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Abstract

Artificial intelligence (AI) has played a transformative role in chemical research,
greatly facilitating the prediction of small molecule properties, simulation of cat-
alytic processes, and material design. These advances are driven by increases in
computing power, open source machine learning frameworks, and extensive chemi-
cal datasets. However, a persistent challenge is the limited amount of high-quality
real-world data, while models calculated based on large amounts of theoretical
data are often costly and difficult to deploy, which hinders the applicability of AI
models in practical scenarios. In this study, we enhance the prediction of solute-
solvent properties by proposing a novel sample selection method: Core Subset
Iterative Extraction (CSIE). CSIE iteratively updates the core sample subset based
on information gain to remove redundant samples in theoretical data and optimize
the performance of the model on real chemical datasets. Furthermore, we intro-
duce an asymmetric molecular interaction graph neural network (AMGNN) that
combines positional information and bidirectional edge connections to simulate
real-world chemical reaction scenarios to better capture solute-solvent interactions.
Experimental results show that our method can accurately extract the core subset
and improve the prediction accuracy. Code is available at: https://CISE-AMGNN.

1 Introduction

Artificial intelligence (AI) has emerged as a pivotal tool in advancing chemical research [22, 13, 51, 2].
In recent years, AI has demonstrated its transformative potential across various domains, including the
prediction of small molecule properties [65, 8], the simulation of catalytic processes [18, 68], and the
design and property prediction of materials such as metal-organic frameworks (MOFs) [11, 53]. This
progress has been largely fueled by significant advancements in computational power, the proliferation
of open-source machine learning frameworks, and the expansion of chemical datasets [38, 16, 3].
The impact of AI on these areas is evident in the rapid growth of related studies and publications.

Despite rapid advances in AI-driven chemistry, a fundamental bottleneck remains the scarcity of
high-quality experimental data. Most progress still relies on computational or simulation-based
datasets [22, 25], which, while invaluable for method development, often fail to capture the full
complexity and variability of practical systems. Large-scale repositories such as GDB-17 [54]
and FDB-17 [64] are generated under idealized rules of chemical stability and synthetic feasibility,
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neglecting kinetic effects, environmental perturbations, measurement uncertainty, and procedural
variation [5]. To mitigate this gap, recent studies have sought to improve generalization under unseen
conditions by increasing model capacity or expanding data coverage. For example, Goh et al. [23]
employed weakly supervised training on large unlabeled chemical databases combined with transfer
learning, while Wang et al. [66] infused chemical reaction information into representation learning.

However, these strategies typically demand ever larger model architectures and datasets, incurring
prohibitive computational and storage costs that impede deployment in resource-limited environments.
To address both the burden of large-scale training and the challenge of uneven data distributions,
researchers in computer vision and natural language processing have developed an alternative
paradigm: core subset selection. This approach seeks to identify a small but highly informative subset
of the training data, so as to reduce training time and mitigate class or feature space imbalances
without substantially degrading performance [26, 60, 57, 58, 50, 4]. By focusing on the most
representative or hard examples, core subset selection methods can both accelerate convergence and
ensure that under-represented regions of the data manifold receive sufficient attention during learning.

When naively transferred to molecular chemistry, however, existing core subset selection methods
exhibit two major shortcomings: ❶Selection criteria based on loss, uncertainty, or feature embeddings
learned earlier by the downstream task models tend to overemphasize rare or difficult samples or
conversely overlook subtle but chemically important patterns, thereby skewing the training distri-
bution and degrading performance in under-sampled regions of chemical space [28, 32]; ❷ Many
algorithms require repeated evaluation of all or a large fraction of samples after each training epoch
to update their selection scores, introducing substantial overhead that scales poorly with dataset size,
especially in high-throughput molecular screening campaigns [74]. These limitations motivate the
development of a chemistry-specific core subset selection framework. Such a framework should be
capable of balancing the molecular feature distribution while also minimizing computational costs.
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Figure 1: Comparison of methods to assist in bridg-
ing the gap between theoretical and practical envi-
ronments.

To address the practical limitations of AI-
driven chemistry, we identify two complemen-
tary challenges: (i) theoretical datasets are
large in scale but often noisy, redundant, and
imbalanced; (ii) experimental datasets, while
high in quality and critical for real-world ap-
plications, are limited in size and coverage.
These challenges jointly motivate a two-stage
solution, illustrated through the case study of
dissolution free energy prediction.

In the first stage, we develop Core Subset Iter-
ative Extraction (CSIE), a principled sample
selection framework designed to reduce redun-
dancy and improve distributional balance in
theoretical datasets. Within the submodular
optimization framework [21], CSIE quantifies
the value of each sample via information gain, measuring its marginal reduction of uncertainty or
entropy [58]. To mitigate the noise and bias inherent in one-shot greedy strategies [20, 27], CSIE
adopts an EM-inspired iterative refinement process [40], dynamically re-evaluating sample contribu-
tions and progressively approaching a globally optimal subset. For reliable estimation, solute and
solvent molecules are independently encoded with a chemical language model, and their embeddings
are combined to represent molecular pairs, ensuring efficiency without invoking downstream task
models.

Building on the CSIE-selected core subset, we then fine-tune with scarce but reliable experimental
data using the Asymmetric Molecular Graph Neural Network (AMGNN). Unlike conventional GNNs,
AMGNN explicitly models the directional nature of solute–solvent interactions through distinct
bidirectional edges and tailored message-passing schemes. Extensive experiments demonstrate that
the integrated CSIE+AMGNN approach significantly improves dissolution free energy prediction
and generalizes well to other physical chemistry tasks, such as material band-gap prediction in
Appendix E.5.1.

Our contributions can be summarized as follows:
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Figure 2: Model framework: For a given solute-solvent dataset, the CSIE framework first extracts the
core subset of the dataset (warm points with larger information gain belong to the core subset), and
then AMGNN is trained on the core subset to predict the ∆Gsolv.

• CSIE Framework: We propose an iterative submodular-based core subset selection method that
maximizes information gain to reduce redundancy and deviation in theoretical datasets.

• AMGNN Architecture: We introduce an asymmetric molecular graph neural network to better
simulate directional solute–solvent interactions under realistic chemical conditions.

• Comprehensive Validation: We conduct extensive experiments and visualization analyses to
demonstrate the performance and interpretability of our method chemical property prediction.

2 Method

In this section, we introduce the CSIE framework and the AMGNN model: For a given solute-solvent
molecule dataset, in Section 2.1, we use the large model to obtain a multimodal representation of the
sample data, thereby providing a basis for CSIE to calculate information gain. In Section 2.2, we
describe in detail the process of extracting the core subset of the theoretical dataset using the CSIE
framework. Finally, in Section 2.3, we explain how AMGNN simulates real-world solute-solvent
interactions to predict ∆Gsolv of the solubility reaction.

2.1 Construction of Molecular Representation

Given that many solute and solvent molecules in the dataset share similar SMILES representations
yet exhibit significant differences in molecular properties, structural similarity alone is insufficient
for accurate sample differentiation. For example, the SMILES of acetic acid is CC(=O)O, while that
of ethanol is CCO. Although they differ by only one oxygen atom in their 2D molecular graphs, their
behaviors as solvents are markedly distinct.

To address this, we incorporate the multimodal molecular representation model MolCA [34], which
integrates topological and chemical semantic information to generate more expressive embeddings.
Molecular text descriptions are primarily sourced from PubChem [30], with additional augmentation
from GPT-4 Omni (GPT-4o) [1]. By capturing subtle distinctions between structurally similar
molecules, multimodal embeddings substantially improve the accuracy of information gain estimation
in the CSIE core subset selection process.

As shown in Figure 2, given an input set composed of the smiles and text description of the solute-
solvent pairs D = {(gsolvent1, tsolvent1, gsolute1, tsolute1), · · · }, it will be encoded by the MolCA:

xsolutei = ϕg(gsolutei) ∥ ϕt(tsolutei),

xsolventi = ϕg(gsolventi) ∥ ϕt(tsolventi),
(1)

3



Here, ∥ represents the concatenation operation of vectors, gsolutei is a preliminary graph vector repre-
sentation obtained from the smiles of solutei and Tsolutei is a preliminary word vector representation
encoded from the textual description of solutei, ϕg(·) and ϕt(·) are respectively the graph encoder
network and text encoder network of MolCA.

Then we perform a concatenation operation to obtain the embedded representation of the solute-
solvent pair xi by concat the two vectors in Equation (1).

2.2 CSIE Framework

Samples with high information gain often correspond to examples near the decision boundary, defined
as m(x) = y · (w ·x). According to Sorscher et al. [58], when the expected information gain E[G(x)]
of the retained samples exceeds the minimum density threshold c = inf E[G(x)], the generalization
error decreases exponentially, following ϵ(Cs) ∝ e−ηCs , where Cs is the core subset size and η is a
constant. Furthermore, the resource cost grows only logarithmically with respect to the desired error,
i.e., ∝ ln(1/ϵ), enabling efficient error reduction with limited computational overhead.

In CSIE, we estimate the information gain of each sample as the similarity measure between its
embedding representation and surrounding samples, and use this to determine whether it should
be retained in the dataset. To efficiently compute similarities among samples and facilitate gain
estimation, we employ the Hierarchical Navigable Small World (HNSW) algorithm [36], which
allows for scalable and approximate nearest neighbor search in high-dimensional spaces.

For the hierarchical index graph, we use the number of nodes in the insertion layer as the number of
latent categories: Cj = ||lj ||+ 1. Latent classes can be viewed as classifications of nodes at different
levels of topology. Assume that when a node xi is inserted into the graph, its level Lj is determined
by a random process. The node insertion probability pj(xi) of each level Lj can be simulated using
a parameterized Bernoulli process:

P (xi ∈ Lj) =
e−βj

Zj
, Zj =

Cj∑
k=0

e−βk . (2)

Among them, βj is the attenuation factor related to the level Lj , and the normalization factor Zj is
determined by the expected value.

Information gain can be modeled from the perspective of information entropy. First, define the prior
information entropy H(xi) of node xi before insertion and the posterior information entropy H(xi|G)
after insertion, where G is the graph structure formed during the insertion process. Information gain
G(xi) can be measured by the difference between the two:

G(xi) = H(xi)−H(xi|G), H(xi|Zi) = −
ℓi∑

j=0

P (Hij) logP (Hij) (3)

where P (Hij) is the probability distribution of the implicit category of node xi at level Lj , and Hij

represents the category label of node xi at level Lj . Here, we can use the average cosine distance
from xi to its neighboring nodes as an explicit information gain measure. The specific proof can be
found in the Appendix B.

From the Equation (3), it can be inferred that these pairs tend to have similar feature encoding to their
surrounding pairs. Thus, these paris are often not worth adding to the dataset.

Consider the sample set X = {x1, x2, . . . , xN} ⊂ Rd, where each sample xi follows an unknown
distribution P (x). Our goal is to select the core subset Cs from X such that its size satisfies:

|Cs| = ⌈s ·N⌉ , s ∈ (0, 1] (4)

The core subset Cs contains the samples with the top s% information gain, aiming to maximize the
contribution to the overall data structure. Since the randomness of the sample insertion order may
introduce noise and bias, we draw the idea of EM algorithm to optimize the selection of the core
subset, aiming to eliminate the deviation of the insertion order. The two-step iteration steps are as
follows:
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In the E-step of the t-th iteration, we select the first k% high information gain samples from the
current core subset C(t)

s as the unbiased core subset C(t)
u :

C(t)
u = argmax

C⊆C(t)
s

|C|=⌈k·s·N⌉

∑
xi∈C

G(xi) (5)

In the M-step, we first insert C(t)
u into the HNSW structure, and then randomly insert the remaining

sample set X \ C(t)
u , and recalculate the information gain of all samples:

G(t+1)(xi) = (
1

|N (t+1)(xi)|
∑

xj∈N (t+1)(xi)

dist(xi, xj) + ε) (6)

The new core subset is updated by maximizing the information gain:

C(t+1)
s = argmax

C⊆X
|C|=⌈s·N⌉

∑
xi∈C

G(t+1)(xi) (7)

The algorithm ensures the monotonically non-decreasing information gain in each iteration:∑
xi∈C(t+1)

s

G(t+1)(xi) ≥
∑

xi∈C(t)
s

G(t)(xi) (8)

The iteration converges when the core subset satisfies the following conditions:∥∥∥C(t+1)
s − C(t)

s

∥∥∥
0
≤ δ (9)

Among them, δ is the preset tolerance threshold, and ∥ · ∥0 represents the change in the number of
collection elements. The proof of the iteration is shown in the Appendix C. The core subset ratio k
and EM algorithm threshold δ are given in the Appendix E.1.

Through this design, our method exhibits properties similar to submodular function (X ⊆ Y ⇒
f(x,X) ≥ f(x, Y )) [21]. Here, f is a set function mapping from the power set of set Ω to the real
number set R. X and Y are sets that belongs to Ω and x satisfies x ∈ Ω \ Y . In this way, proved in
Appendix D, Our method satisfies the marginal diminishing effect of the submodular function, which
means that it can select the sample set with the highest gain. Due to the characteristics of the HNSW
algorithm, it can screen and update samples with a time complexity of O(log(n)).

2.3 The AMGNN to Predict ∆Gsolv

After sample selection by CSIE method, we proposed an asymmetric merged graph and message
passing graph neural network to predict ∆Gsolv.

We noticed that previous methods often learn chemical reaction behaviors based on solute solvent
molecular graphs or merge graphs, which makes it difficult to distinguish between the two situations
where molecule a dissolves in molecule b and molecule b dissolves in molecule a, because the merge
graphs constructed by the two are exactly the same. Therefore, we made a modification: when
constructing the merge graph, we chose to add bidirectional directed edges with learnable weights
between the topological nodes of the solute and solvent. In this way, during the message passing
process, the model can distinguish between the message passing from solute to solvent and from
solvent to solute. So that the situations we mentioned above can be distinguished. Specifically, our
model AMGNN is as follows:

We use an asymmetric merged graph G to represent the solvent topology and solute topology
connected by directed edges:

G = {R, E ,V,U}, (10)
Here, E is the undirected edge of the solute molecule and solvent molecule, V represents all nodes of
in the molecule pair, U is the global vector representation of the molecule pair, and R is the set of
directed edges between solute and solvent molecule :

R = {(rk, ai, bj)}2×Na×Nb

k=1 , (11)
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where i ∈ {1, 2, 3, . . . , Na}, j ∈ {1, 2, 3, . . . , N b}. Na and N b are the total number of atoms in
each of the two molecules. As mentioned above, in order to distinguish between solvent and solute
molecules in the merged graph, we constructed this new type of edge rk as directed edges rij from
ai to bj and directed edges rji from bj to ai.

Next, following the approach of previous research, we will first perform message transmission and
feature updates within the molecule:

e′ij = eij + τ [FC(vi + vj) + FC(eij) + FC(u)], êij =
σ(e

′

ij)∑
j′∈Ni

σ(e
′
ij) + ϵ

,

v′i = vi + τ [FC(vi +
∑
j∈Nj

êij)⊙ FC(vj) + FC(u)],
(12)

where vi and eij denote the node and edge vectors belonging to V and E , respectively. τ(·) and
σ(·) are activation functions, FC(·) represents a fully connected layer, ⊙ denotes element-wise
multiplication, and ϵ is a fixed constant.

The next step will be the process of intermolecular information transfer. Compared to previous
research, when constructing merged graphs, we add a large number of connecting edges between
molecules, which may make message passing and node updates too complex and result in over
smoothing. To address this issue, we introduced a mask vector M = {mk|mk ∈ {0, 1}}2×Na×Nb

k=1
during node updates to randomly mask out some edges between molecules:

r′ij = β1 ∗ τ [FC(δ(v′ai, v′bj) ∗ v′ai)] + (1− β1) ∗ rij ,
r′ji = β2 ∗ τ [FC(δ(v′bj , v′ai) ∗ v′bj)] + (1− β2) ∗ rji,

v′′ai = (1− β3) ∗ v′ai +mji ∗ β3 ∗ τ [
∑
j∈Nb

FC(r′ji)],

v′′bj = (1− β4) ∗ v′bj +mij ∗ β4 ∗ τ [
∑
i∈Na

FC(r′ij)],

(13)

where β1, β2, β3, β4 are learnable parameters that control the update rate of information, which
makes information differentiated to avoid information decay or overwrite the original information.
v′ai represents the atomic feature vector in the solvent molecule updated by Equation (12) in the
merged molecular graph, while v′ai represents the atomic feature vector in the solute molecule. δ is
used to measures the similarity between atoms.

Finally, we update the global feature vector u:

r′i = FC(δ(v′ai, v
′
bj)), u′ = u+ τ [FC(

1

Nv

Nv∑
i=1

v′i +
1

Ne

Ne∑
k=1

e′k + u)], (14)

where Nv and Ne are the number of nodes and edges respectively.

Repeat the above update process until obtaining the final merged molecular feature representation uf .
Then we use a MLP to predict predict the ∆Gsolv:

∆Gsolv = MLP(uf ). (15)

And the expression of the loss function is:

L = D (∆Gsolv;Y ) . (16)

where D denotes the distance function, Y is the label value given by the dataset.

3 Experimental Results

In this section, we conduct extensive experiments to answer the following questions:

• RQ1: Can CSIE and AMGNN make up for the difference between theoretical data and real data?
• RQ2: Why can CSIE and AMGNN achieve outstanding results with few samples?
• RQ3: Can CSIE also enhance model performance beyond cross-dataset generalization?
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3.1 Experimental Setup

Datasets. The experimental dataset utilized in this study is the CombiSolv-Exp database, which is
compiled by Vermeire and Green [62], and combined the experimental data from multiple sources.
And the FreeSolv database is published by Mobley and Guthrie [43], the CompSol database from
Moine et al. [45], MNSol from Marenich et al. [37] and remaining dataset is Abraham collected by
the Abraham group [24]. The theoretical dataset (CombiSolv-QM) comes from Vermeire et al. [62]
which is computerd by the commercial software COSMOtherm.

Baseline. To fully validate the effectiveness of our proposed CSIE, we conducted experiments on
various models. They are D-MPNN [63], SolvBert [70], SMD [41], Explainable GNN [35], GAT [61],
GROVER [52], Uni-Mol [76], Gem [19], which use simple combinations of solute or solvent
characterizations without intermolecular messaging. CIGIN [47], CGIB [33] and MMGNN [17] take
into account intermolecular messaging and interactions.

Experimental settings. The model is trained using the Adam optimizer [31] (1e−4 → 0.5) via batch
size 50. We employ mean squared error (MSE) as our evaluation indicators. The training process
was halted if the validation MSE stop reducing in 150 epochs, or the maximum training limit of 500
epochs was reached. It is implemented using PyTorch via Tesla A100 80GB.

Evaluation Metrics. Experiment results are presented in following metrics: the mean absolute error
(MAE) and root mean squared error (RMSE). We repeated the training eight times. The mean and
standard deviation are recorded.

3.2 Generalization Performance From Theoretical Dataset To Experimental Dataset (RQ1)

A top-1% core subset QM-mini (same size as CombiSolv-Exp, See the Appendix E.5.2 for more
experiments) of the theoretical dataset CombiSolv-QM is selected through the CSIE framework.
Referring to previous studies, we compare the performance differences of AMGNN and other
baselines on the same test set in two situations: (1) directly train in CombiSolv-Exp, (2) train in QM-
mini and then transfer to CombiSolv-Exp. In Table 1, we show the results of randomly partitioning
CombiSolv-Exp. Table 2 and Table 3 show the impact of CSIE on the generalization of the model
under solvent-split and solute-split. Based on these outcomes, we can delineate three key observations:

Table 1: Performance comparison on the test set
between models trained directly on CombiSolv-
Exp and those transferred after training on core
subset QM-mini from theoretical CombiSolv-QM.

Methods CombiSolv-Exp→CombiSolv-Exp QM-mini→CombiSolv-Exp

MAE (↓) RMSE (↓) MAE (↓) RMSE (↓)

D-MPNN 0.456(0.042) 0.672(0.051) 0.402(0.017) 0.613(0.026)

Explainable GNN 0.221(0.040) 0.404(0.054) 0.193(0.016) 0.384(0.035)

SolvBERT 0.382(0.023) 0.472(0.041) 0.341(0.011) 0.427(0.008)

GAT 0.970(0.031) 1.210(0.101) 0.853(0.016) 0.960(0.053)

GROVER 0.382(0.023) 0.491(0.053) 0.331(0.022) 0.417(0.019)

SMD 0.633(0.044) 1.023(0.152) 0.577(0.033) 0.876(0.039)

Uni-Mol 0.214(0.022) 0.373(0.043) 0.203(0.021) 0.311(0.027)

Gem 0.253(0.023) 0.551(0.023) 0.218(0.016) 0.499(0.031)

CIGIN 0.241(0.023) 0.411(0.032) 0.219(0.017) 0.411(0.019)

CGIB 0.223(0.037) 0.381(0.030) 0.211(0.025) 0.355(0.025)

MMGNN 0.218(0.043) 0.377(0.027) 0.200(0.021) 0.317(0.022)

AMGNN 0.214(0.019) 0.367(0.015) 0.191(0.011) 0.299(0.010)

Obs.1: CSIE facilitates the migration of theo-
retical data to experimental data. As shown in
Table 1, the performance of the model pretrained
on QM-mini and then transferred to CombiSolv-
Exp has been improved to a certain extent and
the performance is more stable, even exceed-
ing the results of previous work [62] using all
CombiSolv-QM data for training and migration.
Taking the MAE indicator as an example, mul-
tiple models such as AMGNN have achieved
performance improvements of more than 10%.
This fully demonstrates the effectiveness of the
CSIE framework. Meanwhile, we give the sig-
nificance analysis results of Table 1 in the Ap-
pendix E.1.

Obs.2: CSIE improves the generalization performance of the model. As shown in Table 2 and
Table 3, the performance of the model using CSIE-assisted migration did not show a significant
decline in both solvent partitioning and solute partitioning, and was significantly better than the
model trained directly on CombiSolv-Exp, especially for some molecules with relatively high specific
gravity, such as solvent water and Element O.

Obs.3: Our AMGNN shows the best performance in various settings. Taking Random-split as
an example, the transfer learning performance of AMGNN improves MAE 4.5% and RMSE 5.6%
compared with the sota model MMGNN. Similar improvements were achieved under solvent-split and
solute-split. This demonstrates the excellent ability of AMGNN to simulate asymmetric dissolution
reactions in the real-world systems.
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Table 2: Comparison of the experimental results under solvent-split. The evaluation metric is MAE.

Solvent
CombiSolv-Exp→ CombiSolv-Exp QM-mini→ CombiSolv-Exp

Test-sizeGAT Explainable GNN CGIB MMGNN AMGNN GAT Explainable GNN CGIB MMGNN AMGNN

Acetone 0.303(0.032) 0.284(0.023) 0.252(0.024) 0.232(0.014) 0.213(0.012) 0.271(0.032) 0.249(0.013) 0.206(0.032) 0.192(0.012) 0.186(0.009) 100
Acetonitrile 0.592(0.051) 0.482(0.023) 0.454(0.023) 0.425(0.032) 0.401(0.021) 0.543(0.045) 0.472(0.032) 0.433(0.017) 0.411(0.020) 0.391(0.022) 67

Benzene 0.233(0.013) 0.241(0.024) 0.202(0.014) 0.201(0.011) 0.181(0.009) 0.221(0.016) 0.225(0.011) 0.192(0.010) 0.188(0.010) 0.151(0.013) 45
DMSO 1.217(0.164) 0.977(0.074) 0.955(0.083) 0.915(0.062) 0.885(0.054) 1.163(0.083) 0.870(0.032) 0.855(0.071) 0.802(0.052) 0.793(0.048) 60
Ethanol 0.291(0.024) 0.262(0.021) 0.253(0.022) 0.251(0.029) 0.226(0.018) 0.279(0.026) 0.255(0.016) 0.222(0.014) 0.225(0.019) 0.206(0.053) 143
Octanol 0.452(0.023) 0.461(0.045) 0.374(0.028) 0.354(0.018) 0.324(0.016) 0.444(0.043) 0.430(0.035) 0.359(0.027) 0.324(0.017) 0.291(0.010) 226

THF 0.491(0.032) 0.453(0.024) 0.443(0.032) 0.415(0.016) 0.413(0.012) 0.452(0.027) 0.413(0.016) 0.410(0.012) 0.387(0.021) 0.361(0.009) 116
Water 2.584(0.045) 2.324(0.037) 2.117(0.043) 2.001(0.052) 1.921(0.043) 2.164(0.031) 1.865(0.012) 1.517(0.015) 1.512(0.016) 1.421(0.016) 1153

Hexane 0.232(0.014) 0.498(0.015) 0.143(0.015) 0.137(0.011) 0.143(0.012) 0.211(0.008) 0.410(0.004) 0.123(0.010) 0.135(0.008) 0.123(0.005) 186

Table 3: The experimental results of solute splitting are compared according to the element type. The
evaluation metric is MAE.

Element
CombiSolv-Exp→CombiSolv-Exp QM-mini→CombiSolv-Exp

Test-sizeGAT Explainable GNN CGIB MMGNN AMGNN GAT Explainable GNN CGIB MMGNN AMGNN

Br 0.987(0.022) 0.881(0.051) 0.790(0.042) 0.652(0.024) 0.567(0.021) 0.854(0.017) 0.790(0.031) 0.663(0.038) 0.601(0.016) 0.514(0.019) 152
Cl 2.043(0.022) 1.696(0.051) 1.256(0.042) 1.276(0.024) 1.186(0.027) 1.721(0.015) 1.244(0.016) 1.112(0.009) 1.078(0.014) 0.942(0.014) 1058
F 1.201(0.043) 1.211(0.051) 1.053(0.023) 0.913(0.029) 0.914(0.031) 1.031(0.016) 1.042(0.019) 1.066(0.033) 0.801(0.024) 0.718(0.023) 320
I 0.981(0.019) 0.884(0.032) 0.684(0.022) 0.653(0.019) 0.606(0.011) 0.882(0.030) 0.812(0.018) 0.563(0.029) 0.419(0.014) 0.412(0.009) 117
N 2.120(0.119) 2.155(0.063) 1.774(0.054) 1.512(0.039) 1.366(0.047) 1.870(0.052) 1.697(0.030) 1.105(0.021) 0.999(0.033) 0.912(0.025) 1192
O 2.932(0.098) 2.946(0.073) 2.251(0.066) 2.153(0.024) 1.860(0.024) 2.115(0.057) 2.057(0.066) 1.351(0.038) 1.491(0.016) 1.251(0.012) 3796
S 1.053(0.041) 0.965(0.025) 0.819(0.028) 0.795(0.037) 0.768(0.031) 0.822(0.023) 0.741(0.019) 0.699(0.028) 0.573(0.017) 0.562(0.015) 293

3.3 Evaluation of The CSIE (RQ2)

To further explore the nature of CSIE, we mapped the features of the samples in CombiSolv-Exp
and used the UMAP [39] dimensionality reduction tool to divide them according to solvent type. In
Figure 3, we intuitively and clearly show the screening effect of CSIE on samples. Table 4 shows
the results of the ablation experiment: For a more intuitive and clear presentation, we do not take
transfer learning as an example, but directly perform sample selection, training, and verification on
the CombiSolv-Exp dataset to demonstrate the effectiveness of the CSIE framework and AMGNN.

Obs.4: CSIE removes redundancy by screening samples by category. As shown in Figure. 3 (a),
the samples are distinguished by solvent type, and the dark and light tones indicate whether they are
in the core subset screened by the CSIE framework. It can be seen that CSIE has achieved the goal of
removing redundant samples while ensuring the quality of the dataset by evenly selecting samples of
each category.

Figure 3: Sample selection and distribution
visualization. (a) UMAP projection of solvent
molecular embeddings, with lighter points for
the full set and darker points for selected sam-
ples. (b) Original sample category distribu-
tion. (c) Sample category distribution after
selection.

Obs.5: CSIE can balance the distribution of the
dataset. In Figure 3 (b) and Figure 3 (c), we show the
proportion of each type of sample before and after the
core subset selection by CSIE. It can be clearly seen
that through CSIE, the proportion of samples such
as ‘Aromatics’ and ‘Halogens’, which accounted for
a relatively small proportion in the original dataset,
has been significantly improved in the core subset,
while the proportion of ‘Intra-molecular H - bonding’,
which originally had a large number, has decreased by
nearly 10%. This further illustrates that the essence
of CSIE is to improve the quality of the dataset by
balancing the distribution of various samples in the
dataset.

Obs.6: The samples selected by CSIE are more
helpful for training, while the asymmetric network
can better simulate the dissolution reaction. As
shown in Table 4, under the w/o CSIE setting, the use
of random sampling leads to a huge drop in model
performance, especially in the case of few samples.
The w/o EM algorithm also degrades the quality of
the training set. The model performance also suffers slightly under the w/o Asymmetric network
setting using undirected edge modeling.
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Table 4: Ablation experiments are performed on core subsets of different sizes in CombiSolv-Exp to
explore the effect of the CISE framework on sample extraction.

Methods 20% Trainset 40% Trainset 60% Trainset 80% Trainset
MAE (↓) RMSE (↓) MAE (↓) RMSE (↓) MAE (↓) RMSE (↓) MAE (↓) RMSE (↓)

w/o CISE 1.486(0.065) 1.711(0.103) 0.839(0.078) 0.921(0.122) 0.579(0.054) 0.654(0.067) 0.391(0.088) 0.446(0.093)

w/o EM algorithm 1.123(0.022) 1.431(0.032) 0.642(0.027) 0.850(0.030) 0.402(0.021) 0.571(0.033) 0.344(0.018) 0.418(0.022)

w/o Asymmetric network 0.833(0.021) 0.921(0.028) 0.545(0.024) 0.733(0.024) 0.381(0.026) 0.453(0.019) 0.320(0.020) 0.427(0.022)

Our Method (CSIE+AMGNN) 0.777(0.011) 0.811(0.009) 0.311(0.020) 0.350(0.018) 0.247(0.015) 0.261(0.015) 0.313(0.017) 0.370(0.027)

(a) (b) (c) (d)

Figure 4: Model performance using various sampling methods under different datasets. (a), (b), (c),
and (d) represent the experimental results on the Abraham, Compsol, Freesolv, and MNsol datasets.

3.4 Performance of CSIE Within The Experimental Dataset (RQ3)

To further explore the universality of the CSIE framework, we trained and tested on four datasets:
FreeSolv, MNSol, Abraham, and CompSol. The datasets were randomly divided, and under the
premise of keeping the validation set and test set unchanged, we used the CSIE framework and
other dataset pruning methods, including Hard Random, Systematic Sampling [69], K-Means [29],
Margin [12], Glister [56], to select core subsets of different orders of magnitude for actual training.
Figure 4 shows the performance of the model trained on train datasets with different data volumes.

Obs.7: At the same order of magnitude, the core subset extracted by CSIE is more effective.
From Figure 4 we can see that no matter which dataset or sample size, the model trained with the core
subset selected by CSIE outperforms other methods. Our method is far ahead of baseline methods
such as random sampling, and only systematic sampling methods are close (this is due to the data
arrangement of the dataset itself). This demonstrates the effectiveness of our proposed CSIE in
sample selection and its robustness on various datasets.

Obs.8: CSIE achieves similar performance with fewer samples. For Abraham (Figure 4 (a)) and
MNSol (Figure 4 (d)), the model can achieve performance close to that of using all samples using
only 80% of the samples. On the CompSol (Figure 4 (b)) , the performance of training with 80%
of the samples even exceeds that of training with all the samples. This is because by iterative core
subset selection, CSIE removes some redundant samples that are similar in feature space, effectively
avoiding overfitting of the model to a certain type of samples and improving the generalization ability
of the model.

Obs.9: CSIE works well on datasets with a more uniform distribution of categories. The Freesolv
dataset consists of pairs of molecules with different solutes but water as the solvent. Such samples are
naturally close in feature space. As can be seen from Figure 4 (c), although the model performance
slightly decreases when 80% of the dataset is used, when the training samples are reduced to 60%,
the model performance increases instead of decreasing. It indicates that the core subset selected by
CSIE effectively reduces the redundant information in the dataset by removing solute molecules with
similar properties.

4 Conclusion

In the field of physical chemistry, the relationship between theoretical calculations and the real
world has always been a difficult problem. This study proposes a core subset iterative extraction
(CSIE) framework and an asymmetric molecular interaction graph neural network (AMGNN). CSIE
effectively extracts core subsets of theoretical data in a lightweight way, while AMGNN simulates
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real molecular reactions through asymmetric connection relationships. Through core subsets and
transfer learning techniques, the model can be easily deployed, while expanding the sample space
and thus enhancing the model’s prediction ability, while balancing computational efficiency, thereby
achieving a leap from theoretical data to real experimental results. We verified the effectiveness and
interpretability of the proposed method through various experiments.
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A Related work

A.1 Molecular Relational Learning

Molecular relationship learning is typically achieved using graph neural networks (GNNs), with most
of them relying on the atomic features within a molecule. For instance, Behler and Parrinello utilized
neural networks to model atomic interactions within molecules [6, 7, 10, 9]. Additionally, recent
work [49] has combined message-passing and attention mechanisms with GNNs to model molecular
representations for predicting solvation free energy. Another framework [33] leverages the graph
information bottleneck theory to predict molecular interactions. More sophisticated methods have
introduced atom-pair symmetry message-passing functions, which aim to enhance the representation
of interatomic interactions and improve the accuracy of molecular behavior predictions [42, 17].

A.2 Discussion on Graph Neural Network

Graph neural networks (GNNs) [55] have shown strong expressive power in molecular relationship
modeling and have been widely used to predict molecular properties, reaction behavior, and solubility
free energy. Traditional GNNs model the interactions between atoms and bonds through message
passing between nodes to extract the structural and chemical characteristics of molecules. Typical
models such as D-MPNN [63] and GAT [61] use this method to complete the representation learning
of molecular graphs. Models such as MMGNN [17], CGIB [33] and IGIB [75] try to innovate in
modeling the interaction between molecular pairs.

However, in actual chemical systems, there are asymmetric and diverse relationships between
molecules (such as solutes and solvents). Traditional GNNs are limited in their ability to model
such heterogeneous information. To this end, heterogeneous graph neural networks (HetGNNs) [72]
provide an effective solution. HetGNN expands the modeling capabilities of GNN, introduces
multiple types of nodes (such as molecules of different categories) and edges (such as hydrogen bonds,
hydrophobic interactions, etc.), and supports type-based message passing mechanisms. However, in
the field of molecular relationship learning such as dissolution reaction prediction or drug interaction
prediction, there is no mature solution for heterogeneous graph construction.

A.3 From Theoretical Data to Real World

Several approaches have been proposed to bridge the gap between theoretical data and real-world
applications. One approach involves training on large-scale theoretical datasets and then using transfer
learning techniques to fine-tune the model on smaller experimental datasets [23, 63, 73]. Another
strategy focuses on introducing more realistic data processing or modeling methods [71, 14, 15].
For instance, Mohapatra et al. [44] introduced more complex topological structures to capture the
similarities among macromolecules, while Wang et al. [66] incorporated chemical reactions into the
learning process. Additionally, Stuyver et al. [59] explored the use of quantum mechanics to enhance
representations. However, the former requires training on a large amount of theoretical data, which
increases the difficulty of model deployment, while the latter increases the complexity of the model
and the constraints may not be comprehensive.

B PROOFS of Information Gain

B.1 DEFINITION OF INFORMATION GAIN

Information gain quantifies the change in the system’s information content before and after the
insertion of a node into the graph structure. In the context of HNSW, the insertion of node xi affects
the distances between the node and its neighboring nodes, which in turn impacts the system’s entropy.
Before the insertion of node xi, the distance distribution between each node xj and xi is denoted
by d(xi,xj), and the entropy is H(Xbefore). After the insertion, the distances change, and the new
entropy is H(Xafter). Therefore, the information gain G(xi) can be defined as:

G(xi) = H(Xbefore)−H(Xafter)

This equation shows that the information gain corresponds to the change in entropy before and after
the insertion of the node.
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B.2 GRAPH STRUCTURE CHANGES AFTER NODE INSERTION

In the HNSW algorithm, when a node xi is inserted, it is connected to several neighboring nodes
through the multi-level graph structure. These neighboring nodes influence the overall structure of
the graph, particularly the distances between the new node and its neighbors. After the insertion, the
distances between all nodes in the graph will change, affecting the overall entropy of the system.

Let N (xi) = {y1,y2, . . . ,ym} represent the set of neighboring nodes of node xi. The distance
between node xi and its j-th neighbor yj is given by d(xi,yj). The average distance between node
xi and its neighbors is:

d̄(xi) =
1

m

m∑
j=1

d(xi,yj) (17)

where d(xi,yj) represents the distance between node xi and its j-th neighbor yj .

where ∥ · ∥ denotes the Euclidean norm (i.e., the standard vector length). Alternatively, using cosine
distance, the distance between nodes xi and yj is:

dcos(xi,yj) = 1− xi · yj

∥xi∥∥yj∥
(18)

where · represents the dot product, and ∥xi∥ and ∥yj∥ are the norms of the vectors xi and yj ,
respectively.

B.3 RELATIONSHIP BETWEEN INFORMATION GAIN AND AVERAGE DISTANCE

The insertion of a node influences the average distances between nodes in the graph. Therefore, the
information gain is related to the change in the average distance between a node and its neighbors
before and after the insertion.

Let d̄before(xi) denote the average distance from node xi to its neighbors before insertion, and let
d̄after(xi) denote the average distance after insertion. Then, the information gain G(xi) can be
expressed as:

G(xi) = d̄before(xi)− d̄after(xi) (19)
Thus, the information gain is directly related to the change in the average distance between node xi

and its neighbors.

B.4 GEOMETRIC INTERPRETATION OF INFORMATION GAIN

From a geometric perspective, the insertion of node xi changes the structure of the graph by modifying
the distances between nodes. Information gain quantifies the impact of this change in distance. If, after
insertion, the distances between node xi and its neighbors decrease (indicating tighter connectivity),
the information gain is likely to be higher. Conversely, if the distances increase, the information gain
will be smaller.

C PROOFS of the EM algorithm

C.1 Proof based on monotonicity

The goal is to find the core subset Cs of the dataset that accounts for s% and maximize the function
of information gain:

L(Cs) = log p(Cu; Cs) = log
∑
Cu

p(Cu, Cs) (20)

Introduce the auxiliary distribution q(Cu) and use Jensen’s inequality to construct the lower bound:

L(Cs) = log
∑
Cu

q(Cu)
p(Cu, Cs)
q(Cu)

≥
∑
Cu

q(Cu) log
p(Cu, Cs)
q(Cu)

(21)

Define the Q function:
Q(C(t)

s |C(t−1)
s ) = ECu|C(t−1)

s
[log p(Cu, C(t)

s )] (22)

The two steps of the EM algorithm are:
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• E-step: Take the first k% samples of the core subset C(t−1)
s calculated in the previous M steps as

the unbiased core subset C(t)
u ,

• M-step: First insert C(t)
u into HNSW, then randomly insert the remaining samples and calculate the

information gain to determine the new core subset C(t)
s .

Due to the maximization of Q function:

Q(C(t)
s |C(t−1)

s ) ≥ Q(C(t−1)
s |C(t−1)

s ) (23)

This results in monotonicity:
L(C(t)

s ) ≥ L(C(t−1)
s ) (24)

Because L(Cs) has an upper bound, the EM algorithm converges.

C.2 Proof based on KL divergence

Define the posterior distribution of the unbiased core subset:

p(Cu|Cs) =
p(Cu, Cs)
p(Cs)

(25)

KL divergence is expressed as:

DKL(q(Cu) ∥ p(Cu|Cs)) =
∑
Cu

q(Cu) log
q(Cu)

p(Cu|Cs)
(26)

Decompose the objective function:

L(Cs) = Q(Cs|C(t−1)
s ) +DKL(q(Cu) ∥ p(Cu|Cs)) (27)

E-step: Choose q(Cu) = p(Cu|C(t−1)
s ) to minimize the KL divergence. M-setp: Maximize

Q(Cs|C(t−1)
s ), thus ensuring:

L(C(t)
s ) ≥ L(C(t−1)

s ) (28)
Since the KL divergence is non-negative, the algorithm converges to a local optimum.

D PROOFS of the Submodular Function

In this section, we provide proof details of how data cleaning methods satisfy the representation and
properties of submodular function. In section D.1, we elaborate on the representation and properties
of submodular function, and define the functional representation of data cleaning method fdc. In
section D.2, D.3 and D.4, we respectively prove that fdc satisfies three different properties of the
submodular function.

D.1 THE FORM AND PROPERTYS OF THE SUBMODULAR FUNCTION

The form of the submodular function: The submodular function is a set function defined on a
power set of a finite set Ω. For each given subset, the submodular function returns a real number:

f : 2Ω → R, (29)

The submodular function should satisfy the following three properties:
(1) Property 1: For any X,Y ⊆ Ω, if X ⊆ Y , then for all x ∈ Ω \ Y , it should satisfy:

f(X ∪ {x})− f (X) ⩾ f(Y ∪ {x})− f (Y ) , (30)

(2) Property 2: For any S, T ⊆ Ω, it should satisfy:

f(S) + f(T ) ⩾ f(S ∪ T ) + f(S ∩ T ), (31)

(3) Property 3: For any X ⊆ Ω, x1, x2 ∈ Ω, it should satisfy:

f (X ∪ {x1}) + f (X ∪ {x2}) ⩾ f (X ∪ {x1, x2}) + f (X) . (32)
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Next, based on Equation (E.2) and the form of the submodular function, we further define the mapping
method of fdc. Given dataset D, fdc maps it to the sum of the information gains of all elements in D:

fdc(D) = G(Di) =

( ∑
xi∈Di

G(xi)

)
, (33)

where Nx includes the k-nearest neighbors of x in D. k is a fixed parameter given in advance, and
the distance between x and its neighboring nodes is calculated based on the cosine similarity of their
feature embeddings.

D.2 DERIVATION PROOF OF THE SUBMODULAR FUNCTION’S PROPERTY 1

According to the definition given in Equation (33), we can conclude that:
fdc(Y ∪ {x})− fdc (Y )

= mean(
∑

y∈NY
x

xmol · ymol

||xmol|| · ||ymol||
)

= mean(
∑

p∈NY
x ∧p∈X

xmol · pmol

||xmol|| · ||pmol||

+
∑

q∈NY
x ∧q∈Y \X

xmol · qmol

||xmol|| · ||qmol||
)

⩽ mean(
∑

r∈NX
x

xmol · rmol

||xmol|| · ||rmol||
)

= f(X ∪ {x})− f (X) .

(34)

here, N Y
x represents the k-nearest neighbors the k-nearest neighbors in set Y and NX

x represents the
k-nearest neighbors the k-nearest neighbors in set X . In the above derivation, the third step is based
on a belief that for element x, if Y gives new nearest neighbors different from X , then it means that
the neighbors are elements with a smaller distance from x. And only when N Y

x ∩ Y = ∅, the third
step is to derive an equal sign.

D.3 DERIVATION PROOF OF THE SUBMODULAR FUNCTION’S PROPERTY 2

Before proving, we first define the set V to represent S ∩ T . Next, we make the following deduction:
fdc(S) + fdc(T )

= fdc(V ∪ S \ V ) + fdc(V ∪ T \ V )

= fdc(V ) + fdc(S \ V )V + fdc(V ∪ T \ V )

⩾ fdc(V ) + fdc(S \ V )V ∪T\V + fdc(V ∪ T \ V )

= fdc(V ) + fdc(V ∪ T \ V ∪ S \ V )

= fdc(S ∩ T ) + fdc(S ∪ T ).

(35)

here, we use the form fdc(Y )X to represent the sum of information gains that can be obtained
by adding elements from Y to the set X . That means we can overwrite fdc(Y ) as fdc(Y )∅. We
provide an explanation for the third step derivation: as we demonstrated in D.2, adding elements to
a subset of the set always yields greater benefits than adding elements to the set itself. Therefore,
fdc(S \ V )V ⩾ fdc(S \ V )V ∪T\V and only when T \ V is an empty set, taking an equal sign, which
also means T is a subset of S or vice versa.

D.4 DERIVATION PROOF OF THE SUBMODULAR FUNCTION’S PROPERTY 3

Similar to D.2 and D.3, we prove property 3:
f (X ∪ {x1, x2}) + f (X)

= f (X ∪ {x1}) + f ({x2})X∪{x1} + f (X)

⩽ f (X ∪ {x1}) + f ({x2})X + f (X)

= f (X ∪ {x1}) + f (X ∪ {x2}) .

(36)
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Table 5: Impact of different k values (with δ = 5%) on information gain and EM convergence.

k (δ = 5%) 0.3 0.4 0.5 0.6 0.7 0.8

Final Avg. Information Gain 0.92 0.91 0.91 0.88 0.84 0.80
EM Iteration Rounds 12 6 3 3 2 1

Table 6: Impact of different δ values (with fixed k = 0.5) on information gain and EM convergence.

δ (k = 0.5) 5% 10% 20% 30%

Final Avg. Information Gain 0.91 0.82 0.76 0.76
EM Iteration Rounds 3 2 1 1

E SUPPLEMENTARY DETAILS

E.1 HYPERPARAMETERS

This section mainly introduces some hyperparameter settings of the model. For the CISE framework,
we set the number of neighbors to 4, the proportion of unbiased core subsets to core subsets k=50%,
and the termination condition δ is 5% of the sum of the information gain of the core subsets
in the previous round. For the AMGNN model, we set GNN_layer_num=3, FC_layer_num=3,
hideen_dim=1600. The remaining hyperparameters have been given in the experimental settings in
the main text.

In addition, we supplemented the hyperparameter experiments of the core subset ratio k and the EM
algorithm threshold δ.

CSIE is not highly sensitive to the choice of k according to Table 5, but setting k too low significantly
increases the computational cost due to more EM iterations.

We also conducted experiments on the threshold hyperparameter δ with a fixed k = 0.5, as shown
in the Table 6. It can be observed that a smaller threshold δ yields higher information gain, but at
the cost of more EM iterations. In contrast, increasing δ reduces the number of iterations, but may
lead to suboptimal convergence. Therefore, a moderate setting (e.g., δ = 5% or 10%) offers a better
trade-off between performance and efficiency.

E.2 DATASET

In this section, we describe the datasets utilized in this study. The SMILES representations of
the molecules are converted into graph structures using the Github code from CIGIN [48]. For
datasets associated with solvation free energies, namely MNSol, FreeSolv, CompSol, Abraham,
and CombiSolv-Exp, we adopt the SMILES-based datasets provided by previous work [62]. Only
solvation free energies measured at a temperature of 298K(±2) are considered, and ionic liquids and
ionic solutes are excluded [62].

• Abraham [24] is a dataset compiled by the Abraham research group at University College London.
We analyze 6, 091 combinations of 1, 038 solutes and 122 solvents as per the previous study [62].

• CompSol [45] is designed to investigate how hydrogen-bonding interactions influence solvation
energies. We consider 3, 548 combinations of 442 solutes and 259 solvents from this dataset,
following the methodology in [62].

• MNSol [37] consists of 3, 037 experimental solvation or transfer free energies of 790 distinct
solutes and 92 solvents. For this work, we focus on 2, 275 combinations involving 372 unique
solutes and 86 solvents, as done in prior research [62].

• FreeSolv [43] offers 643 experimental and calculated hydration free energies for small molecules in
water. This study includes 560 experimental results based on the dataset from previous work [62].

• CombiSolv-Exp [62] includes data from MNSol, FreeSolv, CompSol, and Abraham, amounting to
10, 145 combinations of 1, 368 solutes and 291 solvents.

• CombiSolv-QM [62]. This dataset consists of 1 million randomly selected combinations, in-
corporating 284 frequently used solvents and 11,029 solutes. The elements present include
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Table 7: Atoms (nodes), bonds (edges), and global features for molecular representation
Atomic features (V) Bond features (E) Global features (U)

Atomic species Bond type Total No. of atoms
No. of bonds Conjugated status Total No. of bonds

No. of bonded H atoms Ring size Molecular weight
Ring status Stereo-chemistry –

Valence – –
Aromatic status – –

Hybridization type – –
Acceptor status – –

Donor status – –
Partial charge – –

Table 8: MAE on the experimental band gap test set (52 GWVD samples) after pretraining on core
subsets of the theoretical PBE dataset (546 samples) and subsequent fine-tuning. “Direct” denotes
models trained and tested on the experimental data.

Method Core subset size (theoretical PBE) Direct on experimental
80% 60% 40% 20% (no pretraining)

Hard Random 0.5332(0.0308) 0.5775(0.0414) 0.5759(0.0334) 0.6673(0.0876) —
K-means 0.5511(0.0298) 0.5451(0.0457) 0.6161(0.0380) 0.6457(0.0487) —
Glister 0.5473(0.0292) 0.5234(0.0427) 0.5502(0.0388) 0.5850(0.0366) —
Margin 0.5112(0.0305) 0.5594(0.0342) 0.5675(0.0386) 0.5435(0.0201) —
CSIE 0.4583(0.0260) 0.5002(0.0285) 0.5211(0.0264) 0.4969(0.0164) —

w/o Transfer — — — — 0.5784(0.0618)

H,B,C,N,O, F, P, S, Cl, Br, and I . The molar mass of the solutes varies between 2.02 g/mol
and 1776.89 g/mol.

E.3 BASELINE

This section primarily introduces several baseline models involved in the experiment.

D-MPNN [62]. This model integrates quantum calculations with experimental data accuracy, utilizing
two databases, CombiSolv-QM and CombiSolv-Exp, to predict solvation free energy via transfer
learning.

SolvBert [70]. It models solute-solvent interactions through combined SMILES representations.
Pre-trained on computational solvation free energy datasets, it predicts experimental solvation free
energy or solubility by fine-tuning on specific datasets.

Explainable GNN [35]. This model incorporates chemically intuitive solvation-related parameters,
such as semi-empirical partial atomic charges and solvent dielectric constants, alongside standard
atomic and bond-level features. It includes interaction layers that facilitate visualization of solubility-
enhancing or -reducing interactions.

GAT [61]. A novel neural network architecture designed for graph-structured data, leveraging masked
self-attention layers to overcome limitations of traditional graph convolution methods. By allowing
nodes to attend to neighboring features, it assigns varying importance to different nodes without
expensive matrix operations or prior structural knowledge.

GROVER [52]. Extracting rich structural information from extensive unlabeled molecular data, this
model utilizes self-supervised tasks with a Transformer-style architecture combined with Message
Passing Networks, facilitating efficient training on large-scale datasets to address data scarcity and
bias.

SMD [41]. Employing quantum charge density of solutes and continuum solvent representation, this
approach divides solvation free energy into bulk electrostatic contributions (modeled via IEF-PCM)
and short-range interactions within the solvation shell (modeled using atomic surface areas and
geometry-dependent constants).

Uni-Mol [76]. Featuring two SE(3) Transformer-based pre-trained models, Uni-Mol is trained on 209
million molecular conformations and 3 million protein pocket data. It integrates various fine-tuning
strategies for diverse downstream tasks.

20



Table 9: The effect of transfer learning after obtaining the QM-mini dataset using different data
pruning methods, the evaluation metric is MAE.

Method
QM-mini→CombiSolv-Exp

GAT Explainable GNN CGIB MMGNN AMGNN

K-Means 1.893(0.421) 0.470(0.155) 0.511(0.198) 0.482(0.120) 0.431(0.177)

Hard Random 1.433(0.243) 0.352(0.106) 0.503(0.201) 0.477(0.186) 0.443(0.182)

Margin 0.942(0.089) 0.271(0.097) 0.410(0.083) 0.327(0.093) 0.301(0.076)

Glister 0.910(0.016) 0.355(0.077) 0.475(0.025) 0.321(0.091) 0.301(0.065)

Systematic_Sampling 0.951(0.047) 0.290(0.065) 0.255(0.055) 0.247(0.059) 0.264(0.042)

CSIE 0.853(0.016) 0.193(0.016) 0.211(0.025) 0.200(0.021) 0.191(0.011)

Table 10: Significance analysis of the effect of the CSIE framework on different models, with RMSE
as the evaluation metric.

model GAT GEM CGIB MMGNN AMGNN

second-best 1.210(0.101) 0.551(0.023) 0.381(0.030) 0.377(0.027) 0.367(0.015)

ours 0.960(0.053) 0.499(0.031) 0.355(0.025) 0.317(0.022) 0.299(0.010)

p-value 2× 10−6 6× 10−4 0.034 1× 10−4 2× 10−7

Gem [19]. Utilizing a geometry-based graph neural network, Gem enhances learning with self-
supervised strategies at the geometry level, acquiring comprehensive molecular geometry knowledge
for accurate property prediction.

CIGIN [47]. This end-to-end framework consists of three phases: message passing, interaction, and
prediction, culminating in the final phase to estimate solvation free energies.

CGIB [33]. Based on graph conditional information bottleneck theory, CGIB extracts conditional
subgraphs to effectively model molecular interactions.

MMGNN [17]. Specializing in atomic interactions such as hydrogen bonds, MMGNN initially forms
indiscriminate connections between intermolecular atoms, which are refined using an attention-based
aggregation method tailored to specific solute-solvent pairs.

E.4 The Detailed Features For Atoms, Bonds and Molecular Global

Table 7 provides a detailed summary of the chosen atom, bond, and global input features. The process
begins with transforming the SMILES strings of both solute and solvent into graph structures using
the RDKit library. This library is utilized not only for generating graphs but also for calculating atom
and bond features for each graph. To reduce the computational overhead associated with quantum
mechanical calculations across the entire dataset, the feature selection was limited to those obtainable
via RDKit. To ensure uniformity in the lengths of the bond, atom, and global feature vectors, a linear
transformation is applied to each vector prior to initiating the message-passing steps.

E.5 SUPPLEMENTARY EXPERIMENTS

E.5.1 EVALUATION OF CSIE ON BANDGAP PREDICTION

Experimental Setup. We evaluate CSIE on two complementary band gap datasets from NREL-
MatDB [46]. The first, called the theoretical band gap dataset, comprises 546 PBE-computed
values, and the second, the experimental band gap dataset, contains 52 GWVD-computed values.

Table 11: Significance analysis of the effect of the AMGNN and second-best model on different
datasets, with RMSE as the evaluation metric.

dataset QM-mini FreeSolv Abraham MNsol

second-best 0.317(0.022) 0.926(0.028) 0.402(0.009) 0.636(0.054)

ours 0.299(0.010) 0.907(0.022) 0.391(0.029) 0.581(0.021)

p-value 0.032 0.019 1× 10−4 0.013
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Table 12: Result of different methods on FreeSolv, Compsol, Abraham and MNsol datasets.

MAE (↓) RMSE (↓)
FreeSolv CompSol Abraham MNsol FreeSolv CompSol Abraham MNsol

D-MPNN 0.710(0.057) 0.198(0.015) 0.499(0.040) 0.938(0.036) 1.276(0.061) 0.370(0.019) 0.687(0.026) 1.422(0.084)

Explainable GNN 0.757(0.034) 0.197(0.013) 0.515(0.046) 0.470(0.021) 1.343(0.050) 0.387(0.013) 0.801(0.037) 0.852(0.086)

SolvBERT 0.642(0.037) 0.178(0.015) 0.514(0.037) 0.806(0.038) 1.122(0.048) 0.344(0.022) 0.683(0.024) 1.040(0.068)

GAT 0.688(0.036) 0.195(0.012) 0.485(0.046) 2.076(0.051) 1.234(0.082) 0.411(0.013) 0.759(0.044) 1.782(0.167)

GROVER 0.636(0.058) 0.160(0.024) 0.324(0.039) 0.796(0.038) 1.036(0.025) 0.338(0.017) 0.491(0.047) 0.777(0.086)

SMD 0.587(0.039) 0.171(0.015) 0.403(0.026) 1.328(0.073) 1.157(0.016) 0.331(0.012) 0.544(0.071) 1.637(0.251)

Uni-Mol 0.577(0.041) 0.167(0.029) 0.343(0.078) 0.436(0.036) 1.023(0.071) 0.314(0.021) 0.629(0.039) 0.792(0.070)

Gem 0.606(0.045) 0.186(0.012) 0.222(0.072) 0.522(0.038) 1.172(0.065) 0.303(0.020) 0.681(0.033) 1.162(0.038)

CIGIN 0.576(0.060) 0.167(0.017) 0.262(0.010) 0.492(0.038) 0.928(0.016) 0.335(0.022) 0.410(0.008) 0.638(0.053)

CGIB 0.563(0.035) 0.164(0.015) 0.211(0.006) 0.434(0.053) 0.957(0.024) 0.291(0.020) 0.411(0.007) 0.648(0.051)

MMGNN 0.547(0.031) 0.165(0.011) 0.197(0.009) 0.368(0.023) 0.926(0.028) 0.284(0.013) 0.402(0.009) 0.636(0.054)

AMGNN 0.531(0.022) 0.159(0.030) 0.188(0.029) 0.352(0.021) 0.907(0.022) 0.290(0.030) 0.391(0.029) 0.581(0.021)

Table 13: Time complexity of CSIE framework.

FreeSolv CompSol Abraham MNsol CombiSolv-Exp CombiSolv-QM

TIME 0.1min 0.1min 0.1min 0.05min 0.4min 26min

Each material formula is featurized with matminer [67] to extract key descriptors—atomic number,
electronegativity, atomic radius, ionization energy, atomic packing efficiency, and valence/conduction
band centers—which are then concatenated with MolCA embeddings [34]. After removing entries
with missing or invalid values, the theoretical dataset is split 80%/20% for training and validation
(seed=42), and performance is measured by MAE.

Training and Fine-Tuning Protocol. We apply CSIE to select core subsets of varying sizes from
the theoretical dataset, train an MLP (two hidden layers of 100 and 50 ReLU units, 500 epochs) on
each subset, and identify the best-performing configuration via validation MAE. This pre-trained
model is then fine-tuned on the smaller experimental band gap dataset and finally tested to assess
generalization. This two-stage procedure—core set selection on large theoretical data followed by
fine-tuning on real-world data—demonstrates CSIE’s ability to reduce training cost while preserving
predictive accuracy.

Training Configuration. We use the Adam optimizer [31] with a learning rate of 1 × 10−3 and
weight decay of 5× 10−5. The batch size is set to 32, and the model is trained for 100 epochs with
early stopping based on test MAE (patience = 20). All experiments are conducted on an NVIDIA
A100 GPU. For statistical reliability, each setting is repeated across five random seeds, and we report
the mean and standard deviation.

Baseline Methods. We compare CSIE against four representative core subset selection methods:
Hard Random, K-Means [29], Margin [12] and Glister [56].

Results and Analysis.1: The core set selection method effectively improves model performance
in transfer learning and makes up for the lack of real data. Table 8 reports the MAE on the
experimental GWVD dataset after pretraining on various core-subset sizes of the theoretical PBE
dataset and subsequent fine-tuning. Across all subset ratios, CSIE outperforms the direct-training
baseline by a substantial margin. In particular, pretraining on 80% of the theoretical data yields MAE
= 0.4583(0.0260), an improvement of 0.1201 eV over direct training. Even when using only 20% of
the theoretical samples for core subset selection, CSIE achieves MAE = 0.4969(0.0164), still 0.0815
eV better than the direct-training model. The core set selection method represented by CSIE expands
the sample space and improves the performance of the model on actual data by effectively screening
a large number of theoretical data.

Results and Analysis.2: The CSIE framework performs best among all core set selection
methods. When compared to other core-subset selection strategies (Hard Random, K-means, Glister,
Margin), CSIE consistently delivers lower MAE after transfer across all subset sizes (Table 8). For
example, at 40% of the theoretical data, CSIEachieves MAE = 0.5211(0.0264), whereas the next
best method Margin yields MAE = 0.5675(0.0386). Moreover, CSIE’s standard deviations remain
uniformly low, indicating robust performance even under extreme subsampling. These results confirm
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Table 14: Training time, memory consumption, and MAE metrics of AMGNN under different settings
on the CombiSolv-Exp dataset.

Metric AMGNN-100 AMGNN-80 AMGNN-60 AMGNN-40 AMGNN-20

TIME 11.8h 8.5h 5.7h 4.0h 3.4h
Memory 1.6G 1.2G 1.0G 0.9G 0.7G

MAE 0.214 0.216 0.220 0.234 0.266

that the information gain-driven selection of CSIE alleviates the problem of uneven distribution of
theoretical data, thereby assisting the model to make more accurate and stable predictions under
resource-constrained conditions.

E.5.2 CORE SUBSET RATIO AND TRANSFER IMPACT

The selection of the core subset ratio of 1% of the original data set in the main text is mainly due
to two reasons:(1) To ensure consistency with the experimental data set scale, while expanding the
sample space, the complexity overhead is minimized to the greatest extent; (2) The data scale of
CombiSolv-QM is relatively large, and a too large core subset will introduce more noise.

In this section, taking AMGNN as an example, the influence of the selection rate s on transfer learning
is supplemented. From the results of Table 15 and Figure 4 of the main text, it can be seen that
although expanding the core subset ratio increases the number of samples, it may not necessarily
improve the performance (it may introduce noise or more samples, resulting in an unbalanced training
dataset).

Table 15: Transfer performance and training time cost of AMGNN under different core subset
selection ratios s of CombiSolv-QM.

s% 1% 3% 5% 10% 30%

MAE 0.191(0.011) 0.194(0.008) 0.186(0.010) 0.194(0.011) 0.200(0.005)

TIME 11.6h 22.6h 40.5h 62.5h 174.5h

E.5.3 SIGNIFICANCE ANALYSIS OF CSIE

The Table 10 shows that the CSIE framework significantly reduces RMSE in all five models, showing
consistent performance improvements. Compared with the second-best method, the improvements of
CSIE on GAT, GEM, MMGNN, and AMGNN are highly statistically significant (p < 0.001), and
the improvement on CGIB is also significant (p = 0.034). This shows that the CSIE framework has a
stable and effective enhancement effect on multiple baseline models.

E.5.4 SIGNIFICANCE ANALYSIS OF AMGNN

As can be seen from the Table 11, AMGNN outperforms the second-best model on all four datasets,
and the RMSE difference is statistically significant. In particular, on the Abraham dataset, the p value
is as low as 1× 10−4, indicating that the improvement is extremely significant; on FreeSolv, MNsol,
and QM-mini, the p values are also less than 0.05, indicating that the performance improvement is
statistically reliable. This further verifies the robustness and advantages of AMGNN in a variety of
molecular property prediction tasks.

E.5.5 EVALUATION OF DIFFERENT CORESET SELECTION METHODS ON
TRANSFER LEARNING

As can be seen from Table 9, different data screening methods have a significant impact on the
transfer learning effect. The CSIE method has achieved the lowest MAE on all models, showing the
best transfer performance. Compared with traditional methods (such as K-Means and Hard Random),
CSIE can significantly reduce the error. For example, on GAT, the MAE of CSIE is 0.853, while
K-Means is as high as 1.893, a decrease of more than 50%. In addition, on representative models such
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as AMGNN, CSIE is also better than other advanced methods such as Margin and Glister, indicating
that this strategy has a stronger ability to retain high-quality information. Overall, CSIE significantly
improves the transfer learning effect from QM-mini to CombiSolv-Exp, verifying its robustness and
generalization ability in cross-dataset scenarios.

E.5.6 SUPPLEMENTARY EXPERIMENTS OF AMGNN AND BASELINES ON REAL
DATASETS

We run our model and other baseline models on four datasets: FreeSolv, Compsol, Abraham and
MNsol in the same experimental setting and training environment as the main text. As can be seen
from Table 12, AMGNN outperforms other comparison models on the four datasets, showing the
strongest generalization ability and prediction accuracy. Specifically, under the MAE indicator,
AMGNN achieved 0.531, 0.159, 0.188 and 0.352 on FreeSolv, CompSol, Abraham and MNsol,
respectively, all of which are the best or tied for the best value. Under the RMSE indicator, AMGNN
also achieved the best results on Abraham and MNsol, and the other indicators were also very close
to the optimal values. This shows that AMGNN can stably adapt to different data distributions
and maintain excellent performance in multiple molecular property prediction tasks, verifying its
modeling ability and versatility.

E.5.7 TIME AND SPACE COMPLEXITY AND EFFICIENCY TRADE-OFFS BETWEEN
CSIE FRAMEWORK AND AMGNN

In Table 13, we show the time complexity of the CSIE framework. Due to the randomness of the
insertion order, We take one iteration of core subset selection as an example, rather than the total
time of the final core subset selection. For the efficiency-complexity trade-off of CSIE, see the
supplementary hyperparameter experiments and their analysis in the Appendix E.1.

In addition, we use CombiSolv-Exp as an example to supplement the computational efficiency
trade-off results when reducing the scale of AMGNN in Table 14. To study the trade-off between
computational efficiency and expressive capacity, we evaluate several variants of AMGNN using
different inter-molecular edge retention ratios, denoted as AMGNN-20, -40, -60, -80, and -100,
corresponding to 20%, 40%, 60%, 80%, and 100% of possible cross-molecular edges being retained.
As shown in Table 14, AMGNN-60 achieves a favorable balance, significantly reducing computational
cost while preserving prediction accuracy.

E.5.8 VALIDATION OF AMGNN DESIGN

To validate that AMGNN’s improvement stems from its ability to model interaction directionality
rather than added model complexity, we compared it against three interpretable baselines. Flagged
GNN: Adds solute/solvent flags to atom features in a standard GNN. Heterogeneous GNN: Uses
node types to distinguish solute and solvent atoms. Embedding Concatenation: Separately encodes
solute and solvent, then concatenates the embeddings for prediction.

Furthermore, we constructed a benchmark subset, Opposite-Exp, which includes all 240 solute–
solvent pairs in CombiSolv-Exp where both directions exist (i.e., A→B and B→A). This subset
directly evaluates model sensitivity to role reversal.

Table 16: Performance comparison of AMGNN and baseline models across multiple datasets.
Model FreeSolv CompSol Abraham MNsol CombiSolv-Exp Opposite-Exp
Flagged GNN 0.732 0.241 0.503 0.921 0.437 0.562
Heterogeneous GNN 0.581 0.183 0.258 0.439 0.254 0.294
Embedding Concatenation 0.785 0.197 0.462 0.453 0.223 0.367
AMGNN 0.531 0.159 0.188 0.352 0.214 0.191

As shown in Table 16, across all datasets, AMGNN consistently achieves the lowest error, with the
most significant improvements observed on the Opposite-Exp subset. This confirms that AMGNN
effectively captures the asymmetric nature of solute–solvent interactions, a capability not realized by
symmetric or type-flagged baselines.

24



E.5.9 EFFECTS OF ENCODER ON CSIE

We further investigated how different pre-trained encoders and subset sizes influence the performance
of CSIE. Using AMGNN on CombiSolv-Exp as an example, we report results in terms of MAE.

Table 17: Impact of different encoders and subset sizes on CSIE performance on CombiSolv-Exp
Method 20% Trainset 40% Trainset 60% Trainset 80% Trainset
w/o CSIE (Random) 1.468 0.839 0.579 0.391
MolCA → GROVER (2D) 1.032 0.667 0.457 0.353
MolCA → UniMol (3D) 0.851 0.588 0.431 0.356
MolCA → MolTC (LLM) 0.789 0.321 0.365 0.324
Standard CSIE 0.777 0.311 0.247 0.320

The MAE results of Table 17 indicate that the choice of encoder substantially affects CSIE’s effec-
tiveness. In particular, the LLM-based encoder (MolTC) outperforms graph-based encoders, and
Standard CSIE achieves the best overall performance, especially with limited training subsets.

F LIMITATIONS

F.1 DEALING WITH DATA BIAS AND NOISE

The CSIE framework utilizes the hierarchical navigation small world (HNSW) algorithm to compute
information gain and select core samples efficiently. However, enhancing its robustness to noisy data
remains a key direction. Future improvements could integrate advanced noise detection and removal
mechanisms, such as multi-scale clustering or adaptive neighborhood selection, to refine the selection
process and enhance training quality.

F.2 MORE ACCURATE IDENTIFICATION OF OUTLIERS

In the method proposed in this paper, a sample with high information gain means that it is far away
from the surrounding samples in space or has low feature similarity. Then, a high-gain sample may
be a sample that is added first in a cluster (i.e., a representative sample), but it may also be an outlier.
In the future, a more accurate evaluation model should be designed to distinguish the two and further
improve the quality of the dataset.

F.3 EFFICIENT INFORMATION TRANSFER IN AMGNN

The AMGNN model introduces a large number of graph connections to capture solute-solvent interac-
tions, but managing information flow efficiently is an important consideration. Future enhancements
could involve adaptive attention mechanisms to selectively prioritize key connections and multi-
scale information transfer strategies to balance local and global interactions. These improvements
could help mitigate over-smoothing and ensure more effective information propagation, ultimately
enhancing solubility prediction accuracy.

G Broader Impact

The proposed CSIE-AMGNN framework advances the application of AI in chemistry by improving
the efficiency and reliability of molecular property prediction in real-world settings. By introducing a
scalable core subset selection method and modeling asymmetric solute-solvent interactions, this work
offers a pathway to reduce computational costs while maintaining high predictive accuracy, which is
particularly valuable for experimental chemists and material scientists operating under limited data
conditions. Potential positive impacts include accelerating the discovery of new solvents, optimizing
reaction conditions, and aiding the design of environmentally friendly materials and pharmaceuticals.
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NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: In this paper, we introduce novel core subset selection and asymmetric graph
neural network methods and declare their contributions and scope in the Abstract and
Introduction sections (see Abstract and Introduction sections).
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: In this work, we systematically discuss the limitations of our research and
outline directions for future work (See Appendix F).
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]
Justification: We provide proofs on information gain B, the EM algorithm C, and submodular
function D in the appendix.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We provide the code necessary for replicating the studies described in this
paper via an anonymous link, and we detail the experimental setup for the replication in the
article itself (See Appendix E.1).
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: For datasets disclosed in the article, we have provided information about their
sources and provenance in the Appendix E.2.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We have specified all the training and testing details (e.g., data splits, hyperpa-
rameters, how they were chosen, type of optimizer, etc.) in the experimental settings in the
main text and hyperparameter settings in the appendix.

Guidelines: In the Experimental Setup section, we give the training and testing details of the
model.

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: In this paper, we have reported the standard deviation of the experiments (See
Experiments). In addition, we supplement the significance analysis results of the second-best
model in the appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.
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• The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: In the experimental setup, we provide the computational resources used to run
the model, and in the appendix we provide a complexity analysis of the algorithm.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The study presented in this paper conforms to the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We have provided the societal impacts of the work (See Appendix).
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Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: This paper does not address issues related to this aspect.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: All creators and original owners of the assets used in our paper, such as code,
data, and models, have been properly credited. We have explicitly mentioned the licenses
and terms of use for each asset and have ensured full compliance with these terms throughout
our research.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
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• The authors should state which version of the asset is used and, if possible, include a
URL.

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: The research presented in this paper is not concerned with new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: This paper does not involve experiments or research related to human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: This paper does not address potential risks incurred by study participants.

Guidelines:
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• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [Yes]
Justification: The present study methods used LLM to supplement the molecular description,
as stated in the methods section.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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