

000 TABX: X-CELLENT AT COMPLEX TABLES AND BE- 001 002 YOND 003 004

005 **Anonymous authors**

006 Paper under double-blind review

007 008 ABSTRACT 009

010
011 Recent advances in table understanding have shifted from text-based large lan-
012 guage model (LLM) methods to multimodal LLM (MLLM) methods like Table-
013 LLaVA that directly process table images. Despite these advances, existing table
014 MLLMs still exhibit limited robustness to complex table layouts and poor generaliza-
015 tion to unseen tasks. We trace these failings to two fundamental issues in their
016 development pipeline: (1) a low-quality dataset composed of instruction-table-
017 answer triplets and (2) a lack of all-around understanding of table images. This
018 predicament is analogous to a student learning from flawed material with no mech-
019 anism for self-correction. Typically, true understanding is not attained through
020 passive study alone, but rather through iterative self-evaluation and the correction
021 of errors under teacher guidance. Inspired by this cognitive process, we first cu-
022 rate a new dataset, MMTab-Pro, by introducing three challenging tuning tasks that
023 encourage the model to perform a deeper understanding of table content and struc-
024 ture, while applying a reflection-based enhancement to refine low-quality triplets.
025 We further propose a Self-Evolution with Teacher-Tuning (SETT) framework to
026 fine-tune the model, which enables the model to evolve through self-feedback and
027 the guidance of a stronger teacher model, continuously refining both data suitabil-
028 ity and model comprehension. Finally, through the two-step pipeline developed
029 above, we present **TabX**, a robust and generalizable table MLLM. Experiments on
030 the MMTab-eval benchmark show that **TabX** outperforms existing models, partic-
031 ularly on structurally complex and unseen tasks.

032 1 INTRODUCTION

033
034 Tables serve as an efficient means of organizing and storing data, widely used across various real-
035 world scenarios such as finance, e-governance, and scientific research. They encapsulate complex
036 and dense information in a structured format, forming a crucial basis for human knowledge acqui-
037 sition and decision-making. With the growing volume of tabular data, diverse table understanding
038 tasks have been actively explored, such as table-based question answering Cheng et al. (2022); Nan
039 et al. (2022), text generation Parikh et al. (2020), and schema augmentation Zhang & Balog (2017),
040 to achieve efficient and convenient data analysis.

041 Early table understanding methods typically rely on task-specific model architectures trained on
042 specialized datasets Wang et al. (2021); Iida et al. (2021); Nan et al. (2022), which significantly hin-
043 ders their broader applicability. With the advent of LLMs exhibiting strong generalization capabili-
044 ties, there is a growing interest in leveraging instruction-tuning techniques to develop table-oriented
045 LLMs capable of handling diverse table-related tasks Zhang et al. (2024a); Li et al. (2024b); Su et al.
046 (2024); Zhang et al. (2024b). These methods have made notable progress in overcoming previous
047 limitations, achieving generalist table models. However, Zheng et al. Zheng et al. (2024) argue that
048 in many real-world scenarios, obtaining high-quality text-based tables is often impractical, whereas
049 table images are more readily available (e.g., screenshots or scanned documents). Moreover, since
050 tables are inherently two-dimensional, image-based representations better preserve their spatial lay-
051 out and align more closely with human visual intuition. To this end, Zheng et al. Zheng et al. (2024)
052 propose Table-LLaVA, a table MLLM that directly accepts table inputs in image format.

053 Table-LLaVA demonstrates strong performance across various pre-defined tasks by constructing a
large-scale table image dataset, aligning table images and text through pre-training, and applying

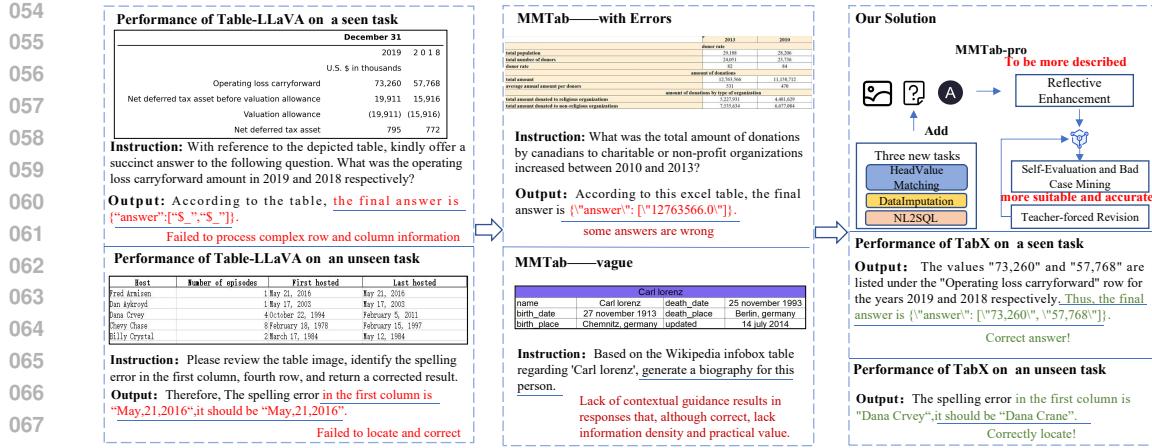


Figure 1: Illustration of the motivation and core design of TabX. Left: Failure cases of Table-LLaVA on complex table layouts and unseen tasks. Middle: Low-quality training samples (e.g., incorrect answers and vague instructions). Right: TabX demonstrates strong performance by constructing a high-quality dataset and a self-evolution with teacher-tuning framework.

supervised instruction tuning. However, through extensive evaluation, we observe that it exhibits limited robustness to complex table layouts and insufficient generalization capabilities for novel tasks. As shown in Figure 1, a common failure case involves tables with hierarchical organization and irregularly merged cells. Furthermore, its performance on unseen tasks often falls short. Through an analysis of the development pipeline of existing table (M)LLMs, we identify two issues: (1) Low-quality instruction-table-answer triplets. As shown in Figure 1, some instructions in existing datasets are vague, and the corresponding answers are overly simplistic. Such ambiguous data fail to guide the model training effectively. (2) Insufficient understanding of table images. Robust performance on both in-distribution and out-of-distribution tasks depends heavily on the model’s ability to understand table structure and content. Table-LLaVA falls short in this regard for two main reasons: inappropriate instruction-tuning task settings and a suboptimal choice of foundation model. Effective instruction tuning should involve tasks spanning various levels of difficulty and granularity to promote a deep understanding of the relationships between row and column information. However, Table-LLaVA includes relatively few tasks that require reasoning over global table contents and structures or fine-grained cell-level inference. Moreover, its foundation model, LLaVA Liu et al. (2023a), is exclusively trained on visual understanding tasks, whereas existing research indicates that models trained on both generation and understanding tasks can yield more robust representations Chen et al. (2025a).

To advance table understanding models and promote their broader practical applications, we present **TabX**, a robust and generalizable table MLLM, by addressing the aforementioned challenges. Drawing inspiration from the human reflection and error correction mechanism, the development pipeline of **TabX** comprises two main parts: reflective enhancement-based instruction-tuning dataset construction and self-evolution with teacher-tuning (SETT). In dataset construction, we introduce three additional challenging table understanding tasks to make up for the deficiencies of existing multimodal table datasets in modeling global table semantics and fine-grained cell-level reasoning. The newly constructed instruction-table-answer triplets for these tasks are merged with the existing dataset, expanding the total from 230K to 250K samples. To enhance data quality, we implement a two-step reflective enhancement mechanism, which leverages a teacher model and a student model to reflect on and score the instruction-answer pairs. This process produces triplets with more detailed descriptions, resulting in a high-quality and comprehensive multimodal table dataset, termed MMTab-Pro. Following dataset construction, we design a SETT framework that forms a continuous loop of self-evaluation, teacher-enforced revision, and refined tuning. In this framework, the student model identifies “bad cases” based on self-feedback, while the teacher provides expert guidance to revise them, ensuring the co-evolution of the model and its training data. Moreover, **TabX** is built by fine-tuning Janus-Pro Chen et al. (2025b). This choice is predicated on its superior representational

108 capabilities, resulting from its joint training on both generation and understanding tasks, allowing
 109 for a more comprehensive understanding of table images.
 110

111 We evaluate **TabX** on the public benchmark MMTab-eval, comparing it against several open-source
 112 MLLMs, table-oriented LLMs, and TableLLaVA. Experimental results demonstrate that **TabX** con-
 113 sistently outperforms existing methods across a wide range of table understanding tasks, including
 114 both held-in and held-out benchmarks. Significantly, **TabX** exhibits outstanding performance on
 115 structurally complex and unseen tasks, highlighting its robustness and generalization capabilities.
 116 Extensive ablation studies further validate the effectiveness of each component in contributing to
 117 **TabX**’s superior performance.
 118

119 Our contributions are summarized as follows:
 120

- 121 • We introduce **TabX**, a robust and generalizable table MLLMs, achieving new state-of-the-
 122 art results across multiple tasks on the MMTab-eval benchmark.
 123
- 124 • We introduce three challenging table understanding tasks to complement existing datasets
 125 and construct a high-quality instruction-tuning dataset by a reflective enhancement strategy.
 126
- 127 • We propose a self-evolution with teacher-tuning framework, enabling collaborative evolu-
 128 tion between the model and the data during instruction tuning.
 129

2 RELATED WORK

130 **(M)LLMs for Tabular Tasks.** While LLMs have demonstrated remarkable success across many
 131 natural language processing benchmarks, recent studies Bhandari et al. (2024); Dong et al. (2024);
 132 Sui et al. (2024) indicate that even the most advanced LLMs may still struggle with complex table-
 133 related tasks. This limitation arises from a fundamental modality mismatch: LLMs are primarily
 134 trained on one-dimensional textual sequences, whereas tables are inherently two-dimensional. To
 135 bridge this gap, recent efforts have introduced fine-tuning strategies tailored specifically for tabu-
 136 lar tasks. Early works typically focus on single-task models targeting specific table-related tasks
 137 Hegselmann et al. (2023); Andrejczuk et al. (2022); Liu et al. (2021); Kotelnikov et al. (2023); Ren
 138 et al. (2025). More recently, research attention has shifted towards developing generalist models.
 139 For instance, Li et al. Li et al. (2023c) develop Table-GPT using a new “table-tuning” paradigm.
 140 Similarly, Zhang et al. Zhang et al. (2023) propose Table-Llama, a LLaMA-based model fine-tuned
 141 via LoRA Hu et al. (2022) on multiple table-related tasks, consistently outperforming its base model
 142 across various tasks. On the other hand, Table-Specialist Xing et al. (2024) abandons the one-model-
 143 fits-all paradigm in favor of training dedicated specialist LLMs for each tabular task. In contrast,
 144 Table-LLaVA Zheng et al. (2024) opts to directly process table images, leveraging their accessi-
 145 bility in real-world settings and naturally preserving 2D structural information. This vision-centric
 146 approach has been extended by works like Zhou et al. (2025) and Zhao et al. (2024). The former
 147 generates a massive Q&A corpus by prompting an LLM with HTML tables, while the latter adopts
 148 a multi-stage fine-tuning strategy on established public datasets. Common to these methods is the
 149 use of high-resolution image encoders.
 150

151 **MLLMs.** Early MLLMs, such as LLaVA Liu et al. (2023b), align visual features extracted by visual
 152 foundation models with text embeddings and feed the fused representations into LLMs to facilitate
 153 cross-modal understanding between visual and textual content. More recently, there has been a
 154 significant push towards developing unified multimodal models that can handle both understanding
 155 and generation tasks. For instance, Emu3 Wang et al. (2024) achieves deep multimodal fusion by
 156 discretizing heterogeneous data (text, images, videos) into token sequences and processing them
 157 through a decoder-only Transformer architecture. Similarly, VILA-U Wu et al. (2024) integrates
 158 multimodal understanding and generation within a unified token-based autoregressive framework.
 159 Previous methods typically rely on a single visual encoder for both tasks, which often leads to sub-
 160 optimal performance due to differing granularity requirements between multimodal understanding
 161 and generation. Janus-pro Chen et al. (2025b) addresses this limitation through a decoupled vi-
 162 sual encoding strategy. We select Janus-pro as our foundation model to ensure a comprehensive
 163 understanding of table images.
 164

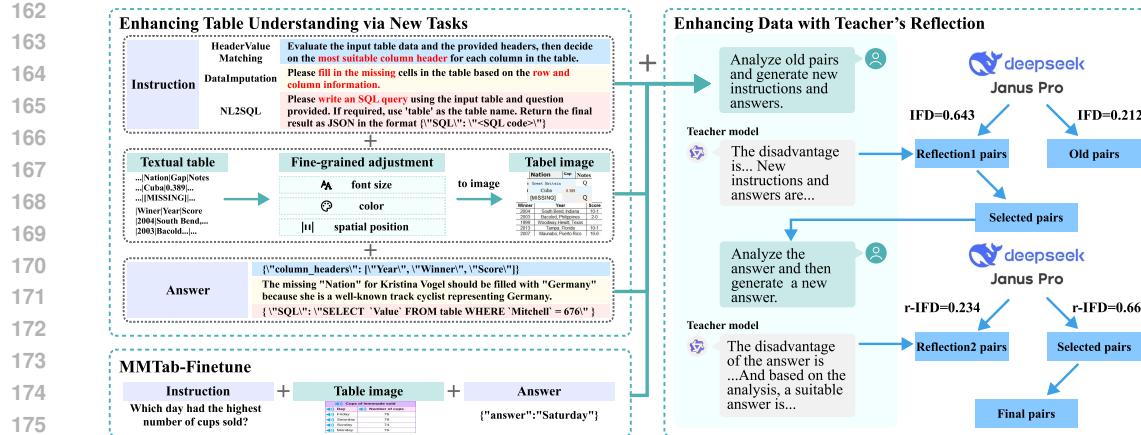


Figure 2: Pipeline of Instruction-tuning Dataset Construction. Three new tasks are integrated and aligned into a unified multi-modal table understanding setting. We then enhance the data quality through a two-stage reflective enhancement, leveraging a teacher model (Qwen-VL-Max) for data revision and a student model for selecting samples that are most beneficial for its learning. Please refer to the appendix for the detailed prompt.

3 MMTAB-PRO: AN EXPANDED TRIPLET-STRUCTURED MULTIMODAL TABLE DATASET

To facilitate more effective table understanding and address ambiguities in the existing dataset, we construct a new dataset through a two-stage process: (1) integrating additional tasks and (2) reflective enhancement, as shown in Figure 2. We first create instruction-table-answer triplets for three new tasks. Then, we merge them into MMTab-finetune and apply a reflective enhancement strategy to improve the quality of instruction-answer pairs across all triplets.

3.1 ENHANCING TABLE UNDERSTANDING VIA NEW TASKS

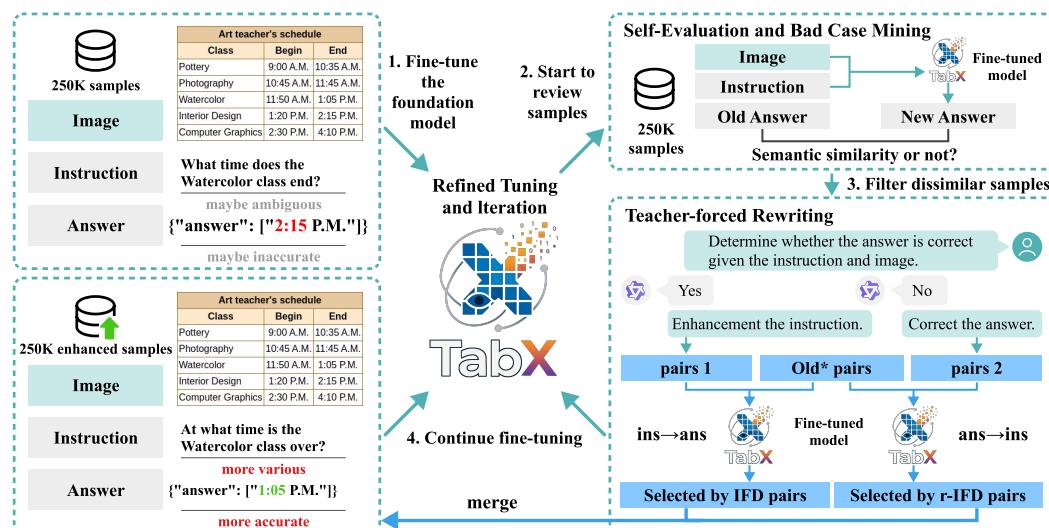
To enhance the model’s comprehensive understanding of tables during training, we introduce additional fine-tuning tasks beyond those originally present in TableLLaVA. These tasks are carefully selected to contain both global structural and semantic understanding, as well as fine-grained cell-level reasoning, promoting a more comprehensive understanding. Specifically, we select three representative tasks: **HeaderValueMatching**, **DataImputation**, and **NL2SQL**. HeaderValueMatching requires the model to determine whether a given cell value in a row correctly belongs to the corresponding column header. DataImputation involves filling in missing values within table cells reasonably. Both of these cell-level reasoning tasks demand the model’s ability to locate and understand local context, and correctly interpret row-column semantic relationships. NL2SQL, on the other hand, is a task that transforms natural language questions into structured SQL queries. It requires the model to accurately identify the relevant column names, values, and constraints in the tables, while performing a deep analysis of the tables’ structural layout, row–column relationships, and semantic dependencies.

We collect the raw samples for these three tasks from the dataset used by Table-GPT Li et al. (2023c), which consists of instruction-text table-answer triplets. The text-based tables are first converted into Excel format and then augmented using a fine-grained strategy following Table-LLaVA. The resulting tables are rendered as images via screenshots. Moreover, to ensure compatibility with the MMTab-Finetune task format, we standardize the instruction templates and normalize the answer formats. Finally, we merge all samples from the three new tasks with the original MMTab-Finetune dataset, expanding the total number of instruction-table image-answer triplets from 230K to approximately 250K. Detailed descriptions of each task are provided in the appendix.

216 3.2 ENHANCING DATA WITH TEACHER'S REFLECTION
217

218
219 Existing instruction-tuning datasets often suffer from vague instructions and simplistic answers,
220 which limit the model's ability to effectively learn task objectives and generalize across scenarios.
221 To this end, we utilize a two-stage reflection-based data enhancement pipeline Li et al. (2023b;
222 2024a), focusing respectively on instruction refinement and answer improvement. Specifically, we
223 adopt Qwen-VL-Max Bai et al. (2023) as the teacher model and Janus-Pro Chen et al. (2025b) as
224 the student model. The use of a large teacher model enables more accurate reflection and sample
225 revision, leveraging its stronger reasoning and understanding capabilities. Moreover, we let the
226 student model select the candidate samples to ensure the final data better aligns with the student's
227 requirements. Both models take inputs in the form of \langle Instruction, Image \rangle .
228

229 In the first stage, given an original instruction–answer pair (x_0, y_0) , Qwen-VL-Max evaluates the
230 instruction from multiple dimensions, including topical complexity, required specificity, background
231 knowledge, ambiguity, and reasoning difficulty, and generates a new one. Simultaneously, a matching
232 answer is also generated to ensure coherence between the instruction and the answer. Next,
233 we utilize the student model to score both the original pair (x_0, y_0) and the teacher-generated pair
234 (x_1, y_1) using the Instruction-Following Difficulty (IFD) metric Li et al. (2023b). This metric quantifies
235 the contribution of the instruction to the task completion, and a higher IFD indicates that the
236 instruction is more helpful in guiding the model to generate the correct answer. We retain the pair
237 with the higher IFD score as the preferred sample. Taking our chosen pair (x_1, y_1) as an example, in
238 the second stage, the selected pair undergoes answer reflection Li et al. (2024a). Here, the instruction
239 x_1 is kept fixed while the teacher model revises only the answer by evaluating its usefulness, rel-
240 evance, accuracy, and specificity, producing a new instruction-answer pair (x_1, y_2) . Subsequently,
241 the student model uses the reversed-IFD (r-IFD) metric to assess whether these two answers contain
242 sufficient information for the model to infer the instruction, with a lower r-IFD being more desirable.
243 The final pair $(x_1, y_1$ or $y_2)$ is thus selected through this two-stage reflective enhancement process.
244 As a result, approximately 80K original samples are replaced with their enhanced versions to form
245 a high-quality instruction-tuning dataset.
246



264 Figure 3: Pipeline of SETT. The process begins with an initial fine-tuning of the student model, fol-
265 lowed by its self-evaluation to identify “bad cases”. A teacher model then provides expert guidance
266 for revising these samples. The student model is subsequently fine-tuned on the updated dataset,
267 and this cycle is iteratively repeated. Please refer to the appendix for the detailed prompt.
268
269

270 4 SETT: SELF-EVOLUTION WITH TEACHER-TUNING
271272 4.1 OVERVIEW
273

274 While our initial dataset construction employs a powerful teacher model to reflect on and enhance
275 the data, a fundamental challenge persists. A significant capability gap and differing knowledge
276 distributions often exist between large teacher models and smaller student models Li et al. (2025).
277 This discrepancy implies that the teacher’s reflective process, and the resulting samples, may not
278 be optimally aligned with the student model’s unique learning trajectory. Furthermore, relying on
279 an untrained student model to curate its own data is suboptimal, as it lacks the requisite discern-
280 ment to accurately identify the most beneficial training instances for its own evolution. To address
281 these challenges, we propose a novel fine-tuning framework, Self-Evolution with Teacher-Tuning,
282 designed to achieve the joint evolution of both the model and its training data by integrating the
283 student’s self-feedback and the teacher’s expert guidance. As shown in Figure 3, we first fine-tune
284 the student model on the initial dataset to obtain a baseline version. This baseline model then en-
285 gages in self-evaluation, leveraging its own feedback to identify “bad cases”. Subsequently, the
286 teacher model is introduced to guide the revision of these identified samples. Finally, we fine-tune
287 the student model again using the updated dataset, iteratively repeating this process.

288 4.2 SELF-EVALUATION AND BAD CASE MINING
289

290 Our SETT introduces a self-evaluation process, which transforms the student model from a passive
291 data consumer into an active agent that pinpoints data-model incongruities. Moreover, this pro-
292 cess creates a cycle where improved model capability leads to more precise data curation, which in
293 turn accelerates the model’s evolution toward a robust and generalized state. Specifically, for each
294 instruction-table image pair in the training set, we prompt the current fine-tuned student model to
295 generate a corresponding answer \hat{y} . We then measure the semantic alignment between the model’s
296 prediction \hat{y} and the ground-truth answer y . A high degree of misalignment indicates a potential “bad
297 case”. To quantify this alignment, we compute the cosine similarity of their semantic embeddings.
298 Drawing from the findings of Zhao et al. (2025), which suggest that average or max pooling over all
299 token embeddings is more effective for capturing overall semantics than relying on special tokens
300 (e.g., the first or last token) in encoder-decoder architectures, we implement the following pro-
301 cedure: (1) We encode both \hat{y} and y using the student model to obtain the hidden states of all tokens.
302 (2) We apply average pooling over the token-level hidden states to derive semantic embeddings.
303 (3) We compute cosine similarity between the semantic embeddings of \hat{y} and y . If the similarity
304 score falls below a predefined threshold δ , the sample is flagged as a “bad case”. These samples are
305 passed to the next stage of our SETT framework for teacher-forced revising. We experimentally set
306 the threshold δ to 0.5.
307

308 4.3 TEACHER-FORCED REVISION
309

310 Following the identification of “bad cases”, the framework introduces the teacher model to perform
311 a crucial diagnostic and corrective function. The teacher acts as an external and more knowledgeable
312 expert, providing the necessary guidance to resolve these “bad cases” and ensure the student’s evolu-
313 tionary path remains productive. For each “bad case”, the teacher model determines the correctness
314 of the original answer y given the table image and instruction. If y is identified as erroneous, i.e., it is
315 a truly misleading sample, the teacher’s role is correction. It is prompted to generate a revised, high-
316 quality answer. Conversely, if y is validated as correct, the incongruity is attributed to the student’s
317 misinterpretation, likely stemming from a non-robust or ambiguous instruction. Here, the teacher’s
318 role shifts to clarification. We prompt the teacher to rephrase the instruction into a more robust and
319 semantically equivalent form. Crucially, the teacher’s revision is not unconditionally accepted. The
320 modified sample is subsequently passed back to the student model for a final verification using the
321 IFD and r-IFD metrics. This step upholds the principle of student-centric learning, ensuring that the
322 teacher’s guidance is indeed beneficial from the student’s current perspective.

323 4.4 REFINED TUNING AND ITERATION
324

325 Following the teacher-forced revision, the newly enhanced samples are merged with the set of high-
326 quality samples retained from the self-evaluation phase. This updated dataset is then used to initi-

Task Types	Table Structure Understanding (TSU)										Academic Tabular Tasks												
	Benchmarks		TSD		TCL		RCE		MCD		TCE		TR		TQA		TFV				T2T		
Methods	Row	Col.	Acc.	RowF1	ColF1	F1	Acc.	AT	Acc.	Acc.	Acc.	Acc.	Acc.	Acc.	HiT	TAT	TF	IT	FT	HiT.t2t	RW	WI	TO
BLIP2	0.2	0.0	0.1	0.0	0.0	0.0	0.1	0.1	3.4	2.1	1.5	2.2	18.7	27.5	2.3	2.6	1.1	0.7	4.3				
Qwen-VL	0.0	0.0	0.0	0.0	0.4	0.0	0.0	0.8	3.3	0.1	0.1	0.1	1.1	0.7	0.5	0.2	0.1	0.0	0.8				
VILA-U	0.1	4.0	0.3	4.1	10.5	3.0	1.1	27.0	17.9	4.5	1.2	4.4	10.9	14.2	6.8	0.7	1.6	3.5	7.5				
LaVIT	0.1	3.3	0.1	2.0	9.4	2.0	0.4	29.5	13.4	3.2	0.9	3.8	6.3	12.9	5.2	0.7	1.2	3.4	7.0				
Janus-pro	1.3	4.2	0.3	4.8	11.7	3.1	1.7	31.3	18.3	4.2	1.3	5.3	10.5	22.1	9.7	1.0	1.4	2.1	9.6				
Table-LLaMA +OCR	3.9	3.6	6.5	2.8	2.4	-	4.0	-	11.1	12.5	13.5	2.7	44.5	2.2	25.4	0.1	0.1	0.3	-				
Table-LLaVA	33.1	33.2	29.3	31.0	37.9	17.1	19.4	47.0	57.8	18.4	10.1	12.8	59.8	65.0	25.6	9.7	10.5	9.7	23.0				
Ours	37.4	60.8	35.6	33.9	47.0	31.9	26.8	54.2	81.1	18.6	9.3	32.4	52.5	59.7	26.1	7.1	4.6	9.8	23.6				

Table 1: Comparison of the performance on the held-in benchmarks. “TWP”, “HiT”, “TAT”, “TF”, “IT”, “FT”, “HiT.t2t”, “RW”, “WB”, and “TO” correspond to “TABMWP”, “HiTab”, “TAT-QA”, “TabFact”, “InfoTabs”, “FeTaQA”, “HiTab.t2t”, “Rotowire”, “WikiBIO”, and “ToTTo”, respectively. “AT” denotes the average TEDS score for recognizing table formats in HTML, Markdown, and LaTeX. Detailed definitions of each task are provided in the appendix. The best results are highlighted in bold.

ate the next round of fine-tuning for the student model. This iterative loop of teacher-forced self-evolution empowers the model to progressively refine its own data curriculum as its capabilities advance. Ultimately, this leads to the development of **TabX**, a robust and generalized table MLLM.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETTINGS AND RESULTS

Datasets and Evaluation Metrics. Following Zheng et al. (2024), we conduct all experiments on the publicly available multi-modal table image benchmark dataset MMTab-eval. This dataset contains a wide range of table-based question answering tasks and visual reasoning challenges, offering strong task diversity and difficulty. We adopt different evaluation metrics based on task types. For the Table Question Answering (TQA), Table Fact Verification (TFV), and Table-to-Text (T2T) tasks, we use Accuracy or BLEU score Papineni et al. (2002) as the evaluation metrics. For the Table Size Detection (TSD) task, we calculate the accuracy of the predicted number of rows and columns. For the Table Cell Extraction (TCE) and Table Cell Locating (TCL) tasks, we use cell-level accuracy as the measurement standard. For the table recognition (TR) task, we use the Tree-Edit-Distance-based Similarity (TEDS) score Zhong et al. (2020). For the Merged Cell Detection (MCD) task, we evaluate model performance using cell-level F1 score. For the Row&Column Extraction (RCE) task, we compute the cell-level F1 score for both row-wise and column-wise extraction results Zheng et al. (2024).

Baselines. We compare our method against (1) open-source general-purpose MLLMs such as Janus-Pro Chen et al. (2025b), Qwen-VL Bai et al. (2023), BLIP-2 Li et al. (2023a), VILA-U Wu et al. (2024), and LaVIT Jin et al. (2023); (2) table-oriented LLMs such as TableLLaMA Zhang et al. (2023); and (3) Table-LLaVA. All compared models are 7B in size for a fair comparison.

Implementation Details. In our pipeline, the teacher model is Qwen-VL-Max (prompts are detailed in the appendix), which is selected for its powerful vision-language capabilities and cost-effectiveness, with the entire process costing approximately \$200. The student model is the 7B version of Janus-Pro. All experiments are conducted on four NVIDIA A800 GPUs. We adopt the LoRA efficient fine-tuning strategy, use the AdamW optimizer with an initial learning rate of 2e-5, and apply linear warm-up followed by cosine decay scheduling. During fine-tuning, self-evaluation and teacher-forced revision are conducted every two training epochs. This entire process is iterated for a maximum of three times, terminating early if no “bad cases” are identified during the self-evaluation stage.

Results on the Held-in Benchmarks. The held-in benchmarks include 17 tasks, primarily categorized into academic tabular tasks and table structure understanding tasks. Please refer to the appendix for dialogue process visualizations. As shown in Table 1, general-purpose multimodal

Method	TSD		RCE		TCL		TCE		AIT		PHT		TCQ	
	Row	Col.	RF1	CF1	Acc.	Acc.	Acc.	Acc.	Acc.	Acc.	Acc.	Acc.	Acc.	Acc.
VILA-U	1.4	4.1	0.1	2.6	0.1	2.0	2.3	13.7	10.0					
LaVIT	0.8	2.3	0.8	1.9	0.1	1.9	1.7	8.5	9.8					
Janus-pro	1.6	4.4	12.1	3.2	0.3	2.2	4.6	15.1	10.9					
Table-LLaVA	25.2	16.4	22.0	18.1	26.1	11.3	5.4	51.0	44.0					
Ours	31.6	47.7	28.7	34.7	31.1	24.6	6.9	52.9	40.5					

Table 2: Comparison of the performance on the held-out benchmarks. “RF1” denotes the F1 score for row prediction, and “CF1” denotes the F1 score for column prediction. “AIT”, “PHT”, and “TCQ” correspond to “AIT-QA”, “PubHealthTab”, and “TabMCQ”.

models perform poorly, mainly due to the lack of specific training on table images. Among them, Janus-Pro performs best, benefiting from joint training on generation and understanding tasks, which helps capture more robust visual representations. This motivates our choice of Janus-Pro as the foundation model for **TabX**. Table-LLaMA outperforms general MLLMs due to specialized tabular training. However, it suffers from OCR inaccuracies and the loss of structural information. Table-LLaVA, designed specifically for table image understanding tasks, significantly outperforms previous methods on many tasks. Nonetheless, it shows mediocre performance on complex table structure and semantic reasoning tasks (e.g., MCD and HiTab QA). In contrast, **TabX** consistently excels across almost all tasks, with particularly notable gains on complex tasks such as TCE, MCD, tabular numerical reasoning (TABMWP and TAT-QA), and HiTab QA. This superior performance stems from our introduction of three complex tasks for fine-tuning, which guide the model toward a deeper comprehension of table content and structure, as well as the continuous enhancement of data quality through reflection mechanisms and the proposed SETT framework. Notably, **TabX** underperforms on the Rotowire (RW) dataset. Our qualitative analysis (see the appendix) indicates this is not a failure of comprehension but rather a limitation of the evaluation metric. We find that **TabX** excels at extracting a higher density of factual information tables. Conversely, Table-LLaVA’s outputs, though less factually grounded, align better stylistically with the reference answers, thereby achieving a higher BLUE score. This suggests a potential misalignment between n-gram-based scores and true factual accuracy on this task.

Results on the Held-out Benchmarks. Following Table-LLaVA, we validate our method on held-out data not present in the training set. As shown in Table 2, we observe similar trends. It is worth noting that general-purpose MLLMs are less affected by unseen data, as they are not trained specifically on table images and primarily rely on their own generalization capabilities. Compared to Table-LLaVA, our model maintains its advantage across multiple held-out settings. This is attributed to our strategy of setting appropriate tasks and enhancing data quality, which unleashes the model’s generalization capabilities.

Method	TQA	TFV	TSU	T2T	Held-out
w/o T	30.5	39.7	36.0	10.7	25.4
w/o R	28.5	38.7	36.5	10.4	22.1
w/o S	24.7	38.2	32.9	10.2	22.0
Ours	35.4	46.0	40.9	11.3	33.2

Table 3: Ablation studies. We report the average performance on the TQA, TFV, T2T, TSU, and Held-out tasks. “T”: three new tasks; “R”: reflection-based data enhancement; “S”: SETT.

5.2 ABLATION STUDY

To evaluate the effectiveness of each key component in **TabX**, we conduct ablation experiments by individually removing: (1) the three new tasks, (2) the reflection-based data enhancement pipeline, and (3) the SETT framework. Results are reported in Table 3. As shown in the table, removing the three new tasks leads to notable performance drops. This highlights the importance of the three tasks in promoting the model’s ability to handle structurally and semantically challenging tables. Furthermore, comparing the performance with and without the reflective enhancement mechanism reveals approximately 5% to 10% improvement on many tasks, indicating the effectiveness of enhancing triplet quality. Notably, the removal of the SETT framework results in the most substantial

432 performance degradation across all benchmarks. This result provides compelling evidence for the
 433 effectiveness of SETT, which enables a co-evolution between the model’s capabilities and the data
 434 quality.

437 6 DISCUSSION

438
 439 **Robustness to Structural Perturbations.** To ensure **TabX** comprehensively understands table
 440 structure and content, we specifically introduce three challenging fine-tuning tasks that demand
 441 both global structural and semantic understanding, as well as fine-grained cell-level reasoning. In
 442 addition, we apply data quality enhancement techniques to ensure effective training. To assess
 443 whether **TabX** truly understands table structure and content, we design a perturbation test. Specif-
 444 ically, we select 400 table images from the test set and randomly permute the structure of each by
 445 swapping either two rows or two columns (the first row/column is excluded), while keeping the in-
 446 struction unchanged. As shown in Table 4, **TabX** remains robust under this structural perturbation.
 447 For comparison, we also evaluate Janus-Pro and Table-LLaVA on the same 400 samples. Notably,
 448 Janus-Pro produces inconsistent results in nearly every swapped case, while Table-LLaVA exhibits
 449 inconsistencies on more samples than our method. A model that fully understands table structure
 450 and semantics should be robust to column-swapping operations that do not affect the overall table
 451 semantics. In contrast, models that only perceive local table content or are insensitive to row-column
 452 relationships would fail in such scenarios.

Method	TQA	TFV	MEC-EL	MEC-EC	CTC
Janus-pro	0.15	0.07	-	-	-
Table-LLaVA	0.90	0.88	0.03	0.01	0.05
Ours	0.94	0.92	0.15	0.14	0.31

453 Table 4: Performance on perturbation test and new tasks. “EL” and “EC” stand for Error Location
 454 and Error Correction, respectively. The best results are highlighted in bold.
 455

456
 457 **Generalization to Unseen Tasks.** We further explore **TabX**’s ability to generalize to unseen tasks,
 458 rather than merely unseen data within known tasks (held-out benchmarks). Specifically, we design
 459 two new tasks: (1) Misspelled Entry Correction (MEC), where the model must locate a spelling error
 460 and provide the correct version; and (2) Cell Type Classification (CTC), which involves identifying
 461 a cell’s type (e.g., header, data, merged) from its coordinates. We construct a dataset of 400 samples
 462 for each of these tasks. The evaluation metric is accuracy, reflecting the fraction of tasks completed
 463 successfully. As shown in Table 4, for the MEC task, **TabX** achieves scores of 0.15 in error location
 464 and 0.14 in error correction, substantially higher than Table-LLaVA’s 0.03 and 0.01. Similarly, in the
 465 CTC task, **TabX**’s accuracy of 0.31 is significantly better than the 0.05 achieved by Table-LLaVA.
 466 These results suggest that when instruction-tuning tasks are carefully designed and paired with high-
 467 quality data, the model can learn meaningful alignments between table images, instructions, and
 468 answers. This, in turn, allows it to better leverage the generalization capacity of MLLMs and adapt
 469 to new tasks more effectively.

470 7 CONCLUSION

471
 472 In this paper, we introduce **TabX**, a robust table MLLM designed to address the limited robust-
 473 ness and generalization capabilities of existing table understanding models. We identify two criti-
 474 cal issues in the current table (M)LLM development pipeline: low-quality instruction-table-answer
 475 triplets and insufficient table image comprehension. To overcome these issues, we first improve
 476 the existing instruction-tuning dataset by introducing three challenging fine-tuning tasks to foster a
 477 deeper understanding of table context and using a reflective enhancement to boost data quality. We
 478 then propose a self-evolution with teacher-tuning framework, which adaptively optimizes training
 479 data based on the model’s own feedback. Extensive experiments on the MMTab-eval benchmark
 480 demonstrate that **TabX** consistently outperforms existing methods. Notably, **TabX** exhibits excep-
 481 tional robustness and generalization, particularly on structurally complex and unseen tasks.
 482

486
487 ETHICS STATEMENT488 We have considered the ethical implications of this work. Our model is trained on established
489 public datasets and a new dataset we synthesized by rendering tables from a public text corpus.
490 Besides, while the data's English focus may create biases, our work is intended solely for the positive
491 application of advancing automated document understanding.492
493 REPRODUCIBILITY STATEMENT494 We are committed to making our work reproducible. Core components of our source code and a
495 sample of our synthesized dataset are provided in the supplementary materials. This partial code
496 is also anonymously hosted at: <https://anonymous.4open.science/r/tabc-F058/>. Further details on
497 hyperparameters and our experimental methodology are described in Section 5 and the appendix.
498 We commit to releasing the full codebase, dataset, and pre-trained models publicly upon the paper's
499 acceptance to facilitate future research.

500

501 REFERENCES

502
503 Ewa Andrejczuk, Julian Martin Eisenschlos, Francesco Piccinno, Syrine Krichene, and Yasemin
504 Altun. Table-to-text generation and pre-training with tabt5. *arXiv preprint arXiv:2210.09162*,
505 2022.506 Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang, Xiaodong Deng, Yang Fan, Wenbin Ge,
507 Yu Han, Fei Huang, et al. Qwen technical report. *arXiv preprint arXiv:2309.16609*, 2023.508
509 Kushal Raj Bhandari, Sixue Xing, Soham Dan, and Jianxi Gao. On the robustness of language
510 models for tabular question answering. *arXiv preprint arXiv:2406.12719*, 2024.511
512 Xiaokang Chen, Zhiyu Wu, Xingchao Liu, Zizheng Pan, Wen Liu, Zhenda Xie, Xingkai Yu, and
513 Chong Ruan. Janus-pro: Unified multimodal understanding and generation with data and model
514 scaling. *CoRR*, abs/2501.17811, 2025a.515
516 Xiaokang Chen, Zhiyu Wu, Xingchao Liu, Zizheng Pan, Wen Liu, Zhenda Xie, Xingkai Yu, and
517 Chong Ruan. Janus-pro: Unified multimodal understanding and generation with data and model
518 scaling. *arXiv preprint arXiv:2501.17811*, 2025b.519
520 Zhoujun Cheng, Haoyu Dong, Zhiruo Wang, Ran Jia, Jiaqi Guo, Yan Gao, Shi Han, Jian-Guang
521 Lou, and Dongmei Zhang. Hitab: A hierarchical table dataset for question answering and natural
522 language generation. In *Proceedings of the 60th Annual Meeting of the Association for Compu-
523 tational Linguistics (Volume 1: Long Papers)*, ACL 2022, Dublin, Ireland, May 22-27, 2022, pp.
524 1094–1110, 2022.525
526 Yuyang Dong, Masafumi Oyamada, Chuan Xiao, and Haochen Zhang. On the use of large language
527 models for table tasks. In *Proceedings of the 33rd ACM International Conference on Information
528 and Knowledge Management*, pp. 5518–5521, 2024.529
530 Stefan Heggelmann, Alejandro Buendia, Hunter Lang, Monica Agrawal, Xiaoyi Jiang, and David
531 Sontag. Tabllm: Few-shot classification of tabular data with large language models. In *Inter-
532 national Conference on Artificial Intelligence and Statistics*, pp. 5549–5581. PMLR, 2023.533
534 Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
535 Weizhu Chen, et al. Lora: Low-rank adaptation of large language models. *ICLR*, 1(2):3, 2022.536
537 Hiroshi Iida, Dung Thai, Varun Manjunatha, and Mohit Iyyer. TABBIE: pretrained representations
538 of tabular data. In *Proceedings of the 2021 Conference of the North American Chapter of the
539 Association for Computational Linguistics: Human Language Technologies, NAACL-HLT 2021,
540 Online, June 6-11, 2021*, pp. 3446–3456, 2021.541
542 Yang Jin, Kun Xu, Liwei Chen, Chao Liao, Jianchao Tan, Quzhe Huang, Bin Chen, Chenyi Lei,
543 An Liu, Chengru Song, et al. Unified language-vision pretraining in llm with dynamic discrete
544 visual tokenization. *arXiv preprint arXiv:2309.04669*, 2023.

540 Akim Kotelnikov, Dmitry Baranchuk, Ivan Rubachev, and Artem Babenko. Tabddpm: Modelling
 541 tabular data with diffusion models. In *International Conference on Machine Learning*, pp. 17564–
 542 17579. PMLR, 2023.

543 Junnan Li, Dongxu Li, Silvio Savarese, and Steven Hoi. Blip-2: Bootstrapping language-image
 544 pre-training with frozen image encoders and large language models. In *International conference
 545 on machine learning*, pp. 19730–19742. PMLR, 2023a.

546 Ming Li, Lichang Chen, Juhai Chen, Shuai He, Heng Huang, Jiuxiang Gu, and Tianyi
 547 Zhou. Reflection-tuning: Data recycling improves llm instruction-tuning. *arXiv preprint
 548 arXiv:2310.11716*, 2023b.

549 Ming Li, Lichang Chen, Juhai Chen, Shuai He, Jiuxiang Gu, and Tianyi Zhou. Selective reflection-
 550 tuning: Student-selected data recycling for llm instruction-tuning. In *Findings of the Association
 551 for Computational Linguistics ACL 2024*, pp. 16189–16211, 2024a.

552 Peng Li, Yeye He, Dror Yashar, Weiwei Cui, Song Ge, Haidong Zhang, Danielle Rifinski Fainman,
 553 Dongmei Zhang, and Surajit Chaudhuri. Table-gpt: Table-tuned gpt for diverse table tasks. *arXiv
 554 preprint arXiv:2310.09263*, 2023c.

555 Peng Li, Yeye He, Dror Yashar, Weiwei Cui, Song Ge, Haidong Zhang, Danielle Rifinski Fainman,
 556 Dongmei Zhang, and Surajit Chaudhuri. Table-gpt: Table fine-tuned GPT for diverse table tasks.
 557 *Proc. ACM Manag. Data*, 2(3):176, 2024b.

558 Yuetai Li, Xiang Yue, Zhangchen Xu, Fengqing Jiang, Luyao Niu, Bill Yuchen Lin, Bhaskar Ra-
 559 masubramanian, and Radha Poovendran. Small models struggle to learn from strong reasoners.
 560 *CoRR*, abs/2502.12143, 2025.

561 Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning. In *Ad-
 562 vances in Neural Information Processing Systems 36: Annual Conference on Neural Information
 563 Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 - 16, 2023*, 2023a.

564 Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning. *Advances
 565 in neural information processing systems*, 36:34892–34916, 2023b.

566 Qian Liu, Bei Chen, Jiaqi Guo, Morteza Ziyadi, Zeqi Lin, Weizhu Chen, and Jian-Guang Lou.
 567 Tapex: Table pre-training via learning a neural sql executor. *arXiv preprint arXiv:2107.07653*,
 568 2021.

569 Linyong Nan, Chiachun Hsieh, Ziming Mao, Xi Victoria Lin, Neha Verma, Rui Zhang, Wojciech
 570 Kryscinski, Hailey Schoelkopf, Riley Kong, Xiangru Tang, Mutethia Mutuma, Ben Rosand, Is-
 571 abel Trindade, Renusree Bandaru, Jacob Cunningham, Caiming Xiong, and Dragomir R. Radev.
 572 Fetaqa: Free-form table question answering. *Trans. Assoc. Comput. Linguistics*, 10:35–49, 2022.

573 Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. Bleu: a method for automatic
 574 evaluation of machine translation. In *Proceedings of the 40th annual meeting of the Association
 575 for Computational Linguistics*, pp. 311–318, 2002.

576 Ankur P. Parikh, Xuezhi Wang, Sebastian Gehrmann, Manaal Faruqui, Bhuwan Dhingra, Diyi Yang,
 577 and Dipanjan Das. Totto: A controlled table-to-text generation dataset. In *Proceedings of the
 578 2020 Conference on Empirical Methods in Natural Language Processing, EMNLP 2020, Online,
 579 November 16-20, 2020*, pp. 1173–1186. Association for Computational Linguistics, 2020.

580 Yi Ren, Chenglong Yu, Weibin Li, Wei Li, Zixuan Zhu, TianYi Zhang, ChenHao Qin, WenBo Ji,
 581 and Jianjun Zhang. Tablegpt: a novel table understanding method based on table recognition and
 582 large language model collaborative enhancement. *Applied Intelligence*, 55(4):311, 2025.

583 Aofeng Su, Aowen Wang, Chao Ye, Chen Zhou, Ga Zhang, Gang Chen, Guangcheng Zhu, Haobo
 584 Wang, Haokai Xu, Hao Chen, Haoze Li, Haoxuan Lan, Jiaming Tian, Jing Yuan, Junbo Zhao,
 585 Junlin Zhou, Kaizhe Shou, Liangyu Zha, Lin Long, Liyao Li, Pengzuo Wu, Qi Zhang, Qingyi
 586 Huang, Saisai Yang, Tao Zhang, Wentao Ye, Wufang Zhu, Xiaomeng Hu, Xijun Gu, Xinjie Sun,
 587 Xiang Li, Yuhang Yang, and Zhiqing Xiao. Tablegpt2: A large multimodal model with tabular
 588 data integration. *CoRR*, abs/2411.02059, 2024.

594 Yuan Sui, Mengyu Zhou, Mingjie Zhou, Shi Han, and Dongmei Zhang. Table meets llm: Can
 595 large language models understand structured table data? a benchmark and empirical study. In
 596 *Proceedings of the 17th ACM International Conference on Web Search and Data Mining*, pp.
 597 645–654, 2024.

598 Xinlong Wang, Xiaosong Zhang, Zhengxiong Luo, Quan Sun, Yufeng Cui, Jinsheng Wang, Fan
 599 Zhang, Yueze Wang, Zhen Li, Qiying Yu, et al. Emu3: Next-token prediction is all you need.
 600 *arXiv preprint arXiv:2409.18869*, 2024.

601 Zhiruo Wang, Haoyu Dong, Ran Jia, Jia Li, Zhiyi Fu, Shi Han, and Dongmei Zhang. TUTA:
 602 tree-based transformers for generally structured table pre-training. In *KDD '21: The 27th ACM
 603 SIGKDD Conference on Knowledge Discovery and Data Mining, Virtual Event, Singapore, Au-
 604 gust 14-18, 2021*, pp. 1780–1790, 2021.

605 Yecheng Wu, Zhuoyang Zhang, Junyu Chen, Haotian Tang, Dacheng Li, Yunhao Fang, Ligeng
 606 Zhu, Enze Xie, Hongxu Yin, Li Yi, et al. Vila-u: a unified foundation model integrating visual
 607 understanding and generation. *arXiv preprint arXiv:2409.04429*, 2024.

608 Junjie Xing, Yeye He, Mengyu Zhou, Haoyu Dong, Shi Han, Dongmei Zhang, and Surajit Chaud-
 609 huri. Table-llm-specialist: Language model specialists for tables using iterative generator-
 610 validator fine-tuning. *arXiv preprint arXiv:2410.12164*, 2024.

611 Shuo Zhang and Krisztian Balog. Entitables: Smart assistance for entity-focused tables. In *Pro-
 612 ceedings of the 40th International ACM SIGIR Conference on Research and Development in In-
 613 formation Retrieval, Shinjuku, Tokyo, Japan, August 7-11, 2017*, pp. 255–264. ACM, 2017.

614 Tianshu Zhang, Xiang Yue, Yifei Li, and Huan Sun. Tablellama: Towards open large generalist
 615 models for tables. *arXiv preprint arXiv:2311.09206*, 2023.

616 Tianshu Zhang, Xiang Yue, Yifei Li, and Huan Sun. Tablellama: Towards open large generalist
 617 models for tables. In *Proceedings of the 2024 Conference of the North American Chapter of
 618 the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long
 619 Papers), NAACL 2024, Mexico City, Mexico, June 16-21, 2024*, pp. 6024–6044, 2024a.

620 Xiaokang Zhang, Jing Zhang, Zeyao Ma, Yang Li, Bohan Zhang, Guanlin Li, Zijun Yao, Kangli Xu,
 621 Jinchang Zhou, Daniel Zhang-Li, Jifan Yu, Shu Zhao, Juanzi Li, and Jie Tang. Tablellm: Enabling
 622 tabular data manipulation by llms in real office usage scenarios. *CoRR*, abs/2403.19318, 2024b.

623 Weichao Zhao, Hao Feng, Qi Liu, Jingqun Tang, Binghong Wu, Lei Liao, Shu Wei, Yongjie Ye,
 624 Hao Liu, Wengang Zhou, Houqiang Li, and Can Huang. Tabpedia: Towards comprehensive
 625 visual table understanding with concept synergy. In *Advances in Neural Information Processing
 626 Systems 38: Annual Conference on Neural Information Processing Systems 2024*, 2024.

627 Yu Zhao, Lina Gong, Yaoshen Yu, Zhiqiu Huang, and Mingqiang Wei. An empirical study of best
 628 practices for code pre-trained models on software engineering classification tasks. *Expert Systems
 629 with Applications*, pp. 126762, 2025.

630 Mingyu Zheng, Xinwei Feng, Qingyi Si, Qiaoqiao She, Zheng Lin, Wenbin Jiang, and Weiping
 631 Wang. Multimodal table understanding. *arXiv preprint arXiv:2406.08100*, 2024.

632 Xu Zhong, Elaheh ShafieiBavani, and Antonio Jimeno Yepes. Image-based table recognition: data,
 633 model, and evaluation. In *European conference on computer vision*, pp. 564–580. Springer, 2020.

634 Bangbang Zhou, Zuan Gao, Zixiao Wang, Boqiang Zhang, Yuxin Wang, Zhineng Chen, and Hong-
 635 tao Xie. Syntab-llava: Enhancing multimodal table understanding with decoupled synthesis. In
 636 *IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2025*, pp. 24796–24806,
 637 2025.

638 **A THE USE OF LARGE LANGUAGE MODELS (LLMs)**

639 We used a large language model (LLM) solely as a tool for grammar correction and language pol-
 640 ishing during the preparation of this manuscript. All authors have reviewed the final text and assume
 641 full responsibility for its content and scientific integrity. This use as a writing assistant is distinct
 642 from the LLM integrated into our research methodology, which is the subject of this paper.

648
649

B IMPLEMENTATION DETAILS OF TABX

650

651

B.1 THE PROMPTS USED IN DATASET CONSTRUCTION

652

653

654

To enhance triplet quality during dataset construction, we employ a two-stage reflection-based data enhancement pipeline. Figure 4 presents the prompts used by the teacher model in both stages.

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

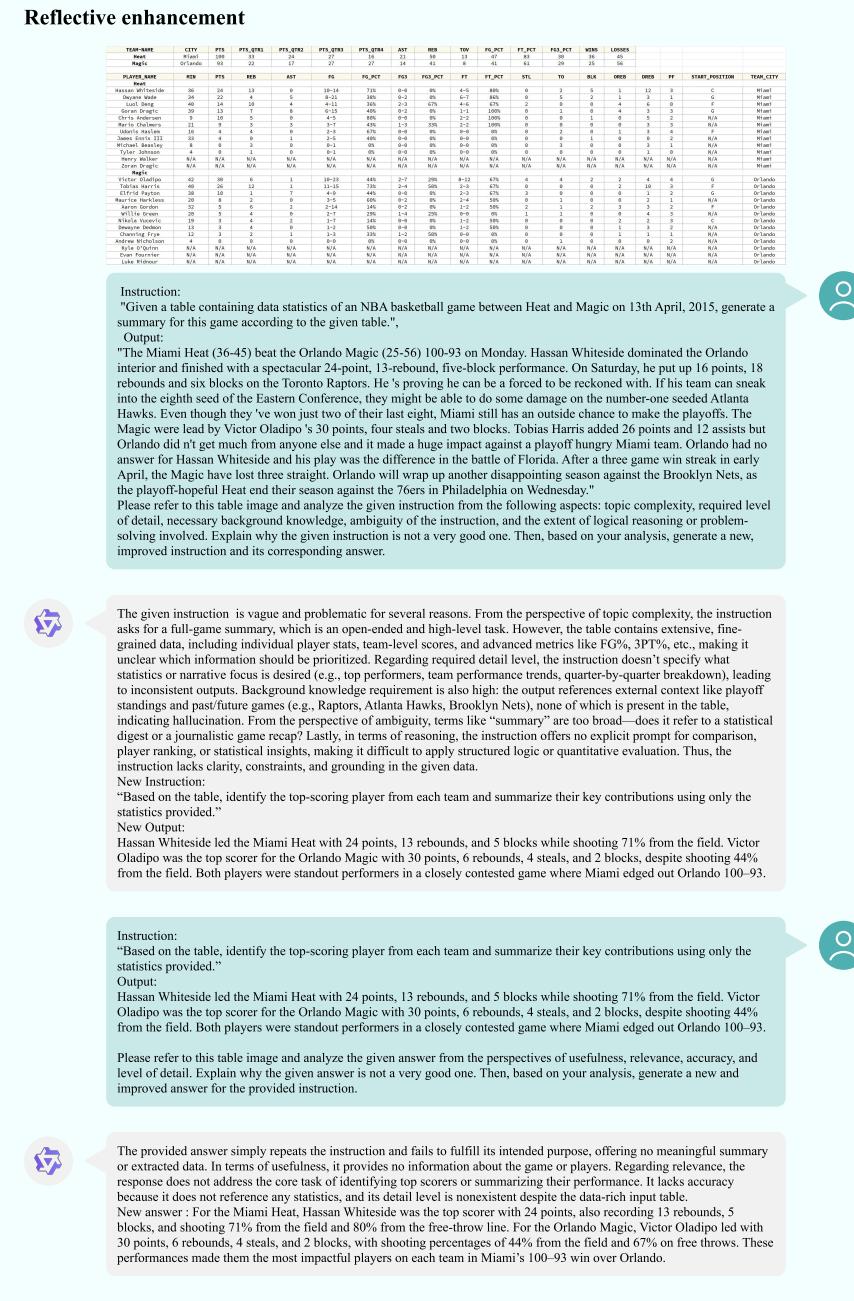


Figure 4: Prompts used in dataset construction.

702 B.2 DEFINITION OF IFD AND R-IFD
703

704 In the aforementioned pipeline, the student model utilizes two metrics, Instruction-Following Diff-
705 ficulty (IFD) and reversed-IFD (r-IFD), to select samples most beneficial for its own learning. The
706 definitions of IFD and r-IFD are as follows:

$$707 \text{IFD}_\theta(y|x) = \frac{\text{ppl}(y|x)}{\text{ppl}(y)} = \exp(L_\theta(y|x) - L_\theta(y)), \quad (1)$$

$$710 \text{r-IFD}_\theta(x|y) = \frac{\text{ppl}(x|y')}{\text{ppl}(x)} = \exp(L_\theta(x|y') - L_\theta(x)). \quad (2)$$

712 Here, $L_\theta(\cdot|\cdot)$ denotes the cross-entropy loss computed by the model under different contextual con-
713 ditions during inference, which can be used to derive perplexity scores. Building on this, IFD
714 quantifies the helpfulness of an instruction x in guiding the model to generate a target response y
715 by comparing the model's perplexity in predicting y with and without the instruction. A lower per-
716 plexity conditioned on the instruction indicates that the instruction provides meaningful guidance.
717 In contrast, r-IFD assesses the informativeness of a response y in implying its original instruction x .
718 To achieve this, y is rephrased into a query-like form y' , designed to “guess” the missing instruc-
719 tion, and the model's perplexity in reconstructing x from y' is compared against its unconditional
720 generation of x .

721 B.3 THE PROMPTS USED IN TEACHER-FORCED REVISION
722

723 In our proposed SETT framework, the teacher model is employed to determine the correctness of
724 the original answer given the instruction and table image. If the teacher model identifies an error, it
725 corrects the answer. Otherwise, the teacher model is prompted to rephrase the instruction. Figure 5
726 and 6 show the prompts used for error correction and clarification, respectively.

Correction

TOPS design code	Electrical system	Max speed	Weight	Brakes	Route availability	Notes
08-0AV	90 V	20 mph (32 km/h)	49.8 te (496 kN)	vacuum	S	
08-0BX	110 V	20 mph (32 km/h)	50.4 te (502 kN)	dual	S	
08-0CA	90 V	20 mph (32 km/h)	49.6 te (494 kN)	air	S	
08-0DV	90 V	15 mph (24 km/h)	49.8 te (496 kN)	vacuum	S	
08-0BX	90 V	15 mph (24 km/h)	50.4 te (502 kN)	dual	S	
08-0FA	90 V	15 mph (24 km/h)	49.6 te (494 kN)	air	S	
08-0KX	110 V	15 mph (24 km/h)	50.4 te (502 kN)	dual	S	
08-0LX	110 V	15 mph (24 km/h)	50.4 te (502 kN)	dual	S	Scharfenberg adapter fitted
08-0MA	110 V	15 mph (24 km/h)	49.8 te (496 kN)	air	S	
08-0NA	90 V	15 mph (24 km/h)	49.8 te (496 kN)	air	S	fitted with Buckeye couplings
08-0PA	90 V	15 mph (24 km/h)	51 te (508 kN)	air	6	fitted with Buckeye couplings
08-0QA	90 V	15 mph (24 km/h)	51 te (508 kN)	air	6	fitted with Buckeye couplings
08-0RA	110 V	15 mph (24 km/h)	51 te (508 kN)	air	6	fitted with Buckeye couplings
08-0SA	110 V	15 mph (24 km/h)	49 te (488 kN)	air	6	

Instruction:
what's the total design variations with vacuum brakes? Using the information from the table picture about 'British Rail Class 08', provide a concise answer to the provided question. The final result should be presented in the JSON format of `{"answer": ["a list of answer strings"]}`.
Answer: There are "08-0AV", "08-0DV", "08-0MA",so the answer is {"answer": ["2"]}
There is an instruction and its answer based on the table image.
Determine whether the answer is correct given the instruction and image.

No

How to get the correct answer and what is the correct answer.

The question asks for the total design variations with vacuum brakes in the table describing the "British Rail Class 08". To answer this, we need to look at the "Brakes" column in the image and identify all rows where the value is exactly "vacuum". From the table, we can see that only the following entries have "vacuum" in the "Brakes" field:"08-0AV", "08-0DV",so the correct answer is {"answer": ["2"]}

751 Figure 5: Prompts used for correction.
752
753
754
755

756

Clarification

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

C EXTENDED ANALYSIS AND VISUALIZATIONS

782

C.1 TASK DEFINITIONS

783

We show the definition of each task in Table 5.

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

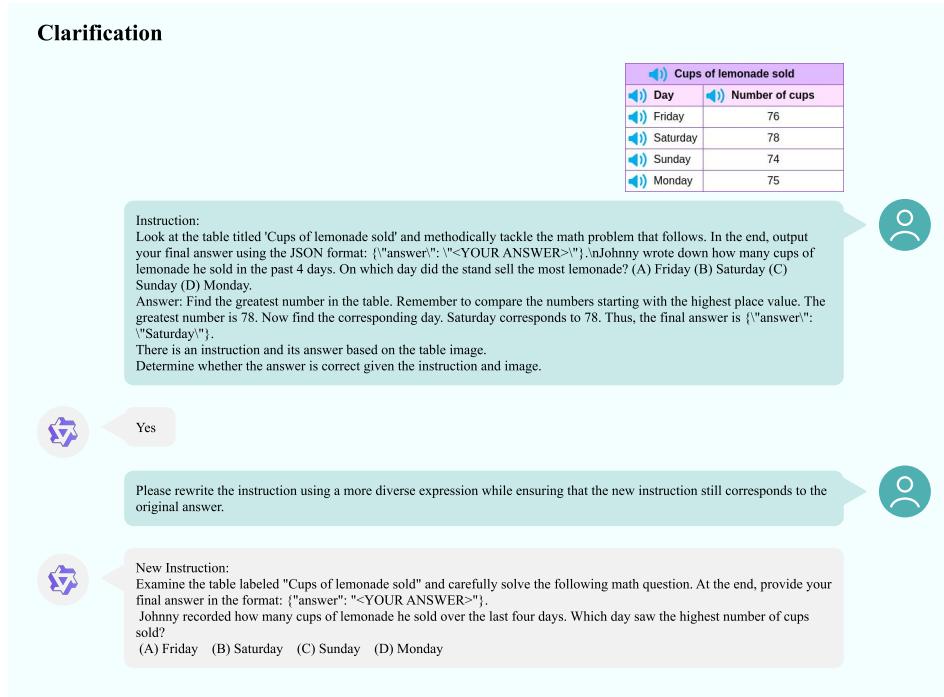


Figure 6: Prompts used for clarification.

C EXTENDED ANALYSIS AND VISUALIZATIONS

C.1 TASK DEFINITIONS

We show the definition of each task in Table 5.

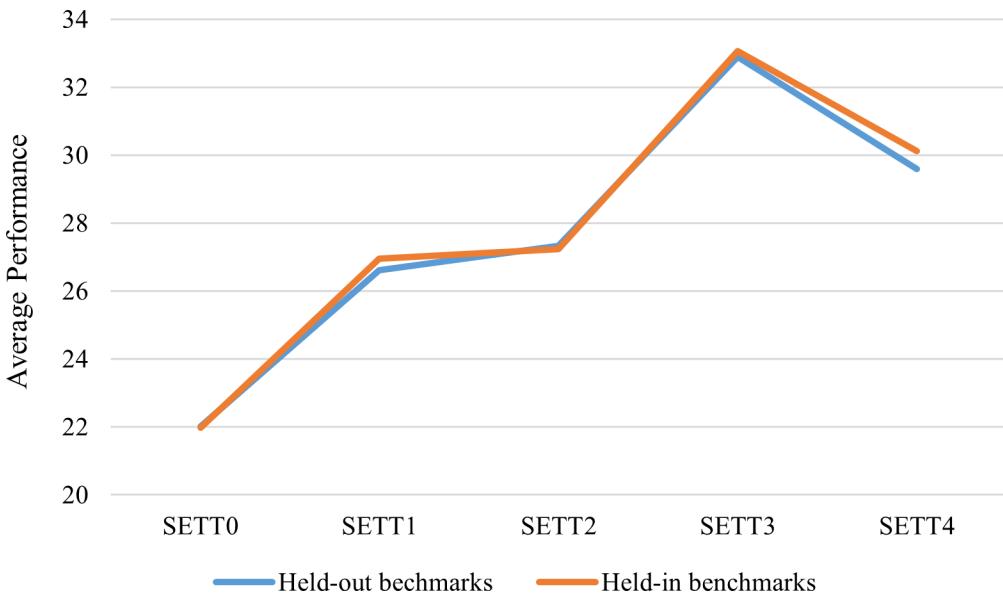


Figure 7: Model performance across iterative SETT rounds.

810 C.2 IMPACT OF THE NUMBER OF ITERATIONS
811

812 A critical consideration within our framework is the optimal number of fine-tuning iterations. To
813 explore this, we conduct an experiment tracking model performance over four consecutive rounds.
814 As shown in Figure 7, the first round leads to a significant performance improvement, followed by
815 diminishing returns in the second and third iterations. Notably, after the third cycle, we observe
816 a performance degradation. This indicates a delicate balance exists, where excessive iteration can
817 transform beneficial guidance into a source of noise and stylistic bias.

818
819 C.3 DIALOGUE VISUALIZATIONS
820821 C.3.1 VISUALIZATION RESULTS ON SEEN TASKS.
822

823 Figure 8 and 9 showcase a series of dialogue visualizations on both simple and complex tables. For
824 simple tables, as shown in Figure 8, our method consistently demonstrates superior performance
825 in precise information localization and extraction. In Case 1, our method reliably extracts struc-
826 tural metadata and adheres to specific answer formats, while Janus-Pro and Table-LLaVA exhibit
827 inconsistent instruction following and less accurate recognition. In Case 2 and Case 4, our model
828 accurately identifies the table structure to pinpoint the exact cell at the intersection of specified rows
829 and columns. This contrasts with Table-LLaMA’s limitations due to OCR-induced loss of relational
830 context, Janus-Pro’s frequent misidentification of relevant rows, and Table-LLaVA’s tendency to
831 generate irrelevant or non-existent content. Case 3 highlights our model’s ability to perform multi-
832 step information retrieval and computation by accurately extracting and comparing values from dif-
833 ferent years. Conversely, Table-LLaMA leads to year-value misalignment, and both Janus-Pro and
834 Table-LLaVA often extract only a single value without performing the required comparison.

835 As shown in Figure 9, the performance gap widens on complex tables (Cases 5-6), which demand
836 a deeper understanding of hierarchical relationships and comparative reasoning. Here, the competi-
837 tors struggle to navigate multi-level headers to find the correct entry (Case 5) or fail to com-
838 prehend instructions requiring comparisons across columns, such as identifying the “highest relative
839 increase” (Case 6), often resorting to hallucination. **TabX**, however, successfully resolves these
840 intricate queries.

841 C.3.2 RESULTS ON COLUMN-SWAP TEST AND UNSEEN TASKS
842

843 **Column-swap Test.** We evaluate the model’s robustness against structural perturbations by swap-
844 ping two columns in the tables. As shown in Figure 10, this simple modification induces signifi-
845 cant failures for Table-LLaVA, whose outputs become inconsistent and remain incorrect across the
846 swaps. In contrast, **TabX**’s performance is unaffected by this operation.

847 **Unseen Tasks.** Figure 11 shows the results of two unseen tasks. In the MEC task, Table-LLaVA
848 fails to locate and correct the error. In the CTC task, it completely disregards the classification
849 directive, merely extracting the cell’s value instead. Conversely, **TabX** successfully executes both
850 novel instructions.

851 C.4 VISUALIZATION OF THE ENHANCEMENT PROCESS
852

853 In this section, we present the evolutionary trend of the instruction-tuning triplets and the corre-
854 sponding changes in inference results under the proposed SETT framework. From the visualizations
855 in Figure 12, we observe the following phenomena. As training progresses, the model’s responses
856 progressively transform from being vague or irrelevant to accurate, complete, and structurally co-
857 herent. This progression demonstrates that through the iterative cycle of self-evaluation, teacher-
858 forced revision, and fine-tuning, the student model effectively learns to correct its initial response
859 biases, significantly improving its understanding of table images and its ability to accomplish asso-
860 ciated tasks. Simultaneously, we observe an increasing richness and precision in instruction content.
861 While instructions in the initial stages are largely templated or simplified, the teacher model can
862 generate information-dense instructions in subsequent iterations. These instructions include multi-
863 step reasoning, integration of ambiguous information, and comparative analysis across table rows
864 and columns.

864 C.5 QUALITATIVE ANALYSIS ON THE ROTOWIRE DATASET
865

866 We present two examples from the Rotowire Dataset in Figure 13 and 14 to analyze the performance
867 gap. To facilitate comparison, we mark corrected identified facts in red and incorrect facts in blue. In
868 both cases, **TabX** demonstrates superior factual grounding compared to Table-LLaVA. For the first
869 example, **TabX** correctly references 9 out of 12 mentioned facts, while Table-LLaVA only manages
870 7 out of 11. This trend is amplified in the second example, where **TabX** correctly identifies 20 of 41
871 factual elements, significantly outperforming Table-LLaVA’s 12 correct out of 32. However, in both
872 cases, Table-LLaVA achieves a higher BLUE score.

Name	Task Category	Task Name	Dataset	Task Description
MMTab-pro	Question Answering	Flat TQA (F TQA)	WTQ	TQA based on tables with flat structure and a single-row header.
		Free-form TQA	FeTaQA	TQA with a free-form text answer rather than a copied span from the table.
		Hierarchical TQA (H TQA)	HiTab	TQA based on tables with complex structures, including multi-level (hierarchical) headers and merged cells that span multiple rows or columns.
			AIT-QA	
		Multi-choice TQA	TabMCQ	TQA with multiple-choice questions.
		Tabular Numerical Reasoning	TABMWP	TQA requiring math reasoning like max/min or computations.
			TAT-QA	
	Fact Verification	HeaderValueMatching	Synthesis	TQA requiring aligning table headers with corresponding cell values to enhance structural understanding.
		DataImputation	Synthesis	TQA requiring filling in missing table cells based on observed values and table semantics.
		Table Fact Verification	TabFact	Determine the factual consistency between a table and a given statement by predicting whether the statement is supported or refuted by the tabular evidence.
			InfoTabs	
			PubHealthTab	
	Text Generation	Cell Description	ToTTo	Generate a one-sentence description for the highlighted table cells, with some tasks additionally providing explicit operations (e.g., SUM, AVERAGE) to guide the generation.
			HiTab_T2T	
		Game Summary	Rotowire	Generate a detailed NBA game summary based on tables containing box and line scores, with reference summaries sourced from Rotowire.
		Biography Generation	WikiBIO	Generate biography from personal information table.
		NL2SQL	Synthesis	Generate SQL query from natural language question and table schema.
		Structure Understanding	Table Size Detection	Determine table’s row and column count.
			Table Cell Extraction	Extract text from specified (row, column) locations.
			Table Cell Locating	Find (row, col) position of given cell values.
			Merged Cell Detection	Detect merged cells and return bounding positions.
			Row&Column Extraction	Extract all cells from specified rows/columns.
			Table Recognition	Convert table image to HTML/Markdown/Latex format.

902 Table 5: Detailed descriptions of the evaluation tasks, including their abbreviations, full names, and
903 corresponding task definitions.

918
919
920
921
922923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

User TabX TabLLama+OCR Janus-pro TableLLaVA

Case1:

How many rows and columns does this table contain? The JSON format `{"row_number": "m", "column_number": "n"}` should be utilized to display the ultimate result.

There are 10 rows and 4 columns in the table. So, the final answer is `{"row_number": "10", "column_number": "4"}`.

13 rows and 5 columns.

The table contains 10 rows and 7 columns.

There are 11 rows and 3 columns in the table. So, the final answer is `{"row_number": "11", "column_number": "3"}`.

Case3:

Look at this table. Give your well-considered answer to the subsequent question. The concluding answer should be in the JSON structure, formatted as `{"answer": [<a list of answer strings>]}`. For instance, `{"answer": ["23", "14.5"]}`. What was the increase / (decrease) in the cost from 2018 to 2019?

Based on the table, we need to conduct the following computations: $100 - 82 = 18$. Therefore, the final answer: `{"answer": ["18"]}`.

Due to $91 - 82 = 9$, The answer is `{"answer": ["9"]}`.

The increase in the cost from 2018 to 2019 was **\$100 million**.

Based on the given table: $100 - 0 = 100$. Therefore, the answer is `{"answer": ["100"]}`.

Case2: 

This table is extracted from an annual report of an airline company. Briefly answer the following question based on the given table. Your final answer should be in the JSON structure, formatted as `{"answer": "<YOUR ANSWER>"}`. For instance, `{"answer": "1936"}`. What was the compensation cost of United airlines as reported in 2018?

Based on the table information, the answer is `{"answer": "101"}`.

Based on the table information, the answer is `{"answer": "101"}`.

`{"answer": "1936"}`.

Based on the table information, the answer is `{"answer": "100.00"}`.

Case4:

What were the total liabilities of IMFT in 2018? Answer the above question briefly based on the provided table. Format the ultimate answer as a JSON, using the structure `{"answer": [<a list of answer strings>]}`.

According to the table, final answer is `{"answer": ["$1,305"]}`.

According to the table, the final answer is `{"answer": ["$909"]}`.

`{"answer": [167]}`.

According to the table, the final answer is `{"answer": ["$181"]}`.

Figure 8: Dialogue visualizations on simple tables.

972
973
974
975
976
977
978
979
980
981
982
983
984
985

987 Case5:

club	season	league		cup		europe		total	
		apps	goals	apps	goals	apps	goals	apps	goals
beroe	1999-00	27	2	0	-	2	3	29	7
	total	27	2	0	0	0	0	29	7
	2000-01	26	12	3	1	4	2	33	15
	2001-02	25	5	6	3	3	0	34	8
	2002-03	16	1	0	0	3	0	20	1
	2003-04	28	11	8	7	4	0	40	18
	2004-05	29	22	2	1	4	1	35	24
	2005-06	22	8	6	1	8	1	35	5
	total	146	54	50	13	25	4	207	71
grenoble	2006-07	27	3	7	?	-	-	27	3
	2007-08	21	3	?	?	-	-	21	3
	2008-09	2	0	?	?	-	-	2	0
	2009-10	50	6	0	0	0	0	50	6
litex lovech	2010-11	26	8	2	0	2	0	30	8
	2011-12	25	5	3	2	6	2	34	9
	total	78	16	6	2	14	2	109	20
cska sofia	2012-13	0	0	0	0	0	0	2	0
panetolikos	2012-13	13	0	0	0	-	-	13	0
slavia sofia	2013-14	7	0	1	0	-	-	8	0
career totals		321	83	42	15	41	6	404	104

996 Based on the excel table, answer the
997 following question in brief. Your answer
998 should be in the JSON structure, formatted as
999 `{"answer": ["<a list of answer strings>"]}`. For
1000 instance, `{"answer": ["2021-12-04",
1001 "72.33"]}`. Table title: career statistics. **How
1002 many league goals did hristo yanev score
1003 for cska sofia?**

1004 Based on the table information, the final
1005 answer is `{"answer": ["54.0"]}`.

1006 According to the table, the final answer is
1007 `{"answer": ["146"]}`.

1008 `{"answer": [22]}.`

1009 Based on the table information, the final
1010 answer is `{"answer": ["133.0"]}`

Case6:

enterprise size class	2008		2014		variation of number
	number	share	number	share	
between 1 and 4	662,589	64.4	707,075	64.9	6.7
between 5 and 9	183,979	17.9	187,773	17.2	2.1
between 10 and 19	97,574	9.5	102,493	9.4	5.0
between 20 and 49	56,411	5.5	61,520	5.6	9.1
between 50 and 99	14,292	1.4	15,742	1.4	9.4
between 100 and 249	7,566	0.7	8,219	0.8	8.6
between 250 and 499	1,770	0.2	1,893	0.2	6.9
between 500 and 999	737	0.1	905	0.1	9.2
1,000 and above	780	0.1	762	0.1	2.3
total	1,028,397	100.0	1,089,136	100.0	5.9

Given the excel table, answer the following question briefly. The excel table title is 'active enterprises with one or more employees by enterprise size class, 2008 and 2014'. The final result should be presented in the JSON format of `{"answer": [<a list of answer strings>]}`. **Which enterprise size class has the highest relative increase in enterprise number?**

According to this excel table, the final answer is `{"answer": ["between 50 and 99"]}`.

According to the table, the final answer is `{"answer": ["between 1 and 4"]}`.

`{"answer": ["between 50 and 249",
"between 250 and 499"]}`

According to this excel table, the final answer is `{"answer": ["0-1"]}`.

1012 Figure 9: Dialogue visualizations on complex tables.
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

User TabX TableLLaVA

Charles Francis Jenkins

Born	August 22, 1867 Dayton, Ohio
Died	June 6, 1934 (age 66) Washington, D.C.
Nationality	American
Education	Bliss Electrical School
Occupation	Engineer
Engineering career	
Projects	Over 400 patents related to a variety of inventions
Significant advance	Motion picture projector and television
Awards	Elliott Cresson Medal (1897) John Scott Medal (1913)

Please read the table image, there is a spelling error in it, find and correct it.

Here is the correct table:

Born	August 22, 1867
	Dayton, Ohio
Died	June 6, 1934 (age 66)
	Washington, D.C.
Nationality	American
Education	Bliss Electrical School
Occupation	Engineer
Engineering career	
Projects	Over 400 patents related to a variety of inventions
Significant advance	Motion picture projector and television
Awards	Elliott Cresson Medal (1897) John Scott Medal (1913)

1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Statistics Oklahoma Alabama

First Downs	24	20
Total offense, plays – yards	73–432	65–516
Rushes-yards (net)	29–84	35–129
Passing yards (net)	348	387
Passes, Comp-Att-Int	32–44–1	19–30–2
Time of Possession	30:11	29:05

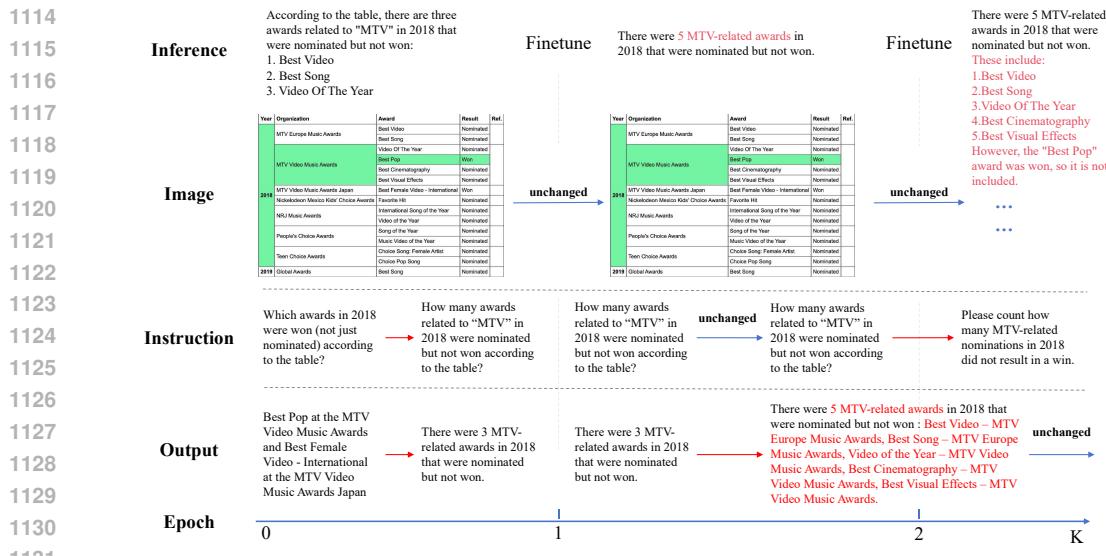
What is the type of the cell at row 1, column 2? (A) Header (B) Data (C) Merged Cell (D) Empty Cell.

The spelling error is "Elliott Cresson Medal (1897)". It should be "Elliott Cresson Medal (1897)".

The cell at row 1, column 2 is a header cell. This is indicated by the presence of the word "Statistics" in the header row, which typically signifies the title or category of the table. The answer is: (A)

The target cell value in row 1, column 2 is "Oklahoma".

Figure 11: Dialogue visualization on unseen tasks.

Figure 12: Visualization of the enhancement process. "Inference" denotes the prediction of **TabX**.

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

PLAYER_NAME	MIN	PTS	REB	AST	FG	FG_PCT	FG3	FG3_PCT	FT	FT_PCT	STL	TO	BLK	OREB	DREB	PF	START_POSITION	TEAM_CITY
Cavaliers																		
LeBron James	25	23	5	4	10-17	59%	0-3	0%	3-4	75%	3	2	1	0	5	0	F	Cleveland
Matthew Dellavedova	23	20	0	2	7-10	70%	4-6	67%	2-2	100%	2	4	2	0	0	1	N/A	Cleveland
Kyle Korver	17	12	1	1	5-12	42%	2-3	67%	0-0	0%	2	1	0	0	1	1	G	Cleveland
Kevin Love	22	10	5	1	2-4	50%	1-2	50%	5-6	83%	1	2	0	0	5	4	F	Cleveland
Richard Jefferson	23	9	1	1	3-6	50%	3-5	60%	0-0	0%	0	0	0	0	0	1	N/A	Cleveland
Irish Smith	22	8	2	4	3-5	60%	1-2	50%	1-1	100%	1	0	0	0	2	1	G	Cleveland
Timofey Mozgov	24	8	7	1	3-6	50%	0-1	0%	2-2	100%	0	0	1	1	6	2	C	Cleveland
Tristan Thompson	22	6	6	1	2-4	50%	0-0	0%	0-2	100%	0	0	1	2	4	2	N/A	Cleveland
Seth Kunz	6	4	2	0	2-3	67%	0-0	0%	0-0	0%	0	1	0	2	0	1	N/A	Cleveland
Ike Diogu	13	3	1	1	1-2	50%	0-0	0%	0-2	50%	0	0	0	0	1	1	N/A	Cleveland
Iman Shumpert	16	3	2	4	1-5	20%	0-1	0%	1-2	50%	1	0	0	0	2	0	N/A	Cleveland
James Jones	16	2	5	1	1-5	20%	0-2	0%	0-0	0%	0	0	1	0	5	1	N/A	Cleveland
Anderson Varejao	13	0	3	1	0-4	0%	0-0	0%	0-0	0%	1	0	0	3	2	3	N/A	Cleveland
76ers																		
Nerlens Noel	31	15	12	1	5-10	50%	0-0	0%	5-11	46%	1	1	1	4	8	3	F	Philadelphia
Jakarr Sampson	24	10	7	2	4-7	57%	0-0	0%	2-4	50%	0	1	0	1	6	1	N/A	Philadelphia
Thaddeus Young	15	10	5	3	4-6	67%	0-0	0%	2-3	100%	1	3	0	1	4	1	N/A	Philadelphia
Jahlil Okafor	25	9	8	0	3-11	27%	0-0	0%	3-4	75%	0	1	0	4	4	2	C	Philadelphia
Kendall Marshall	18	8	2	4	3-7	43%	0-2	0%	0-2	100%	0	3	0	0	2	1	G	Philadelphia
Ish Smith	21	6	6	0	2-5	40%	2-2	100%	0-0	0%	1	1	0	0	2	3	G	Philadelphia
Hollis Thompson	22	6	2	2	2-6	33%	2-3	67%	0-0	0%	0	2	0	1	1	2	N/A	Philadelphia
Jerami Grant	22	6	2	1	2-9	22%	0-1	0%	2-2	100%	0	0	1	2	0	4	N/A	Philadelphia
Tony Wroten	15	6	3	3	2-8	25%	0-4	0%	0-2	100%	0	0	3	0	3	1	N/A	Philadelphia
Robert Covington	21	21	3	3	0-9	22%	1-5	20%	1-1	100%	0	0	1	0	2	3	I	Philadelphia
Risham Holmes	14	5	2	1	1-4	25%	0-2	0%	3-3	100%	1	2	0	1	1	1	N/A	Philadelphia
Nik Stauskas	12	0	1	0	0-0	0%	0-0	0%	0-0	0%	1	1	0	1	0	0	N/A	Philadelphia

Analyze the box-score and line-score tables for the NBA game between Cavaliers and 76ers on 20th December, 2015 and use the statistics to create a detailed summary of this game.

The Cleveland Cavaliers (18-6) defeated the Philadelphia 76ers (5-23) 111-93 on Friday. Cleveland has won 10 of its last 11 games and has now won 17 of its last 18 home games. The Cavaliers were led by LeBron James, who scored 23 points (9-17 FG, 2-3 3Pt, 4-4 FT) and added 10 rebounds and five assists in 36 minutes. Kevin Love added 20 points (8-14 FG, 2-3 3Pt, 2-2 FT) and 10 rebounds in 31 minutes. The Cavaliers will look to continue their winning ways on Sunday against the Boston Celtics. Philadelphia has lost 10 of its last 11 games and has now lost 12 of its last 14 games. The Sixers were led by Nerlens Noel, who scored 18 points (8-14 FG, 0-2 3Pt, 2-2 FT) and added 10 rebounds and two blocks in 31 minutes. Robert Covington added 17 points (7-14 FG, 2-3 3Pt, 0-0 FT) and six rebounds in 33 minutes. The Sixers will look to end their losing streak on Saturday against the New York Knicks. (BLEU=4.81,20-41points)

The Cleveland Cavaliers (19-5) defeated the Philadelphia 76ers (1-26) 116-95 on Sunday. The Cavs were expected to win this game easily and they did just that. They led by 10 after the first quarter and never looked back, as they won all four quarters by at least five points. The Cavs shot 52 percent from the field and 50 percent from three-point range. They also dominated the rebounding, as they snatched down 45 boards to the Sixers 31. The Cavs have now won 11 of their last 12 games. LeBron James was the player of the game, as he tallied 26 points, 10 rebounds and six assists in the win. Kyrie Irving also played well, as he amassed 22 points, four rebounds and four assists. Kevin Love recorded a double-double, as he totaled 15 points and 10 rebounds. The Cavs will look to keep rolling on Tuesday against the New York Knicks. The Sixers have been playing better recently, but this was a tough task against the best team in the NBA. Jahlil Okafor led the team in scoring, as he dropped 19 points and 10 rebounds in the loss. Ish Smith was the only other starter in double figures, as he accumulated 14 points, four rebounds and six assists. Nerlens Noel was the only other player in double figures, as he amassed 11 points and 10 rebounds off the bench. Philadelphia will look to play better on Tuesday against the New York Knicks. (BLEU=6.71,12-32points)

Figure 14: A case study from the Rotowire dataset.