fundamental part of most RL algorithms: the collection
of rollouts. At the start of every episode, before the agent collects its experiences, Explore-Go

5The name Explore-Go is a variation of the popular exploration approach Go-Explore (Ecoffet et al., 2021).
In Go-Explore the agent teleports at the start of each episode to a novel state and then continuous exploration.
In our approach, the agent first explores until it finds a novel state and then goes and solves the original task.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

first enters a phase in which it explores the environment by following a pure exploration policy.
Pure exploration refers to an objective that ignores the rewards rt the agent encounters and instead
focuses purely on exploring new parts of the state space. This pure exploration phase will proceed
for k steps. Wherever the pure exploration phase ends will be treated by the agent as the starting
state of that episode. This means the rest of the episode continues as it would usually, including
any exploration that the agent might normally perform. To add some additional stochasticity to the
induced starting state distribution, the length of the pure exploration phase is uniformly sampled
between 0 and some fixed value K at the start of every episode. See Algorithm 1 in the appendix
for an example of a generic rollout collection protocol modified with Explore-Go.

The basic version of Explore-Go used in this paper does not use the experience collected during the
pure exploration phase in any way. In theory, this experience can be used by off-policy methods.
However, in Appendix D.1 we show that adding this experience to the replay buffer in deep Q-
learning (DQN, Mnih et al., 2015) does not improve performance. However, this experience can
be used to train a separate pure exploration agent in parallel to the main agent. In Appendix E we
provide the pseudo-code of this version of Explore-Go when combined with PPO.

Note that even though Explore-Go changes the distribution of the training data, it can be com-
bined with both off-policy and on-policy reinforcement learning methods. On-policy approaches
typically require (primarily) on-policy data for training, distributed along the on-policy state distri-
bution ρπθ (M|Strain

0
) of the current policy πθ. This means they won’t work with arbitrary changes

to the distribution of training data. However, Explore-Go only changes the distribution of the start-
ing states Strain

0 . So, we can think of Explore-Go as generating on-policy data for a modified MDP
that differs only in its starting state distribution. As such, it can be combined with most on-policy
approaches.

5 EXPERIMENTS

We perform an empirical evaluation of Explore-Go on some environments from two benchmarks:
an adaptation of Four Rooms from Minigrid (Chevalier-Boisvert et al., 2023) and Finger Turn and
Reacher from the DeepMind Control Suite (DMC, Tassa et al., 2018). These environments can all be
explored sufficiently with ϵ-greedy exploration and therefore for the pure exploration policy we sim-
ply sample uniformly from the action space (equivalent to setting ϵ = 1). Due to its discrete nature
and smaller size, we use the Four Rooms environment to demonstrate the versatility of Explore-Go.
This also allows us to enumerate all possible states and tasks and formulate optimal policies and
values, which we can use to further analyse our method. We evaluate Explore-Go when combined
with several on-policy, off-policy, value-based and/or policy-based RL algorithms: PPO (on-policy,
policy-based), DQN (off-policy, value-based) and soft actor-critic (SAC, off-policy, policy-based,
Haarnoja et al., 2018).

5.1 EXPLORE-GO WITH VARIOUS ALGORITHMS

We use the Four Rooms environment from Minigrid, modified to have a reduced action space,
smaller size, and to be fully observable (see Appendix C.2 for more details). The environment
consists of a grid-world of four rooms with single-width doorways connecting all of the rooms. The
agent starts in one of the rooms and must move to the goal location, which may be in a different
room. Tasks differ from each other in the starting location and orientation of the agent, the goal lo-
cation, and the position of the doorways connecting the four rooms. In our experiments, the agents
train on 40 different training tasks and are evaluated on either 120 reachable tasks or 120 unreach-
able tasks. In this environment, a task is reachable if and only if both the positions of the doorways
and the goal location are the same as at least one task in the training set. In Figure 2 we see that
Explore-Go improves the testing performance on unreachable tasks when combined with PPO, DQN
and SAC, whilst leaving the training performance mostly unaffected. The Explore-Go agent has a
maximum of K = 60 pure exploration steps at the start of each episode. For more experimental
details we refer to Appendix C.2.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

50 100 150 200

Frames (1e3)

(a) SAC

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

U
nd

is
co

un
te

d
M

ea
n

R
et

ur
n

Performance SAC

Algorithm

Baseline

ExploreGo

Evaluation Type

Train

Test

100 200 300 400 500

Frames (1e3)

(b) DQN

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

U
nd

is
co

un
te

d
M

ea
n

R
et

ur
n

Performance DQN

200 400 600 800 1000 1200 1400

Frames (1e3)

(c) PPO

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

U
nd

is
co

un
te

d
M

ea
n

R
et

ur
n

Performance PPO

Figure 2: Training and unreachable testing performance of Explore-Go in the Four Rooms environ-
ment when combined with (a) SAC, (b) DQN and (c) PPO. Shown are the mean and 95% confidence
intervals for 100, 50 and 50 seeds, respectively.

5.2 REACHABLE STATES VS REACHABLE TASKS

Our method Explore-Go aims to create additional reachable tasks on which the agent trains. We
argue that this, and not simply more continued exploration, will improve generalisation. To inves-
tigate this, we compare Explore-Go with an exploration approach that is similar to what is used in
Jiang et al. (2023). One of their core algorithmic components is the temporally equalised explo-
ration (TEE) which assigns different fixed exploration coefficients to the parallel workers collecting
rollouts.6 This is necessary because, due to function approximation, the model may lose knowledge
acquired through exploration if it does not keep exploring throughout training.

In the following experiment, we analyse the DQN agent from the previous section, which collects
rollouts with 10 parallel workers. For the TEE agent, we assign each of the workers a different,
fixed value of ϵ (used in ϵ-greedy exploration). We assign ϵ according to the relation ϵi = (i

N−1)
α,

where ϵi is the exploration coefficient for worker i, N is the total number of workers (N = 10 in our
case) and α is a coefficient determining a bias towards more exploration (α < 1) or less exploration
(α > 1).

We compare Explore-Go with a baseline DQN agent using TEE with coefficient α = 0.1. This was
decided by evaluating multiple coefficients α and finding that DQN-TEE with coefficient α = 0.1
does the most exploration, and thus acts as an upper bound on the performance achievable with
this approach. (see Appendix D.2 for more results with different values of α). Figure 3 shows that
Explore-Go achieves significantly higher testing performance for both the reachable and unreachable
test sets, whilst training performance is largely similar.

In Figure 4 we show that despite discovering a larger fraction of the state-action space (Figure
4a), maintaining higher diversity in the replay buffer (Figures 4b and 4c), and learning the optimal
action on a larger fraction of the reachable state space (Figure 4d), TEE generalises worse than
Explore-Go (as seen in Figure 3). We refer to Appendix C.2 for more details on how these metrics
are calculated. This suggests that generalisation is not about how much you explore or how many
of the reachable states you are optimal in, but rather when you explore and how many reachable
tasks you can solve optimally. Our method Explore-Go leverages exploration at the start of every
episode to explicitly increase the number of tasks the agent trains on, resulting in consistently higher
generalisation performance.

6Their approach also uses ensembles and distributional RL in conjunction with UCB (Lattimore & Szepes-
vari, 2017) to explore the environment. We instead use ϵ-greedy since we find it works well in Four Rooms.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

100 200 300 400 500

Frames (1e3)

(a) Training

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

U
nd

is
co

un
te

d
M

ea
n

R
et

ur
n

Training

Method:

DQN

ExploreGo (Ours)

TEE 0.1

100 200 300 400 500

Frames (1e3)

(b) Reachable Test

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

U
nd

is
co

un
te

d
M

ea
n

R
et

ur
n

Reachable Test

100 200 300 400 500

Frames (1e3)

(c) Unreachable Test

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

U
nd

is
co

un
te

d
M

ea
n

R
et

ur
n

Unreachable Test

Figure 3: Performance of DQN, DQN+Explore-Go and DQN+TEE with coefficient α = 0.1 in Four
Rooms on the (a) training set, (b) reachable test set and (c) unreachable test set. Shown are the mean
and 95% confidence intervals over 50 seeds.

5.3 SCALING UP TO DEEPMIND CONTROL SUITE

To further demonstrate the scalability and generality of our approach we evaluate Explore-Go on
some of the continuous control environments from the DeepMind Control Suite. In the DMC en-
vironments, at the start of every episode, the initial configuration of the robot body (and in some
environments, target location) is randomly generated based on some initial seed. Typically, the
DMC benchmark is not used for the ZSPT setting and training is done on the full distribution of
tasks (initial configurations). To turn the DMC benchmark into an instance of the ZSPT problem,
we define a limited set of seeds (and therefore initial configurations) on which the agents are allowed
to train. We then test on the full distribution. Note that only some of the environments test for un-
reachable generalisation: Reacher, Finger Turn, Manipulator, Stacker, Fish and Swimmer. For the
other environments, all tasks are reachable from one another. For more details on these experiments,
we refer to Appendix C.3.

In Figure 5 we show the training and testing performance of SAC and Explore-Go on Finger Turn
and Reacher. The Explore-Go agent has a maximum of K = 200 pure exploration steps at the start
of every episode. In the figure, we see it achieves higher test performance whilst leaving training
performance largely unaffected. In Appendix D.3 we also show the results for the Cheetah Run and
Walker Walk environments. However, there appears to be no significant generalisation gap between

0 100 200 300 400 500

Frames (1e3)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

F
ra

ct
io

n
of

st
at

e-
ac

ti
on

s
en

co
un

te
re

d

Exploration of State-action Space

Method:

DQN

ExploreGo (Ours)

TEE 0.1

(a) Exploration

0 100 200 300 400 500

Frames (1e3)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

F
ra

ct
io

n
of

st
at

e-
ac

ti
on

s
in

th
e

bu
ff

er

Buffer Diversity

(b) State-action Diversity

0 100 200 300 400 500

Frames (1e3)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

F
ra

ct
io

n
of

st
at

es
in

th
e

bu
ff

er

Buffer Diversity

(c) State Diversity

100 200 300 400 500

Frames (1e3)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

F
ra

ct
io

n
W

he
re

G
re

ed
y

A
ct

io
n

Is
O

pt
im

al

Policy Optimality

(d) Policy Optimality

Figure 4: Comparing DQN, DQN+Explore-Go and DQN+TEE with coefficient α = 0.1 in Four
Rooms for (a) fraction of state-action space explored, (b) fraction of state-action or (c) state space
in the buffer and (d) fraction of states where the policy chooses the optimal action. Shown are the
mean and 95% confidence intervals over 10 seeds for (a)-(c) and 50 seeds for (d).

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

0 100 200 300 400 500
Steps (1e3)

0

100

200

300

400

500

Un
di

sc
ou

nt
ed

 M
ea

n
Re

tu
rn

Performance In Finger Turn Easy

Algorithm
SAC (Baseline)
SAC + Explore-Go

Evaluation Type
Train
Test

(a) Finger Turn Easy

0 100 200 300 400 500
Steps (1e3)

0

100

200

300

400

500

Un
di

sc
ou

nt
ed

 M
ea

n
Re

tu
rn

Performance In Reacher Easy

(b) Reacher Easy

Figure 5: Performance of SAC and Explore-Go on state-based (a) Finger Turn Easy and (b) Reacher
Easy. Shown are the mean and 95% confidence intervals over 10 seeds.

training and testing in either environment. Due to this, we focus on the Finger Turn and Reacher
environments for our main results.

The experiments above train on the original DMC configuration where the observation an agent
receives is a short vector-based state that includes all of the relevant information about the state of
the environment. It is also possible to train on DMC with images as observations. Figure 6 shows
the performance of Explore-Go on the Finger Turn and Reacher when training on the image-based
observations. As a baseline, we use RAD (Laskin et al., 2020) which is SAC with automatic ran-
dom cropping data augmentation. Figure 6 shows that Explore-Go can also improve generalisation
performance on Finger Turn and Reacher when training on image-based observations.

6 RELATED WORK

The contextual MDP framework is a very general framework that encompasses many fields in RL
that study zero-shot generalisation. Some approaches in this field try to improve generalisation by
increasing the variability of the training tasks through domain randomisation (Tobin et al., 2017;
Sadeghi & Levine, 2017) or data augmentation (Raileanu et al., 2021; Lee et al., 2020). Others try
to explicitly bridge the gap between the training and testing tasks through inductive biases (Kansky
et al., 2017; Wang et al., 2021) or regularisation (Cobbe et al., 2019; Tishby & Zaslavsky, 2015).
We mention only a small selection of approaches here, for a more comprehensive overview we refer

100 200 300 400 500
Steps (1e3)

0

100

200

300

400

500

Un
di

sc
ou

nt
ed

 M
ea

n
Re

tu
rn

Performance In Finger Turn Easy

Algorithm
RAD (Baseline)
RAD + Explore-Go

Evaluation Type
Train
Test

(a) Finger Turn Easy

100 200 300 400 500
Steps (1e3)

0

100

200

300

400

500

Un
di

sc
ou

nt
ed

 M
ea

n
Re

tu
rn

Performance In Reacher Easy

(b) Reacher Easy

Figure 6: Performance of RAD and Explore-Go on image-based (a) Finger Turn Easy and (b)
Reacher Easy. Shown are the mean and 95% confidence intervals over 10 seeds.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

to Appendix A.1 or the survey by Kirk et al. (2023). All these approaches use techniques that are
not necessarily specific to RL (representation learning, regularisation, etc.). In this work, we instead
explore how exploration in RL can be used to improve generalisation.

Next, we discuss related work on exploration in CMDPs. Zisselman et al. (2023) leverage explo-
ration at test time to move the agent towards states where it can confidently solve the task, thereby
increasing test time performance. Our work differs in that we leverage exploration during training
in order to increase the number of states from which the agent can confidently solve the test tasks.
More closely related is work by Jiang et al. (2023), Zhu et al. (2020) and Suau et al. (2024). Jiang
et al. (2023) do not make a distinction between reachable and unreachable generalisation and provide
intuition which we argue mainly applies to reachable generalisation (see Appendix A.2). Moreover,
their novel approach only works for off-policy algorithms, whereas ours can be applied to both off-
policy and on-policy methods. Zhu et al. (2020) learn a reset controller that increases the diversity of
the agent’s start states. However, they only argue (and empirically show) that this benefits reachable
generalisation. Suau et al. (2024) introduce the notion of policy confounding in out-of-trajectory
generalisation. The issue of policy confounding is complementary to our intuition for unreachable
generalisation. However, it is unclear how out-of-trajectory generalisation equates to reachable or
unreachable generalisation. Moreover, they do not propose a novel, scalable approach to solve the
issue.

7 CONCLUSION

Recent work shows that more thorough and prolonged exploration can improve generalisation to
unseen tasks in multi-task RL. This effect was explained as a result of encountering the same states
in testing as were seen during the additional exploration in training. To understand this phenomenon
better, we define the notion of reachability of states and tasks. This novel perspective makes it
clear the above explanation only applies to reachable tasks, whereas unreachable tasks only benefit
indirectly from the data augmentation that comes with training on more reachable tasks. It also
implies that continuous exploration (as in TEE) is not optimal for multi-task generalisation, as the
exploratory episodes find more reachable states, but do not learn the task starting from there.

Instead, we define the novel method Explore-Go, which begins each episode with a pure exploration
phase, before standard learning is resumed. This results in training on more reachable tasks, and thus
improves generalisation even to unreachable tasks by data augmentation. We show this empirically
in the Four Rooms environment: here TEE explores more states, keeps a more diverse replay buffer,
and learns a policy that is optimal in more reachable states than Explore-Go. However, Explore-Go
generalises better to both reachable and unreachable test tasks. This suggests that generalisation is
not about how much you explore or how many of the reachable states you are optimal in, but rather
when you explore and how many reachable tasks you can solve optimally.

As an added benefit, Explore-Go only requires a simple modification to the sampling procedure,
which can be applied easily to most RL algorithms, both on-policy and off-policy. We demonstrate
that the method increases multi-task generalisation in the Four Rooms environment with SAC, DQN
and PPO. We also show that Explore-Go scales up to more complex tasks from the DeepMind Con-
trol Suite, both on the underlying state and on images of the task. We hope to provide practitioners
with a simple modification that can improve the generalisation of their agents significantly.

REFERENCES

S. Akshay, Nathalie Bertrand, Serge Haddad, and Loı̈c Hélouët. The Steady-State Control Problem
for Markov Decision Processes. In Kaustubh R. Joshi, Markus Siegle, Mariëlle Stoelinga, and
Pedro R. D’Argenio (eds.), Quantitative Evaluation of Systems - 10th International Conference,
QEST 2013, Buenos Aires, Argentina, August 27-30, 2013. Proceedings, volume 8054 of Lecture
Notes in Computer Science, pp. 290–304. Springer, 2013. doi: 10.1007/978-3-642-40196-1 26.
URL https://doi.org/10.1007/978-3-642-40196-1_26. 2

Christopher M. Bishop. Training with Noise is Equivalent to Tikhonov Regularization. Neural
Comput., 7(1):108–116, 1995. doi: 10.1162/NECO.1995.7.1.108. URL https://doi.org/
10.1162/neco.1995.7.1.108. 5

10

https://doi.org/10.1007/978-3-642-40196-1_26
https://doi.org/10.1162/neco.1995.7.1.108
https://doi.org/10.1162/neco.1995.7.1.108

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Andres Campero, Roberta Raileanu, Heinrich Küttler, Joshua B. Tenenbaum, Tim Rocktäschel, and
Edward Grefenstette. Learning with AMIGo: Adversarially Motivated Intrinsic Goals. In 9th
International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May
3-7, 2021. OpenReview.net, 2021. URL https://openreview.net/forum?id=ETBc_
MIMgoX. 17

Shuxiao Chen, Edgar Dobriban, and Jane H. Lee. A Group-Theoretic Framework for Data Aug-
mentation. In Hugo Larochelle, Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina Balcan,
and Hsuan-Tien Lin (eds.), Advances in Neural Information Processing Systems 33: Annual
Conference on Neural Information Processing Systems 2020, NeurIPS 2020, December 6-12,
2020, virtual, 2020. URL https://proceedings.neurips.cc/paper/2020/hash/
f4573fc71c731d5c362f0d7860945b88-Abstract.html. 5

Maxime Chevalier-Boisvert, Bolun Dai, Mark Towers, Rodrigo de Lazcano, Lucas Willems, Salem
Lahlou, Suman Pal, Pablo Samuel Castro, and Jordan Terry. Minigrid \& Miniworld: Modu-
lar \& Customizable Reinforcement Learning Environments for Goal-Oriented Tasks. CoRR,
abs/2306.13831, 2023. URL https://minigrid.farama.org. 3, 6, 20

Karl Cobbe, Oleg Klimov, Christopher Hesse, Taehoon Kim, and John Schulman. Quantifying
Generalization in Reinforcement Learning. In Kamalika Chaudhuri and Ruslan Salakhutdinov
(eds.), Proceedings of the 36th International Conference on Machine Learning, ICML 2019, 9-
15 June 2019, Long Beach, California, USA, volume 97 of Proceedings of Machine Learning
Research, pp. 1282–1289. PMLR, 2019. URL http://proceedings.mlr.press/v97/
cobbe19a.html. 9, 17

Karl Cobbe, Christopher Hesse, Jacob Hilton, and John Schulman. Leveraging Procedural Genera-
tion to Benchmark Reinforcement Learning. In Proceedings of the 37th International Conference
on Machine Learning, ICML 2020, 13-18 July 2020, Virtual Event, volume 119 of Proceedings
of Machine Learning Research, pp. 2048–2056. PMLR, 2020. URL http://proceedings.
mlr.press/v119/cobbe20a.html. 3

Adrien Ecoffet, Joost Huizinga, Joel Lehman, Kenneth O. Stanley, and Jeff Clune. First return, then
explore. Nat., 590(7847):580–586, 2021. doi: 10.1038/S41586-020-03157-9. URL https:
//doi.org/10.1038/s41586-020-03157-9. 5

Ben Eysenbach, Ruslan Salakhutdinov, and Sergey Levine. Robust Predictable Control. In
Marc’Aurelio Ranzato, Alina Beygelzimer, Yann N. Dauphin, Percy Liang, and Jennifer Wort-
man Vaughan (eds.), Advances in Neural Information Processing Systems 34: Annual Confer-
ence on Neural Information Processing Systems 2021, NeurIPS 2021, December 6-14, 2021,
virtual, pp. 27813–27825, 2021. URL https://proceedings.neurips.cc/paper/
2021/hash/e9f85782949743dcc42079e629332b5f-Abstract.html. 17

Steven Y. Feng, Varun Gangal, Jason Wei, Sarath Chandar, Soroush Vosoughi, Teruko Mitamura,
and Eduard H. Hovy. A Survey of Data Augmentation Approaches for NLP. In Chengqing
Zong, Fei Xia, Wenjie Li, and Roberto Navigli (eds.), Findings of the Association for Compu-
tational Linguistics: ACL/IJCNLP 2021, Online Event, August 1-6, 2021, volume ACL/IJCNLP
2021 of Findings of ACL, pp. 968–988. Association for Computational Linguistics, 2021. doi:
10.18653/V1/2021.FINDINGS-ACL.84. URL https://doi.org/10.18653/v1/2021.
findings-acl.84. 2, 5

Arnaud Fickinger, Natasha Jaques, Samyak Parajuli, Michael Chang, Nicholas Rhinehart, Glen
Berseth, Stuart Russell, and Sergey Levine. Explore and Control with Adversarial Surprise.
CoRR, abs/2107.07394, 2021. URL https://arxiv.org/abs/2107.07394. arXiv:
2107.07394. 17

Yannis Flet-Berliac, Johan Ferret, Olivier Pietquin, Philippe Preux, and Matthieu Geist. Adver-
sarially Guided Actor-Critic. In 9th International Conference on Learning Representations,
ICLR 2021, Virtual Event, Austria, May 3-7, 2021. OpenReview.net, 2021. URL https:
//openreview.net/forum?id=_mQp5cr_iNy. 17

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft Actor-Critic: Off-Policy
Maximum Entropy Deep Reinforcement Learning with a Stochastic Actor. In Jennifer G. Dy and

11

https://openreview.net/forum?id=ETBc_MIMgoX
https://openreview.net/forum?id=ETBc_MIMgoX
https://proceedings.neurips.cc/paper/2020/hash/f4573fc71c731d5c362f0d7860945b88-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/f4573fc71c731d5c362f0d7860945b88-Abstract.html
https://minigrid.farama.org
http://proceedings.mlr.press/v97/cobbe19a.html
http://proceedings.mlr.press/v97/cobbe19a.html
http://proceedings.mlr.press/v119/cobbe20a.html
http://proceedings.mlr.press/v119/cobbe20a.html
https://doi.org/10.1038/s41586-020-03157-9
https://doi.org/10.1038/s41586-020-03157-9
https://proceedings.neurips.cc/paper/2021/hash/e9f85782949743dcc42079e629332b5f-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/e9f85782949743dcc42079e629332b5f-Abstract.html
https://doi.org/10.18653/v1/2021.findings-acl.84
https://doi.org/10.18653/v1/2021.findings-acl.84
https://arxiv.org/abs/2107.07394
https://openreview.net/forum?id=_mQp5cr_iNy
https://openreview.net/forum?id=_mQp5cr_iNy

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Andreas Krause (eds.), Proceedings of the 35th International Conference on Machine Learning,
ICML 2018, Stockholmsmässan, Stockholm, Sweden, July 10-15, 2018, volume 80 of Proceedings
of Machine Learning Research, pp. 1856–1865. PMLR, 2018. URL http://proceedings.
mlr.press/v80/haarnoja18b.html. 6

Assaf Hallak, Dotan Di Castro, and Shie Mannor. Contextual Markov Decision Processes. CoRR,
abs/1502.02259, 2015. URL http://arxiv.org/abs/1502.02259. arXiv: 1502.02259.
2

Nicklas Hansen and Xiaolong Wang. Generalization in Reinforcement Learning by Soft Data Aug-
mentation. In IEEE International Conference on Robotics and Automation, ICRA 2021, Xi’an,
China, May 30 - June 5, 2021, pp. 13611–13617. IEEE, 2021. doi: 10.1109/ICRA48506.2021.
9561103. 24

Mikael Henaff, Roberta Raileanu, Minqi Jiang, and Tim Rocktäschel. Exploration
via Elliptical Episodic Bonuses. In Sanmi Koyejo, S. Mohamed, A. Agarwal,
Danielle Belgrave, K. Cho, and A. Oh (eds.), Advances in Neural Information
Processing Systems 35: Annual Conference on Neural Information Processing Sys-
tems 2022, NeurIPS 2022, New Orleans, LA, USA, November 28 - December 9,
2022, 2022. URL http://papers.nips.cc/paper_files/paper/2022/hash/
f4f79698d48bdc1a6dec20583724182b-Abstract-Conference.html. 17

Mikael Henaff, Minqi Jiang, and Roberta Raileanu. A Study of Global and Episodic Bonuses
for Exploration in Contextual MDPs. In Andreas Krause, Emma Brunskill, Kyunghyun Cho,
Barbara Engelhardt, Sivan Sabato, and Jonathan Scarlett (eds.), International Conference on
Machine Learning, ICML 2023, 23-29 July 2023, Honolulu, Hawaii, USA, volume 202 of
Proceedings of Machine Learning Research, pp. 12972–12999. PMLR, 2023. URL https:
//proceedings.mlr.press/v202/henaff23a.html. 17

Maximilian Igl, Kamil Ciosek, Yingzhen Li, Sebastian Tschiatschek, Cheng Zhang, Sam De-
vlin, and Katja Hofmann. Generalization in Reinforcement Learning with Selective Noise
Injection and Information Bottleneck. In Hanna M. Wallach, Hugo Larochelle, Alina
Beygelzimer, Florence d’Alché Buc, Emily B. Fox, and Roman Garnett (eds.), Advances
in Neural Information Processing Systems 32: Annual Conference on Neural Information
Processing Systems 2019, NeurIPS 2019, December 8-14, 2019, Vancouver, BC, Canada,
pp. 13956–13968, 2019. URL https://proceedings.neurips.cc/paper/2019/
hash/e2ccf95a7f2e1878fcafc8376649b6e8-Abstract.html. 17

Yiding Jiang, J. Zico Kolter, and Roberta Raileanu. On the Importance of Exploration
for Generalization in Reinforcement Learning. In Alice Oh, Tristan Naumann, Amir
Globerson, Kate Saenko, Moritz Hardt, and Sergey Levine (eds.), Advances in Neu-
ral Information Processing Systems 36: Annual Conference on Neural Information Pro-
cessing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 - 16,
2023, 2023. URL http://papers.nips.cc/paper_files/paper/2023/hash/
2a4310c4fd24bd336aa2f64f93cb5d39-Abstract-Conference.html. 1, 3, 5, 7,
10, 17, 18

DaeJin Jo, Sungwoong Kim, Daniel Wontae Nam, Taehwan Kwon, Seungeun Rho, Jongmin Kim,
and Donghoon Lee. LECO: Learnable Episodic Count for Task-Specific Intrinsic Reward. CoRR,
abs/2210.05409, 2022. doi: 10.48550/arXiv.2210.05409. arXiv: 2210.05409. 17

Ken Kansky, Tom Silver, David A. Mély, Mohamed Eldawy, Miguel Lázaro-Gredilla, Xinghua Lou,
Nimrod Dorfman, Szymon Sidor, D. Scott Phoenix, and Dileep George. Schema Networks: Zero-
shot Transfer with a Generative Causal Model of Intuitive Physics. In Doina Precup and Yee Whye
Teh (eds.), Proceedings of the 34th International Conference on Machine Learning, ICML 2017,
Sydney, NSW, Australia, 6-11 August 2017, volume 70 of Proceedings of Machine Learning Re-
search, pp. 1809–1818. PMLR, 2017. URL http://proceedings.mlr.press/v70/
kansky17a.html. 9, 17

Robert Kirk, Amy Zhang, Edward Grefenstette, and Tim Rocktäschel. A Survey of Zero-shot
Generalisation in Deep Reinforcement Learning. J. Artif. Intell. Res., 76:201–264, 2023. doi:
10.1613/JAIR.1.14174. URL https://doi.org/10.1613/jair.1.14174. 1, 2, 10, 17

12

http://proceedings.mlr.press/v80/haarnoja18b.html
http://proceedings.mlr.press/v80/haarnoja18b.html
http://arxiv.org/abs/1502.02259
http://papers.nips.cc/paper_files/paper/2022/hash/f4f79698d48bdc1a6dec20583724182b-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/f4f79698d48bdc1a6dec20583724182b-Abstract-Conference.html
https://proceedings.mlr.press/v202/henaff23a.html
https://proceedings.mlr.press/v202/henaff23a.html
https://proceedings.neurips.cc/paper/2019/hash/e2ccf95a7f2e1878fcafc8376649b6e8-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/e2ccf95a7f2e1878fcafc8376649b6e8-Abstract.html
http://papers.nips.cc/paper_files/paper/2023/hash/2a4310c4fd24bd336aa2f64f93cb5d39-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/2a4310c4fd24bd336aa2f64f93cb5d39-Abstract-Conference.html
http://proceedings.mlr.press/v70/kansky17a.html
http://proceedings.mlr.press/v70/kansky17a.html
https://doi.org/10.1613/jair.1.14174

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Michael Laskin, Kimin Lee, Adam Stooke, Lerrel Pinto, Pieter Abbeel, and Aravind
Srinivas. Reinforcement Learning with Augmented Data. In Hugo Larochelle,
Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina Balcan, and Hsuan-Tien Lin (eds.),
Advances in Neural Information Processing Systems 33: Annual Conference on Neu-
ral Information Processing Systems 2020, NeurIPS 2020, December 6-12, 2020, vir-
tual, 2020. URL https://proceedings.neurips.cc/paper/2020/hash/
e615c82aba461681ade82da2da38004a-Abstract.html. 9, 24

Tor Lattimore and Csaba Szepesvari. Bandit Algorithms. Cambridge University Press, 2017. 7

Kimin Lee, Kibok Lee, Jinwoo Shin, and Honglak Lee. Network Randomization: A Simple Tech-
nique for Generalization in Deep Reinforcement Learning. In 8th International Conference
on Learning Representations, ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020. OpenRe-
view.net, 2020. URL https://openreview.net/forum?id=HJgcvJBFvB. 9, 17

Chi-Heng Lin, Chiraag Kaushik, Eva L. Dyer, and Vidya Muthukumar. The good, the bad and
the ugly sides of data augmentation: An implicit spectral regularization perspective. CoRR,
abs/2210.05021, 2022. doi: 10.48550/ARXIV.2210.05021. URL https://doi.org/10.
48550/arXiv.2210.05021. arXiv: 2210.05021. 5

Xingyu Lu, Kimin Lee, Pieter Abbeel, and Stas Tiomkin. Dynamics Generalization via Information
Bottleneck in Deep Reinforcement Learning. CoRR, abs/2008.00614, 2020. URL https://
arxiv.org/abs/2008.00614. arXiv: 2008.00614. 17

Clare Lyle, Mark van der Wilk, Marta Kwiatkowska, Yarin Gal, and Benjamin Bloem-Reddy. On
the Benefits of Invariance in Neural Networks. CoRR, abs/2005.00178, 2020. URL https:
//arxiv.org/abs/2005.00178. arXiv: 2005.00178. 5

Ning Miao, Tom Rainforth, Emile Mathieu, Yann Dubois, Yee Whye Teh, Adam Foster, and
Hyunjik Kim. Learning Instance-Specific Augmentations by Capturing Local Invariances. In
Andreas Krause, Emma Brunskill, Kyunghyun Cho, Barbara Engelhardt, Sivan Sabato, and
Jonathan Scarlett (eds.), International Conference on Machine Learning, ICML 2023, 23-29
July 2023, Honolulu, Hawaii, USA, volume 202 of Proceedings of Machine Learning Re-
search, pp. 24720–24736. PMLR, 2023. URL https://proceedings.mlr.press/
v202/miao23a.html. 2, 5

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel Veness, Marc G.
Bellemare, Alex Graves, Martin A. Riedmiller, Andreas Fidjeland, Georg Ostrovski, Stig Pe-
tersen, Charles Beattie, Amir Sadik, Ioannis Antonoglou, Helen King, Dharshan Kumaran,
Daan Wierstra, Shane Legg, and Demis Hassabis. Human-level control through deep rein-
forcement learning. Nat., 518(7540):529–533, 2015. doi: 10.1038/NATURE14236. URL
https://doi.org/10.1038/nature14236. 6

Seungyong Moon, JunYeong Lee, and Hyun Oh Song. Rethinking Value Function Learn-
ing for Generalization in Reinforcement Learning. In Sanmi Koyejo, S. Mohamed,
A. Agarwal, Danielle Belgrave, K. Cho, and A. Oh (eds.), Advances in Neural In-
formation Processing Systems 35: Annual Conference on Neural Information Process-
ing Systems 2022, NeurIPS 2022, New Orleans, LA, USA, November 28 - December 9,
2022, 2022. URL http://papers.nips.cc/paper_files/paper/2022/hash/
e19ab2dde2e60cf68d1ded18c38938f4-Abstract-Conference.html. 19

Simone Parisi, Victoria Dean, Deepak Pathak, and Abhinav Gupta. Interesting Object, Curi-
ous Agent: Learning Task-Agnostic Exploration. In Marc’Aurelio Ranzato, Alina Beygelz-
imer, Yann N. Dauphin, Percy Liang, and Jennifer Wortman Vaughan (eds.), Advances
in Neural Information Processing Systems 34: Annual Conference on Neural Informa-
tion Processing Systems 2021, NeurIPS 2021, December 6-14, 2021, virtual, pp. 20516–
20530, 2021. URL https://proceedings.neurips.cc/paper/2021/hash/
abe8e03e3ac71c2ec3bfb0de042638d8-Abstract.html. 17

Xue Bin Peng, Marcin Andrychowicz, Wojciech Zaremba, and Pieter Abbeel. Sim-to-Real Transfer
of Robotic Control with Dynamics Randomization. In 2018 IEEE International Conference on
Robotics and Automation, ICRA 2018, Brisbane, Australia, May 21-25, 2018, pp. 1–8. IEEE,
2018. doi: 10.1109/ICRA.2018.8460528. 17

13

https://proceedings.neurips.cc/paper/2020/hash/e615c82aba461681ade82da2da38004a-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/e615c82aba461681ade82da2da38004a-Abstract.html
https://openreview.net/forum?id=HJgcvJBFvB
https://doi.org/10.48550/arXiv.2210.05021
https://doi.org/10.48550/arXiv.2210.05021
https://arxiv.org/abs/2008.00614
https://arxiv.org/abs/2008.00614
https://arxiv.org/abs/2005.00178
https://arxiv.org/abs/2005.00178
https://proceedings.mlr.press/v202/miao23a.html
https://proceedings.mlr.press/v202/miao23a.html
https://doi.org/10.1038/nature14236
http://papers.nips.cc/paper_files/paper/2022/hash/e19ab2dde2e60cf68d1ded18c38938f4-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/e19ab2dde2e60cf68d1ded18c38938f4-Abstract-Conference.html
https://proceedings.neurips.cc/paper/2021/hash/abe8e03e3ac71c2ec3bfb0de042638d8-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/abe8e03e3ac71c2ec3bfb0de042638d8-Abstract.html

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Antonin Raffin, Ashley Hill, Adam Gleave, Anssi Kanervisto, Maximilian Ernestus, and Noah
Dormann. Stable-Baselines3: Reliable Reinforcement Learning Implementations. Journal of
Machine Learning Research, 22(268):1–8, 2021. URL http://jmlr.org/papers/v22/
20-1364.html. 21, 24

Roberta Raileanu and Tim Rocktäschel. RIDE: Rewarding Impact-Driven Exploration for
Procedurally-Generated Environments. In 8th International Conference on Learning Represen-
tations, ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020. OpenReview.net, 2020. URL
https://openreview.net/forum?id=rkg-TJBFPB. 17

Roberta Raileanu, Max Goldstein, Denis Yarats, Ilya Kostrikov, and Rob Fergus. Automatic
Data Augmentation for Generalization in Reinforcement Learning. In Marc’Aurelio Ran-
zato, Alina Beygelzimer, Yann N. Dauphin, Percy Liang, and Jennifer Wortman Vaughan
(eds.), Advances in Neural Information Processing Systems 34: Annual Conference on Neu-
ral Information Processing Systems 2021, NeurIPS 2021, December 6-14, 2021, virtual, pp.
5402–5415, 2021. URL https://proceedings.neurips.cc/paper/2021/hash/
2b38c2df6a49b97f706ec9148ce48d86-Abstract.html. 9, 17

Aditya Ramesh, Louis Kirsch, Sjoerd van Steenkiste, and Jürgen Schmidhuber. Explor-
ing through Random Curiosity with General Value Functions. In Sanmi Koyejo, S. Mo-
hamed, A. Agarwal, Danielle Belgrave, K. Cho, and A. Oh (eds.), Advances in Neural
Information Processing Systems 35: Annual Conference on Neural Information Process-
ing Systems 2022, NeurIPS 2022, New Orleans, LA, USA, November 28 - December 9,
2022, 2022. URL http://papers.nips.cc/paper_files/paper/2022/hash/
76e57c3c6b3e06f332a4832ddd6a9a12-Abstract-Conference.html. 17

Fereshteh Sadeghi and Sergey Levine. CAD2RL: Real Single-Image Flight Without a Single
Real Image. In Nancy M. Amato, Siddhartha S. Srinivasa, Nora Ayanian, and Scott Kuinder-
sma (eds.), Robotics: Science and Systems XIII, Massachusetts Institute of Technology, Cam-
bridge, Massachusetts, USA, July 12-16, 2017, 2017. doi: 10.15607/RSS.2017.XIII.034. URL
http://www.roboticsproceedings.org/rss13/p34.html. 9, 17

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal Policy
Optimization Algorithms. CoRR, abs/1707.06347, 2017. URL http://arxiv.org/abs/
1707.06347. arXiv: 1707.06347. 5

Mathieu Seurin, Florian Strub, Philippe Preux, and Olivier Pietquin. Don’t Do What Doesn’t Matter:
Intrinsic Motivation with Action Usefulness. In Zhi-Hua Zhou (ed.), Proceedings of the Thirtieth
International Joint Conference on Artificial Intelligence, IJCAI 2021, Virtual Event / Montreal,
Canada, 19-27 August 2021, pp. 2950–2956. ijcai.org, 2021. doi: 10.24963/IJCAI.2021/406.
URL https://doi.org/10.24963/ijcai.2021/406. 17

Ruoqi Shen, Sébastien Bubeck, and Suriya Gunasekar. Data Augmentation as Feature Manip-
ulation. In Kamalika Chaudhuri, Stefanie Jegelka, Le Song, Csaba Szepesvári, Gang Niu,
and Sivan Sabato (eds.), International Conference on Machine Learning, ICML 2022, 17-23
July 2022, Baltimore, Maryland, USA, volume 162 of Proceedings of Machine Learning Re-
search, pp. 19773–19808. PMLR, 2022. URL https://proceedings.mlr.press/
v162/shen22a.html. 5

Connor Shorten and Taghi M. Khoshgoftaar. A survey on Image Data Augmentation for Deep
Learning. J. Big Data, 6:60, 2019. doi: 10.1186/S40537-019-0197-0. URL https://doi.
org/10.1186/s40537-019-0197-0. 2, 5

Miguel Suau, Matthijs T. J. Spaan, and Frans A. Oliehoek. Bad Habits: Policy Confounding and
Out-of-Trajectory Generalization in RL. Reinforcement Learning Journal, 4:1711–1732, 2024.
URL https://rlj.cs.umass.edu/2024/papers/Paper216.html. 10, 17

Richard S. Sutton and Andrew G. Barto. Reinforcement learning: an introduction. Adaptive com-
putation and machine learning series. The MIT Press, Cambridge, Massachusetts, second edition
edition, 2018. ISBN 978-0-262-03924-6. 2

14

http://jmlr.org/papers/v22/20-1364.html
http://jmlr.org/papers/v22/20-1364.html
https://openreview.net/forum?id=rkg-TJBFPB
https://proceedings.neurips.cc/paper/2021/hash/2b38c2df6a49b97f706ec9148ce48d86-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/2b38c2df6a49b97f706ec9148ce48d86-Abstract.html
http://papers.nips.cc/paper_files/paper/2022/hash/76e57c3c6b3e06f332a4832ddd6a9a12-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/76e57c3c6b3e06f332a4832ddd6a9a12-Abstract-Conference.html
http://www.roboticsproceedings.org/rss13/p34.html
http://arxiv.org/abs/1707.06347
http://arxiv.org/abs/1707.06347
https://doi.org/10.24963/ijcai.2021/406
https://proceedings.mlr.press/v162/shen22a.html
https://proceedings.mlr.press/v162/shen22a.html
https://doi.org/10.1186/s40537-019-0197-0
https://doi.org/10.1186/s40537-019-0197-0
https://rlj.cs.umass.edu/2024/papers/Paper216.html

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Yujin Tang and David Ha. The Sensory Neuron as a Transformer: Permutation-Invariant
Neural Networks for Reinforcement Learning. In Marc’Aurelio Ranzato, Alina Beygelz-
imer, Yann N. Dauphin, Percy Liang, and Jennifer Wortman Vaughan (eds.), Advances
in Neural Information Processing Systems 34: Annual Conference on Neural Informa-
tion Processing Systems 2021, NeurIPS 2021, December 6-14, 2021, virtual, pp. 22574–
22587, 2021. URL https://proceedings.neurips.cc/paper/2021/hash/
be3e9d3f7d70537357c67bb3f4086846-Abstract.html. 17

Yujin Tang, Duong Nguyen, and David Ha. Neuroevolution of self-interpretable agents. In Carlos
Artemio Coello Coello (ed.), GECCO ’20: Genetic and Evolutionary Computation Conference,
Cancún Mexico, July 8-12, 2020, pp. 414–424. ACM, 2020. doi: 10.1145/3377930.3389847. 17

Yuval Tassa, Yotam Doron, Alistair Muldal, Tom Erez, Yazhe Li, Diego de Las Casas, David
Budden, Abbas Abdolmaleki, Josh Merel, Andrew Lefrancq, Timothy P. Lillicrap, and Mar-
tin A. Riedmiller. DeepMind Control Suite. CoRR, abs/1801.00690, 2018. URL http:
//arxiv.org/abs/1801.00690. arXiv: 1801.00690. 3, 6

Naftali Tishby and Noga Zaslavsky. Deep learning and the information bottleneck principle. In
2015 IEEE Information Theory Workshop, ITW 2015, Jerusalem, Israel, April 26 - May 1, 2015,
pp. 1–5. IEEE, 2015. doi: 10.1109/ITW.2015.7133169. 9, 17

Josh Tobin, Rachel Fong, Alex Ray, Jonas Schneider, Wojciech Zaremba, and Pieter Abbeel. Do-
main randomization for transferring deep neural networks from simulation to the real world. In
2017 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2017, Van-
couver, BC, Canada, September 24-28, 2017, pp. 23–30. IEEE, 2017. doi: 10.1109/IROS.2017.
8202133. 9, 17

Hado van Hasselt, Arthur Guez, and David Silver. Deep Reinforcement Learning with
Double Q-learning, December 2015. URL http://arxiv.org/abs/1509.06461.
arXiv:1509.06461 [cs]. 21

Kaixin Wang, Kuangqi Zhou, Bingyi Kang, Jiashi Feng, and Shuicheng Yan. Revisiting Intrinsic
Reward for Exploration in Procedurally Generated Environments. In The Eleventh International
Conference on Learning Representations, ICLR 2023, Kigali, Rwanda, May 1-5, 2023. OpenRe-
view.net, 2023. URL https://openreview.net/pdf?id=j3GK3_xZydY. 17

Xudong Wang, Long Lian, and Stella X. Yu. Unsupervised Visual Attention and Invariance for
Reinforcement Learning. In IEEE Conference on Computer Vision and Pattern Recognition,
CVPR 2021, virtual, June 19-25, 2021, pp. 6677–6687. Computer Vision Foundation / IEEE,
2021. doi: 10.1109/CVPR46437.2021.00661. URL https://openaccess.thecvf.
com/content/CVPR2021/html/Wang_Unsupervised_Visual_Attention_
and_Invariance_for_Reinforcement_Learning_CVPR_2021_paper.html. 9,
17

Vinı́cius Flores Zambaldi, David Raposo, Adam Santoro, Victor Bapst, Yujia Li, Igor Babuschkin,
Karl Tuyls, David P. Reichert, Timothy P. Lillicrap, Edward Lockhart, Murray Shanahan, Victoria
Langston, Razvan Pascanu, Matthew M. Botvinick, Oriol Vinyals, and Peter W. Battaglia. Re-
lational Deep Reinforcement Learning. CoRR, abs/1806.01830, 2018. URL http://arxiv.
org/abs/1806.01830. arXiv: 1806.01830. 17

Vinı́cius Flores Zambaldi, David Raposo, Adam Santoro, Victor Bapst, Yujia Li, Igor Babuschkin,
Karl Tuyls, David P. Reichert, Timothy P. Lillicrap, Edward Lockhart, Murray Shanahan, Vic-
toria Langston, Razvan Pascanu, Matthew M. Botvinick, Oriol Vinyals, and Peter W. Battaglia.
Deep reinforcement learning with relational inductive biases. In 7th International Conference on
Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019. OpenReview.net,
2019. URL https://openreview.net/forum?id=HkxaFoC9KQ. 17

Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol Vinyals. Understanding
deep learning (still) requires rethinking generalization. Commun. ACM, 64(3):107–115, 2021a.
doi: 10.1145/3446776. 2, 5

15

https://proceedings.neurips.cc/paper/2021/hash/be3e9d3f7d70537357c67bb3f4086846-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/be3e9d3f7d70537357c67bb3f4086846-Abstract.html
http://arxiv.org/abs/1801.00690
http://arxiv.org/abs/1801.00690
http://arxiv.org/abs/1509.06461
https://openreview.net/pdf?id=j3GK3_xZydY
https://openaccess.thecvf.com/content/CVPR2021/html/Wang_Unsupervised_Visual_Attention_and_Invariance_for_Reinforcement_Learning_CVPR_2021_paper.html
https://openaccess.thecvf.com/content/CVPR2021/html/Wang_Unsupervised_Visual_Attention_and_Invariance_for_Reinforcement_Learning_CVPR_2021_paper.html
https://openaccess.thecvf.com/content/CVPR2021/html/Wang_Unsupervised_Visual_Attention_and_Invariance_for_Reinforcement_Learning_CVPR_2021_paper.html
http://arxiv.org/abs/1806.01830
http://arxiv.org/abs/1806.01830
https://openreview.net/forum?id=HkxaFoC9KQ

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Tianjun Zhang, Paria Rashidinejad, Jiantao Jiao, Yuandong Tian, Joseph E Gonzalez, and Stu-
art Russell. MADE: Exploration via Maximizing Deviation from Explored Regions. In Ad-
vances in Neural Information Processing Systems, volume 34, pp. 9663–9680. Curran Asso-
ciates, Inc., 2021b. URL https://proceedings.neurips.cc/paper/2021/hash/
5011bf6d8a37692913fce3a15a51f070-Abstract.html. 17

Tianjun Zhang, Huazhe Xu, Xiaolong Wang, Yi Wu, Kurt Keutzer, Joseph E. Gonzalez, and
Yuandong Tian. NovelD: A Simple yet Effective Exploration Criterion. In Marc’Aurelio
Ranzato, Alina Beygelzimer, Yann N. Dauphin, Percy Liang, and Jennifer Wortman Vaughan
(eds.), Advances in Neural Information Processing Systems 34: Annual Conference on Neu-
ral Information Processing Systems 2021, NeurIPS 2021, December 6-14, 2021, virtual,
pp. 25217–25230, 2021c. URL https://proceedings.neurips.cc/paper/2021/
hash/d428d070622e0f4363fceae11f4a3576-Abstract.html. 17

Kaiyang Zhou, Yongxin Yang, Yu Qiao, and Tao Xiang. Domain Generalization with MixStyle. In
9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria,
May 3-7, 2021. OpenReview.net, 2021. URL https://openreview.net/forum?id=
6xHJ37MVxxp. 17

Henry Zhu, Justin Yu, Abhishek Gupta, Dhruv Shah, Kristian Hartikainen, Avi Singh, Vikash Ku-
mar, and Sergey Levine. The Ingredients of Real World Robotic Reinforcement Learning. In
8th International Conference on Learning Representations, ICLR 2020, Addis Ababa, Ethiopia,
April 26-30, 2020. OpenReview.net, 2020. URL https://openreview.net/forum?id=
rJe2syrtvS. 10, 17, 24

Ev Zisselman, Itai Lavie, Daniel Soudry, and Aviv Tamar. Explore to Generalize in Zero-Shot RL.
In Alice Oh, Tristan Naumann, Amir Globerson, Kate Saenko, Moritz Hardt, and Sergey Levine
(eds.), Advances in Neural Information Processing Systems 36: Annual Conference on Neural
Information Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 -
16, 2023, 2023. URL http://papers.nips.cc/paper_files/paper/2023/hash/
c793577b644268259b1416464a6cdb8c-Abstract-Conference.html. 10, 17

16

https://proceedings.neurips.cc/paper/2021/hash/5011bf6d8a37692913fce3a15a51f070-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/5011bf6d8a37692913fce3a15a51f070-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/d428d070622e0f4363fceae11f4a3576-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/d428d070622e0f4363fceae11f4a3576-Abstract.html
https://openreview.net/forum?id=6xHJ37MVxxp
https://openreview.net/forum?id=6xHJ37MVxxp
https://openreview.net/forum?id=rJe2syrtvS
https://openreview.net/forum?id=rJe2syrtvS
http://papers.nips.cc/paper_files/paper/2023/hash/c793577b644268259b1416464a6cdb8c-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/c793577b644268259b1416464a6cdb8c-Abstract-Conference.html

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

A RELATED WORK

A.1 EXTENDED RELATED WORK

A.1.1 GENERALISATION IN CMDPS

The contextual MDP framework is a very general framework that encompasses many fields in
RL that study zero-shot generalisation. For example, the sim-to-real setting often encountered in
robotics is a special case of the ZSPT setting for CMDPs (Kirk et al., 2023). An approach used
to improve generalisation in the sim-to-real setting is domain randomisation (Tobin et al., 2017;
Sadeghi & Levine, 2017; Peng et al., 2018), where the task distribution during training is explic-
itly increased in order to increase the probability of encompassing the testing tasks in the training
distribution. This differs from our work in that we don’t explicitly generate more (unreachable)
tasks. However, our work could be viewed as implicitly generating more reachable tasks through
increased exploration. Another approach that increases the task distribution is data augmentation
(Raileanu et al., 2021; Lee et al., 2020; Zhou et al., 2021). These approaches work by applying a
set of given transformations to the states with the prior knowledge that these transformations leave
the output (policy or value function) invariant. In this paper, we argue that our approach implicitly
induces a form of invariant data augmentation on the states. However, this differs from the other
work cited here in that we don’t explicitly apply transformations to our states, nor do we require
prior knowledge on which transformations leave the policy invariant.

So far we have mentioned some approaches that increase the number and variability of the training
tasks. Other approaches instead try to explicitly bridge the gap between the training and testing tasks.
For example, some use inductive biases to encourage learning generalisable functions (Zambaldi
et al., 2018; 2019; Kansky et al., 2017; Wang et al., 2021; Tang et al., 2020; Tang & Ha, 2021).
Others use regularisation techniques from supervised learning to boost generalisation performance
(Cobbe et al., 2019; Tishby & Zaslavsky, 2015; Igl et al., 2019; Lu et al., 2020; Eysenbach et al.,
2021). We mention only a selection of approaches here, for a more comprehensive overview we
refer to the survey by Kirk et al. (2023).

All the approaches above use techniques that are not necessarily specific to RL (representation learn-
ing, regularisation, etc.). In this work, we instead explore how exploration in RL can be used to
improve generalisation.

A.1.2 EXPLORATION IN CMDPS

There have been numerous methods of exploration designed specifically for or that have shown
promising performance on CMDPs. Some approaches train additional adversarial agents to help
with exploration (Flet-Berliac et al., 2021; Campero et al., 2021; Fickinger et al., 2021). Others try
to exploit actions that significantly impact the environment (Seurin et al., 2021; Parisi et al., 2021)
or that cause a significant change in some metric (Raileanu & Rocktäschel, 2020; Zhang et al.,
2021c;b; Ramesh et al., 2022). More recently, some approaches have been developed that try to
generalise episodic state visitation counts to continuous spaces (Jo et al., 2022; Henaff et al., 2022)
and several studies have shown the importance of this for exploration in CMDPs (Wang et al., 2023;
Henaff et al., 2023). All these methods focus on trading off exploration and exploitation to achieve
maximal performance in the training tasks as fast and efficiently as possible. However, in this paper,
we examine the exploration-exploitation trade-off to maximise generalisation performance in testing
tasks.

In Zisselman et al. (2023), the authors leverage exploration at test time to move the agent towards
states where it can confidently solve the task, thereby increasing test time performance. Our work
differs in that we leverage exploration during training time to increase the number of states from
which the agent can confidently solve the test tasks. Closest to our work is Jiang et al. (2023),
Zhu et al. (2020) and Suau et al. (2024). Jiang et al. (2023) don’t make a distinction between
reachable and unreachable generalisation and provide intuition which we argue mainly applies to
reachable generalisation (see Appendix A.2). Moreover, their novel approach only works for off-
policy algorithms, whereas ours could be applied to both off-policy and on-policy methods. In
Zhu et al. (2020), the authors learn a reset controller that increases the diversity of the agent’s start
states. However, they only argue (and empirically show) that this benefits reachable generalisation.
The concurrent work in Suau et al. (2024) introduces the notion of policy confounding in out-of-

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

trajectory generalisation. The issue of policy confounding is complementary to our intuition for
unreachable generalisation. However, it is unclear how out-of-trajectory generalisation equates to
reachable or unreachable generalisation. Moreover, they do not propose a novel, scalable approach
to solve the issue.

A.2 DISCUSSION ON RELATED WORK

Jiang et al. (2023) argue that generalisation in RL extends beyond representation learning. They do
so with an example in a tabular grid-world environment. In the environment they describe the agent
during training always starts in the top left corner of the grid, and the goal is always in the top right
corner. During testing the agent starts in a different position in the grid-world (in their example, the
lower left corner). This is according to our definition an example of a reachable task. They then
argue (in the way we described in Section 3.2) that more exploration can improve generalisation to
these tasks.

They extend their intuition to non-tabular CMDPs by arguing that in certain cases two states that
are unreachable from each other, can nonetheless inside a neural network map to similar represen-
tations. As a result, even though a state in the input space is unreachable, it can be mapped to
something reachable in the latent representational space and therefore the reachable generalisation
arguments apply again. For this reason, the generalisation benefits from more exploration can go
beyond representation learning.

Relating it to the illustrative example we provide in Figure 1, we argue this intuition considers the
generalisation benefits one might obtain from learning to act optimally in more abstracted states.
For example, in Jiang et al. (2023)’s grid-world the lower states would have normally unseen values,
which is represented by increasing the number of columns on which we train in Figure 1c and 1d.
However, in Section 3.2 we argue that specifically unreachable generalisation can benefit as well
from training on more states belonging to the same abstracted states (represented by increasing the
number of rows on which we train in Figure 1c and 1d). Training on more of these states could
encourage the agent to learn representations that map different unreachable states to the same latent
representation (or equivalently, abstracted states). As such, we argue the generalisation benefits from
more exploration can in part be attributed to an implicit form of representation learning.

B GENERALISATION TO REACHABLE TASKS

In this section, we elaborate on why a policy that is optimal in all reachable states, is guaranteed to
perform well when testing on reachable tasks. As a first step, we point out a corollary of definition
1 about reachable states:

Corollary 0.1. Any state s′ that is reachable from a state s ∈ Sr(M|Strain
0

) in the reachable set,
has to be itself in the reachable set: s′ ∈ Sr(M|Strain

0
).

Why this is the case is clear to see with the definition of reachability in terms of sequences of actions:
concatenate the sequence of actions with a non-zero probability of ending up in s with the sequence
of actions with a non-zero probability of ending up in s′ when starting from s. This will result in a
sequence of actions with a non-zero probability of ending up in s′. In short, this corollary states that
you cannot leave the reachable set Sr(M|Strain

0
) through interaction with the environment.

From this logically follows the following corollary:

Corollary 0.2. An optimal policy π that achieves maximal return from any state in the reachable
state space Sr(M|Strain

0
), will have optimal performance in the reachable generalisation setting.

Recall that performance in a ZSPT problem is defined as the performance in the testing MDP
M|Stest

0
, which in the case of reachable generalisation, has a state space that consists only of reach-

able states (due to Corollary 0.1). It follows naturally that a policy that is optimal on the entire
reachable state space Sr(M|Strain

0
) also has to be optimal inM|Stest

0
.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

C EXPERIMENTAL DETAILS

C.1 ILLUSTRATIVE CMDP

Training is done on the four tasks in Figure 1a and unreachable generalisation is evaluated on new
tasks with a completely different background colour. For pure exploration, we sample uniformly
random actions at each timestep (ϵ-greedy with ϵ = 1). We compare Explore-Go to a baseline using
regular PPO. In Figure 1b we can see that the PPO baseline achieves approximately optimal train-
ing performance but is not consistently able to generalise to the unreachable tasks with a different
background colour. PPO trains mostly on on-policy data, so when the policy converges to the op-
timal policy on the training tasks it trains almost exclusively on the on-policy states in Figure 1c.
As we hypothesise, this likely causes the agent to overfit to the background colour, which will hurt
its generalisation capabilities to unreachable states with an unseen background colour. On the other
hand, Explore-Go maintains state diversity by performing pure exploration steps at the start of every
episode. As such, the state distribution on which it trains resembles the distribution from Figure
1d. As we can see in Figure 1b, Explore-Go learns slower, but in the end achieves similar training
performance to PPO and performs significantly better in the unreachable test tasks. We speculate
this is due to the increased diversity of the state tasks on which it trains.

ENVIRONMENT DETAILS

The training tasks for the illustrative CMDP are the ones depicted in Figure 1a. The unreachable
testing tasks consist of 4 tasks with the same starting positions as found in the training tasks (the end-
point of the arms) but with a white background colour. The states the agent observes are structured
as RGB images with shape (3, 5, 5). The entire 5 × 5 grid is encoded with the background colour
of the particular task, except for the goal position (at (2, 2)) which is dark green ((0,0.5,0) in RGB)
and the agent (wherever it is located at that time) which is dark red ((0.5,0,0) in RGB). The specific
background colours are the following:

• Training task 1: (0,0,1)

• Training task 2: (0,1,0)

• Training task 3: (1,0,0)

• Training task 4: (1,0,1)

• Testing tasks: (1,1,1)

Moving into a wall of the cross will leave the agent position unchanged, except for the additional
transitions between the cross endpoints. Moving into the goal position (middle of the cross) will
terminate the episode and give a reward of 1. All other transitions give a reward of 0. The agent is
timed out after 20 steps.

IMPLEMENTATION DETAILS

For PPO we used the implementation by Moon et al. (2022) which we adapted for PPO + Explore-
Go. The hyperparameters for both PPO and PPO + Explore-Go can be found in Table 1. The only
additional hyperparameter that Explore-Go uses is the maximal number of pure exploration steps K,
which we choose to be K = 8. Both algorithms use network architectures that flatten the (3, 5, 5)
observation and feed it through a fully connected network with a ReLU activation function. The
hidden dimensions for both the actor and critic are [128, 64, 32] followed by an output layer of size
[1] for the critic and size [|A|] for the actor. The output of the actor is used as logits in a categorical
distribution over the actions.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Table 1: Hyper-parameters used for the illustrative CMDP experiment

Illustrative
Hyper-parameter Value
Total timesteps 50 000
Vectorised environments 4

PPO
timesteps per rollout 10
epochs per rollout 3
minibatches per epoch 8
Discount factor γ 0.9
GAE smoothing parameter (λ) 0.95
Entropy bonus 0.01
PPO clip range (ϵ) 0.2
Reward normalisation? No
Max. gradient norm .5
Shared actor and critic networks No

Adam
Learning rate 1× 10−4

Epsilon 1× 10−5

C.2 FOUR ROOMS

In all of our Four Rooms experiments, we will train on 40 different training tasks and test on either
a reachable or unreachable task set of size 120. The 40 training tasks differ in the agent location,
agent direction, goal location and the location of the doorways (see Figure 7 for some example tasks
in Four Rooms).

In this environment, reachability is regulated through variations in the goal location and location of
the doorways. If two states share their doorways and goal location, then they are both reachable
from one another. Conversely, if two states differ in either the doorways or goal location, they are
unreachable. The reachable task set is constructed by taking every training task and changing only
the agent location and agent direction (keeping the location of the doorways and goal location the
same). This is repeated four times to generate a total number of reachable tasks of 4×40 = 120. For
the unreachable task set, we take 40 different configurations of the doorways that all differ from the
ones in the training task. For each of those 40 different doorway configurations, we generate four
new goal locations, agent locations and agent directions. This also generates a total of 4× 40 = 120
unreachable tasks.

ENVIRONMENT DETAILS

The Four Rooms grid world used in our experiments is adapted from the Minigrid benchmark
(Chevalier-Boisvert et al., 2023) and differs in certain ways from the default Minigrid configura-
tion. For one, the action space is reduced from the default seven actions (turn left, turn right, move
forward, pick up an object, drop an object, toggle/activate an object, end episode) to just the first
three actions (turn left, turn right, move forward). Also, the reward function is changed slightly to
reward 1 for successfully reaching the goal and 0 otherwise (as opposed to the 1 − 0.9 ∗ (step count

max steps)

given upon success by the default Minigrid environment). Additionally, the size of the environment
is reduced from the default 19 (8× 8 rooms) to 9 (3× 3 rooms).

Furthermore, the observation space is made fully observable and customised. Our agent receives a
4×9×9 tensor that is centred around the agent’s current location. The four binary-encoded channels
contain the following information:

• Channel 0: The location of the agent (always in the centre).
• Channel 1: The hypothetical location where the agent would move to given the current

direction it’s facing (and ignoring any collisions with walls).

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Training Testing

Figure 7: Some example tasks in the Four Rooms environment for reachable generalisation. For
unreachable generalisation both the goal and doorway locations would be different in testing.

• Channel 2: The location of the walls.

• Channel 3: The location of the goal.

The implementation of Four Rooms is also customised to allow for more control over the factors of
variation (topology, agent location, agent direction, goal location) during the generation of a task.
This acts functionally the same as the ReseedWrapper from Minigrid except that it allows for
more control and therefore easier design and construction of the training and testing sets. The code
for our Four Room implementation can be found at <redacted for review>.

EXPLORE-GO WITH DQN, PPO AND SAC

For the DQN, PPO and SAC experiments, we take the implementations from the Stable-Baselines3
(Raffin et al., 2021) repository and add Explore-Go to them (see code at <redacted for
review>). We adapt the SAC implementation to work with discrete action space. For the DQN
implementation, we also add support for double Q learning (van Hasselt et al., 2015). For all exper-
iments, the network architecture consists of three convolutional layers (see parameters in Table 2)
followed by some fully connected layers with ReLU activation functions (except for the last layer).
The number and width of the fully connected layers depend on the algorithm used. For DQN we
have three fully connected layers with hidden dimensions [512, 128, 64]. For PPO we have two
times three fully connected layers (one for the actor and one for the critic) with hidden dimensions
[512, 128, 64]. For SAC we have the same but with hidden dimensions [512, 256, 256]. A full list of
parameters can be found in Table 3 for DQN, Table 4 for PPO and Table 5 for SAC.

The hyperparameter K for Explore-Go that determines the maximum number of steps is chosen
by visually inspecting a random agent walking in the Four Rooms environment. The idea behind
the process is that we rather have K too big (interactions with the environment wasted), than too
small (doesn’t find diverse new starting positions). So we choose K = 60 for the Four Rooms
environment since we find that an average of 30 steps is enough for the agent to randomly explore a
decent proportion of the environment.

EXPLORE-GO, DQN AND TEE

For the experiments comparing Explore-Go with DQN and TEE, we use the same hyperparameters
as for the other DQN experiments. For the TEE approach, we use a coefficient of α = 0.1. For the
results with different values of TEE coefficient, we refer to Appendix D.2.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

When comparing Explore-Go, DQN and TEE we introduce four new metrics. The first measures
the fraction of state-action space that is explored (Figure 4a). This is calculated by enumerating all
possible state-actions in the reachable state space and keeping track of which ones are encountered
at some point during training. This measures how effective the exploration approach is (a higher
fraction means the agent explored more states). The second and third metrics measure the diversity
present in the replay buffer throughout training (Figures 4b and 4c). They do so, again, by enumer-
ating all possible state-actions (Figure 4b) or states (Figure 4c) in the reachable space and checking
which ones are present in the buffer at that time. The last metric measures how optimal the agent
is over the entire reachable space (Figure 4d). It measures this by enumerating all possible states in
the reachable space and checking for which ones the agent chooses an action that is optimal (there
can be multiple).

Table 2: Hyper-parameters for the CNN part in the Four Rooms experiment

CNN
Kernel size 3
Stride 1
Padding 1
Padding mode Circular
Channels 32

Table 3: Hyper-parameters for Four Rooms DQN

Four Rooms DQN
Hyper-parameter Value
Total timesteps 500 000
Vectorised environments 10
Buffer size 50 000
Batch size 256
Discount factor γ 0.99
Max. gradient norm 1
Gradient steps 1
Train frequency (steps) 10
Target update interval (steps) 10
Target soft update coefficient τ 0.01
Exploration initial ϵ 1
Exploration final ϵ 0.01
Exploration fraction ϵ 0.5

Adam
Learning rate 1× 10−4

Weight decay 1× 10−5

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

Table 4: Hyper-parameters for Four Rooms PPO

Four Rooms PPO
Hyper-parameter Value
Total timesteps 1 500 000
Vectorised environments 10
Batch size 64
Discount factor γ 0.99
Max. gradient norm 0.5
of epochs 10
steps collected per rollout 5 120
Entropy coeff 0.0
Value function coeff 0.5
GAE coeff λ 0.95
Share feature extractor True
Clip range 0.2

Adam
Learning rate 1× 10−4

Table 5: Hyper-parameters for Four Rooms SAC

Four Rooms SAC
Hyper-parameter Value
Total timesteps 300 000
Vectorised environments 10
Buffer size 200 000
Batch size 256
Discount factor γ 0.99
Max. gradient norm 1
Gradient steps 10
Train frequency (steps) 10
Target update interval (steps) 10
Target soft update coefficient τ 0.005
Warmup phase 20 000
Share feature extractor False
Target entropy auto
Entropy coeff auto

Adam
Learning rate 5× 10−4

C.3 DEEPMIND CONTROL SUITE

For the DeepMind Control Suite we adapt the environment so that at the start of each episode the
initial configuration of the robot body and target location are drawn based on a given list of random
seeds. This allows us to control the task space of the environment so that we can define a limited
set of tasks on which the agent is allowed to train. To compute mean performance and confidence
intervals we average all our DMC experiments over 10 seeds for the agent. Each agent seed trains
on its own set of training tasks. For a training set of size N , agent i gets to train on tasks generated
with seeds {i∗N, i∗N+1, ..., i∗N+N−1}. Testing is always done on 100 episodes from the full
distribution. For the state-based experiments we train on N = 5 training tasks and for the image-
based experiments, we train on N = 30 training tasks. The code can be found at <redacted for
review>.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

The standard DMC benchmark has no terminal states and instead has a fixed episode length of 1000
after which the agent times out. However, for the Finger Turn and Reacher environments, an episode
length of 1000 is unnecessarily long. For these two environments, the goal is to position the robot
body in such a way that some designated part is located at a target location. Once it successfully
reaches this target location, the optimal policy is to do nothing. This means that in many of the
Finger Turn and Reacher episodes, the agent only moves in the first 100 or so steps and then does
nothing for 900 more. To simplify the training on these environments a bit we instead shorten the
episode length to 500.

For the state-based experiments, we use the Explore-Go and SAC implementation adapted from
Stable-Baselines3 (Raffin et al., 2021). Most of the hyperparameters for SAC are taken from (Zhu
et al., 2020), but a full list can be found in Table 6. For the image-based experiments, we add
Explore-Go to the RAD implementation from (Hansen & Wang, 2021) and use the hyperparameters
from (Laskin et al., 2020). For all DMC experiments, we use a maximum pure exploration duration
K = 200. We judged this to be high enough to generate diverse states in most environments.

Table 6: Hyper-parameters for Four Rooms SAC

DMC SAC
Hyper-parameter Value
Total timesteps 500 000
Vectorised environments 1
Buffer size 100 000
Batch size 128
Discount factor γ 0.99
Gradient steps 1
Train frequency (steps) 1
Target update interval (steps) 1
Target soft update coefficient τ 0.005
Warmup phase 10 000
Share feature extractor False
of layers 2
Layer size 256
Target entropy auto
Entropy coeff auto

Adam
Learning rate 1× 10−3

D ADDITIONAL EXPERIMENTS

D.1 ADDING PURE EXPLORATION EXPERIENCE TO THE BUFFER

In Figure 8 we show an ablation of Explore-Go where we also add all the pure exploration experience
to the replay buffer (Explore-Go with PE, green). It shows that adding this experience to the buffer
makes the performance of Explore-Go worse. This could be due to the highly off-policy nature of
the pure exploration data.

D.2 TEE WITH DIFFERENT COEFFICIENTS α

TEE has an additional hyperparameter α that determines how much the individual rollout workers
are biased towards exploration (α < 1) or exploitation (α > 1). Figure 9 shows different values of
epsiloni for different values of α. Figure 10 shows the training and testing performance and Figure
11 the exploration effectiveness, buffer diversity and policy optimality for the various values of α.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

100 200 300 400 500

Frames (1e3)

(a) Training

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

U
nd

is
co

un
te

d
M

ea
n

R
et

ur
n

Training

Method:

DQN

Explore-Go

Explore-Go with PE

100 200 300 400 500

Frames (1e3)

(b) Reachable Test

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

U
nd

is
co

un
te

d
M

ea
n

R
et

ur
n

Reachable Test

100 200 300 400 500

Frames (1e3)

(c) Unreachable Test

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

U
nd

is
co

un
te

d
M

ea
n

R
et

ur
n

Unreachable Test

Figure 8: Performance of DQN, DQN+Explore-Go and DQN+Explore-Go where the pure explo-
ration is also added to the replay buffer. Performance is in the Four Rooms environment on the
(a) training set, (b) reachable test set and (c) unreachable test set. Shown are the mean and 95%
confidence intervals over 50 seeds.

0 1 2 3 4 5 6 7 8 9
Agent ID

0.0

0.2

0.4

0.6

0.8

1.0

Ex
pl

or
at

io
n

Co
ef

fic
ie

nt

Exploration Coefficients

0.1
0.5
1
2
5

Figure 9: Exploration coefficients ϵi for 10 rollout workers for different values of α.

D.3 CHEETAH RUN AND WALKER WALK

Here we show the results for Cheetah Run and Walker Walk in Figure 12. We use the same hy-
perparameters as for the other DMC experiments, except we change the episode length back to the
original 1000 steps. For both environments we train on task sets of size N = 5. In the figure, we can
see that for both Cheetah Run and Walker Walk, there is effectively no generalisation gap between
training and testing (the solid and dotted lines mostly overlap). This means these environments are
not ideal for testing generalisation performance.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

100 200 300 400 500

Frames (1e3)

(a) Training

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

U
nd

is
co

un
te

d
M

ea
n

R
et

ur
n

Training

Method:

TEE 0.1

TEE 0.5

TEE 1

TEE 2

TEE 5

100 200 300 400 500

Frames (1e3)

(b) Reachable Test

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

U
nd

is
co

un
te

d
M

ea
n

R
et

ur
n

Reachable Test

100 200 300 400 500

Frames (1e3)

(c) Unreachable Test

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

U
nd

is
co

un
te

d
M

ea
n

R
et

ur
n

Unreachable Test

Figure 10: Performance of DQN+TEE with coefficients α = [0.1, 0.5, 1, 2, 5] in Four Rooms on the
(a) training set, (b) reachable test set and (c) unreachable test set. Shown are the mean and 95%
confidence intervals over 10 seeds.

0 100 200 300 400 500

Frames (1e3)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

F
ra

ct
io

n
of

st
at

e-
ac

ti
on

s
en

co
un

te
re

d

Exploration of State-action Space

Method:

TEE 0.1

TEE 0.5

TEE 1

TEE 2

TEE 5

(a) Exploration

0 100 200 300 400 500

Frames (1e3)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

F
ra

ct
io

n
of

st
at

e-
ac

ti
on

s
in

th
e

bu
ff

er

Buffer Diversity

(b) State-action Diversity

0 100 200 300 400 500

Frames (1e3)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

F
ra

ct
io

n
of

st
at

es
in

th
e

bu
ff

er

Buffer Diversity

(c) State Diversity

100 200 300 400 500

Frames (1e3)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

F
ra

ct
io

n
W

he
re

G
re

ed
y

A
ct

io
n

Is
O

pt
im

al
Policy Optimality

(d) Policy Optimality

Figure 11: Comparing DQN+TEE with coefficients α = [0.1, 0.5, 1, 2, 5] in Four Rooms for (a)
fraction of state-action space explored, (b) fraction of state-action or (c) state space in the buffer and
(d) fraction of states where the policy chooses the optimal action. Shown are the mean and 95%
confidence intervals over 10 seeds for (a)-(c) and 50 seeds for (d).

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

0 100 200 300 400 500
Steps (1e3)

0

200

400

600

800

1000

Un
di

sc
ou

nt
ed

 M
ea

n
Re

tu
rn

Performance In Cheetah Run

Algorithm
SAC (Baseline)
SAC + Explore-Go

Evaluation Type
Train
Test

(a) Cheetah Run

0 100 200 300 400 500
Steps (1e3)

0

200

400

600

800

1000

Un
di

sc
ou

nt
ed

 M
ea

n
Re

tu
rn

Performance In Walker Walk

(b) Walker Walk

Figure 12: Performance of SAC and Explore-Go on state-based (a) Cheetah Run and (b) Walker
Walk. Shown are the mean and 95% confidence intervals over 10 seeds.

E PSEUDO-CODE

Algorithm 1: Generic CollectRollouts + Explore-Go
Input: number of steps to collect N , pure exploration policy πPE , max number of pure

exploration steps K
k ← Uniform(0,K);
Drollout ← {};
num steps collected← 0;
while num steps collected < N do

if episode step < k then
Sample transition t using πPE ;

else
Sample transition t;
Add t to Drollout;
num steps collected += 1;

end if
episode step += 1;
if end of episode then

k ← Uniform(0,K);
episode step← 0;
Reset environment;

end if
end
Return Drollout;

Figure 13: An example of pseudo-code for Explore-Go combined with a generic rollout collection
function found in some form in most RL algorithms.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

Algorithm 2: PPO + Explore-Go
Input: PPO agent PPO, pure exploration agent PE, max number of pure exploration steps K
k ← Uniform(0,K);
i← 0 ▷ Counts steps within an episode;
for iteration = 0, 1, 2, ... do
DPPO ← {};
DPE ← {};
for step = 0, 1, 2, ..., T do

if i < k then
Sample transition t by running PE;
Add t to DPE ;

else
Sample transition t by running PPO;
Add t to DPPO;

end if
i← i+ 1;
if end of episode then

k ← Uniform(0,K);
i← 0;
Reset environment;

end if
end
Update PPO with trajectories DPPO;
(Optional) Update PE with trajectories DPE ;

end

Figure 14: An example of pseudo-code for Explore-Go combined with an on-policy method PPO.

28

	Introduction
	Background
	Contextual Markov decision process

	The influence of reachability on generalisation
	Reachability in multi-task RL
	Generalisation to reachable tasks
	Generalisation to unreachable tasks

	Explore-Go: training on more reachable tasks
	Experiments
	Explore-Go with various algorithms
	Reachable States vs Reachable Tasks
	Scaling up to DeepMind Control Suite

	Related work
	Conclusion
	Related work
	Extended related work
	Generalisation in CMDPs
	Exploration in CMDPs

	Discussion on related work

	Generalisation to reachable tasks
	Experimental details
	Illustrative CMDP
	Four Rooms
	DeepMind Control Suite

	Additional Experiments
	Adding pure exploration experience to the buffer
	TEE with different coefficients
	Cheetah Run and Walker Walk

	Pseudo-code

