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Abstract

The ability to accurately perform counterfactual inference on time series is crucial for
decision-making in fields like finance, healthcare, and marketing, as it allows us to under-
stand the impact of events or treatments on outcomes over time. In this paper, we introduce
a new counterfactual inference approach tailored to time series data impacted by market
events, which arises from an industrial context. Utilizing the abduction-action-prediction
procedure and the Structural Causal Model framework, we begin employing methods based
on variational autoencoders and adversarial autoencoders, both previously used in coun-
terfactual works although not in time series settings. Then, we present the Conditional
Entropy-Penalized Autoencoder (CEPAE), a novel autoencoder-based approach for coun-
terfactual inference, which employs an entropy penalization loss over the latent space to
achieve disentangled data representations. We validate our approach both theoretically and
experimentally on synthetic, semi-synthetic, and real-world datasets, showing that CEPAE
outperforms the other approaches in the evaluated metrics.

1 Introduction

Time series counterfactual estimation is an essential tool to understand an event’s impact on time series
data. It is applied to situations where an event or treatment at a certain point in time alters a time series’
trajectory, and consists in inferring, once given the observed post-event data, the counterfactual, i.e., the
time series that would have taken place if the event had not occurred. Common applications of time series
counterfactuals include finance (Barocas et al., 2020) or healthcare (Prosperi et al., 2020). Albeit this paper
is focused on theoretical and experimental aspects, our work originates from an industrial application in the
pharmaceutical market, where counterfactuals are used for business planning. Pharmaceutical companies
are notably affected when a drug’s patent expires and Loss of Exclusivity (LOE) [Castanheira et al.| (2019)
takes place, prompting competitors to launch cheaper generic versions of the drug. This usually results in a
dramatic decrease in the sales volume of about a 60-70% in the first years |Castanheira et al.| (2019), severely
affecting company’s revenues. Thus, accurately assessing the market impact of generic drug entries is of
utmost importance. See appendix [A] for an extended discussion on the industrial application of this work.

One of the most extended approaches for time series counterfactual estimation is synthetic control (Bouttell
et al.} 2018; |Abadie & Gardeazaball |2003). For example, Causal Impact (Brodersen et al., [2015)), a powerful
method based on synthetic control principles, estimates counterfactuals with two data information sources:
the pre-event part of the target time series, and control time series that were predictive of the target prior to
the intervention and have not been affected by it. This method relies, at inference time, on time series other
than the target one, which, in our view, represents a significant limitation. In our industrial context, for
instance, the control data that can be accessed do not usually produce satisfactory results. In this situation,
a common option would be to simply train a forecast model with historical data and use its predictions as
counterfactual estimations, which is a very weak methodology as it does not seize post-event information.

In this paper, we introduce a novel approach for time series counterfactual estimation that seizes informa-
tion of post-event observations while not requiring access to any time series other than the target one at
inference time, i.e., it captures post-event information directly from the observed target time series. It is
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Figure 1: Example of a time series counterfactual (cf) estimation comparison for our synthetic dataset among
a baseline LSTM-based forecast model and CEPAE. The vertical line separates pre-event from post-event
observations, counterfactual estimations and ground truth.

rooted in recent advances in causal machine learning (Pawlowski et al.| 2020)), leveraging the abduction-
action-prediction procedure (Pearl, |2000) and encoder-decoder architectures. We use three deep learning
methods for our time series approach: Conditional Variational Autoencoder (CVAE), which has been widely
used for counterfactual estimation although, to the best of our knowledge, has not been applied previously
to time series but to other types of data like images, Conditional Adversarial Autoencoder (CAAE), inspired
in methods for image translation and adapted to our time series setting, and Conditional Entropy-Penalized
Autoencoder (CEPAE), which uses an entropy penalty to promote disentanglement in the latent represen-
tation of an autoencoder, dispenses with the variational framework of VAEs, and is an original contribution
to the counterfactual literature. Figure [1| shows an observed time series that suffers, after the initial drop
associated to an event, an additional drop which is not related to it; we see that CEPAE seizes it in the
counterfactual estimation while the forecast method that we use as a benchmark does not. Although our
approach requires a sufficient amount of event and event-less time series to train the models, which can
be a limitation, it has the advantage of not needing control time series for inference. Having successfully
applied our method in our industrial context to infer impacts of generic drug competitors in pharmaceutical
industry, in this work we present various experiments that demonstrate its validity.

This paper is structured as follows: Sec. [2]offers a review of the existing literature on counterfactual inference.
Sec. provides the necessary background on Structural Causal Models (SCMs) and information theory. Sec.
[4] details our methodology, covering the utilized causality concepts, the problem setting and the explanation
of our models. In sec. p| we introduce the datasets, models and metrics, and discuss the results. Finally, in
sec. l6l we discuss the conclusions.

Our main contributions are: 1) An adaptation of the abduction-action-prediction procedure, which has
typically been used with other forms of data such as images, to a time series setting. We have adapted, as
well, two autoencoder-based models, CVAE and CAAE. 2) The introduction of CEPAE, an entropy penalized
autoencoder for counterfactual estimation, demonstrating its validity both theoretically and experimentally.

2 Related Work

Our models are inspired, on the one hand, on SCMs and the abduction-action-prediction procedure (Pearl,
2000)), and, on the other hand, on autoencoder (AE) (Bank et al.,[2023)) and variational autoencoder (Kingma
& Welling, |2022)) architectures. [Parafita & Vitria| (2019)) proposes a method for leveraging deep learning
prowess to estimate counterfactuals using the aforementioned Judea Pearl theory. |Pawlowski et al.| (2020)
develops a similar method that specifically uses VAEs. Other related approaches that use autoencoder based
architectures are [Sanchez-Martin et al.| (2021), which use variational graph autoencoders, or Kim et al.
(2020), which proposes a VAE-based approach that clusters the causal graph. In appendix [B| we provide
an extended related work that covers other counterfactual approaches that are not based in autoencoders.
On the other hand, most counterfactual estimation works for time series are based on the aforementioned
synthetic control and related approaches, which are also covered in appendix
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It is important to notice that there are several works in the Explainability field that use the term counterfac-
tual in a completely different sense than this work. In the Explainability context, if we consider, for example,
a binary classifier and a given input, the term counterfactual refers to the most similar input to the one given
that delivers a different classifier outcome. This approach can help understand how the classifier works, but
is different from the causal concept of counterfactual. Some works that tackle the Explainability counterfac-
tual problem are applied to time series (Wang et al., |2023; 2021). However, it is important to recognize the
difference between this approach and the causal counterfactual problem that our work addresses.

Finally, within the causal inference litterature, there is a line of research, represented by works like (Bical
et al., [2020; [Melnychuk et al., [2022)), that addresses a problem called time varying counterfactuals, but
the word counterfactual there does not follow the J. Pearl definition, and this line tackles the problem of
forecasting outcomes under different temporal sequences of treatments, not the problem of inferring the time
series that would have taken place if an event had not occurred.

3 Background

In this section, we provide an overview of SCMs and information theory, which are essential for our approach.

3.1 Structural Causal Models

The proposed approach for counterfactual estimation is based on the J. Pearl definition of counterfactual
(Pearl, |2000), which can be operationalized by employing SCMs.

A SCM M := (S, P(U)) consists of a collection S = {fi}fvzl of structural assignments a; = f;(u;; pa;),
where pa, is the set of parents of a; (its direct causes), and a joint distribution P(U) = [[~, P(U;) over
mutually independent exogenous noise variables (i.e. unaccounted sources of variation) (Pawlowski et al.
2020). In a structural causal model (SCM), in general, the assignments are assumed acyclic. Thus, a
directed acyclic graph (DAG) can represent relationships, with edges pointing from causes to effects in a
causal graph. A unique joint observational distribution Pps(a) is determined by every SCM, fulfilling the
causal Markov assumption: each variable is independent of its non-effects given its direct causes. Thus, it
factorizes as Py(a) = H;VZI(PM (a; | pa;)), where each conditional distribution (a; | pa;) is determined by
its assignments and noise distribution [Peters et al.| (2017)).

SCMs allow to perform counterfactual queries in a three-step procedure (Pearl, [2000): 1) Abduction:
predict the ‘state of the world’ (the exogenous noise u) that is compatible with the observed data a, i.e.,
infer P\(U | @); 2) Action: perform an intervention (e.g. do(A; := @;)) to the counterfactual SCM
which corresponds to the desired manipulation, which generates the modified counterfactual SCM M =
M, doay = (S,Pp(U | @)); 3) Prediction: compute the quantity of interest based on the distribution
entailed by the modified counterfactual SCM, P (a).

3.2 Information Theory

For a random variable X, we denote as S(X) its entropy, or differential entropy when X is continuous.
Considering an additional random variable Y, we denote the conditional entropy of X on Y as S(X|Y),
and the mutual information among X and Y as I(X;Y). In appendix these quantities are properly
defined for both discrete and continuous variables, and we discuss some issues regarding differential entropy
interpretation. From now on, we will not distinguish among entropy and differential entropy.

For three random variables X, Y and Z, we present four information theoretic properties, demonstrated in
appendix [C] that are essential for our development:

S(X)=I1(X;Y) + S(X[Y),
S(X,Y) = S(X) + S(Y) — I(X;Y),
S(X,Y) = S(X)+ S(Y|X),
S(X,Y|Z) = 8(X|Z) + S(Y|X, Z).
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(a) Unconfounded (b) Confounded

Figure 2: Problem setting’s computational graphs. Solid arrows denote direct influences on Y'; dotted double
arrow reflects the abduction link. The confounded panel adds H—FE.

4 Method

In this section, we explain our problem setting, the encoder-decoder approach for counterfactual estimation,
and the models that we use.

4.1 Time Series Counterfactuals: Problem Setting

Next, we define the structure of the time series setting over which our models perform counterfactuals.

Problem Statement. Let X = {z'}}¥ be a set of observed time series @' = (2%,...,2%) with T steps,
with T = T} +T». Some of these time series are impacted by an event e’ at time step 77 + 1 (the time series
that are not impacted by the event are also assigned a value e’ that represents the lack of impact. Thus, we

can divide the time series in a pre-event segment h' = (ht, ..., héﬂl) with 77 steps and a post-event segment
¥l = (yi,... ,yé}z) with T steps. From now on, we will denote as H, F and Y the variables referring,

respectively, to the pre-event time series, the event and the post-event time series, and as h, e and y to their
specific realizations, often distinguishing among factual values (ef and ys) and counterfactual values (e.y

and y.s). For an observation {hi, ejc, y}}, our objective is to estimate the counterfactual values y’ 5 in the

hypothetical scenario where E had taken a different value (E = €’ ) while the rest of the factors of variation
of Y were maintained.

Given the previously defined variables, we define a counterfactual function f such that y.r = f(h,ef, ys, ecr).
Then, our task is to find an approximate counterfactual function f that, similarly to f, estimates @.;.

In our company, we count on a large amount of historical sales volume data for many products and countries,
a significant amount of which have been impacted by an event. Thus, from these data, we can build a time
series dataset of a selected number of steps T which consists of non impacted time series, obtained by
applying a T steps rolling window to the non impacted historical data, and impacted time series, obtained
by taking, once selected a number of pre-event steps T; and post-event steps To (with T3 + 1> = T'), the
windows that match this selection in the impacted historical time series.

In our counterfactual setting, F and H will be the parents of Y, and we consider datasets with two structures:
H being parent of E, becoming a confounder (confounded setting), and no direct relation existing among H
and F (unconfounded setting). H and E will be always intervened (H to its same factual value h and E to
the counterfactual value e.¢). Therefore, only for the variable Y it will be necessary to estimate a structural
assignment f, and to abduct its exogenous noise Uy, responsible for its variation once given F and H.
Thus, it is not necessary to treat F and H as random variables generated by an exogenous noise susceptible
to be abducted (and, in the confounded case, generated also by their parents). This makes counterfactual
estimation in both the confounded and the unconfounded settings equivalent in a practical level. Figure
shows the computational and the causal graph of our problem. For the models that we present in this work,
we assume that our variables data generating process follow a causal graph like the one shown in figure
with no hidden confounders, and also positivity.
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Figure 3: Scheme of encoder-decoder based methods for counterfactual inference, both in training and
counterfactual inference phase.

4.2 Encoder-Decoder Based Models for Counterfactual Estimation in our Problem Setting

For the problem of counterfactual estimation in high dimensional settings, autoencoder based approaches
are the most extended and effective. In this work, we adapt two autoencoder based architectures to our time
series setting, and propose a novel one. Next, we describe how the counterfactuals of our problem setting
can be estimated using encoder-decoder architectures and assuming the graphs in figure [2|

Considering the abduction-action-prediction procedure and our counterfactual problem setting, it is possi-
ble to define two trainable functions that, together, allow to estimate a counterfactual §.; once given h,
Yy, ey and e.r. We will refer to the first of these functions as an encoder Ey, with trainable parameters
¢, which outputs either the location and scale parameters of a (usually multivariate) latent distribution
P(Zlh,es,yr) = Eg(h,er,yy), or directly a latent variable z = Eg(h,ef,yyr). Z is a latent representation
that should allow the second of our trainable functions, which we call the decoder Dy with trainable param-
eters 6, to estimate counterfactuals g.;y = Dy(2, h,eqr). Figure [3] illustrates this process. In terms of the
approximated counterfactual function mentioned in we can express our functions as:

’gcf = %(h’efvyfvecf) = DG(E¢(h76f7yf)7h760f)~ (5)

In the case where the encoder outputs the parameters of the latent distribution, the value z will be obtained
via sampling from that distribution. There is a parallelism between this encoder-decoder setting and the
abduction-action-prediction procedure. If we transfer the terminology of SCMs to our time series problem
setting, we have that abduction step would consist in inferring Pa(Uy|h, ey, yy), which is analogue to our
encoder estimating a conditional distribution of Z or directly its value. Here, Z is analogue to Uy, even if
there can not be a complete identification among these variables (Monteiro et al.,2023). Then, the decoder
(that can be identified with the structural assignment f,) inferring ¢.; would correspond simultaneously to

the action and the prediction steps, where we first set the modified SCM M = My, ¢,

v pido(B=ccy) and then

the result 9.s is obtained as a sample of M.

The importance of achieving a disentangled latent representation. If we train a conditioned regular
AE, like in figure[3] with only the reconstruction loss, and try to estimate counterfactuals, the results will not
be satisfactory, as Z will account for all the factors of variation of Y, leaving the conditioner underutilized.
Taking into account the graph in figure [2 and the theory in [3:1] the factors of variation of Y can be
separated in three variables: its parents H and E, and its exogenous noise Uy, where we have U, L H and
U, L E, which is forced by the independence among exogenous noises of every variable, as mentioned in
To achieve sound counterfactual estimations, we need the decoder of our model to effectively use all
the information that the conditioners C' (in our problem setting, the parents H and E) bring to reconstruct
the inputs (YY), and use Z only as a representation of the source of variation of Y that does not correspond
to the conditioners. In other words, a model can be used to perform counterfactuals if, apart from being
expressive enough to model a SCM’s structural assignments and having abduction capabilities, it effectively
disentangles the representation Z from the information of the conditioners, making it independent of them
and accounting only for the factors of variation relative to U,,.
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In autoencoder based models, the disentanglement requirement implies that the latent space’s capacity to
encode information should be limited in some way, in order to not be redundant apprehending the effects of
conditioners. It is necessary, then, to apply some regularization over Z.

Next, we explain three autoencoder based models for counterfactual estimation: CVAE, an autoencoder
based model very common, for example, in image counterfactual inference; CAAE, a model inspired in
existing works for image manipulation; and CEPAE, a novel counterfactual model which we show that
overcomes the previous ones in our time series settings. We only briefly discuss the two first models here,
and leaving additional information for the appendix.

4.2.1 CVAE

We first apply a conditional VAE, with a KL (Hall, [1987) regularization term, to infer counterfactuals ac-
cording to the previously defined process. See appendix [D]for more details. Being CVAE a reasonable option
to generate counterfactuals, some relevant problems exist. For example, the model can ignore, completely
or partially, its conditioning C|, as even if KL divergence limits the capacity of Z to seize information, the
model lacks theoretical guarantees of disentanglement of Z with respect to C. Some of the techniques that
can be used to reduce the capacity of Z, such as increasing the weight of KL or reducing the dimensionality
of latent space, have severe consequences on the reconstruction capabilities, which also affect the quality of
the counterfactual estimations. Even without these techniques, the reconstruction capacity of VAEs is often
poor, especially if we compare it to regular AEs (Zhao et al., [2017)).

4.2.2 CAAE

As mentioned above, regular autoencoders lack mechanisms to disentangle the latent representation from
conditioners. On the other hand, their reconstruction capacity far exceeds VAEs. Thus, CAAE is a first
attempt to maintain the reconstruction capacity of AEs while furthering disentanglement properties. We take
the idea from|Lample et al.| (2017)), a work focused on image manipulation, and adapt it to our counterfactual
setting. Based on ideas from domain adaptation (Ganin et al., 2016)), the method consists in a conditioned
AE where an adversarial training is added that makes the latent representation unpredictive of the value of
the conditioner C, trying to achieve Z L C. The adversarial training consists in a model that predicts the
value of C from Z while the encoder parameters ¢ are trained to achieve the opposite objective. For that,
we use gradient reversal layer (Ganin et al.;2016)), with an increasing linear scheduling as the weight for the
adversarial objective. |Alomar et al.|(2023) uses a similar idea for counterfactual inference. See appendix
for more details on this model.

Adding adversarial training for several different conditioners can be difficult, specially if they are multidi-
mensional like H. In our case, we apply the adversarial training only on E, which, in theory, should be
enough for our objectives as, for our counterfactuals, we do not intervene on H. On the other hand, al-
though the model works properly for unconfounded settings, we have not been able to get a hyperparameter
configuration that delivers reasonable results for the confounded scenario. To our knowledge, the works that
use adversarial methods for image manipulation do not tackle confounded settings. Apart from that, the
model features the limitations of adversarial training, mainly its instability and time and resources demand
(Sridhar et al., |2021)).

4.2.3 CEPAE

We propose a conditional autoencoder based model that adds, to the regular reconstruction loss of an AE, an
entropy penalty (EP) over the latent representation that reduces its entropy S(Z), minimizing the amount
of information that Z can carry. The intuition behind this is that, if conditioners C are informative about
our data X (i.e., I(X;C) > 0), then, with the entropy penalty, this information will be erased from Z as it
would increase S(Z) without increasing I(X; Z, C), which we want to maximize with the reconstruction lossﬂ
Thus, we encourage a disentangled representation Z independent from C'. Next, we provide a theoretical
foundation for this intuition.

1The reconstruction loss aims to increase I(X; X), and X (the reconstruction of X) is a function of Z and C.
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Following eq. [1] we can decompose the joint entropy of Z and C in terms of their mutual information with
X in the following way:

S(z,C)=1(X;Z,C)+ S(Z,C|X). (6)
On the other hand, from eq. |2} we can also decompose S(Z,C) in the following way:
S(Z,C)=5(Z)+S(C)—-1(Z;C). (7)
Mixing both and isolating S(Z), we obtain:
S(Z)=I1(X;Z,C)+5(Z,C|X)-S(C)+1(z;C). (8)

The term S(Z,C|X) in the last equation can be decomposed, following eq. (), as S(Z,C|X) =
S(C,Z|X)=S(C|X)+ S(Z|C, X). Finally, we obtain:

S(Z)=1(X;Z,C)+S(Z|C,X)+1(Z;C)+ S(C|X) - 5(C). 9)

In the last equation, the terms S(C|X) and S(C) are fixed from the dataset and do not depend on the model.
The term I(X; Z,C) would tend to be minimized by the entropy penalty alone, but the reconstruction loss
counteracts this by increasing it. Properly weighting the entropy penalty ensures that the influence of the
reconstruction loss prevails. The term S(Z|C, X) can be interpreted as a noise term (the amount of entropy
of Z which is not predictive of X). Finally, I(Z; C) is the key term that we aim to minimize by penalizing
S(Z). Like S(Z|C, X), this term will be minimized with opposition exerted by the reconstruction loss and,
since I(Z; C) has an inferior limit in 0, the penalization will tend to cancel it, thus aiming for Z L C. In a
deterministic model, I(X; Z,C) and S(Z|C, X) can tend, respectively, towards infinity and minus infinity.
In appendix [F] we further discuss on that and show how this does not affect the meaning and implications
of the equation.

Implementation of the entropy penalty. The existing methods for estimating the entropy of continuous
variables from a finite number of samples involve complex calculus and usually training specific models. To
avoid this, we derive a simple expression that sets an upper bound for the entropy of a continuous multivariate
distribution based on the variance of its variables. From equation [2] and taking into account that mutual
information can not be negative, we have that S(Z) = S(Z1, ..., Zn) < S(Z1) +....+ S(Zn), where N is the
dimensionality of Z. On the other hand, there is a theorem that states that, for a single variable, the normal
distribution maximizes the differential entropy for a given variance (see the demonstration in appendix
or in Marsh| (2013)). Thus, the entropy of a variable X ~ N(u,0?), which is S(X) = log(ov/2me),
sets an upper bound to the entropy of an arbitrary distribution with variance ¢2. This gives us that
S(Z) < nlog(v2me) +log(a1) + ... + log(on) =: Syp(Z), where Syp(Z) is an upper bound to the entropy
of Z based on o1, ...,0x. Although Syp(Z) could, in theory, be used as an entropy penalty loss function, it
is unstable due to the logarithm tending to minus infinite for values near zero. We have tried adding small
fixed values to the standard deviations inside logarithms but, although some improvements are achieved,
model training continues being unstable, slow and suboptimal. Leveraging the fact that any way of reducing
standard deviations will reduce Syp(Z), we have found that a simple summation over them is more stable
and effective as a loss function. Thus, for a batch of data {x*, c"“}kB:1 with B samples, our EP loss is:

N
Lo (g) = o, (10)
i=1
Where o is the standard deviation of the ith dimension of the batch of latent representations {Zk}le, where

= {ZF}N | and ZF = E4(z*, c).

On the other hand, the reconstruction loss is:

Rec( - HIE - DQ(E¢(.’E & ) c )
Then, for a batch of size Ng, the loss of CEPAE is:

2
I

’Cgaliﬂt]%hAE NB Z ’CRCC + )\»C]]iia]i)tCh (¢) . (]‘2)
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As with CVAE and CAAE, the framework described in beginning of allows to generate a counterfactual
sample g.r by encoding an observation gy and its parents h and ey. Here, we have z = Ey(yy, h,ey), and
then ch = DQ(Z, h, ecf).

Like CAAE, CEPAE has the reconstruction power of regular AEs, which is a clear advantage over CVAE.
On the other hand, it has some important advantages over CAAE. First of all, we avoid the instability of
adversarial training, using instead an EP to achieve disentangled representations, which is a much simpler
regularization technique regarding both computational demands and implementation difficulty. Additionally,
although not leveraged in this work, EP implementation offers the advantage over adversarial training of not
increasing in complexity with the number of conditioners or their dimensionality.

EP is somewhat reminiscent of the Information Bottleneck theory (Tishby et al., [2000), specially to |Strouse
& Schwabl (2017)), although we do not closely follow this framework and the derived disentanglement prop-
erties are alien to it. We further discuss this relationship in appendix [G] On the other hand, it is important
to mention that works like Nasr-Esfahany & Kicimanl (2023) provide an impossibility result for identifia-
bility of generation mechanisms with multidimensional exogenous variables, which affects all counterfactual
works applied to multidimensional data. Nonetheless, as [Nasr-Esfahany & Kiciman| (2023)) notes, “exact
counterfactual identifiability is often too strong, e.g., in cases where low counterfactual error is tolerable by
practitioners”. Otherwise, all works on counterfactuals in multidimensional data, like Pawlowski et al.| (2020))
or [Sanchez & Tsaftaris| (2022)), should be invalidated. As we show in the Experimental Section , CEPAE’s
counterfactual errors are very reasonable, and deciding if they are tolerable will depend on each application.
See appendix [H] for an extended discussion.

5 Experimental Section

In this section, we explain the datasets and the metrics that we have used to validate our models, the details
of the models, and finally the results.

5.1 Datasets

To assess the efficacy and validate the dependability of our techniques, we utilize multiple time series datasets
exhibiting various characteristics. In counterfactual literature, there is the general problem of evaluation:
as in real world data we do not have access to counterfactual ground truths, it is not possible to directly
evaluate counterfactual models. Two alternatives exist to overcome this issue: the use of metrics that do not
directly measure similarity among counterfactual estimations and ground truths but desirable properties of
counterfactuals, which we address in and the use of synthetic or semi-synthetic datasets, where we control
the data generating process, or at least a part of it, and therefore have access to the counterfactual ground
truths, which allow to apply traditional metrics. Thus, we employ, apart from our proprietary dataset, other
datasets that imitate our setting of severe changes due to impacts, but where counterfactual ground truths
are known. All datasets are divided into time series with an event at the same given time step (e = 1) and
those without (e = 0). Next, we describe them:

Synthetic datasets. Dataset of time series with 30 steps that initiate always at value 0, have a trend
that stems from a uniform distribution [-0.1,0.1] (meaning that this amount is added at each step), a drop of
0.7 in the step 20 in case of series with event, and an additional change at any randomly selected post-event
step, with a value chosen uniformly within a range from -0.7 to 0.7. This value represents the effect of a
happening that affects the time series both in case of event and without event, whereas the previous drop
of 0.7 represents the effect of the main event. Besides, a Gaussian noise with variance of 0.1 is added to
each step to make the time series more realistic. The only difference in the generating process of these
data for time series with and without event is the drop of 0.7, which allows to generate at the same time
a time series with or without event and its counterfactual ground truth. There are two versions of this
dataset: 1) Unconfounded, where the presence or absence of event is completely random for every time
series, and 2) Confounded, where the probability of featuring an event follows a Bernoulli distribution
with p = (t +0.1)/0.2, there ¢ is the trend.
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Semi-synthetic dataset. This dataset is based in Rossmann Store Sales dataset (FlorianKnauer) 2015]),
a public dataset from a Kaggle competition. It shows the daily sales of Rossmann drug stores from 2013 to
2015. We simulate a situation where, the first Monday of every March from 2013 to 2015, there is an event
that affects half of the stores (e.g., it could be a promotion, a marketing campaign, etc.) and multiplies the
sales by 1.1 the first day, 1.2 the second day, and 1.3 the rest of the days during three weeks. We use the
four weeks previous to the first Monday of March of each year as pre-event time series, and the next three
weeks as post-event time series. This is an unconfounded dataset.

Real world dataset. This dataset shows the monthly sales of our company and has been built as explained
in 1] We take 12 months as pre-event time steps and 30 months as post-event time steps. According to
business experts, the relations among H and F in this dataset is non-existent or very weak. This is a private
dataset.

5.2 Evaluated Metrics

To evaluate our methods, we use various metrics. Mean Absolute Error (MAE) and Mean Bias Error
(MBE) are employed to compare estimations with ground truths in synthetic and semi-synthetic datasets,
as counterfactual ground truths exist solely for these datasets. MAE is a direct measure of how good
our estimations are, while MBE allows to detect biases. We also consider additional metrics that do not
require a ground truth, and hence can be applied to the real world dataset. Each of these metrics assesses
some desirable property of counterfactuals. Overall, they allow to evaluate counterfactual models. For
completeness, we apply them to all datasets and not only to the real world one. Next, we present the Added
Variations metrics, and leave the reconstruction, reversibility and effectiveness metrics from the Axiomatic
Definition of Counterfactual (Monteiro et al., |2023) for appendixdue to space restrictions.

Added Variations. We introduce this metric to evaluate how a counterfactual estimation responds to
changes in the observations. The core idea is that, for an accurate method, if we introduce variations in the
post-event factual time series, the model should understand that they are the effect of some process that has
nothing to do with the event and, therefore, should reflect those variations in the counterfactual estimate.
This metric is implemented as follows: for each time series to be evaluated, several positive and negative
values in the order of the data values are chosen; for each of this values, several windows of few consecutive
steps from the post-event time series are selected and the chosen value is added to those steps. After that,
a counterfactual estimate is obtained for every altered time series and it is compared to the counterfactual
estimate of the non-altered time series. Two quantities are obtained: 1) Total difference, that takes into
account the difference among the altered counterfactual and the base counterfactual in all the steps, and 2)
Altered steps difference, which takes into account the difference among the altered counterfactual and
the base counterfactual only in the steps affected by the alteration. These quantities are then divided by the
expected difference (the product of the alteration value and the number of affected steps). Thus, ideally, the
final results for both total difference and altered steps difference metrics should be 1. The final results are
obtained by averaging all calculations. For a more formal definition of these metrics, see Appendix [J]

Axiomatic Metrics. Following Monteiro et al.| (2023)) and the Pearlian axioms of counterfactuals [Pearl
(2000); (Galles & Pearl (1998)); Halpern| (2000), we summarize three model-agnostic metrics that assess
counterfactual soundness without ground-truth counterfactuals. Let x be an observation with factual parents
pPa, and z* its counterfactual under parents pa*. Denote the ideal counterfactual mapping by f, such that
x* := f(x, pa, pa*), and its learned approximation by f.

Reconstruction (Composition; lower is better). Null interventions should not change x. We measure

Recon := d, (m, f(x, pa, pa)) , (13)
with d, the Mean Absolute Error (MAE).

Reversibility (lower is better). Counterfactual mappings should invert when swapping parents:

Rev :=d, (:c, i’(%(x, pa,pa”), pa®, pa)) . (14)
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Effectiveness (higher is better). Intervening a parent paj to paj should be reflected in the generated
counterfactual. Using a pseudo-oracle Pay that predicts pajy from an observation, we report

Bty = di (Pan(fi(e, pax, pai)). pai ) (15)

with dy as accuracy for discrete parents (or ¢; for continuous ones).

In our setting, x is the post-event time series; factual parents are the pre-event series and factual event
(h,ef), while counterfactual parents replace ey by e.s (keeping h). See appendix [I] for a more complete
description.

5.3 Models and Baselines

We compare CVAE, CAAE and CEPAE for all the metrics described in and we add as a benchmark,
for the MAE and MBE comparison with ground truth counterfactuals, an LSTM-based conditional forecast
model that has as inputs only H and E. Thus, it can be used as a time series counterfactual estimator that
does not take into account post-event values. Besides, we add Adversarially Balanced LSTM (AB-LSTM),
which can be seen as an adaptation of the models like Counterfactual Recurrent Network (CRN) (Bica
et al.l [2020)) or Causal Transformer (CT) (Melnychuk et al.| [2022) to our setting. See appendix [K]| for more
details. Metrics like Added Variations only make sense for methods that use the abduction-prediction-action
procedure. We omit CAAE metrics from the confounded synthetic dataset because, as mentioned in [4.2.2]
it has not been possible to obtain reasonable results.

Although synthetic control methods would be an alternative to our approach, their reliance on the quality
of control data does not allow a fair comparison with the SCM based models, which do not use control data.
In we perform an illustrative synthetic control experiment with the synthetic dataset, where we see that
it will or will not outperform CEPAE depending on how predictive the control data are. We see that, in
each application, the selection of the optimal model should strongly depend on the control data quality, in
case it exists.

The encoder and decoder architectures of CVAE, CAAE and CEPAE are shared, and are based on 1D
convolutional and transposed convolutional layers, in a setting inspired in the VAE model for time series
generation proposed in Desai et al.| (2021)). All methods have been implemented with TensorFlow (Abadi
et al., 2015)), using an Adam optimizer (Kingma & Ba), 2017) with a learning rate of 10~*. Other hyperpa-
rameters of CVAE, CAAE and CEPAE such as dimensionality of latent space or the weight of their respective
regularizations are particular for each dataset and have been chosen after an optimization process. For more
details about implementation, the code of all models is available in the supplementary materials, where it is
possible to reproduce all the experiments except the ones involving the real world dataset, as it is protected
by the company’s privacy policies.

5.4 Results

Table [T] shows the results of time series experiments for the datasets described in Sec. 5.1} Even if we are
interested in counterfactuals for impacted time series, we evaluate the two possible settings: 0 when ey =0
and e.y = 1, and 1 when ey = 1 and e,y = 0. All values have been obtained after performing 10 experiments
with different random seeds, and the intervals correspond to the standard deviation. We see that, in MAE
metric, which is the most important one, CEPAE has the best results. MBE metric allows to detect biases
in the counterfactual estimations. For example, when using CVAE, the inferred counterfactual of time series
are often biased towards the actual values, because of its limited disentanglement capacity. This is reflected
in MBE metrics, where CEPAE, CAAE and LSTM models have better values. In the Added Variations
metric, CEPAE outperforms the other models in almost all settings. As for the axiomatic metrics, CEPAE
generally outperforms the other baselines in reconstruction and reversibility, while being very close to CVAE
in effectiveness.

Comparison with Synthetic Control under Controlled Donor Quality Evaluating CEPAE against
external benchmarks is difficult because, on the one hand, our paper is, to the best of our knowledge, the
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Table 1: Combined results across datasets for e;=0 and ey=1 (10 seeds). Top block: cf ground-truth metrics
(MAE/MBE). Middle: Added Variations (Total/Altered Steps). Bottom: axiomatic metrics (Reconstruc-
tion, Reversibility, Effectiveness). MAE/MBE are w.r.t. counterfactual ground truth. Arrows indicate
direction (| lower is better, 1 higher is better). Symbol ~ means closer to the indicated value is better.

Metric Method Synthetic 0 Synthetic 1~ Conf. synth. 0  Conf. synth. 1~ Semi-synth. 0  Semi-synth. 1 Real world 0  Real world 1
LSTM .199 +.005 .198 +.005 .199 +.003 .201 +.004 .101 +.004 .080 +.002 - -
AB-LSTM  .201 £ .006 .197 +.005 .202 +.009 .202 +.011 .103 +.003 .083 +.003 - -
cf MAE | CVAE 144 4+ .021 137 +£.014 .145 £+ .007 187 +.017 .105 +.005 .083 +.004 - -
CAAE .087 £+ .012 .083 £+ .011 .065 +.004 .061 +.003 - -

CEPAE .066 £+ .007 .068 +.009 .088 £ .030 .086 £+ .016 .056 £ .003 .056 £ .004 - -
LSTM .001 £.011 .001 +.014 —.001+.010 —0.016 £.016 003 £ .004 .002 £ .004

AB-LSTM .001 £+.015 .001 +.014 .001 £ .011 —.001 £ .012 .004 £ .005 .003 +.004 - -
cf MBE ~ 0 CVAE —.067 +£.019 .067 +.024 .051 +.017 126 +.028 .011 £ .010 —.011 £ .009 - -
CAAE —.001 +.044 —.018 £.021 - - —.009 £ .010 —.008 +.008 - -
CEPAE .002 +.007 .007 +.013 .039 +.042 —.037 +.032 —.001 +.004 .002 + .004 - -
CVAE 457 +£.091 443 + .066 1450 +.038 460 = .040 .037 £ .011 .045 = .110 .899 + .024 1.372 £ .070
Total Steps ~ 1 CAAE 910 + .060 .897 £+ .066 - - 510 £ .048 582 +.039 .830 +.109 1.293 + .124
CEPAE .946 + .042 .931 £ .061 .930 £ .051 1935 +.048 747 £ .052 750 £ .048 849+ .293  1.183 +.098
CVAE 388 +.097 .360 £+ .090 241 +.018 .246 +.021 109 +.017 109 +.015 312 +.016 710 +£.021
Altered Steps ~ 1 CAAE .838 £.035 .829 £ .038 - - 275 £.091 289 +£.073 .445 £ .196 729 £.071
CEPAE .874 +.010 .833 £ .055 .883 +.038 .866 + .033 .300 £ .015 .468 + .010 .558 + .200 794 + .111
CVAE 116 +.005 116 £.007 .135+.003 136 +.002 .081 £ .005 .101 £ .006 .065 +.008 .061 £.008
Reconstruction | CAAE .055+.004 .056 * .002 .055 £ .004 .063 £ .003 .038 £ .006 .044 £+ .007
CEPAE .051 + .006 .057 +.008 .048 + .004 .048 + .004 .045 £+ .004 .059 + .004 .039 £ .006 .042 £+ .007
CVAE 127 +.004 150 +.014 152 +.002 .155 +.005 .100 £ .015 117 +.016 .073 +£.009 .078 £.007
Reversibility | CAAE .069 £ .008 .069 £ .008 - - .065 £ .005 .067 = .005 .059 +.004 .055 £.005
CEPAE .068 +.011 .063 £ .009 .060 + .006 .060 + .005 .050 £ .004 .064 +.005 .052+.005 .054 4 .004
CVAE 1.0 £0.0 1.0 £ 0.0 1.0 0.0 1.0 £ 0.0 .996 + .006 991 +.004 .631 +.005 .639 +.005
Effectiveness 1 CAAE 997 £.003 .999 +.002 - - 1994 £ .005 .995 £+ .006 .619 £ .006 .631 £ .006
CEPAE 999 +.002 1.0£0.0 1999 +.001 1.0 + 0.0 1992 £ .007 .997 + .003 .627 £.005 .621 £ .006

first one that applies a deep learning approach based on SCMs to a time series counterfactual problem
(understanding counterfactual according to the J. Pearl definition), so no external baseline exists in this line.

On the other hand, many solutions based on synthetic control exist, but comparing with them poses a major
challenge. As synthetic control depends on control time series, its performance depends on how predictive
they are about the target time series more than in the modeling itself. On the other hand, in order to obtain
distance metrics with respect to the ground truth counterfactual, we need synthetic data. If we use synthetic
data, we should create ourselves the control data, so the measured performance of synthetic control methods
would depend basically on how predictive we decide to make the control time series about the target time
series. For this reason, despite being two competing options to solve the same problem, comparing synthetic
control with our method is not the best way to evaluate any of them.

Despite this, we have performed an experiment of a synthetic control comparison, where we compare CEPAE
with several synthetic control scenarios, each having a different level of correlation between control (or donor)
and target time series. This experiment is based on the synthetic dataset. We have created, for every “target”
time series (i.e., the one over which we want to compute the counterfactual) without observed event (ey = 0),
two additional “control” time series or donors (i.e., the time series that we use to predict counterfactual
values). Then, we use training data to predict, with an LSTM based model, our target time series from the
control time series. This operationalizes the synthetic-control principle—constructing the target from donors
with strong pre-period fit—using an LSTM as the combining function, thus being a strong synthetic control
baseline. At test time, we evaluate how well the prediction (performed with test data) of the post-event
scenario fits the ground truth counterfactual.

We create control time series by adding random Gaussian noise with mean 0 and a specific standard deviation
(o) to the target time series. With this, we ensure that they are predictive, to some degree, of the target
series, being less predictive as the o increases. We report also, for every experiment, the R? metric of the
predicted pre-event target time series from donors.

We show the results in figure [4f Each experiment has been repeated with 10 different random seeds, and
corresponds to the ’Synthetic 1 experiment in table[I} where the MAE for CEPAE is 0.068 + 0.009. The first
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Figure 4: Synthetic Control (SC) comparison.

experiment (o = 0) corresponds to control time series identical to the target one, therefore being absolutely
informative. As expected, the error is very low, almost 0. For ¢ = 0.1, a very low degree of noise, the error
is slightly lower than CEPAE’s error. For ¢ > 0.2, the error is higher.

This experiment allows to see why a fair general comparison between CEPAE and synthetic control methods
can not be established, as results for synthetic control will strongly depend on control data while the SCM
based model does not use it. Thus, the selection between our model and synthetic control methods should be
problem specific and based on the quality of the control data, in case it is available. In appendix[[} we perform
a similar experiment with the semi-synthetic dataset. In this experiment, we observe a similar pattern: when
the control time series are highly predictive, the synthetic control method outperforms CEPAE; when they
are less predictive, CEPAE outperforms synthetic control.

6 Conclusion

We have adapted the theory of SCMs and the abduction-action-prediction procedure to time series coun-
terfactual estimation. Three autoencoder based models have been proposed: CVAE, well known in coun-
terfactual literature although not previously applied to time series problems, CAAE, inspired on image
manipulation works, and CEPAE, a novel model for counterfactual inference based on an EP. While CVAE
shows some superiority with respect to the simple forecast counterfactual estimation in some cases, and
CAAE surpasses CVAE in most metrics, CEPAE clearly outperforms the other models for most settings.
By featuring the reconstruction power of regular AEs instead of VAEs, while not requiring an adversarial
training, it makes the abduction-action-prediction process, under explored in time series counterfactuals, an
interesting option for cases similar to ours. The convenience of CEPAE over synthetic control techniques
will depend on the availability and informative capacity of control data and the amount of historical event
and event-less time series.
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A Industrial Application

In many industries, knowing the impact of a competitor entry on sales is critical for business planning,
investment allocation and objectives setting. The pharmaceutical industry is notably affected when a drug’s
patent expires and Loss of Exclusivity (LOE) [Castanheira et al.|(2019) takes place, prompting competitors
to launch cheaper generic versions of the drug. This usually results in a dramatic decrease in the sales
volume of about 60-70% in the first years |Castanheira et al.| (2019), severely affecting company revenues.
Thus, accurate assessment of the market impact of generic drug entries is of utmost importance.

Time series counterfactual estimation is an essential tool to understand the impact of an event on time-series
data. It is applied to situations where an event or a treatment at a certain point in time alters a time series’
trajectory, and consists in inferring, once given the observed post-event data, the counterfactual data, i.e.,
the time series that would have taken place if the event had not occurred?}

In the case of an event such as the entry in the market of a generic competitor drug, a straightforward
approach for counterfactual estimation is to simply use a time series forecasting model trained on historical
data which was unaffected by this type of event, and predict the next steps of our pre-event time series
according to the model. The main problem of this approach is that its estimations rely solely on pre-event
data, lacking the ability to incorporate relevant information of the post-event facts that could have affected
the counterfactual time series.

For example, let us imagine that few months after a generic drug enters the market to compete with our
target brand, an extreme weather event creates a problem in logistics which results in lower than expected
sales in the whole pharmaceutical market. With a forecast-based model we would estimate regular, not
reduced, counterfactual sales volume despite the fact that, in all probability, our counterfactual time series
would have been affected by the aforementioned happening. This would create a misconception of the impact
that would be problematic for business analysis and planning.

B Extended Related Work

Several methods have been proposed for time series counterfactual estimation and causal impact inference in
the presence of an event or treatment. Difference in differences |Callaway et al.| (2024) is a common approach
which requires some control time series that are not affected by the event to estimate counterfactuals. This
method features some important limitations like the Parallel Trends Assumption. Synthetic control [Bouttell
et al.| (2018); [Abadie & Gardeazabal (2003), which generalizes Difference in differences and overcomes some
of its limitations, selects several available time series, other than the target one, that have not been affected
by the event, computes some weights based on their pre-event similarity to the target time series, and then

?Note that it is also possible for the opposite scenario: the observation might be when the event doesn’t occur, and the
counterfactual when it does.

16


https://arxiv.org/abs/2310.08137
https://openreview.net/forum?id=ByKWUeWA-
https://arxiv.org/abs/1702.08658

Under review as submission to TMLR

estimates the counterfactual as the weighted average of the post-event control time series. Causal Impact
[Brodersen et al. (2015]) is closely related to the synthetic control approach, and its main difference is that it
estimates counterfactuals through a model that predicts the target from control series trained with pre-event
observations. Matrix Completion Methods [Athey et al| (2021) are an alternative that can be viewed as a
combination of synthetic control and the more classical unconfoundedness approach [Rosenbaum & Rubin|
(1983); Imbens & Rubin| (2015)).

In recent years, many works have appeared that mix the structural causal model (SCM) theory
and deep learning techniques to estimate counterfactuals. Apart from the ones mentioned in the paper,
based on VAEs Kingma & Welling (2022)) and, to a lesser extent, normalizing flows Kobyzev et al.| (2020),
other interesting approaches have been proposed. For example, [Dash et al.| (2022) and [Shen et al.| (2021)
use GANs |Goodfellow et al. (2014)), while |Jeanneret et al.| (2022)) uses diffusion models [Ulhaq et al.| (2022).
[Monteiro et al.| (2023)) presents some useful metrics to evaluate counterfactuals, which are used in our paper
to evaluate the models. [Sauer & Geiger] (2021)) uses deep neural networks to disentangle object shape, object
texture and background in natural images. [Van Looveren & Klaise (2021)) utilizes class prototypes in order to
find interpretable counterfactual explanations. |Parascandolo et al.| (2017) uses multiple competing models in
order to retrieve a set of independent mechanisms from a set of transformed data points in an unsupervised
way.

It is important to notice that there are several works in the Explainability field that use the term counterfac-
tual in a completely different sense than this work. In the Explainability context, if we consider, for example,
a binary classifier and a given input, the term counterfactual refers to the most similar input to the one given
that delivers a different classifier outcome. This approach can help understand how the classifier works, but
is different from the causal concept of counterfactual. Some works that tackle the Explainability counterfac-
tual problem are applied to time series Wang et al.| (2023} 2021). However, it is important to recognize the
difference between this approach and the causal counterfactual problem that our work addresses.

There are other interesting works about causal representation learning with deep generative models that do
not tackle directly the problem of counterfactual inference but are interesting to take into account.
let al.| (2017) and |[Liu et al. (2019) combine GANs |Goodfellow et al.| (2014) with SCMs, basing a generator
architecture on an assumed causal graph. However, this method lack tractable abduction capabilities and
therefore cannot generate counterfactuals, reaching only the second rung of the causal ladder (2000).
[Yang et al.|(2022)) proposes a method that learns a causal model, including the directed acyclic graph (DAG),
over latent variables from data, and generates counterfactual samples. Kumar et al.| (2023) uses a GAN based
approach to address the specific problem of spurious correlations in medical datasets.

Finally, there are other interesting counterfactual estimation approaches that are applied to tabular data.
Among them, [Yoon et al|(2018)), based in GANSs, and [Vlontzos et al. (2021)), based in Deep Twin Networks,
similar to Siamese networks Koch et al.| (2015), stand out.

C Extended Information Theory Background

The formula for the differential entropy S(X) of a continuous random variable X with probability density
function f(x) over its support X is given by:

S(X) = - /X F(2) log f(x) do. (16)

The conditional differential entropy S(X|Y) of a continuous random variable X given another continuous
random variable Y with joint probability density function fx y(z,y) and conditional probability density
function fx|y (z]y) is given by:

S(X|Y) = - /X /y Py (,y) log fx v (ely) do dy (17)
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The joint entropy S(X,Y") of two random variables X and Y with joint probability density function fx vy (z,y)
is given by:

S(X,Y)= - /X /y Py (@) log fxy (2, y) da dy (18)

The conditional joint entropy S(X,Y]Z) of two random variables X and Y given a third random variable
Z with joint probability density function fx v,z (z,y,z) and conditional joint probability density function
Ix,vz(x,y|z) is given by:

S(X.Y|Z) = - /Z /X /y vz (@9, 2)log fx.yiz(z,yle) de dy dz (19)

The mutual information I(X;Y’) between two continuous random variables X and Y with joint probability
density function fx y(x,y) and marginal probability density functions fx(z) and fy (y) is given by:

fxy(z,y)
I(X;Y ://fxy T,y log(’ dx dy 20

(X:Y) xJy (®3) fx (@) fy (y) 0)
The mutual information can have values from 0 to S(X) when X and Y are the same distribution.

The conditional mutual information I(X;Y|Z) between two continuous random variables X and Y given a
third continuous random variable Z with joint probability density function fx v z(x,y,2) and conditional
probability density functions fx y|z(x,y|2), fx|z(z|2), and fy|z(y|z) is given by:

. _ v 1o fX,Y|Z(xvy|Z) . .
106¥12)= [ [, et ayos (B0 ) asaa )

All the previous relations are valid also for discrete variables if integrals are changed by summations.

For discrete variables, the entropy is interpreted as a measure of how informative, and uncertain, a random
variable is, or as the mean amount of information that its outputs bring (in the case of conditioned entropy,
how informative a variable is once conditioned on another variable), and the mutual information is interpreted
as the amount of information that one variable brings about another one. Sometimes, the differential entropy
is interpreted in the same way as the discrete entropy and, in this work, we do so in an intuitive level. However,
there are some limitations with respect to this. For example, the differential entropy can have values lower
than 0, and a change of scale can modify it, which is counter intuitive. Nevertheless, the mutual information
preserves its meaning for two continuous or one continuous and one discrete variable, which is fundamental
for our methodology.

In the main paper, we state these four information theory equations that are essential for the development
of CEPAE:
S(X) = I(X;Y) + S(X]Y),

S(X,)Y)=8(X)+SY)-I(X;Y),
S(X,Y) = 8(X) + S(Y|X),
S(X,Y|Z) = S(X|Z) + S(Y|X, Z).

22
23
24
25

(22)
(23)
(24)
(25)

Relation [24]is the chain rule of entropy, which is an established result in information theory, and relation
is the chain rule of entropy in the context of conditional entropy.

Relation [22] is simply a rearrangement of the definition of mutual information:

I(X;Y) = §(X) — S(X]Y). (26)

To demonstrate relation 23] using the chain rule of entropy, we have:

S(X,Y) = S(X) + S(Y]X). (27)
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From the definition of mutual information:
I(X;Y)=5))-SY|X). (28)

Rearranging this equation, we find:
SY|X)=5Y)-I(X;Y). (29)

Substituting this back into the chain rule expression for joint entropy, we obtain:

S(X,Y) = S(X)+S(Y) - I(X;Y). (30)

C.1 Entropy Maximization by the Gaussian Distribution

Theorem: With a normal distribution, differential entropy is maximized for a given variance. A Gaussian
random variable has the largest entropy amongst all random variables of equal variance, or, alternatively,
the maximum entropy distribution under constraints of mean and variance is the Gaussian |Cover| (1999).

Proof:  Let g(z) denote a Gaussian probability density function (PDF) with mean p and variance
02, and let f(z) be an arbitrary PDF with the same variance. Since differential entropy is invariant under
translations, we can assume without loss of generality that f(x) shares the same mean p as g(x).

The Kullback—Leibler divergence between these two distributions is given by

0< Dics(flo) = [ o (ﬁx;) dr=-57)~ [ se)logg(r)d.

Next, consider the integral involving g(z):

[ f(z)log g(z) dz = [ f(z)log (\/2;7@(125‘5)2> .

This can be expanded and simplified as follows:

/_Z f(z)logg(x)dx = /_O:o f(z)log \/217(&%—}—/_(: flx) (—W> dx

1 1
=-3 log(2m0?) — 3 log(e)

= —% log(2mea?)
= —5(9)-

with equality holding if and only if f(z) = g(z), as dictated by the properties of the Kullback—Leibler
divergence.

D CVAE Description

The loss function for a classic CVAE Kingma & Welling] (2022)) with a 8 penalty [Higgins et al.| (2017)), which
corresponds to the evidence lower bound (ELBO), for a datum z and a conditioning c, is given by:

Lovar(l, ¢) = Eq, (z(z.0)[l0g po(|2, ¢)] — B K Lgs (]2, c) || p(2))] (31)

where both ¢4(z|z,c) and pg(x|z,c) are a set of dimension-wise independent normal distributions parame-
terised, respectively, by an encoder neural network Ey and a decoder neural network Dy, p(z) is an isotropic
normal prior distribution, KL is the Kullback—Leibler divergence |[Hall (1987) and § is a penalization over KL
Higgins et al.|(2017). In the model training, the ELBO function is maximized with respect to parameters
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of the neural networks using the re-parametrization trick to sample from the approximate latent posterior:
z = py(z,c) + ag(z,c) ® ez ~ N(0,1).

Based on the time series setting and the encoder-decoder counterfactual estimation method described in the
main paper, it is possible to generate a counterfactual sample §.s by encoding an observation gy and its
parents h and ey, i.e. obtaining the normal distribution g4(2|yy, h, e), where position and scale parameters
come from the encoder: g, a4 = Ey(ys, h,ef), then sampling the latent posterior from this distribution:
z ~ qy(2|ys, h,ey), and finally decoding it along with the counterfactual event e.s: Gor ~ po(yr|z, h,ecyr).
Notice that, at a practical level, the counterfactual will be decoded from the latent sample in a deterministic
way: ey = Do(z,h,ecr).

E CAAE Description

For a data instance (27, ¢'), let Gy, (Ey4 (2%, c')) be a trainable classifier or regressive estimator of C (depending
on whether C is categorical or continuous) with parameters v, then we need to use a conditioner loss
Lona(@, V) = Lina(c’, Gy(Eg(x*, c")); ,1), which can take different expressions depending on that kind
of conditioner or conditioners we have. In an adversarial game, G has to maximize this loss and F4 has to
minimize it. Considering that the reconstruction loss for a conditioned regular AE is:

bec(0,0) = [|2* — Do(Ey(a?, ), )|

(32)

the total loss of CAAE is: ' _ _
‘CZCAAE(97 ¢7 d)) = ﬁec(ga QS) - Aﬁeond(qsa 7/})5 (33)

where A controls the trade-off between the quality of the reconstruction and the invariance of the latent
representation. To implement the adversarial training using backpropagation, we use the Gradient Reversal
Layer (GRL) |Ganin et al.| (2016) and, as in [Lample et al.| (2017), start off with a A value of 0 and increase
it linearly for each iteration.

By using the objective in eq. we should reach a saddle point (é, (ﬁ, 1/;) that achieves the equilibrium
between invariance of representation and reconstruction:

(éa (g) = arg min ‘CCAAE(Ha (z)a 172)
0,¢ (34)
Y = arg max Leaae (8, 0,9).

F Further Discussion on Equation 9 terms

In a continuous and deterministic setting (CEPAE is a deterministic model), the conditional distribution
p(Z | C,X) collapses onto a (near) Dirac delta — i.e., Z is a one-to-one function of (C, X). As a result,
the conditional differential entropy S(Z | C,X) tends to —oo. Simultaneously, the mutual information
I(X;Z,C) can diverge to 400, because knowing (Z,C) almost determines X. Despite these individual
divergences, their sum in Equation 9 must remain finite as long as S(Z) itself is finite — intuitively, the
large negative and large positive components cancel each other out in the equation, because the rest of the
terms are all finite. Moreover, S(Z) stays finite unless p(Z) degenerates entirely to a delta distribution.
This is exactly what would happen if the entropy penalty was the only loss, but the reconstruction loss in
our framework prevents a complete collapse, ensuring that Z retains some spread and thus retains a finite
marginal entropy S(Z). Therefore, while individual terms such as I(X; Z,C) and S(Z | C, X) may formally
blow up under deterministic mappings, their sum remains well-defined and finite, which preserves the overall
validity and meaning of Equation 9.

Beyond this, in practice, Z is stored and processed in finite-precision floating-point format. This means Z
actually takes values from a large but finite set of representable numbers, effectively making it discrete. In a
discrete setting, mutual information cannot diverge to £o0o: there is always an upper bound determined by the
(finite) cardinality of the variable’s domain, so we do not observe true infinite or negative-infinite entropies.
Likewise, conditional entropies in a purely discrete model are nonnegative, ruling out the —oo scenario.
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Thus, although we might treat Z as continuous in theory, real implementations quantize Z sufficiently to
keep the relevant information measures finite.

G Information Bottleneck

The Information Bottleneck (IB) framework (Tishby et al.l 2000) is an information-theoretical method for
learning latent representations. Given an input source X € & and a corresponding output target Y € ), the
goal is to learn an encoder p,(Z | X) that captures only the information in X that is relevant for predicting
Y. Formally, IB seeks to find sufficient statistics of X with respect to Y using as little information from X
as possible. The standard IB objective is expressed as

min (15:2) - 81(v3 2)), (35)

where § > 0 is a hyper-parameter balancing how much information from X is retained in Z.

Originally, the IB problem was solved with methods like Iterative Blahut—Arimoto algorithms (Yeung &
Yeung), |2008), deriving self-consistent equations for the conditional distribution p,(Z | X) (and related
marginal distributions) using variational calculus and Lagrange multipliers. This iterative method works
well when X, Z, and Y are discrete and the state spaces are relatively small. However, scaling these
methods to high-dimensional or continuous domains is challenging. On the other hand, (Alemi et al., 2016))
presented a method to achieve the IB objective with neural networks based on a variational approximation.
In fact, VAEs could be seen, with some reservations, as an application of this method, although the original
development of VAEs (Kingma & Welling, 2022) does not mention this relationship. A number of works
have successfully applied IB for several purposes, like reducing generalization error.

There are important differences between this method and ours. First, IB tries to minimize mutual information
among inputs and representations, while our method aims at minimizing the entropy of the representation.
Also, our model is deterministic, avoiding the imprecision problems that probabilistic frameworks can show.
An idea that is more similar to our method is the one presented in (Strouse & Schwab), [2017). This work
proposes a different objective which aims at reducing the entropy of the internal representations instead of
the mutual information between the internal representation and the input. The objective can be expressed
as:

min (S(Z) BI(Y; Z)), (36)
If we consider that the objective Y is the same as the input X, as in our autoencoder, this objective
corresponds, in an information-theoretic sense, to CEPAE’s objective. However, there are very substantial
differences between this work and ours. First of all, (Strouse & Schwabl 2017) proposes to reach their
objective through algorithms similar to those originally used in the IB framework, i.e., they do not employ
neural network techniques and therefore the method has important limitations regarding applications to
continuous domains. Thus, our implementation of the entropy penalty, and its integration into a neural
network model, is distinct from their approach. On the other hand, (Strouse & Schwab),2017)) always consider
Y to be different from X and do not mention the possibility of using their framework in an autoencoder
architecture.

To the best of our knowledge, no prior approach has explicitly used IB or a similar information-theoretic
strategy to disentangle a latent variable from a conditioner to estimate counterfactuals.

H Identifiability Limitations in Multidimensional Data

Many works on counterfactual estimation overlook identifiability, mainly because it is usually assumed that,
in markovian graphs, all counterfactual queries are identifiable. However, recent works like |Nasr-Esfahany &
Kiciman| (2023) affirm that markovianity alone is insufficient and present more restrictions. In concrete, that
paper provides an impossibility result for identifiability of generation mechanisms with multidimensional
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exogenous variables, which affects all counterfactual works applied to multidimensional data EL including
ours. Nonetheless, as |Nasr-Esfahany & Kiciman| (2023) notes, “exact counterfactual identifiability is often
too strong, e.g., in cases where low counterfactual error is tolerable by practitioners”. Otherwise, all works
on counterfactuals in multidimensional data, like Pawlowski et al.| (2020) or [Sanchez & Tsaftaris| (2022)),
should be invalidated. In table 1 of the main paper, we show that our method achieves very reasonable
counterfactual errors, and deciding if they are tolerable will depend on each application.

I  Metrics from the Axiomatic Definition of Counterfactual

As mentioned in our paper, [Monteiro et al.| (2023]) proposes three metrics to measure soundness of a counter-
factual inference model without having access to ground truth counterfactuals. It is rooted in the Judea Pearl
definition of counterfactual |Pearl (2000), the soundness theorem |Galles & Pearl| (1998]), and the completeness
theorem Halpern| (2000), which, together, state that composition, effectiveness and reversibility are necessary
and sufficient properties of counterfactuals in any causal model. Let = be an observation with counterfactual
parents pa, and z* a counterfactual of z with parents pa*. Then, a counterfactual function f can be defined
in such a way that * := {(z, pa, pa*), where the abduction of the exogenous noise € is implicit. With this
notation, where there is a distinction among the ideal counterfactual function f and its approximation with a
counterfactual model f, Monteiro et al. (2023) defines the axioms that an ideal counterfactual function must
obey and propose, in relation to each axiom, a metric to evaluate approximated counterfactual functions.
The three metrics are the next ones:

(1) Composition:  Intervening on a variable to have the value it would otherwise have without the
intervention will not affect other variables in the system. This implies the existence of a null transformation
f(x, pa, pa) = z since if pa* = pa, then z is not affected. Since the ideal model cannot change an observation
under the null transformation, we can measure how much the approximate model deviates from the ideal one
by calculating the distance between the original observation and the mth time null-transformed observation.
Given a distance metric dy, such as Mean Absolute Error (MAE) (which has been selected in our work), an
observation z with parents pa and a functional power m (which is always 1 in our work), we can measure

composition as Composition™ := d, (x,f(x, pa, pa)).

(2) Reversibility: Reversibility prevents the existence of multiple solutions due to feedback loops.
If a mechanism is invertible, this means that if «* := f(x,pa,pa*), then z = f(a*, pa*,pa). In other
words, the mapping between the observation and the counterfactual is deterministic for invertible mecha-
nisms. For a further discussion on this topic, see Monteiro et al. (2023). Thus, it is possible to measure
reversibility by calculating the distance between the original observation and the cycled-back transformed

observation. Setting p(™ (z,pa,pa*) := f(f(:c, pa, pa*),pa’ﬂpa), given a distance metric dy, an observa-
tion x with parents pa and a functional power m (which is 1 in our work), we can measure reversibility as

Reversibility ™) (z, pa, pa*) := dy (m, f)(m)(a:, pa, pa*)). The chosen distance metric in our work is MAE.

(3) Effectiveness: Intervening on a variable to have a specific value will cause the variable to take on
that value. Thus, suppose Pa is an oracle function that returns the parents of a variable, then we have the
following equality: Pa((f, pa, pa*)). Effectiveness is difficult to measure objectively without relying on data-
driven methods. Following [Monteiro et al.| (2023]), we measure effectiveness individually for each parent by
creating a pseudo-oracle function Pag, which returns the value of the parent pag given the observation. Using
an appropriate distance metric dy, such as accuracy for discrete variables or 11 distance for continuous ones,

we measure effectiveness for each parent as Effectivenessy(x, pa, pa*) = di (Pak (fk(x, pay,, pa};)) 7paZ).

We have given general definitions of these metrics, using generic notation. In our work, the observations
correspond to post-event time series, the parents pa correspond to the factual event and the pre-event time

3Even if a one dimensional latent variable is assumed, that does not lead to identifiability in multidimensional settings
Nasr-Esfahany et al.| (2023]).
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series, and the counterfactual parents pa* correspond to the counterfactual event and the pre-event time
series.

J Added Variations Metrics

The added variations metrics are implemented as follows: for each time series to be evaluated, several
positive and negative values in the order of the data values are chosen; for each of this values, several
windows of few consecutive steps from the post-event time series are selected and the chosen value is added
to those steps. After that, a counterfactual estimate is obtained for every altered time series and it is
compared to the counterfactual estimate of the non-altered time series. Two quantities are obtained: 1)
Total difference, that takes into account the difference among the altered counterfactual and the base
counterfactual in all the steps, and 2) Altered steps difference, which takes into account the difference
among the altered counterfactual and the base counterfactual only in the steps affected by the alteration.
Altered steps difference is the metric reported in the main paper. These quantities are then divided by the
expected difference (the product of the alteration value and the number of affected steps). Thus, ideally, the
final results for both total difference and altered steps difference metrics should be 1. Next, we give a formal
definition of these metrics.

Let y = {y:},t € T be the post-event time series over which we want to perform counterfactuals, h its
corresponding historical time series previous to the event, ey the (factual) event, and .5 = f(y, h,ef,eqr),
where f is a counterfactual function and ecr is the counterfactual event, its corresponding counterfactual
estimation. Then, we consider a time series A = 0...0,v4...v4,0...0 with T steps, where v, is the value
of the alteration which is added only to a certain number of consecutive steps. Let y* = y + A be the
altered time series, then g);‘} would be its corresponding counterfactual estimation. We consider that, if our
counterfactual model is correct, alterations in the factual time series should be reflected in the counterfactual
time series. Thus, ideally ", 'gé(i) —Yef(i) = »_; Ai = na -va, where ny is the number of steps affected by
the alteration in A. Taking into account that we use different time series A with different values n4 and v4,
we can express total differences metric for a single time series y (TD) as:

~A N
iyc i —Yecyi
TD_<Z 0 f()> | (37
A

Ng - VA

and altered step differences (ASD) as

~A ~
iyc i —Yecri
ASD=<Z 1) f()]IzESA> ’ (38)
A

Ng - VA

where s 4 is the set of altered steps (those with value v4 and not 0) in A and I is the indicator function. We
see that, ideally, the result of these averages over the different alteration schemes should be 1. The results
given in the paper are the averages of these metrics over all the time series in the test set. The parameters
na, sa and va are particular for every dataset and can be seen in the code.

K Adversarially Balanced LSTM

This appendix details the AB-LSTM baseline referenced in Sec. 5.3 of the main paper. The model adapts
the adversarial-balancing idea of the Counterfactual Recurrent Network (CRN) Bica et al (2020) to the
single, one—shot event setting studied here.

CRN learns a latent summary that is predictive of future outcomes yet independent of treatment assignment.
We transfer this principle to our scenario, where the treatment/event variable E € {0, 1} occurs once at time
To.

Let the pre-event history be h = (x1,. ..,z ), i.e. a realisation of the random variable H defined in Sec. 4.1,
and let e denote the binary event flag. AB-LSTM is composed of:
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1. LSTM network ¢ with hidden D; it maps h + z € RP.
2. Outcome head f,: a two-layer MLP that predicts the next 17" steps, Jr,+1:1o+17" = fo(2,€).

3. Event discriminator g,: a logistic classifier that tries to recover e from z.

A gradient-reversal layer (GRL)|Ganin et al.| (2016 with coefficient X is placed between z and gy, so gradients
flowing to the LSTM network are multiplied by —\, forcing z to obscure e.

Training objective. For a sample (h, e, y) we solve

min max |fo(z:€) —ylly + A BOB(gy(2).e) . == aolh).

prediction MAE adversarial balance

The weight A is ramped linearly from 0 to a Ay,q. over the first 40 % of updates |Ganin et al.| (2016)).

Counterfactual generation. At test time, given factual pair (hy,ey),

Je = fdalhy), er), Dot = fo(do(hy), 1 —ey).

Because no post-event data are required, AB-LSTM acts as a forecast-only counterfactual estimator, in the
same way as the LSTM baseline. Both of them receive the inputs (h,e), and do not consume post-event
values.

L Synthetic Control Experiment in Semi-Synthetic Dataset

We perform an experiment similar to the one in the main text with the synthetic dataset. This experiment
is based on the semi-synthetic dataset. We have created, for every “target” time series (i.e., the one over
which we want to compute the counterfactual) without observed event (e; = 0), two additional “control”
time series (i.e., the time series that we use to predict counterfactual values). Then, we use training data to
predict, with an LSTM based model, our target time series from the control time series. At test time, we
evaluate how well the prediction (performed with test data) of the post event scenario fits the ground truth
counterfactual.

We create control time series by adding a random gaussian noise with mean 0 and a specific standard
deviation (o) to the target time series. With this, we ensure that they are predictive, to some degree, of the
target series, being less predictive as the o increases.

Table 2: MAE of the synthetic-control baseline for different noise standard deviations o.

o MAE

0.0 0.004 £0.002
0.1 0.045 £0.002
0.3 0.077 £0.001
1.0 0.114 £0.002
1.5 0.128 £0.002

We obtain the results in table 2l Each experiment has been repeated with 10 different random seeds, and
corresponds to the semi-synthetic 1 experiment in table 1 from the main paper, where the MAFE for CEPAE
is 0.056 =+ 0.004. The first experiment (¢ = 0) corresponds to control time series identical to the target one,
therefore being absolutely informative. As expected, the error is very low, almost 0. For ¢ = 0.1, a very low
degree of noise, the error is slightly lower than CEPAE’s error. For o > 0.3, the error is higher.
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