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ABSTRACT

Recent advances in table understanding have shifted from text-based large lan-
guage model (LLM) methods to multimodal LLM (MLLM) methods like Table-
LLaVA that directly process table images. Despite these advances, existing table
MLLMs still exhibit limited robustness to complex table layouts and poor general-
ization to unseen tasks. We trace these failings to two fundamental issues in their
development pipeline: (1) a low-quality dataset composed of instruction-table-
answer triplets and (2) a lack of all-around understanding of table images. This
predicament is analogous to a student learning from flawed material with no mech-
anism for self-correction. Typically, true understanding is not attained through
passive study alone, but rather through iterative self-evaluation and the correction
of errors under teacher guidance. Inspired by this cognitive process, we first cu-
rate a new dataset, MMTab-Pro, by introducing three challenging tuning tasks that
encourage the model to perform a deeper understanding of table content and struc-
ture, while applying a reflection-based enhancement to refine low-quality triplets.
We further propose a Self-Evolution with Teacher-Tuning (SETT) framework to
fine-tune the model, which enables the model to evolve through self-feedback and
the guidance of a stronger teacher model, continuously refining both data suitabil-
ity and model comprehension. Finally, through the two-step pipeline developed
above, we present TabX, a robust and generalizable table MLLM. Experiments on
the MMTab-eval benchmark show that TabX outperforms existing models, partic-
ularly on structurally complex and unseen tasks.

1 INTRODUCTION

Tables serve as an efficient means of organizing and storing data, widely used across various real-
world scenarios such as finance, e-governance, and scientific research. They encapsulate complex
and dense information in a structured format, forming a crucial basis for human knowledge acqui-
sition and decision-making. With the growing volume of tabular data, diverse table understanding
tasks have been actively explored, such as table-based question answering Cheng et al. (2022); Nan
et al. (2022), text generation Parikh et al. (2020), and schema augmentation Zhang & Balog (2017),
to achieve efficient and convenient data analysis.

Early table understanding methods typically rely on task-specific model architectures trained on
specialized datasets Wang et al. (2021); Iida et al. (2021); Nan et al. (2022), which significantly hin-
ders their broader applicability. With the advent of LLMs exhibiting strong generalization capabili-
ties, there is a growing interest in leveraging instruction-tuning techniques to develop table-oriented
LLMs capable of handling diverse table-related tasks Zhang et al. (2024a); Li et al. (2024b); Su et al.
(2024); Zhang et al. (2024b). These methods have made notable progress in overcoming previous
limitations, achieving generalist table models. However, Zheng et al. Zheng et al. (2024) argue that
in many real-world scenarios, obtaining high-quality text-based tables is often impractical, whereas
table images are more readily available (e.g., screenshots or scanned documents). Moreover, since
tables are inherently two-dimensional, image-based representations better preserve their spatial lay-
out and align more closely with human visual intuition. To this end, Zheng et al. Zheng et al. (2024)
propose Table-LLaVA, a table MLLM that directly accepts table inputs in image format.

Table-LLaVA demonstrates strong performance across various pre-defined tasks by constructing a
large-scale table image dataset, aligning table images and text through pre-training, and applying
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Instruction: With reference to the depicted table, kindly offer a 
succinct answer to the following question. What was the operating 
loss carryforward amount in 2019 and 2018 respectively?

Performance of Table-LLaVA on  a seen task

Output:  Accord ing  to  the  t ab l e ,  t he  f i na l  answer  i s 
{“answer”:[“$_”,“$_”]}.

Performance of Table-LLaVA on  an unseen task

Instruction：Please review the table image, identify the spelling 
error in the first column, fourth row, and return a corrected result.

MMTab——with Errors

Instruction: What was the total amount of donations 
by canadians to charitable or non-profit organizations 
increased between 2010 and 2013?

Output：According to this excel table, the final 
answer is {\"answer\": [\"12763566.0\"]}.
 

Instruction：Based on the Wikipedia infobox table 
regarding 'Carl lorenz', generate a biography for this 
person.

MMTab——vague

Output：Therefore, The spelling error in the first column is 
“May,21,2016“,it should be “May,21,2016”.

Our Solution

Output： The values "73,260" and "57,768" are 
listed under the "Operating loss carryforward" row for 
the years 2019 and 2018 respectively. Thus, the final 
answer is {\"answer\": [\"73,260\", \"57,768\"]}.

Performance of TabX on  a seen task

Performance of TabX on  an unseen task

Output：The spelling error in the first column is 
"Dana Crvey“,it should be “Dana Crane”.

Failed to process complex row and column information

Failed to locate and correct

some answers are wrong

Lack of contextual guidance results in 
responses that, although correct, lack 
information density and practical value. Correctly locate!

Correct answer!

Three new tasks
HeadValue
Matching

DataImputation
NL2SQL

Add

MMTab-pro

Reflective 
Enhancement

To be more described

Self-Evaluation and Bad 
Case Mining

Teacher-forced Revision

more suitable and accurate

Figure 1: Illustration of the motivation and core design of TabX. Left: Failure cases of Table-LLaVA
on complex table layouts and unseen tasks. Middle: Low-quality training samples (e.g., incorrect
answers and vague instructions). Right: TabX demonstrates strong performance by constructing a
high-quality dataset and a self-evolution with teacher-tuning framework.

supervised instruction tuning. However, through extensive evaluation, we observe that it exhibits
limited robustness to complex table layouts and insufficient generalization capabilities for novel
tasks. As shown in Figure 1, a common failure case involves tables with hierarchical organiza-
tion and irregularly merged cells. Furthermore, its performance on unseen tasks often falls short.
Through an analysis of the development pipeline of existing table (M)LLMs, we identify two issues:
(1) Low-quality instruction-table-answer triplets. As shown in Figure 1, some instructions in exist-
ing datasets are vague, and the corresponding answers are overly simplistic. Such ambiguous data
fail to guide the model training effectively. (2) Insufficient understanding of table images. Robust
performance on both in-distribution and out-of-distribution tasks depends heavily on the model’s
ability to understand table structure and content. Table-LLaVA falls short in this regard for two
main reasons: inappropriate instruction-tuning task settings and a suboptimal choice of foundation
model. Effective instruction tuning should involve tasks spanning various levels of difficulty and
granularity to promote a deep understanding of the relationships between row and column informa-
tion. However, Table-LLaVA includes relatively few tasks that require reasoning over global table
contents and structures or fine-grained cell-level inference. Moreover, its foundation model, LLaVA
Liu et al. (2023a), is exclusively trained on visual understanding tasks, whereas existing research
indicates that models trained on both generation and understanding tasks can yield more robust
representations Chen et al. (2025a).

To advance table understanding models and promote their broader practical applications, we present
TabX, a robust and generalizable table MLLM, by addressing the aforementioned challenges. Draw-
ing inspiration from the human reflection and error correction mechanism, the development pipeline
of TabX comprises two main parts: reflective enhancement-based instruction-tuning dataset con-
struction and self-evolution with teacher-tuning (SETT). In dataset construction, we introduce three
additional challenging table understanding tasks to make up for the deficiencies of existing mul-
timodal table datasets in modeling global table semantics and fine-grained cell-level reasoning.
The newly constructed instruction-table-answer triplets for these tasks are merged with the existing
dataset, expanding the total from 230K to 250K samples. To enhance data quality, we implement a
two-step reflective enhancement mechanism, which leverages a teacher model and a student model
to reflect on and score the instruction-answer pairs. This process produces triplets with more de-
tailed descriptions, resulting in a high-quality and comprehensive multimodal table dataset, termed
MMTab-Pro. Following dataset construction, we design a SETT framework that forms a continuous
loop of self-evaluation, teacher-enforced revision, and refined tuning. In this framework, the student
model identifies “bad cases” based on self-feedback, while the teacher provides expert guidance to
revise them, ensuring the co-evolution of the model and its training data. Moreover, TabX is built by
fine-tuning Janus-Pro Chen et al. (2025b). This choice is predicated on its superior representational
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capabilities, resulting from its joint training on both generation and understanding tasks, allowing
for a more comprehensive understanding of table images.

We evaluate TabX on the public benchmark MMTab-eval, comparing it against several open-source
MLLMs, table-oriented LLMs, and TableLLaVA. Experimental results demonstrate that TabX con-
sistently outperforms existing methods across a wide range of table understanding tasks, including
both held-in and held-out benchmarks. Significantly, TabX exhibits outstanding performance on
structurally complex and unseen tasks, highlighting its robustness and generalization capabilities.
Extensive ablation studies further validate the effectiveness of each component in contributing to
TabX’s superior performance.

Our contributions are summarized as follows:

• We introduce TabX, a robust and generalizable table MLLMs, achieving new state-of-the-
art results across multiple tasks on the MMTab-eval benchmark.

• We introduce three challenging table understanding tasks to complement existing datasets
and construct a high-quality instruction-tuning dataset by a reflective enhancement strategy.

• We propose a self-evolution with teacher-tuning framework, enabling collaborative evolu-
tion between the model and the data during instruction tuning.

2 RELATED WORK

(M)LLMs for Tabular Tasks. While LLMs have demonstrated remarkable success across many
natural language processing benchmarks, recent studies Bhandari et al. (2024); Dong et al. (2024);
Sui et al. (2024) indicate that even the most advanced LLMs may still struggle with complex table-
related tasks. This limitation arises from a fundamental modality mismatch: LLMs are primarily
trained on one-dimensional textual sequences, whereas tables are inherently two-dimensional. To
bridge this gap, recent efforts have introduced fine-tuning strategies tailored specifically for tabu-
lar tasks. Early works typically focus on single-task models targeting specific table-related tasks
Hegselmann et al. (2023); Andrejczuk et al. (2022); Liu et al. (2021); Kotelnikov et al. (2023); Ren
et al. (2025). More recently, research attention has shifted towards developing generalist models.
For instance, Li et al. Li et al. (2023c) develop Table-GPT using a new “table-tuning” paradigm.
Similarly, Zhang et al. Zhang et al. (2023) propose Table-Llama, a LLaMA-based model fine-tuned
via LoRA Hu et al. (2022) on multiple table-related tasks, consistently outperforming its base model
across various tasks. On the other hand, Table-Specialist Xing et al. (2024) abandons the one-model-
fits-all paradigm in favor of training dedicated specialist LLMs for each tabular task. In contrast,
Table-LLaVA Zheng et al. (2024) opts to directly process table images, leveraging their accessi-
bility in real-world settings and naturally preserving 2D structural information. This vision-centric
approach has been extended by works like Zhou et al. (2025) and Zhao et al. (2024). The former
generates a massive Q&A corpus by prompting an LLM with HTML tables, while the latter adopts
a multi-stage fine-tuning strategy on established public datasets. Common to these methods is the
use of high-resolution image encoders.

MLLMs. Early MLLMs, such as LLaVA Liu et al. (2023b), align visual features extracted by visual
foundation models with text embeddings and feed the fused representations into LLMs to facilitate
cross-modal understanding between visual and textual content. More recently, there has been a
significant push towards developing unified multimodal models that can handle both understanding
and generation tasks. For instance, Emu3 Wang et al. (2024) achieves deep multimodal fusion by
discretizing heterogeneous data (text, images, videos) into token sequences and processing them
through a decoder-only Transformer architecture. Similarly, VILA-U Wu et al. (2024) integrates
multimodal understanding and generation within a unified token-based autoregressive framework.
Previous methods typically rely on a single visual encoder for both tasks, which often leads to sub-
optimal performance due to differing granularity requirements between multimodal understanding
and generation. Janus-pro Chen et al. (2025b) addresses this limitation through a decoupled vi-
sual encoding strategy. We select Janus-pro as our foundation model to ensure a comprehensive
understanding of table images.
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Textual table Tabel image

Table image

Enhancing Table Understanding via New Tasks

MMTab-Finetune

Enhancing Data with Teacher’s Reflection

Instruction

Instruction Answer

Answer

Evaluate the input table data and the provided headers, then decide 
on the  for each column in the table. most suitable column header

{\"column_headers\": [\"Year\", \"Winner\", \"Score\"]}

Please  cells in the table based on the fill in the missing row and 
column information.

The missing "Nation" for Kristina Vogel should be filled with "Germany" 
because she is a well-known track cyclist representing Germany.

Please  using the input table and question 
provided. If required, use 'table' as the table name. Return the final 
result as JSON in the format {\"SQL\": \"<SQL code>\"}

write an SQL query

{ \"SQL\": \"SELECT  `Value` FROM table WHERE `Mitchell` = 676\" }

Which day had the highest 
number of cups sold? {"answer":"Saturday"}

...|Nation|Gap|Notes


...|Cuba|0.389|...


...|[MISSING]|...
|Winer|Year|Score

|2004|South Bend,...

|2003|Bacold...|...

HeaderValue
Matching

to image

DataImputation

NL2SQL

Teacher model

Teacher model

Final pairs

Selected pairs

Selected pairs

Old pairs

Reflection2 pairs

Reflection1 pairsThe disadvantage 
is... New 
instructions and 
answers are...

The disadvantage 
of the answer is 
...And based on the 
analysis, a suitable 
answer is... 

Analyze old pairs 
and generate new 
instructions and 
answers.

Analyze the 
answer and then 
generate  a new 
answer.

r-IFD=0.234

IFD=0.643

r-IFD=0.663

IFD=0.212

Fine-grained adjustment

font size

color

spatial position

Figure 2: Pipeline of Instruction-tuning Dataset Construction. Three new tasks are integrated and
aligned into a unified multi-modal table understanding setting. We then enhance the data quality
through a two-stage reflective enhancement, leveraging a teacher model (Qwen-VL-Max) for data
revision and a student model for selecting samples that are most beneficial for its learning. Please
refer to the appendix for the detailed prompt.

3 MMTAB-PRO: AN EXPANDED TRIPLET-STRUCTURED MULTIMODAL
TABLE DATASET

To facilitate more effective table understanding and address ambiguities in the existing dataset, we
construct a new dataset through a two-stage process: (1) integrating additional tasks and (2) reflec-
tive enhancement, as shown in Figure 2. We first create instruction-table-answer triplets for three
new tasks. Then, we merge them into MMTab-finetune and apply a reflective enhancement strategy
to improve the quality of instruction-answer pairs across all triplets.

3.1 ENHANCING TABLE UNDERSTANDING VIA NEW TASKS

To enhance the model’s comprehensive understanding of tables during training, we introduce addi-
tional fine-tuning tasks beyond those originally present in TableLLaVA. These tasks are carefully
selected to contain both global structural and semantic understanding, as well as fine-grained cell-
level reasoning, promoting a more comprehensive understanding. Specifically, we select three rep-
resentative tasks: HeaderValueMatching, DataImputation, and NL2SQL. HeaderValueMatching
requires the model to determine whether a given cell value in a row correctly belongs to the cor-
responding column header. DataImputation involves filling in missing values within table cells
reasonably. Both of these cell-level reasoning tasks demand the model’s ability to locate and un-
derstand local context, and correctly interpret row-column semantic relationships. NL2SQL, on the
other hand, is a task that transforms natural language questions into structured SQL queries. It re-
quires the model to accurately identify the relevant column names, values, and constraints in the
tables, while performing a deep analysis of the tables’ structural layout, row–column relationships,
and semantic dependencies.

We collect the raw samples for these three tasks from the dataset used by Table-GPT Li et al. (2023c),
which consists of instruction-text table-answer triplets. The text-based tables are first converted into
Excel format and then augmented using a fine-grained strategy following Table-LLaVA. The re-
sulting tables are rendered as images via screenshots. Moreover, to ensure compatibility with the
MMTab-Finetune task format, we standardize the instruction templates and normalize the answer
formats. Finally, we merge all samples from the three new tasks with the original MMTab-Finetune
dataset, expanding the total number of instruction-table image-answer triplets from 230K to approx-
imately 250K. Detailed descriptions of each task are provided in the appendix.
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3.2 ENHANCING DATA WITH TEACHER’S REFLECTION

Existing instruction-tuning datasets often suffer from vague instructions and simplistic answers,
which limit the model’s ability to effectively learn task objectives and generalize across scenarios.
To this end, we utilize a two-stage reflection-based data enhancement pipeline Li et al. (2023b;
2024a), focusing respectively on instruction refinement and answer improvement. Specifically, we
adopt Qwen-VL-Max Bai et al. (2023) as the teacher model and Janus-Pro Chen et al. (2025b) as
the student model. The use of a large teacher model enables more accurate reflection and sample
revision, leveraging its stronger reasoning and understanding capabilities. Moreover, we let the
student model select the candidate samples to ensure the final data better aligns with the student’s
requirements. Both models take inputs in the form of <Instruction, Image>.

In the first stage, given an original instruction–answer pair (x0, y0), Qwen-VL-Max evaluates the
instruction from multiple dimensions, including topical complexity, required specificity, background
knowledge, ambiguity, and reasoning difficulty, and generates a new one. Simultaneously, a match-
ing answer is also generated to ensure coherence between the instruction and the answer. Next,
we utilize the student model to score both the original pair (x0, y0) and the teacher-generated pair
(x1, y1) using the Instruction-Following Difficulty (IFD) metric Li et al. (2023b). This metric quan-
tifies the contribution of the instruction to the task completion, and a higher IFD indicates that the
instruction is more helpful in guiding the model to generate the correct answer. We retain the pair
with the higher IFD score as the preferred sample. Taking our chosen pair (x1, y1) as an example, in
the second stage, the selected pair undergoes answer reflection Li et al. (2024a). Here, the instruction
x1 is kept fixed while the teacher model revises only the answer by evaluating its usefulness, rel-
evance, accuracy, and specificity, producing a new instruction-answer pair (x1, y2). Subsequently,
the student model uses the reversed-IFD (r-IFD) metric to assess whether these two answers contain
sufficient information for the model to infer the instruction, with a lower r-IFD being more desirable.
The final pair (x1, y1 or y2) is thus selected through this two-stage reflective enhancement process.
As a result, approximately 80K original samples are replaced with their enhanced versions to form
a high-quality instruction-tuning dataset.

250K enhanced samples

250K samples

250K 
samples

Fine-tuned 
model

Fine-tuned 
model

Semantic similarity or not?

merge

ins→ans ans→insInstruction

Instruction

Instruction

Image

Image

Image

At what time is the 
Watercolor class over?

What time does the 
Watercolor class end?

more various

maybe ambiguous

more accurate

maybe inaccurate

{"answer": ["  P.M."]}1:05

{"answer": ["  P.M."]}2:15

Answer

Answer

New AnswerOld Answer

Self-Evaluation and Bad Case Mining

Teacher-forced Rewriting

Old* pairspairs 1 pairs 2

Selected by IFD pairs Selected by r-IFD pairs

Determine whether the answer is correct 
given the instruction and image.

Enhancement the instruction. Correct the answer.  

Yes No

1. Fine-tune 
the 

foundation 
model

3. Filter dissimilar samples

2. Start to 
review 

samples

4. Continue fine-tuning

Refined Tuning 
and lteration

Figure 3: Pipeline of SETT. The process begins with an initial fine-tuning of the student model, fol-
lowed by its self-evaluation to identify “bad cases”. A teacher model then provides expert guidance
for revising these samples. The student model is subsequently fine-tuned on the updated dataset,
and this cycle is iteratively repeated. Please refer to the appendix for the detailed prompt.
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4 SETT: SELF-EVOLUTION WITH TEACHER-TUNING

4.1 OVERVIEW

While our initial dataset construction employs a powerful teacher model to reflect on and enhance
the data, a fundamental challenge persists. A significant capability gap and differing knowledge
distributions often exist between large teacher models and smaller student models Li et al. (2025).
This discrepancy implies that the teacher’s reflective process, and the resulting samples, may not
be optimally aligned with the student model’s unique learning trajectory. Furthermore, relying on
an untrained student model to curate its own data is suboptimal, as it lacks the requisite discern-
ment to accurately identify the most beneficial training instances for its own evolution. To address
these challenges, we propose a novel fine-tuning framework, Self-Evolution with Teacher-Tuning,
designed to achieve the joint evolution of both the model and its training data by integrating the
student’s self-feedback and the teacher’s expert guidance. As shown in Figure 3, we first fine-tune
the student model on the initial dataset to obtain a baseline version. This baseline model then en-
gages in self-evaluation, leveraging its own feedback to identify “bad cases”. Subsequently, the
teacher model is introduced to guide the revision of these identified samples. Finally, we fine-tune
the student model again using the updated dataset, iteratively repeating this process.

4.2 SELF-EVALUATION AND BAD CASE MINING

Our SETT introduces a self-evaluation process, which transforms the student model from a passive
data consumer into an active agent that pinpoints data-model incongruities. Moreover, this pro-
cess creates a cycle where improved model capability leads to more precise data curation, which in
turn accelerates the model’s evolution toward a robust and generalized state. Specifically, for each
instruction-table image pair in the training set, we prompt the current fine-tuned student model to
generate a corresponding answer ŷ. We then measure the semantic alignment between the model’s
prediction ŷ and the ground-truth answer y. A high degree of misalignment indicates a potential “bad
case”. To quantify this alignment, we compute the cosine similarity of their semantic embeddings.
Drawing from the findings of Zhao et al. (2025), which suggest that average or max pooling over all
token embeddings is more effective for capturing overall semantics than relying on special tokens
(e.g., the first or last token) in encoder–decoder architectures, we implement the following proce-
dure: (1) We encode both ŷ and y using the student model to obtain the hidden states of all tokens.
(2) We apply average pooling over the token-level hidden states to derive semantic embeddings.
(3) We compute cosine similarity between the semantic embeddings of ŷ and y. If the similarity
score falls below a predefined threshold δ, the sample is flagged as a “bad case”. These samples are
passed to the next stage of our SETT framework for teacher-forced revising. We experimentally set
the threshold δ to 0.5.

4.3 TEACHER-FORCED REVISION

Following the identification of “bad cases”, the framework introduces the teacher model to perform
a crucial diagnostic and corrective function. The teacher acts as an external and more knowledgeable
expert, providing the necessary guidance to resolve these “bad cases” and ensure the student’s evolu-
tionary path remains productive. For each “bad case”, the teacher model determines the correctness
of the original answer y given the table image and instruction. If y is identified as erroneous, i.e., it is
a truly misleading sample, the teacher’ role is correction. It is prompted to generate a revised, high-
quality answer. Conversely, if y is validated as correct, the incongruity is attributed to the student’s
misinterpretation, likely stemming from a non-robust or ambiguous instruction. Here, the teacher’s
role shifts to clarification. We prompt the teacher to rephrase the instruction into a more robust and
semantically equivalent form. Crucially, the teacher’s revision is not unconditionally accepted. The
modified sample is subsequently passed back to the student model for a final verification using the
IFD and r-IFD metrics. This step upholds the principle of student-centric learning, ensuring that the
teacher’s guidance is indeed beneficial from the student’s current perspective.

4.4 REFINED TUNING AND ITERATION

Following the teacher-forced revision, the newly enhanced samples are merged with the set of high-
quality samples retained from the self-evaluation phase. This updated dataset is then used to initi-
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Task Types Table Structure Understanding (TSU) Academic Tabular Tasks
TQA TFV T2T

Benchmarks TSD TCL RCE MCD TCE TR TWP WTQ HiT TAT TF IT FT HiT t2t RW WI TO
Methods Row Col. Acc. RowF1 ColF1 F1 Acc. AT Acc. Acc. Acc. Acc. Acc. Acc. BLUE BLUE BLUE BLUE BLUE

BLIP2 0.2 0.0 0.1 0.0 0.0 0.0 0.1 0.1 3.4 2.1 1.5 2.2 18.7 27.5 2.3 2.6 1.1 0.7 4.3
Qwen-VL 0.0 0.0 0.0 0.0 0.4 0.0 0.0 0.8 3.3 0.1 0.1 0.1 1.1 0.7 0.5 0.2 0.1 0.0 0.8
VILA-U 0.1 4.0 0.3 4.1 10.5 3.0 1.1 27.0 17.9 4.5 1.2 4.4 10.9 14.2 6.8 0.7 1.6 3.5 7.5
LaVIT 0.1 3.3 0.1 2.0 9.4 2.0 0.4 29.5 13.4 3.2 0.9 3.8 6.3 12.9 5.2 0.7 1.2 3.4 7.0
Janus-pro 1.3 4.2 0.3 4.8 11.7 3.1 1.7 31.3 18.3 4.2 1.3 5.3 10.5 22.1 9.7 1.0 1.4 2.1 9.6

Table-LLaMA
+OCR 3.9 3.6 6.5 2.8 2.4 - 4.0 - 11.1 12.5 13.5 2.7 44.5 2.2 25.4 0.1 0.1 0.3 -

Table-LLaVA 33.1 33.2 29.3 31.0 37.9 17.1 19.4 47.0 57.8 18.4 10.1 12.8 59.8 65.0 25.6 9.7 10.5 9.7 23.0

Ours 37.4 60.8 35.6 33.9 47.0 31.9 26.8 54.2 81.1 18.6 9.3 32.4 52.5 59.7 26.1 7.1 4.6 9.8 23.6

Table 1: Comparison of the performance on the held-in benchmarks. “TWP”, “HiT”, “TAT”, “TF”,
“IT”, “FT”, “HiT t2t”, “RW”, “WB”, and “TO” correspond to “TABMWP”, “HiTab”, “TAT-QA”,
“TabFact”, “InfoTabs”, “FeTaQA”, “HiTab t2t”, “Rotowire”, “WikiBIO”, and “ToTTo”, respec-
tively. “AT” denotes the average TEDS score for recognizing table formats in HTML, Markdown,
and LaTeX. Detailed definitions of each task are provided in the appendix. The best results are
highlighted in bold.

ate the next round of fine-tuning for the student model. This iterative loop of teacher-forced self-
evolution empowers the model to progressively refine its own data curriculum as its capabilities
advance. Ultimately, this leads to the development of TabX, a robust and generalized table MLLM.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETTINGS AND RESULTS

Datasets and Evaluation Metrics. Following Zheng et al. (2024), we conduct all experiments
on the publicly available multi-modal table image benchmark dataset MMTab-eval. This dataset
contains a wide range of table-based question answering tasks and visual reasoning challenges,
offering strong task diversity and difficulty. We adopt different evaluation metrics based on task
types. For the Table Question Answering (TQA), Table Fact Verification (TFV), and Table-to-Text
(T2T) tasks, we use Accuracy or BLEU score Papineni et al. (2002) as the evaluation metrics. For
the Table Size Detection (TSD) task, we calculate the accuracy of the predicted number of rows and
columns. For the Table Cell Extraction (TCE) and Table Cell Locating (TCL) tasks, we use cell-level
accuracy as the measurement standard. For the table recognition (TR) task, we use the Tree-Edit-
Distance-based Similarity (TEDS) score Zhong et al. (2020). For the Merged Cell Detection (MCD)
task, we evaluate model performance using cell-level F1 score. For the Row&Column Extraction
(RCE) task, we compute the cell-level F1 score for both row-wise and column-wise extraction results
Zheng et al. (2024).

Baselines. We compare our method against (1) open-source general-purpose MLLMs such as Janus-
Pro Chen et al. (2025b), Qwen-VL Bai et al. (2023), BLIP-2 Li et al. (2023a), VILA-U Wu et al.
(2024), and LaVIT Jin et al. (2023); (2) table-oriented LLMs such as TableLLaMA Zhang et al.
(2023); and (3) Table-LLaVA. All compared models are 7B in size for a fair comparison.

Implementation Details. In our pipeline, the teacher model is Qwen-VL-Max (prompts are de-
tailed in the appendix), which is selected for its powerful vision-language capabilities and cost-
effectiveness, with the entire process costing approximately $200. The student model is the 7B
version of Janus-Pro. All experiments are conducted on four NVIDIA A800 GPUs. We adopt the
LoRA efficient fine-tuning strategy, use the AdamW optimizer with an initial learning rate of 2e-5,
and apply linear warm-up followed by cosine decay scheduling. During fine-tuning, self-evaluation
and teacher-forced revision are conducted every two training epochs. This entire process is iter-
ated for a maximum of three times, terminating early if no “bad cases” are identified during the
self-evaluation stage.

Results on the Held-in Benchmarks. The held-in benchmarks include 17 tasks, primarily cat-
egorized into academic tabular tasks and table structure understanding tasks. Please refer to the
appendix for dialogue process visualizations. As shown in Table 1, general-purpose multimodal
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Method TSD RCE TCL TCE AIT PHT TCQ
Row Col. RF1 CF1 Acc. Acc. Acc. Acc. Acc.

VILA-U 1.4 4.1 0.1 2.6 0.1 2.0 2.3 13.7 10.0
LaVIT 0.8 2.3 0.8 1.9 0.1 1.9 1.7 8.5 9.8
Janus-pro 1.6 4.4 12.1 3.2 0.3 2.2 4.6 15.1 10.9
Table-LLaVA 25.2 16.4 22.0 18.1 26.1 11.3 5.4 51.0 44.0
Ours 31.6 47.7 28.7 34.7 31.1 24.6 6.9 52.9 40.5

Table 2: Comparison of the performance on the held-out benchmarks. “RF1” denotes the F1 score
for row prediction, and “CF1” denotes the F1 score for column prediction. “AIT”, “PHT”, and
“TCQ” correspond to “AIT-QA”, “PubHealthTab”, and “TabMCQ”.

models perform poorly, mainly due to the lack of specific training on table images. Among them,
Janus-Pro performs best, benefiting from joint training on generation and understanding tasks, which
helps capture more robust visual representations. This motivates our choice of Janus-Pro as the
foundation model for TabX. Table-LLaMA outperforms general MLLMs due to specialized tab-
ular training. However, it suffers from OCR inaccuracies and the loss of structural information.
Table-LLaVA, designed specifically for table image understanding tasks, significantly outperforms
previous methods on many tasks. Nonetheless, it shows mediocre performance on complex table
structure and semantic reasoning tasks (e.g., MCD and HiTab QA). In contrast, TabX consistently
excels across almost all tasks, with particularly notable gains on complex tasks such as TCE, MCD,
tabular numerical reasoning (TABMWP and TAT-QA), and HiTab QA. This superior performance
stems from our introduction of three complex tasks for fine-tuning, which guide the model toward a
deeper comprehension of table content and structure, as well as the continuous enhancement of data
quality through reflection mechanisms and the proposed SETT framework. Notably, TabX under-
performs on the Rotowire (RW) dataset. Our qualitative analysis (see the appendix) indicates this is
not a failure of comprehension but rather a limitation of the evaluation metric. We find that TabX ex-
cels at extracting a higher density of factual information tables. Conversely, Table-LLaVA’s outputs,
though less factually grounded, align better stylistically with the reference answers, thereby achiev-
ing a higher BLUE score. This suggests a potential misalignment between n-gram-based scores and
true factual accuracy on this task.

Results on the Held-out Benchmarks. Following Table-LLaVA, we validate our method on held-
out data not present in the training set. As shown in Table 2, we observe similar trends. It is
worth noting that general-purpose MLLMs are less affected by unseen data, as they are not trained
specifically on table images and primarily rely on their own generalization capabilities. Compared to
Table-LLaVA, our model maintains its advantage across multiple held-out settings. This is attributed
to our strategy of setting appropriate tasks and enhancing data quality, which unleashes the model’s
generalization capabilities.

Method TQA TFV TSU T2T Held-out
w/o T 30.5 39.7 36.0 10.7 25.4
w/o R 28.5 38.7 36.5 10.4 22.1
w/o S 24.7 38.2 32.9 10.2 22.0
Ours 35.4 46.0 40.9 11.3 33.2

Table 3: Ablation studies. We report the average performance on the TQA, TFV, T2T, TSU, and
Held-out tasks. “T”: three new tasks; “R”: reflection-based data enhancement; “S”: SETT.

5.2 ABLATION STUDY

To evaluate the effectiveness of each key component in TabX, we conduct ablation experiments by
individually removing: (1) the three new tasks, (2) the reflection-based data enhancement pipeline,
and (3) the SETT framework. Results are reported in Table 3. As shown in the table, removing
the three new tasks leads to notable performance drops. This highlights the importance of the three
tasks in promoting the model’s ability to handle structurally and semantically challenging tables.
Furthermore, comparing the performance with and without the reflective enhancement mechanism
reveals approximately 5% to 10% improvement on many tasks, indicating the effectiveness of en-
hancing triplet quality. Notably, the removal of the SETT framework results in the most substantial
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performance degradation across all benchmarks. This result provides compelling evidence for the
effectiveness of SETT, which enables a co-evolution between the model’s capabilities and the data
quality.

6 DISCUSSION

Robustness to Structural Perturbations. To ensure TabX comprehensively understands table
structure and content, we specifically introduce three challenging fine-tuning tasks that demand
both global structural and semantic understanding, as well as fine-grained cell-level reasoning. In
addition, we apply data quality enhancement techniques to ensure effective training. To assess
whether TabX truly understands table structure and content, we design a perturbation test. Specif-
ically, we select 400 table images from the test set and randomly permute the structure of each by
swapping either two rows or two columns (the first row/column is excluded), while keeping the in-
struction unchanged. As shown in Table 4, TabX remains robust under this structural perturbation.
For comparison, we also evaluate Janus-Pro and Table-LLaVA on the same 400 samples. Notably,
Janus-Pro produces inconsistent results in nearly every swapped case, while Table-LLaVA exhibits
inconsistencies on more samples than our method. A model that fully understands table structure
and semantics should be robust to column-swapping operations that do not affect the overall table
semantics. In contrast, models that only perceive local table content or are insensitive to row-column
relationships would fail in such scenarios.

Method TQA TFV MEC-EL MEC-EC CTC
Janus-pro 0.15 0.07 - - -
Table-LLaVA 0.90 0.88 0.03 0.01 0.05
Ours 0.94 0.92 0.15 0.14 0.31

Table 4: Performance on perturbation test and new tasks. “EL” and “EC” stand for Error Location
and Error Correction, respectively. The best results are highlighted in bold.

Generalization to Unseen Tasks. We further explore TabX’s ability to generalize to unseen tasks,
rather than merely unseen data within known tasks (held-out benchmarks). Specifically, we design
two new tasks: (1) Misspelled Entry Correction (MEC), where the model must locate a spelling error
and provide the correct version; and (2) Cell Type Classification (CTC), which involves identifying
a cell’s type (e.g., header, data, merged) from its coordinates. We construct a dataset of 400 samples
for each of these tasks. The evaluation metric is accuracy, reflecting the fraction of tasks completed
successfully. As shown in Table 4, for the MEC task, TabX achieves scores of 0.15 in error location
and 0.14 in error correction, substantially higher than Table-LLaVA’s 0.03 and 0.01. Similarly, in the
CTC task, TabX’s accuracy of 0.31 is significantly better than the 0.05 achieved by Table-LLaVA.
These results suggest that when instruction-tuning tasks are carefully designed and paired with high-
quality data, the model can learn meaningful alignments between table images, instructions, and
answers. This, in turn, allows it to better leverage the generalization capacity of MLLMs and adapt
to new tasks more effectively.

7 CONCLUSION

In this paper, we introduce TabX, a robust table MLLM designed to address the limited robust-
ness and generalization capabilities of existing table understanding models. We identify two criti-
cal issues in the current table (M)LLM development pipeline: low-quality instruction-table-answer
triplets and insufficient table image comprehension. To overcome these issues, we first improve
the existing instruction-tuning dataset by introducing three challenging fine-tuning tasks to foster a
deeper understanding of table context and using a reflective enhancement to boost data quality. We
then propose a self-evolution with teacher-tuning framework, which adaptively optimizes training
data based on the model’s own feedback. Extensive experiments on the MMTab-eval benchmark
demonstrate that TabX consistently outperforms existing methods. Notably, TabX exhibits excep-
tional robustness and generalization, particularly on structurally complex and unseen tasks.
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ETHICS STATEMENT

We have considered the ethical implications of this work. Our model is trained on established
public datasets and a new dataset we synthesized by rendering tables from a public text corpus.
Besides, while the data’s English focus may create biases, our work is intended solely for the positive
application of advancing automated document understanding.

REPRODUCIBILITY STATEMENT

We are committed to making our work reproducible. Core components of our source code and a
sample of our synthesized dataset are provided in the supplementary materials. This partial code
is also anonymously hosted at: https://anonymous.4open.science/r/tabx-F058/. Further details on
hyperparameters and our experimental methodology are described in Section 5 and the appendix.
We commit to releasing the full codebase, dataset, and pre-trained models publicly upon the paper’s
acceptance to facilitate future research.
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B IMPLEMENTATION DETAILS OF TABX

B.1 THE PROMPTS USED IN DATASET CONSTRUCTION

To enhance triplet quality during dataset construction, we employ a two-stage reflection-based data
enhancement pipeline. Figure 4 presents the prompts used by the teacher model in both stages.

Reflective enhancement

Instruction:

“Based on the table, identify the top-scoring player from each team and summarize their key contributions using only the 
statistics provided.”

Output:

Hassan Whiteside led the Miami Heat with 24 points, 13 rebounds, and 5 blocks while shooting 71% from the field. Victor 
Oladipo was the top scorer for the Orlando Magic with 30 points, 6 rebounds, 4 steals, and 2 blocks, despite shooting 44% 
from the field. Both players were standout performers in a closely contested game where Miami edged out Orlando 100–93.



Please refer to this table image and analyze the given answer from the perspectives of usefulness, relevance, accuracy, and 
level of detail. Explain why the given answer is not a very good one. Then, based on your analysis, generate a new and 
improved answer for the provided instruction.

 Instruction:

 "Given a table containing data statistics of an NBA basketball game between Heat and Magic on 13th April, 2015, generate a 
summary for this game according to the given table.",

  Output: 

"The Miami Heat (36-45) beat the Orlando Magic (25-56) 100-93 on Monday. Hassan Whiteside dominated the Orlando 
interior and finished with a spectacular 24-point, 13-rebound, five-block performance. On Saturday, he put up 16 points, 18 
rebounds and six blocks on the Toronto Raptors. He 's proving he can be a forced to be reckoned with. If his team can sneak 
into the eighth seed of the Eastern Conference, they might be able to do some damage on the number-one seeded Atlanta 
Hawks. Even though they 've won just two of their last eight, Miami still has an outside chance to make the playoffs. The 
Magic were lead by Victor Oladipo 's 30 points, four steals and two blocks. Tobias Harris added 26 points and 12 assists but 
Orlando did n't get much from anyone else and it made a huge impact against a playoff hungry Miami team. Orlando had no 
answer for Hassan Whiteside and his play was the difference in the battle of Florida. After a three game win streak in early 
April, the Magic have lost three straight. Orlando will wrap up another disappointing season against the Brooklyn Nets, as 
the playoff-hopeful Heat end their season against the 76ers in Philadelphia on Wednesday."

Please refer to this table image and analyze the given instruction from the following aspects: topic complexity, required level 
of detail, necessary background knowledge, ambiguity of the instruction, and the extent of logical reasoning or problem-
solving involved. Explain why the given instruction is not a very good one. Then, based on your analysis, generate a new, 
improved instruction and its corresponding answer.

The given instruction  is vague and problematic for several reasons. From the perspective of topic complexity, the instruction 
asks for a full-game summary, which is an open-ended and high-level task. However, the table contains extensive, fine-
grained data, including individual player stats, team-level scores, and advanced metrics like FG%, 3PT%, etc., making it 
unclear which information should be prioritized. Regarding required detail level, the instruction doesn’t specify what 
statistics or narrative focus is desired (e.g., top performers, team performance trends, quarter-by-quarter breakdown), leading 
to inconsistent outputs. Background knowledge requirement is also high: the output references external context like playoff 
standings and past/future games (e.g., Raptors, Atlanta Hawks, Brooklyn Nets), none of which is present in the table, 
indicating hallucination. From the perspective of ambiguity, terms like “summary” are too broad—does it refer to a statistical 
digest or a journalistic game recap? Lastly, in terms of reasoning, the instruction offers no explicit prompt for comparison, 
player ranking, or statistical insights, making it difficult to apply structured logic or quantitative evaluation. Thus, the 
instruction lacks clarity, constraints, and grounding in the given data.

New Instruction:

“Based on the table, identify the top-scoring player from each team and summarize their key contributions using only the 
statistics provided.”

New Output:

Hassan Whiteside led the Miami Heat with 24 points, 13 rebounds, and 5 blocks while shooting 71% from the field. Victor 
Oladipo was the top scorer for the Orlando Magic with 30 points, 6 rebounds, 4 steals, and 2 blocks, despite shooting 44% 
from the field. Both players were standout performers in a closely contested game where Miami edged out Orlando 100–93.

The provided answer simply repeats the instruction and fails to fulfill its intended purpose, offering no meaningful summary 
or extracted data. In terms of usefulness, it provides no information about the game or players. Regarding relevance, the 
response does not address the core task of identifying top scorers or summarizing their performance. It lacks accuracy 
because it does not reference any statistics, and its detail level is nonexistent despite the data-rich input table. 

New answer : For the Miami Heat, Hassan Whiteside was the top scorer with 24 points, also recording 13 rebounds, 5 
blocks, and shooting 71% from the field and 80% from the free-throw line. For the Orlando Magic, Victor Oladipo led with 
30 points, 6 rebounds, 4 steals, and 2 blocks, with shooting percentages of 44% from the field and 67% on free throws. These 
performances made them the most impactful players on each team in Miami’s 100–93 win over Orlando.

Figure 4: Prompts used in dataset construction.
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B.2 DEFINITION OF IFD AND R-IFD

In the aforementioned pipeline, the student model utilizes two metrics, Instruction-Following Dif-
ficulty (IFD) and reversed-IFD (r-IFD), to select samples most beneficial for its own learning. The
definitions of IFD and r-IFD are as follows:

IFDθ(y|x) =
ppl(y|x)
ppl(y)

= exp (Lθ(y|x)− Lθ(y)) , (1)

r-IFDθ(x|y) =
ppl(x|y′)

ppl(x)
= exp (Lθ(x|y′)− Lθ(x)) . (2)

Here, Lθ(·|·) denotes the cross-entropy loss computed by the model under different contextual con-
ditions during inference, which can be used to derive perplexity scores. Building on this, IFD
quantifies the helpfulness of an instruction x in guiding the model to generate a target response y
by comparing the model’s perplexity in predicting y with and without the instruction. A lower per-
plexity conditioned on the instruction indicates that the instruction provides meaningful guidance.
In contrast, r-IFD assesses the informativeness of a response y in implying its original instruction x.
To achieve this, y is rephrased into a query-like form y′, designed to “guess” the missing instruc-
tion, and the model’s perplexity in reconstructing x from y′ is compared against its unconditional
generation of x.

B.3 THE PROMPTS USED IN TEACHER-FORCED REVISION

In our proposed SETT framework, the teacher model is employed to determine the correctness of
the original answer given the instruction and table image. If the teacher model identifies an error, it
corrects the answer. Otherwise, the teacher model is prompted to rephrase the instruction. Figure 5
and 6 show the prompts used for error correction and clarification, respectively.

Correction

No

The question asks for the total design variations with vacuum brakes in the table describing the "British Rail Class 08". To 
answer this, we need to look at the "Brakes" column in the image and identify all rows where the value is exactly "vacuum".

From the table, we can see that only the following entries have "vacuum" in the "Brakes" field:"08-0AV", "08-0DV",so the 
correct answer is {"answer": ["2"]}

Instruction:

what's the total design variations with vacuum brakes? Using the information from the table picture about 'British Rail Class 
08', provide a concise answer to the provided question. The final result should be presented in the JSON format of 
{\"answer\": [<a list of answer strings>]}.

Answer: There are "08-0AV", "08-0DV", "08-0MA",so the answer is {"answer": ["2"]}

There is an instruction and its answer based on the table image.

Determine whether the answer is correct given the instruction and image.

How to get the correct answer and what is the correct answer.

Figure 5: Prompts used for correction.
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Clarification

Yes

New Instruction:

Examine the table labeled "Cups of lemonade sold" and carefully solve the following math question. At the end, provide your 
final answer in the format: {"answer": "<YOUR ANSWER>"}. 
 Johnny recorded how many cups of lemonade he sold over the last four days. Which day saw the highest number of cups 
sold? 
 (A) Friday (B) Saturday (C) Sunday (D) Monday

Instruction:

Look at the table titled 'Cups of lemonade sold' and methodically tackle the math problem that follows. In the end, output 
your final answer using the JSON format: {\"answer\": \"<YOUR ANSWER>\"}.\nJohnny wrote down how many cups of 
lemonade he sold in the past 4 days. On which day did the stand sell the most lemonade? (A) Friday (B) Saturday (C) 
Sunday (D) Monday.

Answer: Find the greatest number in the table. Remember to compare the numbers starting with the highest place value. The 
greatest number is 78. Now find the corresponding day. Saturday corresponds to 78. Thus, the final answer is {\"answer\": 
\"Saturday\"}.

There is an instruction and its answer based on the table image.

Determine whether the answer is correct given the instruction and image.

Please rewrite the instruction using a more diverse expression while ensuring that the new instruction still corresponds to the 
original answer.

Figure 6: Prompts used for clarification.

C EXTENDED ANALYSIS AND VISUALIZATIONS

C.1 TASK DEFINITIONS

We show the definition of each task in Table 5.

Figure 7: Model performance across iterative SETT rounds.
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C.2 IMPACT OF THE NUMBER OF ITERATIONS

A critical consideration within our framework is the optimal number of fine-tuning iterations. To
explore this, we conduct an experiment tracking model performance over four consecutive rounds.
As shown in Figure 7, the first round leads to a significant performance improvement, followed by
diminishing returns in the second and third iterations. Notably, after the third cycle, we observe
a performance degradation. This indicates a delicate balance exists, where excessive iteration can
transform beneficial guidance into a source of noise and stylistic bias.

C.3 DIALOGUE VISUALIZATIONS

C.3.1 VISUALIZATION RESULTS ON SEEN TASKS.

Figure 8 and 9 showcase a series of dialogue visualizations on both simple and complex tables. For
simple tables, as shown in Figure 8, our method consistently demonstrates superior performance
in precise information localization and extraction. In Case 1, our method reliably extracts struc-
tural metadata and adheres to specific answer formats, while Janus-Pro and Table-LLaVA exhibit
inconsistent instruction following and less accurate recognition. In Case 2 and Case 4, our model
accurately identifies the table structure to pinpoint the exact cell at the intersection of specified rows
and columns. This contrasts with Table-LLaMA’s limitations due to OCR-induced loss of relational
context, Janus-Pro’s frequent misidentification of relevant rows, and Table-LLaVA’s tendency to
generate irrelevant or non-existent content. Case 3 highlights our model’s ability to perform multi-
step information retrieval and computation by accurately extracting and comparing values from dif-
ferent years. Conversely, Table-LLaMA leads to year-value misalignment, and both Janus-Pro and
Table-LLaVA often extract only a single value without performing the required comparison.

As shown in Figure 9, the performance gap widens on complex tables (Cases 5-6), which demand
a deeper understanding of hierarchical relationships and comparative reasoning. Here, the competi-
tors struggle to navigate multi-level headers to find the correct entry (Case 5) or fail to compre-
hend instructions requiring comparisons across columns, such as identifying the “highest relative
increase” (Case 6), often resorting to hallucination. TabX, however, successfully resolves these
intricate queries.

C.3.2 RESULTS ON COLUMN-SWAP TEST AND UNSEEN TASKS

Column-swap Test. We evaluate the model’s robustness against structural perturbations by swap-
ping two columns in the tables. As shown in Figure 10, this simple modification induces signifi-
cant failures for Table-LLaVA, whose outputs become inconsistent and remain incorrect across the
swaps. In contrast, TabX’s performance is unaffected by this operation.

Unseen Tasks. Figure 11 shows the results of two unseen tasks. In the MEC task, Table-LLaVA
fails to locate and correct the error. In the CTC task, it completely disregards the classification
directive, merely extracting the cell’s value instead. Conversely, TabX successfully executes both
novel instructions.

C.4 VISUALIZATION OF THE ENHANCEMENT PROCESS

In this section, we present the evolutionary trend of the instruction-tuning triplets and the corre-
sponding changes in inference results under the proposed SETT framework. From the visualizations
in Figure 12, we observe the following phenomena. As training progresses, the model’s responses
progressively transform from being vague or irrelevant to accurate, complete, and structurally co-
herent. This progression demonstrates that through the iterative cycle of self-evaluation, teacher-
forced revision, and fine-tuning, the student model effectively learns to correct its initial response
biases, significantly improving its understanding of table images and its ability to accomplish asso-
ciated tasks. Simultaneously, we observe an increasing richness and precision in instruction content.
While instructions in the initial stages are largely templated or simplified, the teacher model can
generate information-dense instructions in subsequent iterations. These instructions include multi-
step reasoning, integration of ambiguous information, and comparative analysis across table rows
and columns.
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C.5 QUALITATIVE ANALYSIS ON THE ROTOWIRE DATASET

We present two examples from the Rotowire Dataset in Figure 13 and 14 to analyze the performance
gap. To facilitate comparison, we mark corrected identified facts in red and incorrect facts in blue. In
both cases, TabX demonstrates superior factual grounding compared to Table-LLaVA. For the first
example, TabX correctly references 9 out of 12 mentioned facts, while Table-LLaVA only manages
7 out of 11. This trend is amplified in the second example, where TabX correctly identifies 20 of 41
factual elements, significantly outperforming Table-LLaVA’s 12 correct out of 32. However, in both
cases, Table-LLaVA achieves a higher BLUE score.

Name Task Category Task Name Dataset Task Description

M
M

Ta
b-

pr
o

Question Answering

Flat TQA (F TQA) WTQ TQA based on tables with flat structure and a single-row header.
Free-form TQA FeTaQA TQA with a free-form text answer rather than a copied span

from the table.

Hierarchical TQA (H TQA)

HiTab TQA based on tables with complex structures, including multi-
level (hierarchical) headers and merged cells that span multiple
rows or columns.

AIT-QA
Multi-choice TQA TabMCQ TQA with multiple-choice questions.
Tabular Numerical Reasoning TABMWP TQA requiring math reasoning like max/min or computations.

TAT-QA
HeaderValueMatching Synthesis TQA requiring aligning table headers with corresponding cell

values to enhance structural understanding.
DataImputation Synthesis TQA requiring filling in missing table cells based on observed

values and table semantics.

Fact Verification Table Fact Verification
TabFact Determine the factual consistency between a table and a given

statement by predicting whether the statement is supported or
refuted by the tabular evidence.

InfoTabs
PubHealthTab

Text Generation
Cell Description

ToTTo Generate a one-sentence description for the highlighted table
cells, with some tasks additionally providing explicit operations
(e.g., SUM, AVERAGE) to guide the generation.

HiTab T2T
Game Summary Rotowire Generate a detailed NBA game summary based on tables con-

taining box and line scores, with reference summaries sourced
from Rotowire.

Biography Generation WikiBIO Generate biography from personal information table.
NL2SQL Synthesis Generate SQL query from natural language question and table

schema.

Structure Understanding

Table Size Detection TSD Determine table’s row and column count.
Table Cell Extraction TCE Extract text from specified (row, column) locations.
Table Cell Locating TCL Find (row, col) position of given cell values.
Merged Cell Detection MCD Detect merged cells and return bounding positions.
Row&Column Extraction RCE Extract all cells from specified rows/columns.
Table Recognition TR Convert table image to HTML/Markdown/Latex format.

Table 5: Detailed descriptions of the evaluation tasks, including their abbreviations, full names, and
corresponding task definitions.
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How many rows and columns does this 
table contain? The JSON format 
{\"row_number\": \"m\", \"column_number\": 
\"n\"} should be utilized to display the 
ultimate result.


What were the total liabilities of IMFT in 
2018? Answer the above question briefly 
based on the provided table. Format the 
ultimate answer as a JSON, using the 
structure {\"answer\": [<a list of answer 
strings>]}.

Look at this table. Give your well-considered 
answer to the subsequent question. The 
concluding answer should be in the JSON 
structure, formatted as {\"answer\": [<a list of 
answer strings>]}. For instance, {\"answer\": 
[\"23\", \"14.5\"]}.What was the increase / 
(decrease) in the cost from 2018 to 2019?

This table is extracted from an annual report 
of an airline company. Briefly answer the 
following question based on the given table. 
Your final answer should be in the JSON 
structure, formatted as {\"answer\": 
\"<YOUR ANSWER>\"}. For instance, 
{\"answer\": \"1936\"}.What was the 
compensation cost of United airlines as 
reported in 2018?


There are 10 rows and 4 columns in the table. 
So, the final answer is 



{\"row_number\": 

\"10\", \"column_number\": \"4\"}.

According to the table,  final answer is 
{\"answer\": [\"$1,305\"]}.

Based on the table, we need to conduct the 
following computations: 100 - 82 = 18. 
Therefore, the final answer: {\"answer\": 
[\"18\"]}.

Based on the table information, the answer is 
{\"answer\": \"101\"}.


13 rows and 5 columns.

According to the table, the final answer is 
{\"answer\": [\"$909\"]}.

Due to 91- 82 = 9 ,The answer is {"answer": 
["9"]}.


Based on the table information, the answer is 
{\"answer\": \"101\"}.


 There are 11 rows and 3 columns in the table. 
So, the final answer is {"row_number": 
"11", "column_number": "3"}.


According to the table, the final answer is 
{"answer": ["$181"]}.

Based on the given table:  100 - 0 = 100. 
Therefore, the answer is {"answer": 
["100"]}.


 Based on the table information, the answer is 
{"answer": "100.00"}.
The table contains 10 rows and 7 columns.


{"answer": [167]}.

The increase in the cost from 2018 to 2019 
was $100 million.


{\"answer\": \"1936\"}.




User

Case1:

Case3:

Case2:

Case4:

TabX TabLLama+OCR TableLLaVAJanus-pro

Figure 8: Dialogue visualizations on simple tables.
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Based on the excel table, answer the 
following question in brief. Your answer 
should be in the JSON structure, formatted as 
{\"answer\": [<a list of answer strings>]}. For 
instance, {\"answer\": [\"2021-12-04\", 
\"72.33\"]}. Table title: career statistics. How 
many league goals did hristo yanev score 
for cska sofia?


Given the excel table, answer the following 
question briefly. The excel table title is 'active 
enterprises with one or more employees by 
enterprise size class, 2008 and 2014'. The 
final result should be presented in the JSON 
format of {\"answer\": [<a list of answer 
strings>]}. Which enterprise size class has 
the highest relative increase in enterprise 
number?


Based on the table information, the final 
answer is {\"answer\": [\"54.0\"]}.


According to this excel table, the final answer 
is {\"answer\": [\"between 50 and 99\"]}.


According to the table, the final answer is 
{\"answer\": [\“146\"]}.


According to the table, the final answer is 
{\"answer\": [\“between 1 and 4\"]}.


Based on the table information, the final 
answer is {"answer": ["133.0"]}


According to this excel table, the final answer 
is {"answer": ["0-1"]}.
{\"answer\": [22]}.


{\"answer\": [\"between 50 and 249\", 
\"between 250 and 999\"]}



User TabX TabLLama+OCR TableLLaVAJanus-pro

Case5: Case6:

Figure 9: Dialogue visualizations on complex tables.
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Based on the table with the title 'Georgina Hale', answer the subsequent question by following the 
requirements. Question:in what year was georgina hale's first uncredited appearance? Requirements: 
Omit your detailed reasoning process, merely show the final answer. Present the final answer in a JSON 
format {\"answer\": [<a list of answer strings>]} like {\"answer\": [\"144.52\", \"NBA\"]}.


Observe the table screenshot about Jason Weaver and succinctly answer the question that follows. Your 
answer should be in the JSON structure, formatted as {\"answer\": [<a list of answer strings>]}. For 
instance, {\"answer\": [\"America\", \"20\"]}. How many years did \"thea\" run?


According to the table, the answer is 
{\"answer\": [‘1975']}.


According to the table, the answer is 
{\"answer\": [‘1']}.


According to the table, the answer is 
{\"answer\": [‘1975']}.


According to the table, the answer is 
{\"answer\": [‘1']}.


According to the table, the answer is 
{"answer": [‘1987']}.


According to the table, the answer is 
{"answer": [‘1993 to 1994']}.


According to the table, the answer is 
{"answer": [‘2007']}.


According to the table, the answer is 
{"answer": [‘1993']}.


User TabX TableLLaVA

Figure 10: Visualization of model predictions under the column-swap test.
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Please read the table image,there is  a spelling 
error in it, find and correct it.

What is the type of the cell at row 1, column 
2? (A) Header (B) Data (C) Merged Cell (D) 
Empty Cell.

Here is the correct table:

| Charles Francis Jenkins |

|--------------------------|

| Born              
|                   | Dayton, Ohio    |

| Died              | June 6, 1934 (age 66) |

|                   | Washington, D.C. |

| Nationality       | American        |

| Education         | Bliss Electrical School |

| Occupation        | Engineer        |

| Engineering career

| Projects          |Over 400 patents related to a 
variety of inventions |

| Significant advance| Motion picture 
projector and television  |

| Awards      | Elliott Cresson Medal (1897) |

                   | John Scott Medal (1913)      |

| August 22, 1867 |


The cell at row 1, column 2 is a header cell. 
This is indicated by the presence of the word 
"Statistics" in the header row, which typically 
signifies the title or category of the table. The 
answer is: (A)

The spelling error is "Elliott Cresson Medal 
(1897)". It should be "Elliott Cresson 
Medal (1897)".

The target cell value in row 1, column 2 is 
"Oklahoma".

User TabX TableLLaVA

Figure 11: Dialogue visualization on unseen tasks.

Epoch 1 K

Image

Instruction

Output

Inference

0 2

…
…

unchanged unchanged

Which awards in 2018 
were won (not just 
nominated) according 
to the table?

Best Pop at the MTV 
Video Music Awards 
and Best Female 
Video - International 
at the MTV Video 
Music Awards Japan

How many awards 
related to “MTV” in 
2018 were nominated 
but not won according 
to the table?

There were 3 MTV-
related awards in 2018 
that were nominated 
but not won.

How many awards 
related to “MTV” in 
2018 were nominated 
but not won according 
to the table?

There were 3 MTV-
related awards in 2018 
that were nominated 
but not won.

How many awards 
related to “MTV” in 
2018 were nominated 
but not won according 
to the table?

There were 5 MTV-related awards in 2018 that 
were nominated but not won : Best Video – MTV 
Europe Music Awards, Best Song – MTV Europe 
Music Awards, Video of the Year – MTV Video 
Music Awards, Best Cinematography – MTV 
Video Music Awards, Best Visual Effects – MTV 
Video Music Awards.

unchanged

Please count how 
many MTV-related 
nominations in 2018 
did not result in a win.

Finetune Finetune

unchanged

According to the table, there are three 
awards related to "MTV" in 2018 that 
were nominated but not won:
1. Best Video
2. Best Song
3. Video Of The Year

There were 5 MTV-related awards in 
2018 that were nominated but not won. 

There were 5 MTV-related 
awards in 2018 that were 
nominated but not won. 
These include:
1.Best Video 
2.Best Song
3.Video Of The Year 
4.Best Cinematography
5.Best Visual Effects
However, the "Best Pop" 
award was won, so it is not 
included.

Figure 12: Visualization of the enhancement process. “Inference” denotes the prediction of TabX.
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Analyze the box-score and line-score tables for the NBA game between Cavaliers and 76ers on 20th 
December, 2015 and use the statistics to create a detailed summary of this game.

The  ( )  the  ( ) -  on . The  were able to pull away 
in the fourth quarter, outscoring the Jazz .  until

, but they were unable to keep up with the Heat. Miami has won three straight games and is now 
 on the season. The Heat will look to keep the win streak going on Saturday when they take on the 

New York Knicks. Utah has lost two straight games and will look to get back on track on Saturday when 
they take on the Los Angeles Clippers.

Miami Heat 12-11 defeated Utah Jazz 105 Friday Heat
The Jazz were able to keep the game close

12-11

(BLEU=3.32,9-12points)

10-12 95
31-19  the fourth 

quarter

The  ( )  the  ( – )  on .  has won two straight 
games. They’ve been playing without Chris Bosh (calf) and Dwyane Wade (hamstring) for the last two 
games, but they’ve been able to pull out wins over the Los Angeles Clippers and the Jazz.  
has been filling in admirably at point guard, putting up  and  in  Friday. The 
Heat will host the New York Knicks on Sunday. Utah has lost four straight games. They’ve been playing 
without Derrick Favors (back) for the last three games, and they’ve lost all three games. Trey Burke has 
been starting at point guard in Favors’ absence, but he’s struggled, shooting 10–for–34 from the field and 1–
for–10 from beyond the arc over the last three games. The Jazz will host the Phoenix Suns on Saturday

 Miami Heat –12 defeated Utah Jazz 6 Miami

Mario Chalmers

.
(BLEU=3.84,7-11points)

10 16 101–91 Friday

20 points 10 assists 36 minutes

User TabX TableLLaVA

Figure 13: A case study from the Rotowire dataset.
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Analyze the box-score and line-score tables for the NBA game between Cavaliers and 76ers on 20th 
December, 2015 and use the statistics to create a detailed summary of this game.

The  ( - )  the  ( )  on .  has 
won 10 of its last 11 games and has now . The Cavaliers were 

, who scored  ( -  , , - ) and added  and  in 
.  added  ( , , ) and  in . The 

Cavaliers will look to continue their winning ways on Sunday against the Boston Celtics.  has 
lost 10 of its last 11 games and has now . The Sixers were led , 
who scored  ( , , ) and added  and  in . 

 added  ( , , ) and  in . The Sixers 
will look to end their losing streak on Saturday against the New York Knicks.

Cleveland Cavaliers 18 defeated Philadelphia 76ers Friday Cleveland
won 17 of its last 18 home games led by 

LeBron James 23 points 17 FG 4
Kevin Love

Philadelphia
by Nerlens Noel

 0  blocks 31 minutes
Robert Covington 0-0 FT

(BLEU=4.81,20-41points)

6 5-23 111-93

9 1-2 3Pt 4 FT 10 rebounds five assists
36 minutes 20 points 8-14 FG 2-3 3Pt  2-2 FT 10 rebounds 31 minutes

 lost 12 of its last 14 games
18 points 8-14 FG -2 3Pt 2-2 FT 10 rebounds two

17 points 7-14 FG  2-3 3Pt six rebounds 33 minutes

The  ( )  the  ( - )  on . The  were 
expected to win this game easily and they did just that. They  and never 
looked back, as they won all four quarters by . The Cavs shot 

. They also dominated the rebounding, as they 
. The Cavs have now won 11 of their last 12 games.  was the player of 

the game, as he tallied ,  and  in the win.  also played well, as he 
amassed ,  and .  recorded a , as he totaled 

. The Cavs will look to keep rolling on Tuesday against the New York Knicks. The 
Sixers have been playing better recently, but this was a tough task against the best team in the NBA. 

 led the team in scoring, as he dropped  and in the loss. Ish Smith was the only 
other starter in double figures, as he accumulated 14 points, four rebounds and six assists. was 
the only other player , as he amassed and  off the bench. Philadelphia 
will look to play better on Tuesday against the New York Knicks.

Cleveland Cavaliers defeated Philadelphia 76ers 1 Cavs

at least five points

LeBron James
 Kyrie Irving

four assists Kevin Love

Jahlil 
Okafor

Nerlens Noel 
 in double figures

(BLEU=6.71,12-32points)

19-5 26 116–95 Sunday
led by 10 after the first quarter

52 percent from the field 
and 50 percent from three-point range snatched down 45 
boards to the Sixers 31

26 points 10 rebounds six assists
22 points four rebounds double-double 15 

points and 10 rebounds

19 points 10 rebounds 

11 points 10 rebounds
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Figure 14: A case study from the Rotowire dataset.
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