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ABSTRACT

To bridge the gaps between powerful Graph Neural Networks (GNNs) and
lightweight Multi-Layer Perceptron (MLPs), GNN-to-MLP Knowledge Distilla-
tion (KD) proposes to distill knowledge from a well-trained teacher GNN into a
student MLP. A counter-intuitive observation is that “better teacher, better stu-
dent” does not always hold true for GNN-to-MLP KD, which inspires us to ex-
plore what are the criteria for better GNN knowledge samples (nodes). In this
paper, we revisit the knowledge samples in teacher GNNs from the perspective
of hardness rather than correctness, and identify that hard sample distillation
may be a major performance bottleneck of existing KD algorithms. The GNN-
to-MLP KD involves two different types of hardness, one student-free knowl-
edge hardness describing the inherent complexity of GNN knowledge, and the
other student-dependent distillation hardness describing the difficulty of teacher-
to-student distillation. In this paper, we propose a novel Hardness-aware GNN-
to-MLP Distillation (HGMD) framework, which models both knowledge and dis-
tillation hardness and then extracts a hardness-aware subgraph for each sample
separately, where a harder sample will be assigned a larger subgraph. Finally,
two hardness-aware distillation schemes (i.e., HGMD-weight and HGMD-mixup)
are devised to distill subgraph-level knowledge from teacher GNNs into the corre-
sponding nodes of student MLPs. As non-parametric distillation, HGMD does not
involve any additional learnable parameters beyond the student MLPs, but it still
outperforms most of the state-of-the-art competitors. For example, HGMD-mixup
improves over the vanilla MLPs by 12.95% and outperforms its teacher GNNs by
2.48% averaged over seven real-world datasets and three GNN architectures.

1 INTRODUCTION

Recently, the emerging Graph Neural Networks (GNNs) (Wu et al., 2020; Zhou et al., 2020) have
demonstrated their powerful capability in handling various graph-structured data. Benefiting from
the powerful topology awareness enabled by message passing, GNNs have achieved great academic
success. However, the neighborhood-fetching latency arising from data dependency in GNNs makes
it still less popular for practical deployment, especially in computational-constraint applications.
In contrast, Multi-Layer Perceptrons (MLPs) are free from data dependencies among neighboring
nodes and infer much faster than GNNs, but at the cost of suboptimal performance. To bridge
these two worlds, GLNN (Zhang et al., 2022) proposes GNN-to-MLP Knowledge Distillation (KD),
which extracts informative knowledge from a teacher GNN and then injects it into a student MLP.

A long-standing intuitive idea about knowledge distillation is “better teacher, better student”. In
other words, distillation from a better teacher is expected to yield a better student, since a better
teacher can usually capture more informative knowledge from which the student can benefit. How-
ever, some recent work has challenged this intuition, arguing that it does not hold true in all cases,
i.e., distillation from a larger teacher, typically with more parameters and high accuracy, may be
inferior to distillation from a smaller, less accurate teacher (Mirzadeh et al., 2020; Shen et al., 2021;
Stanton et al., 2021; Zhu et al., 2022). To illustrate this, we show the rankings of three teacher
GNNs, including Graph Convolutional Network (GCN) (Kipf & Welling, 2016), Graph Attention
Network (GAT) (Veličković et al., 2017), and GraphSAGE (Hamilton et al., 2017), on seven datasets,
as well as their corresponding distilled MLPs in Fig. 1(a), from which we observe that GCN is the
best teacher on the Arxiv dataset, but its distilled student MLP performs the poorest. There have
been many previous works (Jafari et al., 2021; Zhu & Wang, 2021; Qiu et al., 2022) delving into
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Figure 1: (a) Accuracy rankings of three teacher GNNs (GCN, SAGE, and GAT) and their corre-
sponding student MLPs on seven datasets. (b) Accuracy fluctuations of the teacher GCN and the
student MLP w.r.t temperature coefficient τ on the Cora dataset. (c) Histogram of the information
entropy of GNN knowledge for those samples misclassified by student MLPs on the Cora dataset.

this issue, but most of them attribute this counter-intuitive observation to the capacity mismatch be-
tween the teacher and student models. In other words, a student with fewer parameters may fail to
“understand” the high-order semantic knowledge captured by a teacher with numerous parameters.

However, we found that the above popular explanation from a model capacity perspective may hold
true for knowledge distillation in computer vision, but fails in the graph domain. For a teacher
GCN and a student MLP with the same amount of parameters (i.e., the same layer depth and width),
we plot the accuracy fluctuations of the teacher and distilled student with respect to the distillation
temperature τ in Fig. 1(b). It can be seen that while the temperature τ does not affect the teacher’s
accuracy, it may influence the hardness of GNN knowledge, which in turn leads to different student’s
accuracy. This suggests that the model capability mismatch may not be sufficient to explain why
“same (accuracy) teachers, different (accuracy) students” occurs during GNN-to-MLP distillation.

Present Work. In this paper, we rethink what exactly are the criteria for “better” knowledge sam-
ples (nodes) in teacher GNNs from the perspective of hardness rather than correctness, which has
been rarely studied in previous works. The motivational experiment in Fig. 1(c) indicates that most
GNN knowledge of samples misclassified by student MLPs is distributed in the high-entropy zones,
which suggests that GNN knowledge samples with higher uncertainty are usually harder to be cor-
rectly distilled. Furthermore, we explore the roles played by GNN knowledge samples of different
hardness during distillation and identify that hard sample distillation may be a major performance
bottleneck of existing KD algorithms. As a result, to provide more supervision for the distilla-
tion of those hard samples, we propose a non-parametric Hardness-aware GNN-to-MLP Distillation
(HGMD) framework. The proposed framework first models both knowledge and distillation hard-
ness, then extracts a hardness-aware subgraph (the harder, the larger) for each sample separately,
and finally applies two distillation schemes (i.e., HGMD-weight and HGMD-mixup) to distill the
subgraph-level knowledge from teacher GNNs into the corresponding nodes of student MLPs.

Our main contributions are: (1) We are the first to identify that hard sample distillation is the main
bottleneck that limits the performance of existing GNN-to-MLP KD algorithms, and more impor-
tantly, we have described in detail what it represents, what impact it has, and how to deal with it. (2)
We decouple two different hardnesses, i.e., knowledge hardness and distillation hardness, and pro-
pose to distill knowledge in a hardness-aware manner to provide more supervision for hard samples.
(3) We devise two distillation schemes for hard knowledge distillation. Despite not involving any
additional parameters, they are still comparable to or even better than state-of-the-art competitors.

2 RELATED WORK

GNN-to-GNN Knowledge Distillation. Recent years have witnessed the great success of GNNs in
handling graph-structured data. However, most existing GNNs share the de facto design that relies
on message passing to aggregate features from neighborhoods, which may be one major source of
latency in GNN inference. To address this problem, several previous works on graph distillation try
to distill knowledge from large teacher GNNs to smaller student GNNs, termed as GNN-to-GNN
knowledge distillation (KD) (Lassance et al., 2020; Zhang et al., 2020a; Ren et al., 2021; Joshi et al.,
2021), including RDD (Zhang et al., 2020b), TinyGNN (Yan et al., 2020), LSP (Yang et al., 2020),
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GraphAKD (He et al., 2022), GNN-SD (Chen et al., 2020b), and FreeKD (Feng et al., 2022), etc.
However, both teacher and student models in the above works are GNNs, making these designs still
suffer from the neighborhood-fetching latency arising from the data dependency in GNNs.

GNN-to-MLP Knowledge Distillation. To bridge the gaps between powerful GNNs and
lightweight MLPs, the other branch of graph knowledge distillation is to directly distill from teacher
GNNs to lightweight student MLPs, termed GNN-to-MLP KD. For example, GLNN (Zhang et al.,
2022) directly distills knowledge from teacher GNNs to vanilla MLPs by imposing KL-divergence
between their logits. Instead, CPF (Yang et al., 2021) improves the performance of student MLPs by
incorporating label propagation in MLPs, which may further burden the inference latency. Besides,
FF-G2M (Wu et al., 2023a) propose to factorize GNN knowledge into low- and high-frequency
components in the spectral domain and propose a novel framework to distill both low- and high-
frequency knowledge from teacher GNNs into student MLPs. Moreover, RKD-MLP (Anonymous,
2023) takes the reliability of GNN knowledge into account and adopts a meta-policy to filter out
unreliable GNN knowledge. Despite the great progress, most of these GNN-to-MLP KD methods
have focused on how to make better use of those simple samples, while little effort has been made
on those hard samples. However, we have found in this paper that hard sample distillation may be a
main bottleneck that limits the performance of existing GNN-to-MLP KD algorithms.

3 METHODOLOGY

3.1 PRELIMINARIES AND NOTATIONS

Given a graph G = (V, E), where V = {v1, v2, · · · , vN} and E ⊆ V × V denote the node set
and edge set, respectively. In addition, X ∈ RN×d and A ∈ [0, 1]N×N denotes the feature matrix
and adjacency matrix, where each node vi ∈ V is associated with a d-dimensional features vector
xi ∈ Rd and Ai,j = 1 iff (vi, vj) ∈ E . Consider node classification in a transductive setting in which
only a subset of node VL ∈ V with corresponding labels YL are known, we denote the labeled set
as DL = (VL,YL) and unlabeled set as DU = (VU ,YU ), where VU = V\VL. The objective of
GNN-to-MLP knowledge distillation is to first train a teacher GNN Z = fT

θ (A,X) on the labeled
data DL, and then distill knowledge from the teacher GNN into a student MLP H = fS

γ (X) by
imposing KL-divergence DKL(·, ·) between their label distributions on the node set V , as follows

LKD =
1

|V|
∑
i∈V

DKL

(
σ (zi/τ) , σ (hi/τ)

)
, (1)

where σ(·) = softmax(·) is the activation function, and τ is the distillation temperature. Beisdes, zi
and hi are the node embeddings of node vi in Z and H, respectively. Once knowledge distillation
is done, the distilled MLP can be used to infer the ground-truth label yi ∈ YU for unlabeled data.

Knowledge Hardness. Inspired by the experiment in Fig. 1(c), where GNN knowledge samples
with higher entropy are harder to be correctly distilled into the student MLPs, we propose to use the
information entropy H(zi) of node vi as a measure of its knowledge hardness, as follows

H(zi) = −
∑
j

σ
(
zi,j/τ

)
log

(
σ (zi,j/τ)

)
. (2)

We default to using Eq. (2) for measuring the knowledge hardness in this paper and delay discussions
on distillation hardness. See Appendix F for more results on other knowledge hardness metrics.

3.2 PERFORMANCE BOTTLENECK: HARD SAMPLE DISTILLATION

Recent years have witnessed the great success of knowledge distillation and a surge of related dis-
tillation techniques. As the research goes deeper, the rationality of “better teacher, better student”
has been increasingly challenged. A lot of earlier works (Jafari et al., 2021; Son et al., 2021) have
found that as the performance of the teacher model improves, the accuracy of the student model may
unexpectedly gets worse. Most of the existing works attribute such counter-intuitive observation to
the capacity mismatch between the teacher and student models. In other words, a smaller student
may have difficulty “understanding” the high-order semantic knowledge captured by a large teacher.
Although this problem has been well studied in computer vision, little work has been devoted to
whether it exists in graph knowledge distillation, what it arises from, and how to deal with it. In
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this paper, we get the same observation during GNN-to-MLP distillation that better teachers do not
necessarily lead to better students in Fig. 1(a), but we find that this has little to do with the popu-
lar idea of capacity mismatch. This is because, unlike common visual backbones with very deep
layers in computer vision, GNNs tend to suffer from the undesired over-smoothing problem (Chen
et al., 2020a; Yan et al., 2022) when stacking deeply. Therefore, most existing GNNs are shallow
networks, making the effects of model capacity mismatch negligible during GNN-to-MLP KD.
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Figure 2: Classification accuracy of several dis-
tillation baselines for simple and hard samples.

To explore the criteria for better GNN knowledge
samples (nodes), we conduct an exploratory ex-
periment to evaluate the roles played by GNN
knowledge samples of different hardnesses dur-
ing knowledge distillation. For example, we re-
port in Fig. 2 the distillation accuracy of several
representative methods for simple samples (bot-
tom 50% hardness) and hard samples (top 50%
hardness), as well as their overall accuracy. As
can be seen from Fig. 2, those simple samples
can be handled well by all methods, and the main
difference in the performance of different distil-
lation methods lies in their capability to handle
those hard samples. In other words, hard sample
distillation may be a major performance bottle-
neck of existing distillation algorithms. For example, FF-G2M improves the overall accuracy by
1.86% compared to GLNN, where hard samples contribute 3.27%, but simple samples contribute
only 0.45%. Note that this phenomenon also exists in human education, where simple knowledge
can be easily grasped by all students and therefore teachers are encouraged to spend more efforts
in teaching hard knowledge. Therefore, we believe that not only should we not ignore those hard
samples, but we should provide them with more supervision in a hardness-based manner.

3.3 HARDNESS-AWARE GNN-TO-MLP KNOWLEDGE DISTILLATION

One previous work (Zhou et al., 2021) defined knowledge hardness as the cross entropy on labeled
data and proposed to weigh the distillation losses among samples in a hardness-based manner. To
extend it to the transductive setting for graphs in this paper, we adopt the information entropy in
Eq. (2) instead of the cross entropy as the knowledge hardness, and propose a variant of it as follows

LKD =
1

|V|
∑
i∈V

(
1− e−H(hi)/H(zi)

)
· DKL

(
σ (zi/τ) , σ (hi/τ)

)
. (3)

As far as GNN knowledge hardness is concerned, Eq. (3) reduces the weights of those hard samples
with large higher H(zi), while leaving those simple samples to dominate the optimization. However,
Sec. 3.2 shows that not only should we not ignore those hard samples, but we should pay more
attention to them by providing more supervision. To this end, we propose a novel GNN-to-MLP KD
framework, namely HGMD, which extracts a hardness-aware subgraph (the harder, the larger) for
each sample separately and then distills the subgraph-level knowledge into the corresponding nodes
of student MLPs. A high-level overview of the proposed HGMD framework is shown in Fig. 3.

3.3.1 HARDNESS-AWARE SUBGRAPH EXTRACTION

We estimate the distillation hardness based on the knowledge hardness of both the teacher and
the student, and then model the probability that the neighbors of a target node are included in the
corresponding subgraph based on the distillation hardness. Intuitively, for any given node vi, four
key factors that influence the distillation hardness and subgraph size should be considered, including

• A harder sample with higher H(zi) in teacher GNNs should be assigned a larger subgraph.

• A sample with high uncertainty H(hi) in student MLPs requires a larger subgraph.

• A node vj ∈ Ni with lower H(zj) has a higher probability to be included in the subgraph.

• Nodes in the subgraph are expected to share similar label distributions with the target node vi.
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Figure 3: Illustration of the hardness-aware GNN-to-MLP distillation (HGMD) framework, which
consists of hardness-aware subgraph extraction and two subgraph-level distillation schemes.

To satisfy these four properties, we model the probability pj→i that a neighboring node vj ∈ Ni of
the target node vi is included in the subgraph based on the distillation hardness rj→i, as follow

pj→i = 1− rj→i, where rj→i = exp
(
− η · D(zi, zj) ·

√
H(hi) · H(zi)

H(zj)

)
∈ (0, 1] (4)

where D(zi, zj) denotes the cosine similarity between zi and zj , and we specify that pi→i = 1. In
addition, η is a hyperparameter that is used to control the overall hardness sensitivity. In this paper,
we adopt an exponentially decaying strategy to set the hyperparameter η. Extensive qualitative and
quantitative experiments are provided in Sec. 4.4 to demonstrate the effectiveness of our design.

3.3.2 HGMD-WEIGHT

Based on the sampling probabilities modeled in Eq. (4), we can easily sample a hardness-aware
subgraph gi with node set Vg

i = {vj ∼ Bernoulli(pj→i) |j ∈ (Ni ∪ i)} for each target node vi by
Bernoulli sampling. Next, a key issue being left is how to distill the subgraph-level knowledge from
teacher GNNs into the corresponding nodes of student MLPs. A straightforward idea is to follow
Wu et al. (2023a) to perform many-to-one knowledge distillation by optimizing the objective,

Lweight
KD =

1

|V|
∑
i∈V

1

|Vg
i |

∑
i∈Vg

i

pj→i · DKL

(
σ (zj/τ) , σ (hi/τ)

)
. (5)

Compared to the loss weighting of Eq. (3), the strengths of the HGMD-weight in Eq. (5) are four-
fold: (1) it extends knowledge distillation from node-to-node single-teacher KD to subgraph-to-node
multi-teacher KD, which introduces additional supervision; (2) it provides more supervision (i.e.,
larger subgraphs) for hard samples in a hardness-aware manner, rather than neglecting them by
reducing their loss weights; (3) it inherits the benefit of loss weighting by assigning a large weight
pj→i to a sample vj with low hardness H(zj) in the subgraph; (4) it takes into account not only the
knowledge hardness of the target node but also the nodes in the subgraph and their similarities to the
target, enjoying more contextual information. While the modification from Eq. (3) to Eq. (5) does
not introduce any additional parameters, it achieves a huge improvement, as shown in Table. 1.

3.3.3 HGMD-MIXUP

Recently, mixup (Abu-El-Haija et al., 2019), as an important data augmentation technique, has
achieved great success. Combining mixup with our HGMD framework enables the generation of
more GNN knowledge variants as additional supervision for those hard samples, which may help to
improve the generalizability of the distilled student model. Inspired by this, we propose a hardness-
aware mixup scheme to distill the subgraph-level knowledge from GNNs into MLPs. Instead of
mixing the samples randomly, we mix them by emphasizing the sample with a high probability
pj→i. Formally, for each target sample vi , a synthetic sample ui,j (vj ∈ Vg

i ) will be generated by
ui,j = λ · pj→i · zj + (1− λ · pj→i) · zi, λ ∼ Beta(α, α), (6)

where Beta(α, α) is a beta distribution parameterized by α. For a node vj ∈ Vg
i in the subgraph

with lower hardness H(zj) and higher similarity D(H(zi),H(zj)), the synthetic sample ui,j will be
closer to zj . Finally, we can distill the knowledge of synthetic samples {ui,j}vj∈Vg

i
in the subgraph

gi into the corresponding node vi of student MLPs by optimizing the objective, as follows

Lmixup
KD =

1

|V|
∑
i∈V

1

|Vg
i |

∑
i∈Vg

i

DKL

(
σ (ui,j/τ) , σ (hi/τ)

)
. (7)
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Compared to the weighting-based scheme (HGMD-weight) of Eq. (5), the mixup-based scheme
(HGMD-mixup) generates more variants of GNN knowledge through data augmentation, which is
more in line with our original intention of providing more supervision for hard sample distillation.

3.4 TRAINING STRATEGY

To achieve GNN-to-MLP knowledge distillation, we first pre-train the teacher GNNs with the clas-
sification loss Llabel = 1

|VL|
∑

i∈VL
CE

(
yi, σ(zi)

)
, where CE(·) denotes the cross-entropy loss.

Finally, we distill knowledge from teacher GNNs into student MLPs by the following objective,

Ltotal =
β

|VL|
∑
i∈VL

CE
(
yi, σ(hi)

)
+

(
1− β

)
LKD, (8)

where β is the hyperparameter to trade-off the classification and distillation losses. Besides, the
pseudo-code of HGMD (taking HGMD-mixup as an example) is summarized in Algorithm. 1.

Algorithm 1 Algorithm for the Hardness-aware GNN-to-MLP Distillation (MGMD-mixup)
Input: Feature Matrix: X; Adjacency Matrix: A; Number of Epochs: E.
Output: Predicted Labels YU and network parameters of the distilled student MLPs fS

γ (·).
1: Randomly initialize the parameters of teacher GNNs fT

θ (·) and student MLPs fS
γ (·).

2: Compute node embeddins {zi}Ni=1 of GNNs and pre-train GNNs until convergence by Llabel.
3: for epoch ∈ {1, 2, · · · , E} do
4: Compute node embeddins {hi}Ni=1 of the student MLPs.
5: Calculate probabilities {pj→i}i∈V,j∈Ni

and extract hardness-aware subgraphs {gi}Ni=1.
6: Generate synthetic samples {ui,j}i∈V,j∈Vg

i
by hardness-aware mixup in Eq. (6).

7: Calculate mixup-based knowledge distillation loss Lmixup
KD by Eq. (7).

8: Update MLP parameters fS
γ (·) by back propagation of the total loss Ltotal by Eq. (8).

9: end for
10: return Predicted labels YU for unlabeled data and parameters fS

γ (·) of the student MLPs.

3.5 ANALYSIS OF MODEL PARAMETERS AND COMPUTATIONAL COMPLEXITY

Compared to vanilla GNN-to-MLP KD, such as GLNN (Zhang et al., 2022), HGMD does not intro-
duce any additional learnable parameters in the process of subgraph extraction and subgraph distilla-
tion. In other words, our method is almost non-parametric. In terms of the computational complex-
ity, the time complexity of HGMD mainly comes from two parts: (1) GNN training O(|V|dF+|E|F )
and (2) Knowledge distillation O(|E|F ), where d and F are the dimensions of input and hidden
spaces. The total time complexity O(|V|dF + |E|F ) is linear w.r.t the number of nodes |V| and
edges |E|. This indicates that the time complexity of knowledge distillation in HGMD is basically
on par with GNN training and does not suffer from an overly high computational burden. A com-
parison of HGMD with other methods in terms of running time can be found in Appendix E.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

In this paper, we evaluate HGMD on eight real-world datasets, including Cora (Sen et al., 2008),
Citeseer (Giles et al., 1998), Pubmed (McCallum et al., 2000), Coauthor-CS, Coauthor-Physics,
Amazon-Photo (Shchur et al., 2018), ogbn-arxiv (Hu et al., 2020), and ogbn-products (Hu et al.,
2020). A statistical overview of these datasets is available in Appendix A. Besides, we defer the
implementation details and hyperparameter settings for each dataset to Appendix B. In addition,
we consider three common GNN architectures as GNN teachers, including GCN (Kipf & Welling,
2016), GraphSAGE (Hamilton et al., 2017), and GAT (Veličković et al., 2017), and comprehensively
evaluate two distillation schemes, HGMD-weight and HGMD-mixup, respectively. Furthermore,
we also compare HGMD with two types of state-of-the-art graph distillation methods, including (1)
GNN-to-GNN KD: (Yang et al., 2020), TinyGNN (Yan et al., 2020), GraphAKD (He et al., 2022),
RDD (Zhang et al., 2020b), FreeKD (Feng et al., 2022), and GNN-SD (Chen et al., 2020b); and (2)
GNN-to-MLP KD: CPF (Yang et al., 2021), RKD-MLP (Anonymous, 2023), GLNN (Zhang et al.,
2022), FF-G2M (Wu et al., 2023a), NOSMOG (Tian et al., 2023), and KRD (Wu et al., 2023b).
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Table 1: Accuracy ± std (%) on seven datasets, where three different GNN architectures (GCN,
GraphSAGE, and GAT) are considered as the teacher models. The best metrics are marked by bold.

Teacher Student Cora Citeseer Pubmed Photo CS Physics ogbn-arxiv Average

MLPs - 59.58±0.97 60.32±0.61 73.40±0.68 78.65±1.68 87.82±0.64 88.81±1.08 54.63±0.84 -

GCN

- 81.70±0.96 71.64±0.34 79.48±0.21 90.63±1.53 90.00±0.58 92.45±0.53 71.20±0.17 -
GLNN 82.20±0.73 71.72±0.30 80.16±0.20 91.42±1.61 92.22±0.72 93.11±0.39 67.76±0.23 -

Loss-Weighting 83.25±0.69 72.98±0.41 81.20±0.50 91.76±1.52 93.16±0.66 93.46±0.43 68.56±0.27 -

HGMD-weight 84.42±0.54 74.42±0.50 81.86±0.44 92.94±1.37 93.93±0.33 94.09±0.56 70.76±0.19 -
Improv. 2.22 2.70 1.70 1.52 1.71 0.98 3.00 1.98

HGMD-mixup 84.66±0.47 74.62±0.40 82.02±0.45 93.33±1.31 94.16±0.32 94.27±0.63 71.09±0.21 -
Improv. 2.46 2.90 1.86 1.91 1.94 1.16 3.33 2.22

GraphSAGE

- 82.02±0.94 71.76±0.49 79.36±0.45 90.56±1.69 89.29±0.77 91.97±0.91 71.06±0.27 -
GLNN 81.86±0.88 71.52±0.54 80.32±0.38 91.34±1.46 92.00±0.57 92.82±0.93 68.30±0.19 -

Loss-Weighting 83.16±0.76 72.30±0.47 80.92±0.46 91.63±1.31 92.84±0.60 93.28±0.72 69.04±0.22 -

HGMD-weight 84.36±0.60 73.70±0.50 81.50±0.57 93.01±1.19 93.77±0.47 94.21±0.57 71.62±0.26 -
Improv. 2.50 2.18 1.18 1.67 1.77 1.39 3.32 2.00

HGMD-mixup 84.54±0.53 73.48±0.53 81.66±0.36 93.29±1.22 94.03±0.43 94.12±0.61 71.86±0.24 -
Improv. 2.68 1.96 1.34 1.95 2.03 1.30 3.52 2.11

GAT

- 81.66±1.04 70.78±0.60 79.88±0.85 90.06±1.38 90.90±0.37 91.97±0.58 71.08±0.19 -
GLNN 81.78±0.75 70.96±0.86 80.48±0.47 91.22±1.45 92.44±0.41 92.70±0.56 68.56±0.22 -

Loss-Weighting 82.69±0.74 71.80±0.52 81.27±0.55 91.58±1.42 92.96±0.58 93.10±0.64 69.32±0.25 -

HGMD-weight 84.22±0.77 73.10±0.83 82.02±0.59 93.18±0.47 94.09±1.33 94.29±0.56 71.76±0.26 -
Improv. 2.44 2.14 1.54 1.96 1.65 1.59 3.20 2.07

HGMD-mixup 84.02±0.65 73.18±0.79 82.16±0.64 93.43±1.26 94.20±0.27 94.19±0.43 72.31±0.20 -
Improv. 2.24 2.22 1.68 2.21 1.76 1.49 3.75 2.19

4.2 COMPARATIVE RESULTS

To evaluate the effectiveness of the HGMD framework, we compare its two instantiations, HGMD-
weight and HGMD-mixup, with GLNN of Eq. (1) and Loss-Weighting of Eq. (3), respectively.
The experiments are conducted on seven datasets with three different GNN architectures as teacher
GNNs, where imporv. denotes the performance improvements with respect to GLNN. From the
results reported in Table. 1, we can make three observations: (1) Both HGMD-weight and HGMD-
mixup perform much better than vanilla MLP, GLNN, and Loss-Weighting on all seven datasets,
especially on the large-scale ogbn-arxiv dataset. (2) Both HGMD-weight and HGMD-mixup are
applicable to various types of teacher GNN architectures. For example, HGMD-mixup outper-
forms GLNN by 2.22% (GCN), 2.11% (SAGE), and 2.19% (GAT) averaged over seven datasets,
respectively. (3) Overall, HGMD-mixup performs slightly better than HGMD-weight across various
datasets and GNN architectures, owing to more knowledge variants augmented by the mixup.

Furthermore, we compare HGMD-weight and HGDM-mixup with several state-of-the-art graph
distillation methods, including both GNN-to-GNN and GNN-to-MLP KD. The experimental results
reported in Table. 2 show that (1) Despite being completely non-parametric methods, HGMD-weight
and HGMD-mixup both perform much better than existing GNN-to-MLP baselines on 5 out of 8
datasets. (2) HGMD-weight and HGMD-mixup outperform those GNN-to-GNN baselines on four
relatively small datasets (i.e., Cora, Citeseer, Pubmed, and Photo). Besides, their performance is
comparable to those GNN-to-GNN baselines on four relatively large datasets (i.e., CS, Physics, and
ogbn-arxiv, products). These observations indicate that distilled MLPs have the same expressive po-
tential as teacher GNNs, and that “parametric” is not a must for knowledge distillation. In addition,
we have also evaluated HGMD in the inductive setting and the results are provided in Appendix C.

4.3 ABLATION STUDY

To evaluate how hardness-aware subgraph extraction (SubGraph) and two subgraph distillation
strategies (weight and mixup) influence performance, we compare vanilla GCNs and GLNN with
the following five schemes: (A) Subgraph-only: extract hardness-aware subgraphs and then distill
their knowledge into the student MLP with equal loss weights; (B) Weight-only: take the full neigh-
borhoods as subgraphs and then distill by hardness-aware weighting as in Eq. (5); (C) Mixup-only:
take the full neighborhoods as subgraphs and then distill by hardness-aware mixup as in Eq. (7);
(D) HGMD-weight; and (E) HGMD-mixup. We can observe from the experimental results reported
in Table. 3 that (1) SubGraph plays a very important role in improving performance, which illus-
trates the benefits of performing knowledge distillation at the subgraph level compared to the node
level, as it provides more supervision for those hard samples in a hardness-aware manner. (2) Both
hardness-aware weighting and mixup help improve performance, especially the latter. (3) Combin-
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Table 2: Accuracy ± std (%) of various graph knowledge distillation algorithms in the transductive
setting on eight datasets, where bold and underline denote the best and second metrics, respectively.

Category Method Cora Citeseer Pubmed Photo CS Physics ogbn-arxiv products

Vanilla MLPs 59.58±0.97 60.32±0.61 73.40±0.68 78.65±1.68 87.82±0.64 88.81±1.08 54.63±0.84 61.89±0.18

Vanilla GCNs 81.70±0.96 71.64±0.34 79.48±0.21 90.63±1.53 90.00±0.58 92.45±0.53 71.20±0.17 75.42±0.28

GNN-to-GNN

LSP 82.70±0.43 72.68±0.62 80.86±0.50 91.74±1.42 92.56±0.45 92.85±0.46 71.57±0.25 74.18±0.41

GNN-SD 82.54±0.36 72.34±0.55 80.52±0.37 91.83±1.58 91.92±0.51 93.22±0.66 70.90±0.23 73.90±0.23

GraphAKD 83.71±0.77 72.68±0.71 80.96±0.39 - - - - -
TinyGNN 83.10±0.53 73.24±0.72 81.20±0.44 92.03±1.49 93.78±0.38 93.70±0.56 72.18±0.27 74.76±0.30

RDD 83.68±0.40 73.64±0.50 81.74±0.44 92.18±1.45 94.20±0.48 94.14±0.39 72.34±0.17 75.30±0.24

FreeKD 83.84±0.47 73.92±0.47 81.48±0.38 92.38±1.54 93.65±0.43 93.87±0.48 72.50±0.29 75.84±0.25

GNN-to-MLP

GLNN 82.20±0.73 71.72±0.30 80.16±0.20 91.42±1.61 92.22±0.72 93.11±0.39 67.76±0.23 65.18±0.27

CPF 83.56±0.48 72.98±0.60 81.54±0.47 91.70±1.50 93.42±0.48 93.47±0.41 69.05±0.18 68.80±0.24

RKD-MLP 82.68±0.45 73.42±0.45 81.32±0.32 91.28±1.48 93.16±0.64 93.26±0.37 69.87±0.25 72.52±0.35

FF-G2M 84.06±0.43 73.85±0.51 81.62±0.37 91.84±1.42 93.35±0.55 93.59±0.43 69.64±0.26 71.69±0.31

NOSMOG 83.80±0.50 74.08±0.45 81.49±0.53 93.18±1.20 93.54±0.98 93.61±0.58 71.20±0.24 76.14±0.32
HGMD-weight 84.42±0.54 74.42±0.50 81.86±0.44 92.94±1.37 93.93±0.33 94.09±0.56 70.76±0.19 75.21±0.22

HGMD-mixup 84.66±0.47 74.62±0.40 82.02±0.45 93.33±1.31 94.16±0.32 94.27±0.63 71.09±0.21 76.25±0.18

Table 3: Ablation study on the hardness-aware subgraph extraction and distillation modules.

Scheme KD SubGraph Weight Mixup Cora Citeseer Pubmed Photo CS Physics

Vinilla GCNs % % % % 81.70±0.96 71.64±0.34 79.48±0.21 90.63±1.53 90.00±0.58 92.45±0.53

GLNN " 82.20±0.73 71.72±0.30 80.16±0.20 91.42±1.61 92.22±0.72 93.11±0.39

SubGraph-only " " 83.78±0.55 74.26±0.69 81.46±0.45 92.58±1.58 93.48±0.53 93.80±0.63

Weight-only " " 83.56±0.72 73.96±0.46 81.18±0.64 92.14±1.37 93.23±0.46 93.50±0.67

Mixup-only " " 83.90±0.73 74.14±0.50 81.34±0.38 92.40±1.26 93.66±0.52 93.68±0.70

HGMD-weight " " " 84.42±0.54 74.42±0.50 81.86±0.44 92.94±1.37 93.93±0.33 94.09±0.56

HGMD-mixup " " " 84.66±0.47 74.62±0.40 82.02±0.45 93.33±1.31 94.16±0.32 94.27±0.63

ing the two different designs (subgraph extraction and subgraph distillation) together can further
improve performance on top of each on all six datasets. Furthermore, we provide a comparison
between HGMD-mixup and other baselines in terms of robustness to feature noise in Appendix D.

4.4 QUALITATIVE AND QUANTITATIVE ANALYSIS ON HARDNESS AWARENESS

Case Study of Hardness-aware Subgraphs. To intuitively show what “hardness awareness”
means, we select three GNN knowledge samples with different hardness levels from four datasets,
respectively. Next, we mark the hardness of each knowledge sample as well as their neighboring
nodes according to the color bar on their right side, where a darker blue indicates a higher distil-
lation hardness. In addition, we use the edge color to denote the probability of the corresponding
neighboring node being sampled into the hardness-aware subgraph, according to another color bar
displayed on the right. We can observe from Fig. 4 that: (1) For a given target node, neighboring
nodes with lower hardness (lighter blue) tend to have a higher probability of being sampled into the
subgraph. (2) A target node with higher hardness (darker blue) has a higher probability of having
its neighboring nodes sampled. In other words, the sampling probability of neighboring nodes is
actually a trade-off between their own hardness and the hardness of the target node. For example,
when the hardness of the target node is 0.36, a neighboring node with a hardness of 0.61 is still hard
to be sampled, as shown in Fig. 4(a); however, when the hardness of the target node is 1.73, even a
neighboring node with a hardness of 1.52 has a high sampling probability, which is close to 0.7.

3D Histogram on Hardness and Similarity. We show in Fig. 5(a) and Fig. 5(b) the 3D histograms
of the sampling probability of neighboring nodes w.r.t their hardness, their cosine similarity to the
target node, and the hardness of the target node, from which we can observe that: (1) As the hard-
ness of a target node increases, the sampling probability of its neighboring nodes also increases;
(2) Neighboring nodes with lower hardness have a higher probability of being sampled into the
subgraph; (3) As the cosine similarity between neighboring nodes and target node increases, their
sampling probability also increases; However, when the hardness of the target node is high, an overly
high similarity means that the hardness of neighboring nodes will also be high, which in turn reduces
the sampling probability, which is actually a trade-off between high similarity and low hardness.

Training Curves. We report in Fig. 5(c) the average entropy of the nodes in student MLPs and the
average size of sampled subgraphs during training on the Cora dataset. It can be seen that there
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Figure 4: Visualizations of three GNN knowledge samples of different hardness levels (Low / Middle
/ High) on four datasets, where the node and edge colors indicate the hardness of knowledge samples
and the sampling probability of neighboring nodes, respectively, and the color bars are on the right.
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Figure 5: (ab) 3D histogram of the sampling probability of neighboring nodes w.r.t their hardness,
hardness of the target node, and their cosine similarity to the target on Cora. (c) Training curves for
the average entropy of student MLPs and the average size of sampled subgraphs on Cora. (d) Ratio
of connected nodes sampled symmetrically and asymmetrically among all edges on six datasets.

exists a resonance between the two curves. As the training progresses, the uncertainty of the student
MLPs decreases and thus additional supervision required for distillation can be reduced accordingly.

Asymmetric Property of Subgraph Extraction. We statistically calculate the ratios of two con-
nected nodes among all edges that are and are not sampled into each other’s subgraphs simultane-
ously, called symmetrized and asymmetrized sampling. The histogram in Fig. 5(d) shows that sub-
graph extraction is mostly asymmetric, especially for large-scale datasets. This is because our sub-
graph extraction is performed in a hardness-aware manner, where low-hardness neighboring nodes
of a high-hardness target node have a higher sampling probability, but not vice versa. We believe
that such asymmetric property of subgraph extraction is an important aspect of the effectiveness of
our HGMD, since it essentially transforms an undirected graph into a directed graph for processing.

5 CONCLUSION

In this paper, we explore thoroughly why “better teacher, better student” does not hold true for
GNN-to-MLP KD from the perspective of hardness rather than correctness. We identify that hard
sample distillation may be a major performance bottleneck of existing distillation algorithms. To ad-
dress this problem, we propose a novel Hardness-aware GNN-to-MLP Distillation (HGMD) frame-
work, which distills knowledge from teacher GNNs at the subgraph level (rather than the node level)
in a hardness-aware manner to provide more supervision for those hard samples. Extensive experi-
ments demonstrate the superiority of HGMD across various datasets and GNN architectures. Limi-
tations still exist, for example, designing better hardness metrics or introducing additional learnable
parameters for knowledge distillation may be promising research directions for future work.
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APPENDIX

A. DATASET STATISTICS

Eight real-world graph datasets are used to evaluate the proposed HGMD framework. An overview
summary of the dataset characteristics is given in Table. A1. For the three small-scale datasets,
including Cora, Citeseer, and Pubmed, we follow the data splitting strategy in (Kipf & Welling,
2016). For the three large-scale datasets, including Coauthor-CS, Coauthor-Physics, and Amazon-
Photo, we follow Zhang et al. (2022); Yang et al. (2021) to randomly split the data into train/val/test
sets, and each random seed corresponds to a different data splitting. For the ogbn-arxiv and ogbn-
products datasets, we use the public data splits provided by the authors (Hu et al., 2020).

Table A1: Statistical information of the eight datasets.

Dataset Cora Citeseer Pubmed Photo CS Physics ogbn-arxiv ogbn-products
# Nodes 2,708 3,327 19,717 7,650 18,333 34,493 169,343 2,449,029
# Edges 5,278 4,614 44,324 119,081 81,894 247,962 1,166,243 61,859,140
# Features 1,433 3,703 500 745 6,805 8,415 128 100
# Classes 7 6 3 8 15 5 40 47

B. IMPLEMENTATION DETAILS

The following hyperparameters are set the same for all datasets: Epoch E = 500, learning rate
lr = 0.01 (0.005 for ogbn-axriv), weight decay decay =5e-4 (0.0 for ogbn-arxiv), and layer number
L = 2 (3 for Cora and ogbn-arxiv). The other dataset-specific hyperparameters are determined
by an AutoML toolkit NNI with the search spaces as: hidden dimension F = {256, 512, 2048},
distillation temperature τ = {0.8, 0.9, 1.0, 1.1, 1.2}, loss weight β = {0.0, 0.1, 0.2, 0.3, 0.4, 0.5},
coefficient of beta distribution α = {0.3, 0.4, 0.5}. Moreover, the hyperparameter η in Eq. (4) is
initially set to {1, 5, 10} and then decays exponentially with the decay step of 250. The experiments
are implemented based on the DGL library (Wang et al., 2019) using the PyTorch 1.6.0 with Intel(R)
Xeon(R) Gold 6240R @ 2.40GHz CPU and NVIDIA V100 GPU. For a fair comparison, the model
with the highest validation accuracy will be selected for testing. Besides, each set of experiments is
run five times with different random seeds, and the averages are reported as metrics.

For all baselines, we did not directly copy the results from their original papers but reproduced them
by distilling from the same teacher GNNs as in this paper, under the same settings and data splits. As
we know, the performance of the distilled student MLPs depends heavily on the quality of teacher
GNNs. However, we have no way to get the checkpoints of the teacher models used in previous
baselines, i.e., we cannot guarantee that the student MLPs in all baselines are distilled from the same
teacher GNNs. For the purpose of a fair comparison, we have to train teacher GNNs from scratch
and then reproduce the results of previous baselines by distilling the knowledge from the SAME
teacher GNNs. Therefore, even if we follow the default implementation and hyperparameters of
these baselines exactly, there is no way to get identical results on different hardware devices.

C. INDUCTIVE SETTING

We compare HGMD-mixup with vanilla GCNs, GLNN (Zhang et al., 2022), KRD (Wu et al.,
2023b), and NOSMOG (Tian et al., 2023) in the inductive setting with GCNs as teacher GNNs.
Considering the importance of node positional features (POS) in the inductive setting (as revealed
by the ablation study in NOGMOG), we consider the performance of HGMD-mixup and NOGMOG
w/ and w/o POS, respectively. We can find from the results in Table. A2 that (1) POS features play a
crucial role, especially on the large-scale ogbn-arxiv dataset. (2) HGMD-mixup outperforms GLNN
and KRD by a large margin, and is comparable to NOSMOG regardless of w/ and w/o POS features.

D. ROBUSTNESS EVALUATION

We follow Zhang et al. (2022); Tian et al. (2023) to evaluate the robustness of the model to feature
noise by adding different levels of Gaussian noise to node features by replacing X with X̃ = (1 −
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Table A2: Acuracy ± std (%) in the inductive setting on seven datasets, where HGMD-mixup out-
performs GLNN by a wide margin on all seven datasets and is comparable to NOSMOG and KRD.

Teacher Student Cora Citeseer Pubmed Photo CS Physics ogbn-arxiv

Inductive Setting

MLPs - 59.20±1.26 60.16±0.87 73.26±0.83 79.02±1.42 87.90±0.58 89.10±0.90 54.46±0.52

GCNs

- 79.30±0.49 71.46±0.36 78.10±0.51 89.32±1.63 90.07±0.60 92.05±0.78 70.88±0.35

GLNN 71.24±0.55 70.76±0.30 80.16±0.73 89.92±1.34 92.08±0.98 92.89±0.88 60.92±0.31

KRD 73.78±0.55 71.80±0.41 81.48±0.29 90.37±1.79 93.15±0.43 93.86±0.55 62.85±0.32

NOSMOG (w/o POS) 73.18±0.45 72.40±0.51 80.84±0.46 90.37±1.14 92.87±0.53 93.56±0.61 62.88±0.30

HGMD-mixup (w/o POS) 73.92±0.47 73.05±0.34 81.78±0.59 91.10±1.59 93.65±0.64 94.10±0.70 63.20±0.28

NOSMOG (w/ POS) 73.64±0.53 73.10±0.47 81.32±0.38 91.26±1.49 93.47±0.71 93.94±0.65 71.48±0.35

HGMD-mixup (w/ POS) 74.24±0.31 73.25±0.40 81.67±0.46 91.32±1.71 93.51±0.54 94.44±0.75 70.24±0.48

α)X+ αN, where N represents Gaussian noise that is independent from X, and α ∈ [0, 1] incates
the noise level. The results of GLNN, NOSMOG, and HGMD-mixup at 11 different noise ratios
averaged over seven datasets (e.g., Cora, Citeseer, Pubmed, Photo, CS, Physics, and ogbn-arxiv)
in the transductive setting are shown in Fig. A1. The results demonstrate the superior robustness of
HGMD-mixup, especially at high noise ratios. This is thanks to the fact that our HGMD is hardness-
aware, which can better identify those hard samples (usually with more feature noise), allowing the
model to benefit more from those potential high-quality knowledge samples with low feature noise.
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Figure A1: Robustness to Feature Noise.

HGMD-mixup Training Time (ms / epoch)

GLNN KRD HGMD-mixup

Cora 3.35 3.94 3.71
Citeseer 3.70 4.71 4.33
Pubmed 3.90 6.45 5.74
Photo 4.72 7.65 6.86
CS 18.03 23.74 21.75
Physics 34.16 43.15 39.51

Table A3: Training Time Analysis.

E. RUNNING TIME ANALYSIS

All distillation algorithms have two parts: (1) training the teacher, and (2) teacher-to-student distil-
lation. As a result, the computational complexity increase in training time is unavoidable. Indeed,
distillation itself is more concerned with inference rather than training efficiency, aiming to shift
considerable work from the latency-sensitive inference stage, where time reduction in milliseconds
makes a huge difference, to the less latency-insensitive training stage, where time cost in hours or
days is often tolerable. As a non-parametric approach, we believe that HGMD has an advantage in
terms of training time compared to previous baselines. A comparison between GLNN (Zhang et al.,
2022), KRD (Wu et al., 2023b), and HGMD-mixup in terms of running time (ms) per training epoch
for knowledge distillation is shown in Table. A3, where we adopt 2-layer GCNs and MLPs with a
hidden dimension of 256 as teacher and student models for GLNN, KRD, and HGMD-mixup. Due
to the proposed subgraph-level knowledge distillation scheme, the running time of HGMD-mixup
and KRD increases a bit on top of GLNN, but our HGMD-mixup still trains faster than KRD.

F. EVALUATION OF KNOWLEDGE HARDNESS METRICS

In this paper, we default to the information entropy H(zi) as a measure of its knowledge hardness,

H(zi) = −
∑
j

σ
(
zi,j/τ

)
log

(
σ (zi,j/τ)

)
. (A.1)

To further evaluate the effects of knowledge hardness metrics, we consider another more compli-
cated knowledge hardness metric proposed by KRD (Wu et al., 2023b), namely Invariant Entropy,
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Table A4: Performance comparison of KRD and HGMD-mixup with two knowledge hardness met-
rics (Information Entropy and Invariant Entropy) under the transductive setting on seven datasets.

Method Knowledge Hardness Cora Citeseer Pubmed Photo CS Physics ogbn-arxiv

MLPs - 59.58±0.97 60.32±0.61 73.40±0.68 78.65±1.68 87.82±0.64 88.81±1.08 54.63±0.84

GCNs - 81.70±0.96 71.64±0.34 79.48±0.21 90.63±1.53 90.00±0.58 92.45±0.53 71.20±0.17

KRD Information Entropy 83.87±0.51 74.12±0.47 81.24±0.31 91.75±1.46 94.21±0.37 93.90±0.54 70.51±0.24

HGMD-mixup Information Entropy 84.66±0.47 74.62±0.40 82.02±0.45 93.33±1.31 94.16±0.32 94.27±0.63 71.09±0.21

KRD Invariant Entropy 84.42±0.57 74.86±0.58 81.98±0.41 92.21±1.44 94.08±0.34 94.30±0.46 70.92±0.21

HGMD-mixup Invariant Entropy 84.89±0.35 74.48±0.41 82.30±0.28 93.57±1.17 94.47±0.49 94.54±0.55 71.48±0.27

that defines the knowledge hardness of a GNN knowledge sample (node) vi by measuring the in-
variance of its information entropy to noise perturbations, as follows

ρi =
1

δ2
E

X′∼N (X,Σ(δ))

[
∥H(z′i)−H(zi)∥

2
]
,where Z′ = fT

θ (A,X′) and Z = fT
θ (A,X) (A.2)

From the experimental results in Table. A4, we can make two observations that (1) Even the sim-
plest information entropy metric is sufficient to yield state-of-the-art results. However, HGMD is
also applicable to other knowledge hardness metrics in addition to information entropy; finer and
more complicated hardness metrics, such as Invariant Entropy, can lead to more performance gains,
regardless of for KRD or HGMD-mixup. (2) We made a fair comparison between HGMD-mixup
and KRD by using the same knowledge hardness metrics. Despite the fact that HGMD-mixup does
not involve any additional parameters in the distillation, HGMD-mixup outperforms KRD in 12 out
of 14 metrics across seven datasets. In short, the choice of knowledge hardness metrics is an open
problem, and our HGMD is compatible with a wide range of different knowledge hardness metrics.
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