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ABSTRACT

Input dimensions are unnecessary for a given task when the target function can
be expressed without such dimensions. Object’s background in image recognition
or redundant sentences in text classification are examples of unnecessary dimen-
sions that are often present in datasets. Deep neural networks achieve remarkable
generalization performance despite the presence of unnecessary dimensions but it
is unclear whether these dimensions negatively affect neural networks or how. In
this paper, we investigate the impact of unnecessary input dimensions on one of
the central issues of machine learning: the number of training examples needed
to achieve high generalization performance, which we refer to as the network’s
data efficiency. In a series of analyses with multi-layer perceptrons and deep
convolutional neural networks, we show that the network’s data efficiency depends
on whether the unnecessary dimensions are task-unrelated or task-related (unnec-
essary due to redundancy). Namely, we demonstrate that increasing the number
of task-unrelated dimensions leads to an incorrect inductive bias and as a result
degrade the data efficiency, while increasing the number of task-related dimensions
helps to alleviate the negative impact of the task-unrelated dimensions. These
results highlight the need for mechanisms that remove task-unrelated dimensions,
such as crops or foveation for image classification, to enable data efficiency gains.

1 INTRODUCTION

The success of Deep Neural Networks (DNNs) contrasts with the still distant goal of learning in
a data efficient manner, as for biological systems (Lake et al., 2015; Botvinick et al., 2019). The
capability to learn with fewer training examples and achieve high generalization performance is key
to solving more complex tasks and reducing application’s costs. One of the main obstacles to develop
data-efficient DNNs is the difficulty of understanding the aspects that cause the need for large amount
of training examples.

Little is known about the effects of the input data representation to the DNN’s data efficiency.
A striking property of most datasets is that the data representation contains dimensions that are
unnecessary to perform the task, ie., the target function can be expressed without such unnecessary
dimensions. The conventional wisdom is that the network learns to capture the useful patterns in the
dataset and discards the unnecessary input dimensions. Examples of unnecessary input dimensions
are image regions or sentences in a text that are unrelated and/or redundant to the task at hand. This
begs the question: is more data needed to learn to discard such unnecessary input dimensions and
what neural mechanisms does the network use to do so? In this paper, we answer these questions
by analysing two distinct types of unnecessary input dimensions: task-unrelated and task-related
dimensions. The former are always unnecessary and the latter are unnecessary only when they are
redundant.

Our analysis builds on theoretical results that we derive for linear networks with square loss with
unnecessary dimensions based on Gaussian noise (task-unrelated) and linear combinations of other
dimensions (task-related). These results are extended by providing empirical evidence on synthetic
and natural datasets, with more general types of unnecessary input dimensions such as context in
object recognition and redundant sentences in text classification. We use Multi-Layer Perceptrons
(MLPs) and Deep Convolutional Neural Networks (DCNNs). We conclude that increasing the number
of task-unrelated dimensions degrades the data efficiency, while increasing the number of task-related
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dimensions helps to alleviate the negative impact of the task-unrelated dimensions. Also, we observe
that DCNNs are affected by unnecessary dimensions in similar ways as the aforementioned cases.
Furthermore, an analysis of the neural activity reveals that the neurons in all layers learn to discard
the unnecessary features by responding only to the target object.

These results add to a growing body of literature that analyses the effect of object’s background
in image recognition and more generally our results add to the ongoing efforts to understand the
generalization abilities of DNNs with respect to the dataset. In the following, we position our work in
these two strands of research:

Impact of Object’s Background Previous works have shown that DNNs for image recognition
fail to classify objects in novel and uncommon backgrounds (Choi et al., 2012; Sun & Jacobs,
2017; Dvornik et al., 2018; Beery et al., 2018; Volokitin et al., 2017). Remarkably, popular object
recognition datasets are biased to such an extent that DNNs can predict the object category even
when the objects is removed from the image (Zhu et al., 2017). Barbu et al. (2019) introduced a
new benchmark which addresses the biased co-occurrence of objects and background, among others,
such as bias in the object’s viewpoint. DNNs exhibit large performance drops in this benchmark
compared to ImageNet (Deng et al., 2009). Recently, Borji (2020) has shown that a large portion
of the performance drop comes from the bias in object’s background, as classifying the object
in isolation substantially alleviates the performance drop. Also, there is a plethora of methods
based on data augmentation and transfer learning that can help alleviating the bias with object’s
background (Shorten & Khoshgoftaar, 2019).

In contrast to previous works, we analyse the impact of the object’s background to the DNN’s data
efficiency when the dataset is unbiased, ie., the statistics of the object’s background are similar
between training and testing and there is no bias in the co-occurrence of object and background. To
the best of our knowledge, our work is the first to report that the presence of object’s background
harms the data efficiency of the network when the object’s background is unbiased.

Overparametrization and Data Dimensionality A remarkable characteristic of DNNs is that their
accuracy does not degrade when the network’s width is increased by adding more hidden units, despite
overparameterization (ie., the network has a larger number of parameters than training examples that
can lead to overfitting) (Poggio et al., 2017; Novak et al., 2018). Adding unnecessary input dimensions
is another way to increase the width and the number of parameters of the network. Yet, we show
that the effect of overparameterization by increasing the amount of hidden units is different from
overparameterization by increasing the unnecessary input dimensions, as the latter degrades the
accuracy when the dimensions are task-unrelated. This finding establishes a boundary of the DNNs’
robustness to overparametrization.

Another strand of research relates the structure of the dataset with the generalization ability of the
network. Several works in statistical learning theory for kernel machines relate the spectrum of
the dataset with the generalization performance (Zhang, 2005). For neural networks, Recanatesi
et al. (2019); Ansuini et al. (2019) define the intrinsic dimensionality based on the dimension of
the data manifold. These works analyse how the network reduces the intrinsic dimension across
layers. Yet, these metrics based on manifolds do not provide insights about how specific aspects of
the dataset, e.g., unnecessary dimensions, contribute to the intrinsic dimensionality.

2 UNNECESSARY INPUT DIMENSIONS ON LINEAR NETWORKS AND MLPS

In this section we introduce theoretical results for linear network that serve as a basis for the rest of
the analysis. Then, we report results with linear networks and MLPs without the assumptions made
for the theoretical development.

2.1 EXACT SOLUTION FOR LINEAR NETWORKS

We use (X,Y ) to denote the dataset, which we assume to be generated through a linear function,
where X = [x1 · · ·xn] ∈ Rp×n contains n independent observations of p uncorrelated features, and
Y = [y1 · · ·yn] ∈ Ro×n denotes the respective output. We define p as the minimal dimensionality.
We aim at estimating the function f∗, such that, for every example (xi,yi), yi = f∗(xi) holds
approximately. The choice of a linear network f(x) = Wx, with W ∈ Ro×p and the square loss as
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cost function assures that, even for p > n (overparameterized case), optimization through gradient
descent leads to a unique solution that corresponds, among all, to the one with minimum norm,
namely the pseudo-inverse (Schölkopf et al., 2001):

W+ = Y (X>X)−1X>, with p > n. (1)

Given a dataset, we increase the amount of input dimensions by adding task-related dimensions, task-
unrelated dimensions, or a combination of both, task-related/unrelated dimensions. We concatenate
those to the p original dimensions and predict the effect on the generalization performance. In the
following, we introduce the theoretical results for each case separately assuming the network operates
in the overparametrized regime, p > n, which is the most common in practice:

Task-related dimensions Let T ∈ Rd×p be the linear transformation which we apply on the
vector of p minimal dimensions to generate unnecessary redundant dimensions. The dataset with
unnecessary dimensions is the result of the transformation F = [I>p T>]> ∈ R(p+d)×p, where Ip
denotes the identity matrix of size p. The solution for the overparameterized case corresponds to

W+ = Y (X>F>FX)−1X>F>. (2)

We assume F is a tight frame (Daubechies, 1992), ie., there is a unique scaling factor a > 0
such that ‖Fv‖2 = a‖v‖2 holds for any vector v ∈ Rp. Thus, Eq. 2 corresponds to W+ =
a−1Y (X>X)−1X>F>, which is the same as the linear network learnt without task-related dimen-
sions in Eq. 1 (the scaling constant a compensates with the term at the numerator at prediction).

Task-unrelated dimensions For each example i, we denote ni ∈ Rd a vector of d task-unrelated
dimension independent from xi ∈ Rp. The new input vector is [x>i n>i ]>. Intuitively, if n>i is
randomly generated, it is expected that as the task-unrelated dimensions increase there is more
overfitting. Yet, there are exceptions to this intuition, e.g., when the labels of the dataset are noisy.
To illustrate this point, we consider task-unrelated dimensions distributed as a Gaussian, with zero
mean, diagonal covariance and same variance σ2: (ni)` ∼ N (0, σ2), ` = 1, . . . , d, i = 1, . . . , n. In
this case, the following approximation of the prediction of the linear network holds for very large d:

W+[x>test n
>
test]

> ' Y (X>X + dσ2In)−1X>xtest, (3)

where [x>test n
>
test]

> is an arbitrary test sample (see App. A.1 for the details). We can observe by
analysing Eq. 3 that dσ2In corresponds to the Tikhonov regularization term, with regularization
parameter λ = dσ2. Thus, the presence of a large number of task-unrelated Gaussian dimensions
is equivalent to a network trained on the dataset without task-unrelated dimensions, biased towards
small `2 norm weights.

Combining task-related and task-unrelated dimensions Let d be the total number of unnec-
essary input dimensions. Among those, a percentage ν ∈ [0, 1] are task-related and the rest are
task-unrelated. The aforementioned assumptions for the unnecessary dimensions lead to a solution
affected by the `2 bias, with respect to the minimal dimensions problem. This effect can mitigated by
the presence of task-related dimensions. See App. A.2 for further details.

2.2 RESULTS OF LINEAR NETWORKS

We now evaluate the linear networks on a regression and a classification problem, following the
assumptions above. For the regression experiment, we generate a dataset using a linear teacher
network yi = W ∗xi, with W ∗ ∈ R2×30 (ie., o = 2, p = 30) components, generated from a standard
distribution. The task-unrelated dimensions have σ = 0.1, while task-related dimensions are linear
combinations of the p (= 30) minimal dimensions of the dataset through a tight frame. For the
classification experiment, we take a regression network, as for the regression case, and we quantize
the output to two categories. In both regression and classification, we analyse the effects of a number
of unnecessary features between 2 to 500. We repeat the classification experiments 10 times. In the
cases in which the problem becomes underparameterized, we resort to its correspondent closed form
solution, otherwise we use the pseudoinverse in Eq. 1.

In Fig. 1 and Fig. 2 we show the predictive performance as we increase the amount of unnecessary
dimensions. In the following, we introduce the main take-aways from this experiment:
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Figure 1: Test loss for the regression task with a linear network: (a) task-unrelated, (b) task-related,
and (c) task-related + task-unrelated cases. The legends report the amount of unnecessary dimensions.

0 20 40 60 80
# training examples

per class

0.4

0.6

0.8

1.0

Te
st

 a
cc

ur
ac

y

Task-unrelated
2
10

50
100

200
300

500

0 20 40 60 80
# training examples

per class

0.4

0.6

0.8

1.0

Te
st

 a
cc

ur
ac

y

Task-related
2
10

50
100

200
300

500

0 20 40 60 80
# training examples

per class

0.4

0.6

0.8

1.0

Te
st

 a
cc

ur
ac

y

Task-related/unrelated
498/2
490/10

450/50
400/100

300/200
200/300

0/500

(a) (b) (c)

Figure 2: Test accuracy for classification task with a linear network: (a) task-unrelated, (b) task-
related, and (c) task-related + unrelated cases. Plots (a) and (c) show the double descent phenomenon.

Increasing the amount of task-unrelated dimensions leads to a regularization effect that could
be beneficial or not The results for the task-unrelated dimensions are shown in Fig. 1a and Fig. 2a.
We can observe that the general trend is that there is more overfitting (ie., worse data efficiency) as the
number of task-unrelated dimensions is increased. Recall that for a large amount of task-unrelated
dimensions the linear network is equivalent to the one trained on the minimal dimensions of the
dataset with Tikhonov regularization (Eq. 3). Thus, the results show that the regularization is having
a negative effect (ie., the regularization leads to underfitting with respect to the minimal dimensions
of the dataset, which is equivalent to overfitting to the dataset with the unnecessary dimensions).

In Fig. 2a we also observe that depending on the number of training examples, a small number of
task-unrelated dimensions may lead to more overfitting than for the large number of task-unrelated
dimensions. The peaks of overfitting observed are due to the double descent phenomenon (Advani &
Saxe, 2017; Belkin et al., 2019; Nakkiran et al., 2020; Poggio et al., 2019). Classification of linearly
separable datasets using the square loss function exhibits poor generalization when the number of
training examples is near to the number of independent components (Advani & Saxe, 2017). This
phenomenon is more prominent when there is noise in the dataset labels, which is the case for our
classification dataset as it comes from quantizing the regression dataset. Note that for large amounts
of task-unrelated dimensions, the double descent phenomenon is not present, as the regularizer helps
avoiding the peak of overfitting. We further investigate the advantages of the induced Tikhonov
regularization in regression by adding noise in target output. In App. B.1, through a dataset generated
as a proof of concept, we show that, for a large number of task-unrelated dimensions, the prediction
error coincides with the Tikhonov regularization term, and leads to an improvement.

Increasing the amount of task-related dimensions does not affect the linear network and helps
alleviating the effect of the task-unrelated dimensions In Fig. 1b and Fig. 2b, we corroborate
that task-related dimensions lead to the same linear network. Furthermore, in Fig. 1c and Fig. 2c, we
observe that the increase of task-related dimensions improves the signal to noise ratio, with a further
positive impact on performance: the task-related/unrelated case for 300/200 in Fig. 2c shows much
higher performance and data efficiency than the correspondent experiment with d = 300 in Fig. 2a.

2.3 RESULTS OF MLPS

We now show that the take-aways obtained with linear networks extend to MLPs. For each of the
aforementioned theoretical assumptions, we run an experiment to evaluate the impact it has on the
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Figure 3: AUTC curves for different MLPs on the classification task: (a) task-unrelated, (b) task-
related, and (c) task-related + unrelated case. In green MLP with ReLU non-linearity and cross entropy
loss, in beige and pink linear MLPs with cross entropy and mean square error losses respectively, in
blue exact solution from Figure 2.
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Figure 4: AUTC curves for the MLP with non-linear ReLU activations and cross entropy loss on the
mixed Gaussians dataset, for different distributions of task-unrelated dimensions.

conclusions when we drop the assumption. In order to facilitate displaying the results across a series
of experiments, we use from now on the Area Under the Test Curve (AUTC) as a measure of the
generalization performance for different training set size (see App. B.4 for details).

Non-linear networks In the classification dataset introduced above, we evaluate MLPs with one
hidden layer consisting of 128 nodes. We evaluate different variations of the MLP depending on the
non-linearities and the loss function: ReLU with soft-max cross-entropy, linear with soft-max cross-
entropy or square loss. We report in Fig. 3 the results across 3 repetitions. “Pseudoinverse” refers to
the solution computed using the theoretical solution from the previous section, whose results were
reported in Fig. 2 and in Fig. 3 correspond to blue bar plot. The AUTC for the different MLPs shows
that the data efficiency follows similar trends as the theoretical solutions as we increase the amount of
unnecessary input dimensions, although the different variants differ in terms of overall data efficiency.
Namely, as the amount of task-unrelated dimensions is increased the data efficiency decreases
(Fig. 3a), while task-related dimensions do not negatively affect the data efficiency (Fig. 3b) and can
even compensate the the negative effects of the task-unrelated dimensions (Fig. 3c). Finally, note
that for some amount of task-unrelated dimensions in Fig. 3c, the AUTC of linear MLP with square
loss has a similar behavior of the pseudoinverse solution, for different task-unrelated dimensions. We
suspect that this behavior is a consequence of optimization.

Non-linearly-separable datasets To further test the generality of previous results on data distribu-
tions that are not linearly separable, we use a mixture of Gaussians to generate non-linearly-separable
datasets for binary classification. Each class consists of three multivariate Gaussians of dimensions
p = 30. As we fix a class, we generate a sample by randomly selecting, among the three, one
distribution from which we draw the minimal dimensions. We evaluate the MLP with ReLU and
soft-max with cross-entropy loss because among the different variants it is the only well suited to
fit non-linearly-separable data. We report the results in App. B.3, and these are consistent with the
previous conclusions. We observe that as the dataset becomes more non-linearly-separable, the data
efficiency drops, which is expected.
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Table 1: Filters and max-Pooling sizes at the first layer for DCNNs trained on Natural MNIST.
Adapt FP 256 FP 128 FP 64 FP 28

filter & pooling sizes r · 3, r · 2 27, 18 14, 9 7, 5 3, 2

Beyond Gaussian distributed task-unrelated input dimensions We evaluate the effect of the
variance of the Gaussian distribution to generate the unnecessary dimensions and we also evaluate
two other types of synthetic noise, namely, Gaussian noise with Σii = 1, ∀i, with Σij = 0.5, ∀i 6= j,
and salt and pepper noise, where each vector component can assume value (0, or u), based on a
Bernoullian distribution on {−1, 1}. We show the results for the ReLU MLP with soft-max cross-
entropy loss in Fig. 4. We observe the same trends as all previous experiments. For task-unrelated
dimensions, data efficiency deteriorates as the variance of Gaussian noise increases.

3 UNNECESSARY INPUT DIMENSIONS ON DCNNS

In this section we analyze the data efficiency of DCNNs in image and text classification tasks. The
weight sharing of the convolutional layers in DCNNs facilitate learning in problems where both the
position of the dimensions that are necessary for the target function and the amount of the unnecessary
dimensions are not fixed, e.g., object recognition with objects at different image positions. In the
following we first analyze the data efficiency for the unnecessary input dimensions fixed as we have
done for linear networks and MLP, and then, for non-fixed position and number of unnecessary input
dimensions in realistic datasets.

3.1 FIXED UNNECESSARY INPUT DIMENSIONS BY CENTERED OBJECT

We generate two datasets based on the MNIST dataset (LeCun et al., 1998): Synthetic MNIST and
Natural MNIST. In both cases, the digit is always positioned at the center of the image, and we use
different types of backgrounds for adding task-unrelated dimensions. We build Synthetic MNIST in
analogy to the MLP experiments. In the task-unrelated case, we add random pixels at the edge of
the image, while for the task-related version, we upscale the MNIST digit to a different sizes. In the
task-related/unrelated case, we fix the size of the image and we change the ratio of task-related and
unrelated dimensions by upscaling the MNIST digit. The Natural MNIST consists on the MNIST
digit at the center of a natural scene from the Places dataset (Zhou et al., 2014), following the
procedure by Volokitin et al. (2017). We reduce the amount of unnecessary dimensions by upscaling
the MNIST edge to four different sizes. See App. C.1 for details about the data generation.

We use a DCNN model with three convolutional layers followed by two fully connected layers.
Details about networks hyper-parameters are in App. C.2. We test our models across different
configurations of Filter (F) and max-pooling (P) sizes at the first layer, as reported in Tab. 1. We also
evaluate adapting these parameters to the ratio between the object edge and the original MNIST edge
(28), which we refer as r.

DCNNs suffer from unnecessary input dimensions but less than MLP First, we compare the
data efficiency of MLPs and DCNNs on the Synthetic MNIST using the same training protocol
(App. C.3). DCNNs are trained and tested in the “adapted” configuration shown in Tab. 1. In
Fig. 5, we report the log AUTC (App. B.4) and as expected, we observe that DCNNs have higher
generalization performance than MLPs across the three scenarios. Yet, the data efficiency of DCNN
suffers from task-unrelated input dimensions, while it does not get affected by an increase of
task-related dimensions.

We compare different DCNN architectures on the Natural MNIST dataset (details on the training
setup are in App. C.4). Fig. 6a, on the left, shows the mean log AUTC across different models
(top) and the accuracy for 20 training examples (bottom), across three repetitions of the experiment.
Each group of bar plots refers a different filter and max-pooling choice at the first layer, as shown in
Tab. 1. As for Synthetic MNIST and all previous experiments, we observe that for most architectures
the accuracy for small amount of examples decreases as the number of task-unrelated dimensions
increases, and a large gap among architectures emerges as the number of training examples per class
(ntr) decreases. This gap increases when the networks have a global average-pooling before the
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(a) (b) (c)

Figure 5: log AUTC curves of DCNNs and MLP with ReLU and cross entropy loss on Synthetic
MNIST datasets. The log AUTC is computed in the range ntr ∈ [1, 103]. For cases (a)-(c), on the
right, examples for each dataset.

(a) (b) (c)

Figure 6: Natural MNIST. (a) top: log AUTC of DCNNs across different filters and max-pooling
sizes at the first layer computed on ntr in the range [50, 1000]. (a) bottom: test accuracy across
DCNNs for a number of training examples ntr = 20 and different amount of unnecessary input
dimensions. (a) right: examples for different amount of unnecessary input dimensions, from the top
to the bottom, the edge MNIST sizes are 200, 150, 80, and 28. (b-c) distribution of max activation
values, as we move from the edges of the hidden representations of test images to their centers, across
the three convolutional layers.

fully connected layers (see Fig. 12 in App. C.6), despite the decrease of the difference in amount of
free parameters among models for the global pooling case. The optimal architectural choices are
dataset dependent and these results highlight that such choices have an important impact to the data
efficiency.

Activation analysis reveals high tuning to discard object’s background We now analyse the
emergent mechanisms in the DCNN that facilitate discarding the unnecessary dimensions. We verify
a simple hypothesis that the kernels become tuned to discard the object’s background and lead to
activity only for the object. We provide evidence that supports this hypothesis for networks trained
on the smallest ntr = 20 and largest ntr = 1000 training sets with the largest amount of unnecessary
task-unrelated dimensions, such that we can better capture the differences in the neural activity as the
network is trained with more examples. We focus on the networks FP 28 and FP 128, respectively
which are the most data efficient and data inefficient architectures we tried. For these models, at
each layer, we extract the neural activity of 1000 test samples after the max-pooling. We grouped the
representation values at each layer depending on their distance from the center. Figs. 6b and c show
the distribution of normalized maximum activity for each kernel as we go from the edges to the center
of the neural activity feature maps. Figs. 6b and c show that when the network is trained with more
examples (light violin plots), the neurons respond more to the object compared to the background.
Yet, when the networks are trained with few examples (dark violin plots), the differences in terms of
neural activity are minor between the object and its background. Note that this phenomenon is much
more pronounced for the most data efficient architecture (FP 128). These results suggests that the
data efficiency of the network is driven by the emergence of kernels that can detect the object while
not responding to the background.
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case 1 case 2 case 3 case 4 case 5

Figure 7: Accuracy on Stanford Dogs with different amount of unnecessary dimensions. An example
for each of the five cases given as input to ResNet-18 (left). AUTC curves of ResNet-18 models
trained on the fives cases (right).

3.2 NON-FIXED DIMENSIONS

Objects appear at different scales and positions across images. We analyze the effect of unnecessary
dimensions when these are in non-fixed positions and amount. We evaluate on the dog breed
classification benchmark called Stanford Dogs dataset (Khosla et al., 2011). The dataset has 100
examples for each of 120 dogs breeds, for a total of 12000 training images and 8580 test images.
Each image in the original dataset is annotated with information about the dog’s position through
bounding-box. We use the bounding-boxes provided in the dataset to determine the dimensions
that are task-unrelated. Recall that one of the premises of this work is that there is no bias in the
unnecessary dimensions. It is reasonable to expect that this is the case for this dataset, as dog breeds
likely do not co-occur on similar backgrounds and hence, the network can not use background cues
to determine the dog’s category.

In Fig. 7, we compare the performance of a ResNet-18 (He et al., 2016) across five different versions
of the training set. Case 1 corresponds to the original image, with background and dogs at different
scales and positions in the image. For case 2 we remove the background, by multiplying the pixels
outside of the bounding box to zero. In case 3, the dog in the bounding box is cropped and positioned
at the center of the image, at its original scale. The other pixels have value zero. In case 4 we rescale
the dog to half of the final image edge, and we place this version of the dog at the center. Outer
pixels have zero values. In case 5 we crop the bounding box, and scale it to the final image size. We
recenter the pixels values based on the standard procedure on ImageNet. (App. D). Fig. 7 left shows
the AUTC values across the different cases, for different amounts of training examples per category.
The use of the original dataset leads to the lowest data efficiency, while the highest data efficiency is
achieved for case 5, when ResNet-18 is trained and tested on a cropped and rescaled image. The rest
of the cases show that the DCNN needs more data to learn recognize the object at different position
and scale, which is expected.

We run a final control to make sure that our conclusions apply to other domains. We use the text
classification task of SST2 (Socher et al., 2013). The dataset suggests an heuristic to discard phrases
that are unnecessary for the task. We compare DCNNs and MLPs for different amount of such
unnecessary phrases, the results are shown in App. E, and corroborate the conclusions of the paper.

4 CONCLUSIONS

We have provided extensive evidence in synthetic datasets and object and text recognition bench-
marks, for linear networks, MLPs and DCNNs to support the following conclusion: task-unrelated
dimensions harm the data efficiency of neural networks while increasing the number of task-related
dimensions may help alleviate the negative effect of task-unrelated dimensions. This conclusion
builds on a theoretical analysis of a linear network trained with the square loss, which demonstrates
that a large amount of Gaussian distributed task-unrelated dimensions are equivalent to Tikhonov
regularization, while linear combinations of task-related dimensions serve to adjust for the amount of
such regularization. Also, we have identified the mechanisms used by DCNNs to discard unnecessary
dimensions, which consists on the emergence of neurons tuned to detect the target objects and to
discard the unnecessary dimensions. These results highlight the need of introducing strategies to
discard unnecessary dimensions to improve the DNN’s data efficiency, suggesting that foveations or
crops of the relevant image features, e.g., (Luo et al., 2016), may lead to substantial gains of data
efficiency for object recognition.
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A EXACT FORM SOLUTION

A.1 DERIVATION OF THE TIKHONOV SOLUTION EQ. 3

For the task-unrelated case, the problem is ill-posed as long as p+ d > n and the solution is

W+ = Y (X>X +N>N)−1[X> N>]. (4)

From this general solution, we compute the action of W+ on a generic test sample [x>test n
>
test]

> as

W+[x>test n
>
test]

> = Y (X>X +N>N)−1[X> N>][x>test n
>
test]

>

= Y (X>X +N>N)−1(X>xtest +N>ntest). (5)

The second parenthesis expresses the correlation between each example from the training set with
the new test example. More specifically, the parenthesis contains the sum of two contributions: the
former measures the correlation by considering the matrix of the minimal dimensions only, and the
latter quantifies the correlation originated by task-unrelated dimensions. We focus on the latter term,
which we write in a more explicit form as

N>ntest =
[
n>1 ntest · · · n>nntest

]>
=

[
d∑
`=1

(n1)`(ntest)` · · ·
d∑
`=1

(nn)`(ntest)`

]>
. (6)

Remember our assumption that all (ni)` and (ntest)` are samples of two independent zero-mean
Gaussian random variables with the same variance σ2. For very large d values we can approximate
the average realization of a random variable through its expected value, due to the law of large
numbers. Here, by considering the sum, we multiply the expected value by d and we obtain

d∑
`=1

(ni)`(ntest)` ' dE[product of two independent zero-mean Gaussian random variables]

= d (E[zero-mean Gaussian random variable])
2

= 0. (7)

Given the independence of the two random variables we consider the product of their expectations,
which is null for zero-mean distribution. Therefore, for any test example, the approximation

N>ntest ' 0 (8)

holds.

Similarly, for the correlation term related to task-unrelated dimensions, in the first parenthesis of
Eq. 5, we have, for i 6= j

n>i nj =

d∑
`=1

(ni)`(nj)` ' dE[product of two independent zero-mean Gaussian random variables]

= d (E[zero-mean Gaussian random variable])
2

= 0. (9)

When i = j, the approximation

n>i ni =

d∑
`=1

(ni)
2
` ' dE

[(
zero-mean Gaussian random variable with variance σ2

)2]
= dσ2 (10)

holds.

Given Eqs. 9 and 10, the matrix of pairwise correlation among training examples, for task-unrelated
dimensions, can be approximately written as

N>N ' dσ2In. (11)

Eqs. 8 and 11 lead to the result in Eq. 3.
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A.2 TASK-RELATED/UNRELATED INPUT DIMENSIONS AS A NON-TIGHT FRAME AND
ASYMPTOTIC REGIMES

We derive the exact solution in presence of both task-related and task-unrelated input dimension.
Let X be defined as in Section 2.1, N = [n1 · · ·nn] ∈ Rd(1−ν)×n be the matrix of task-unrelated
dimensions, and TX = [Txi · · ·Txn] ∈ Rdν×n be the task-related dimensions, with T ∈ Rdν×p
generic linear transformation. The input matrix [X> N> (TX)>]> is equivalent to the concatenation
of these terms.

Given the presence of redundant rows, we can express the input matrix using the frame formalism as(
X
N
TX

)
= F

(
X
N

)
, with F =

 Ip 0p×d(1−ν)
0d(1−ν)×p Id(1−ν)

T 0dν×d(1−ν)

 , (12)

and 0 denoting the matrix with null entries and dimensions as specified in the subscripts.

Since we apply the frame on the matrix of independent dimensions, we compute the solution
leveraging on Eq. 2. We first evaluate the term F>F , which assumes the form

F>F =

(
Ip + T>T 0p×d(1−ν)
0d(1−ν)×p Id(1−ν)

)
, (13)

and it is invertible. By substituting this term in the exact solution of Eq. 2, we obtain

W+ = Y

([
X> N>

]
F>F

[
X
N

])−1 [
X>N>

]
F>

= Y
(
X>

(
Ip + T>T

)
X +N>N

)−1 [
X>

[
Ip T>

]
N>

]
. (14)

This result does not rely on any assumption on the distribution of the task-unrelated dimensions,
neither on a specific form of the transformation T .

To get a clearer picture of the effect of redundancy in presence of task-unrelated dimensions, in
the following we make three assumptions: (i) the redundant dimensions considered are r = dν/p,
repetitions of every feature in the minimal set; (ii) the vector components for the task-unrelated
dimensions are drawn from zero-mean Gaussian distributions sharing the same variance value; and
(iii) d(1− ν) number of task-unrelated dimensions is large.

Given assumption (i), T is a tight frame and the quantity T>T corresponds to the identity in Rp, with
the scaling factor fixed at r. This implies that the term Ip + T>T is equivalent to (r + 1)Ip.

Solution 14, when applied on a new test set
[
x>test n

>
test (Txtest)

>]>, corresponds to

W+
[
x>test n

>
test (Txtest)

>]> = Y
(
(r + 1)X>X +N>N

)−1 (
(r + 1)X>xtest +N>ntest

)
.

(15)

Under assumptions (ii) and (iii), we leverage on the law of large numbers, as in Appendix A.1. In this
case, the sum over the task-unrelated components consists of d(1− ν) terms, and the approximation
N>ntest ' 0 holds. Using the same argument, the correlation between training examples, when
limited to task-unrelated components, approximates a diagonal matrix, as shown in Eqs. 9 and 10.
Here the summation is over d(1− ν) task-unrelated components, leading to N>N ' d(1− ν)σ2In.

The prediction for a test sample corresponds to

W+
[
x>test n

>
test (Txtest)

>]> 'Y ((r + 1)X>X + d(1− ν)σ2In
)−1

X>xtest(r + 1)

=Y

(
X>X +

d(1− ν)

r + 1
σ2In

)−1
X>xtest. (16)

To analyze the interplay between redundant and task-unrelated dimensions, let X = UΣV > be the
equivalent formulation for the minimal dimensions of the input data, resulting from the singular value
decomposition. The terms U ∈ Rp×p and V ∈ Rn×n are orthogonal matrices, their columns contain

12
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singular vectors in Rp and Rn respectively, Σ ∈ Rp×n, matrix of singular values, contains n nonzero
values on the diagonal only. Formula 16 is equivalent to

W+
[
x>test n

>
test (Txtest)

>]> ' Y (V (Σ>Σ +
d(1− ν)

r + 1
σ2In

)
V >
)−1

X>xtest. (17)

Using the definition r = dν/p, we consider the inverse term in Equation 17, with a focus on the input
matrix eigenvalues

Σ>Σ +
pd(1− ν)

p+ dν
σ2In. (18)

In the regime of d� p, the second term in the summation corresponds approximately to pσ2(1−ν)/ν.
The weight on the Tikhonov regularization term depends only on the ratio between number of
irrelevant and redundant features.

In the opposite regime, for p� d, the term dν in Expression 18 becomes negligible. The weight of
the regularization term is σ2d(1− ν).

We finally observe that, as redundancy increases, in the limit of ν tending to 1, the problem is
equivalent to the one formulated for the minimal dimensions, with null contribution from the task-
unrelated features. This highlights the positive contribution of redundancy on the solution, when
restricted to the informative dimensions.

B SYNTHETIC EXPERIMENTS

B.1 REGRESSION PROBLEM WITH CORRUPTED OUTPUT

To analyze a more realistic regression problem, we consider the case of corrupted output. We verify
(i) the similarity between unnecessary task-unrelated dimensions and the Tikhonov regularization
term, (ii) the benefit of the `2 regularization, or the presence of unnecessary input dimensions, in
presence of corrupted output values.

To this aim, we generate an overparameterized regression dataset, with p = 10 minimal dimensions,
o = 4 output dimensions, and d = 500 unnecessary task-unrelated dimensions. The d minimal input
dimensions are drawn from N (0, σ2

input), zero-mean Gaussian distribution with a shared variance
value. The number of training examples across experiments is n = 7. The corrupted output for
sample i is

yi = W ∗xi + ε, (19)
with zero-mean Gaussian distributed random variable ε ∼ N (0, σ2

output). Across the experiments we
increase the corruption level by increasing the variance for the distribution of the variable ε.

We will refer to w irrelevant solution, as the the solution computed from the tuple([
x>i n>i

]>
,yi

)n
i=1

, using Formula 3.

In absence of task-unrelated input dimensions, or for the dataset (xi,yi)
n
i=1, we compute the

w/o irrelevant solution, as in Formula 1, and Tikhonov regularized solution, with λ = dσ2
input

regularization term.

The prediction errors for the three cases correspond respectively to

Error(w irrelevant) =
〈∥∥Y (X>X +N>N)−1[X> N>][x>test n

>
test]

> − ytest

∥∥2
2

〉
, (20)

Error(w/o irrelevant) =
〈∥∥Y (X>X)−1X>xtest − ytest

∥∥2
2

〉
, (21)

Error(Tikhonov) =
〈∥∥Y (X>X + λIn)−1X>xtest − ytest

∥∥2
2

〉
, (22)

where the sample average 〈 · 〉 is computed on the test set examples.

In Fig. 8a, we quantify the difference between Eq. 20 and Eq.21, as the variance of task-unrelated
input features increases. Each blue curve is related to a different level of output corruption. For small
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Figure 8: Regression problem with corrupted output: (a) prediction error in absence of unnecessary
dimensions, as function of the output corruption; (b) analysis of prediction error as function of the
variance of unnecessary components; on the y-axis, difference between test errors in presence (w
irrelevant) and absence (w/o irrelevant) of task-unrelated dimensions, a blue curve for each level of
output corruption. (b)

values of σinput, the presence of task-unrelated dimensions does not have any effect on the test error.
As σinput increases, irrelevant dimensions harm the solution for very small output corruption, while
gradually benefiting the prediction as the output corruption increases.

The white triangles in Fig. 8a correspond to the difference between Eq. 20 and Eq. 22. These points
follow each of the blue curves, showing (i) the valid approximation of term 20 with Eq. 22 and,
consequently, the regularization effect given by additional task-unrelated input dimensions. In the
limit of large d, the presence of additional Gaussian features with zero mean acts as a Tikhonov
regularization term, with `2 constraint on the norm.

Lastly, in Fig. 8b, we report the test error computed as in Eq. 21. As the labels corruption increases,
we observe consistently higher test errors.

These results highlight the controversial effect of additional task-unrelated dimensions, which can
effectively benefit the prediction performance in presence of corrupted output.

B.2 OPTIMIZATION PROTOCOL

MLPs trained on synthetic teacher classification datasets share the same optimization protocol. We fix
the maximum number of epochs at 100. The convergence criterion is based on early stopping, with
tolerance value 10−4 on the validation loss and patience of 8 epochs. Optimal batch size and learning
rate are selected through a grid search procedure, respectively over the arrays [2, 10, 32, 50] and
[10−5, 10−4, 10−3, 10−2]. We eliminate elements of the batch size array from the hyper-parameters
search if those are larger or equal to the number of training examples. We apply a reduction factor
1/10 on the learning rate as the validation loss shows over five epochs, variations smaller than
10−4. The weights initialization adopted across networks and layers is the Glorot uniform, ie.
uniform distribution in the interval [−u, u], where u =

√
6/(fanin + fanout), with fanin and fanout

respectively number of input and output units.

We report mean and standard deviation of the AUTC values across three repetitions of each experi-
ment.

B.3 FURTHER EXPERIMENTS ON DATA SEPARABILITY

We test the generality of our result as we decrease the distance between the distributions of the two
classes. We preserve the hypothesis of standard distribution for task-unrelated components. We
generate a sample x from class c as x ∼ (N (µc1, (σ

c
1)2), . . . ,N (µcp, (σ

c
p)

2)). The values µc`, with
c denoting the class, and ` one among the minimal dimensions, are random values. We report in
the following the distance between the two classes, computed as D =

√∑p
`=1(µ0

` − µ1
`)

2. At
each repetition we compute this distance over the resulting training set (from which we extract
ntr examples) of 10000 examples and we obtain the following distance mean values 〈D〉 across 3
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Figure 9: AUTC curves for the multivariate Gaussian distributions, as we decrease the distance D
between two classes: (a) task-unrelated, (b) task-related, (c) task-related/unrelated cases.

repetitions: 〈D1〉 = 13.82 ± 0.84, 〈D2〉 = 1.71 ± 0.04, and 〈D3〉 = 0.76 ± 0.01. In Figure 9 we
report the AUTC values for MLPs with ReLU non-linearity and linear activation and cross entropy
loss, evaluated on ntr = {2, 5, 10, 20, 50} examples per classes.We generate additional task-unrelated
dimensions using the standardN (0, 1) distribution. In Fig.9(a), the MLPs are affected by the presence
of additional dimensions, with exception of the most separable datasets, with 〈D1〉 = 13.82. This
result must be compared to the one in Fig.9(b), for task-related dimensions. Here the performance
does not depend on the amount of unnecessary dimensions. In Fig.9(c) we report the AUTC as we
fix the amount of unnecessary dimensions to 500. We increase the ratio between task-unrelated
over redundant dimensions, from the left to the right of the horizontal axis. In (c), as for previous
experiments, the data efficiency is higher for case in (c) than for case in (a).

B.4 AREA UNDER THE TEST CURVE (AUTC)

We use the an area under the curve to report the data efficiency of a network. In particular, we define
the Area Under the Test Curve (AUTC) as a measure of the generalization performance for different
training set size, as defined in Eq. 23

AUTC(d) =
AUC(ntr, test accuracy(ntr, d))

max(ntr)−min(ntr)
, (23)

where d denotes the number of dimensions, ntr the amount of examples in the training set and we
use the implementation of the AUC by scikit-learn1.

The AUTC measure has value in the interval [0, 1]. The denominator has value equivalent to those of
a rectangle of height 1 or the most data efficient model. Depending on the experiments, if the array of
ntr varies of orders of magnitudes, we may be interested in giving the same emphasis to small as
large ntr values. For these cases, we define a further measure, the log AUTC, where the ntr value is
mapped through a log10, as in Eq. 24

log AUTC(d) =
AUC(log10(ntr), test accuracy(ntr, d))

max(log10(ntr))−min(log10(ntr))
. (24)

C DEEP CONVOLUTIONAL NEURAL NETWORKS

C.1 SYNTHETIC MNIST DATA GENERATION

Fig. 10 shows a larger version of the three Synthetic MNIST datasets. In all the cases, the normalize
the MNIST digits by 255. For the task-unrelated case, in (a), the image size increases as we add
random pixels at the edge, which constitute unrelated dimensions. These are the absolute value of
numbers extracted from a zero-mean Gaussian distribution with σ = 0.2. The MNIST edge size has
size 28 across all the task-unrelated versions for this dataset. For the task-related case, in (b), we
upscale the MNIST digit using bicubic interpolation. For the task-related + unrelated case, in (c), we
fix the image size to 200× 200. From the left to the right we increase the task-related dimensions by

1https://scikit-learn.org/stable/modules/generated/sklearn.metrics.auc.
html (Last access: Oct. 1, 2020)
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(a) (b)

(c)

Figure 10: An example from each version of the Synthetic MNIST dataset. (a) task-unrelated case,
(b) task-related case, (c) task-related/unrelated case, the image size is fixed at 200.

upscaling the MNIST object. In (a) and (b) the images size are k = {28, 36, 40, 56, 80, 120, 160}.
For case (c), the total image size is fixed at 200, while the upscaled MNIST edge has values
k = {28, 36, 40, 56, 80, 120, 160}.

C.2 DETAILS ABOUT DCNN ARCHITECTURES FOR SYNTHETIC/NATURAL MNIST

We leverage on the MLP with ReLU activations and cross entropy loss, with identical hyperparameters
of those in Section 2.3. The MLP is provided with a flatten version of the image as input.The DCNNs
consist of three convolutional layers (iC-iiiC) followed by a flatten operation and two fully connected
layers (iL and iiL). In Tab. 2 we report: at the first row the number of filters or nodes, depending on
the layer; at the second row, the size of filters and max-pooling operations; and at the last row, the
non-linearity used, in any. The filters and max-pool operations have square dimensions, and their
sizes at the first layers vary across experiments.

Table 2: DCNN for image classification. From the top: number of filters *C or nodes *L at each
hidden layer, filters size and max pooling sizes for *C; activation functions following *C or *L.

iC iiC iiiC iL iiL
#filters/#nodes 32 64 64 64 10
filters, max-pooling var, var 3, 2 3, 2 none none
function ReLU ReLU ReLU ReLU soft-max

C.3 OPTIMIZATION PROTOCOL FOR SYNTHETIC MNIST

MLP and DCNN share the same optimization protocol. Models are optimized using stochas-
tic gradient descent with null momentum. Batch size and learning rate are selected us-
ing a grid search procedure. The learning rate array has values [1, 8 · 10−1, 5 · 10−1, 2 ·
10−1, 10−1, 10−2, 10−3, 10−4, 10−5, 5 · 10−6, 10−6], the batch size array is [10, 32, 50, 100]. We
eliminate elements from the batch size array if those exceed the training set size. The convergence
criterion is based on early stopping, convergence is reached when the validation loss shows across 10
repetitions variations smaller than ∆, with ∆ = 10−6. The maximum amount of epochs is fixed at
500. We reduce the learning rate by a factor 1/10 when variations of the validation loss are smaller
than 10−4 across 5 epochs.

The initialization weight values across architectures is based on the Glorot uniform distribution, or
uniform distribution in the interval [−u, u], where u =

√
6/(fanin + fanout), with fanin and fanout

respectively number of input and output units.
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C.4 OPTIMIZATION PROTOCOL FOR NATURAL MNIST

All the networks share the same optimization protocol. We implement a stochastic gradient descent
optimizer with null momentum. We chose the best batch size and learning rate through a grid search
procedure. The learning rate grid η has values [5 · 10−1, 2 · 10−1, 10−1, 10−2, 10−3, 10−4], the
batch size array has values in [10, 32, 50, 100]. We fixed the maximum amount of epochs at 500.
Convergence criterion and learning rate reduction are as defined in Section C.3. We initialized the
networks using the Glorot uniform distribution, or uniform distribution in the interval [−u, u], where
u =

√
6/(fanin + fanout), with fanin and fanout respectively number of input and output units.

C.5 PERFORMANCE FOR LARGE ntr AND ACTIVATIONS ON NATURAL MNIST

In Fig. 11, the networks generalize with almost perfect accuracy for ntr = 1000. The dataset
considered has the largest amount of unnecessary dimensions. We compare the networks hidden
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Figure 11: Test accuracies on Natural MNIST with edge MNIST / edge image 11%, trained on
ntr = 1000.

representations as ntr decreases. We provide here further details about the generation of Fig. 6(b)
and (c). We compute activations, or representations at each hidden layer after non-linearity, using
a subsample of 1000 points from the test set. For each image, at a fixed layer, we compute the
maximum representation value (or the maximum activation), across spatial dimensions and filters.
We normalize the representation at this layer by using this value. This operation reduces all the
activations to have values between [0, 1]. We divide the representation in five regions, from the edge
to the center, and we store the maximum normalized value for each region. We report the distribution
of those values across the test samples. We expect efficient networks to be highly selective for the
image center. In the ideal case, the distribution for the activation values at the center should be peaked
at one. The distributions of activations values should be shifted to lower averages as we move to
regions distant from the center.

C.6 THE EFFECT OF GLOBAL AVERAGE POOLING ON THE GENERALIZATION PERFORMANCE
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Figure 12: log AUTC on Natural MNIST. All the networks have an average global pooling operation
after the three convolutional layers.

Fig. 12 shows the log AUTC values for networks trained on Natural MNIST. After the last convolu-
tional layer we introduce an average pooling operation across the spatial dimensions. The two MLP
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Figure 13: AUTC on SST2 dataset, splitted on training set.

layers share the same amount of free parameters across all the DCNNs. For FP 256, the performance
is close to a perfect score across different dataset versions. FP 28 and DCNNs with smaller filters and
max-pooling sizes instead heavily suffer from the presence of the background. The convolutional
layers alone are not sufficient to discard the background and reach good generalization performance,
despite the reduction of free parameters caused by the global pooling operation.

D STANFORD DOGS

All the images from the original dataset, for all the cases shown in Fig. 7, are resized to dimensions
227 × 227, the input dimensions we fix for our ResNet18 model. We subtract the mean values
for the ImageNet dataset to center the RGB channels, with Rmean = 123.68, Gmean = 116.78, and
Bmean = 103.94. We split the original training set into a training and a validation set, the former
consisting of 90 examples per class (breed), the latter consisting of 10 examples per class. To
measure the AUTC, we varied ntr, corresponding to the amount of training examples. Across all the
experiments, the learning rate is η = 0.128 at the first iteration. We then divide it by a factor of 10
every time we reach a plateau of the validation accuracy. All the models are trained until we reach
the plateau for the smallest learning rate considered, η = 1.28 · 10−3. In all cases we observed no
improvement of the validation accuracy after the plateau at η = 1.28 · 10−2.

E SENTIMENT ANALYSIS

We leverage on Stanford Sentiment Treebank v2 (Socher et al., 2013), SST2 in short, a popular
dataset of rating movie reviews for text classification2. The learning and test splits contain labeled
sentences, from 0 to 4, which can be reduced to a binary classification problem (0-1 negative reviews,
2 neutral reviews excluded from the binary dataset, 3-4 positive reviews). The training set contains
a further set of phrases; chunks of sentences with corresponding labels. Controlling the amount of
task-related dimensions is hard, because of the possible presence of neutral words in positive/negative
phrases, while we assume that neutral phrases contain neutral words only, or intuitively task-unrelated
quantities. We manipulate their amount by collecting, for each sentence, all the available labeled
phrases that are contained in the sentence. In analogy to the definition of unnecessary task-unrelated
dimensions of Section 2.1, this corresponds to the repetition of the least informative components. We
expect the generalization performance to decrease as we add more of these dimensions to the input.

Our training, validation, and test sets are generated from the original SST2 training set. These splits
consist respectively of 3800, 872, and 1821 balanced examples. The percentage of unnecessary
task-unrelated input phrases takes values [0, 1/2, 1], with 0 corresponding to no additional phrases,
and 1 corresponding to all the possible neutral phrases contained in the sentence. We rely on the
word2vec embedding (Mikolov et al., 2013). We compare the MLP ReLU + cross entropy model,
trained on the average embedding for each sentence, to a standard DCNNs for text classification
(Kim, 2014), with filters of sizes (3,4,5), each followed by a global max-pooling operation. MLP
and DCNN share the same optimization protocol: AdaDelta optimizer with decay rate ρ = 0.95
and constant ε = 10−7 fixed. We perform a grid search over the learning rate and the batch size

2We follow some standard preprocessing guidelines. Dataset and preprocessing (de-capitalization, punctu-
ations removal) as in https://github.com/CS287/HW1/tree/master/data (Last access: Oct 1,
2020).
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parameters. The learning rate array has values η = [10−4, 10−3, 10−2, 10−1, 1, 2, 5] while the batch
size array has values [5, 50], when the number of training examples is larger than 50, while it is
fixed to 5 otherwise. The convergence criterion is based on early stopping and it is reached when
the validation loss shows smaller variations than ∆, with ∆ = 10−4, across 8 epochs. We fixed
the maximum amount of epochs at 100. We apply a reduction factor of 1/10 on the learning rate
anytime that the validation loss shows smaller variation than 10−4 in 8 epochs. Across architectures
we initialized networks weights with the Glorot uniform distribution.

For the DCNN architecture, as in (Kim, 2014), we fix at 3 the `2 regularization with bound on the
norm, soft-max at the last layer and cross-entropy cost function. We run 10 repetitions of each
experiment for different number of training examples per class, in the range [5, 250].

Fig. 13 shows the extreme robustness of the DCNN to the presence of unnecessary task-unrelated
features, differently from the MLP case. In contrast with the synthetic case, the gap in generalization
performance for a different amount of unnecessary input features does not reduce as we increase
the amount of training samples. In our opinion, this is due to the global average pooling on the
embedding.
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