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Abstract

Control tasks with safety requirements under high
levels of model uncertainty are increasingly com-
mon. Machine learning techniques are frequently
used to address such tasks, typically by leveraging
model error bounds to specify robust constraint-
based safety filters. However, if the learned model
uncertainty is very high, the corresponding filters
are potentially invalid, meaning no control input
satisfies the constraints imposed by the safety
filter. While most works address this issue by
assuming some form of safe backup controller,
ours tackles it by collecting additional data on
the fly using a Gaussian process bandit-type algo-
rithm. We combine a control barrier function with
a learned model to specify a robust certificate that
ensures safety if feasible. Whenever infeasibility
occurs, we leverage the control barrier function to
guide exploration, ensuring the collected data con-
tributes toward the closed-loop system safety. By
combining a safety filter with exploration in this
manner, our method provably achieves safety in a
setting that allows for a zero-mean prior dynam-
ics model, without requiring a backup controller.
To the best of our knowledge, it is the first safe
learning-based control method that achieves this.

1. Introduction
With the growing proliferation of robotics in safety-critical
fields, e.g., autonomous vehicles, medical robotics, and
aerospace systems, the need for methods that ensure the
safety of systems and their users has become paramount.
In control tasks, guaranteeing safety has become synony-
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mous with guaranteeing that the system always satisfies
a pre-specified set of constraints. While there exist vari-
ous tools to achieve safety whenever the system is known
perfectly (Agrawal & Sreenath, 2017; Ames et al., 2017;
Bansal et al., 2017; Wabersich & Zeilinger, 2018; Zeng
et al., 2021), doing so if the dynamics have to be learned
poses a significantly more difficult challenge.

To address safety in a control setting, existing approaches
typically attempt to bound the model error and assess how
its worst-case estimate affects safety. To estimate the model
error, frequently used frameworks include ensembles of
neural networks (Chua et al., 2018; Curi et al., 2020) or
Gaussian processes (GPs) (Capone et al., 2022; Rodriguez
et al., 2021). The impact of the model error on safety is then
frequently estimated by predicting the worst-case trajectory
multiple steps into the future (Akametalu et al., 2014; Hew-
ing et al., 2020; Koller et al., 2018). Alternatively, safety
filters attempt to condense the long-term impact of a con-
trol input on safety (Ao et al., 2025; Berkenkamp et al.,
2017; Castañeda et al., 2021; Cheng et al., 2019; Jagtap
et al., 2020). A crucial drawback of most of these methods
is that they assume the model uncertainty is always small
enough for the conservative safety constraints to be feasible.
In other words, if the uncertainty becomes too large, the
underlying methods are no longer applicable.

Motivated by the aforementioned challenges, we present
a learning-based control algorithm that ensures safety by
exploring on the fly. We use a Gaussian process model to es-
timate model uncertainty, which we combine with a control
barrier function to compute a robust safety filter. Whenever
our safety filter becomes infeasible, we employ the control
barrier function to guide exploration in a manner that is in-
formative for safety. Formally, this is done by leveraging the
lower confidence bound of the certificate constraint function
for certifiably safe control inputs, and the upper confidence
bound for exploration. Our approach draws heaviliy from
ideas from Bayesian optimization, where exploration is done
in a similar manner. Overall, our main contributions are as
follows:

1. We present the first safe control algorithm that ad-
dresses infeasible safety filters by exploring online
using a Gaussian process bandit algorithm.
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- Starting state - Feasible (safe) region - Infeasible (safe) region - Unsafe region System trajectory

(a) System state exits the region where the
safety filter is feasible.

(b) Our algorithm computes exploratory
control inputs using a bandit-type tech-
nique.

(c) Theorem 3.2 guarantees that the safety
filter always becomes feasible before the
boundary of the safe set is reached.

Figure 1. Illustration of our method (Algorithm 1) and theoretical result (Theorem 3.2).

2. We rigorously analyze our approach and discuss our
main theorem, which shows the interdependence be-
tween model uncertainty, sampling time, and safety.

3. We showcase our approach using two numerical simu-
lations where we achieve safety using a control barrier
function, a dynamics model with a zero-mean prior,
and no prior measurements. To the best of our knowl-
edge, this setting cannot be addressed by current state-
of-the-art methods.

The remainder of this paper is structured as follows. In
Section 2 we describe the problem setting considered in this
paper, together with some background on control barrier
functions and Gaussian processes. Our main contribution,
which includes an exploration-driven safe control algorithm
and safety guarantees, is presented in Section 3. In Section 5,
we apply our method using numerical simulations of cruise
control and a quadcopter. We finalize the paper with some
conclusions in Section 7.

2. Background and Problem Setting
We consider a system that is affine in the control inputs

ẋ = f(x) + g(x)u (1)

where x ∈ X ⊆ Rn and u ∈ U ⊆ Rm, and f : Rn → Rn

and g : Rn → Rn×m are (partially) unknown locally Lip-
schitz continuous functions that represent the drift dynam-
ics and the input matrix, respectively. Eq. (1) represents
a broad class of physical systems. Though our method
can be straightforwardly extended to the more general case
ẋ = f(x, u), this structure significantly facilitates the com-
putation of safe control inputs, as described in Section 2.1.
We further assume that X is an open and connected set
and that U is compact. When a locally Lipschitz controller

π : Rn → Rm is used, we can define the closed-loop sys-
tem:

ẋ = f(x) + g(x)π(x). (2)

We also assume to know an upper bound Lẋ ∈ R+ for
the time-derivative of the dynamics, as specified by the
following assumption.

Assumption 2.1. There exists a known positive constant
Lẋ, such that ∥ẋ∥2 ≤ Lẋ holds for all x ∈ X and u ∈ U .

We define safety by considering a safe set C, as specified in
the following.

Definition 2.2 (Safety). The closed-loop system (2) is said
to be safe (with respect to C) if x(0) ∈ C implies x(t) ∈ C
for all t ≥ 0.

We consider the case where the safe set C corresponds to the
superlevel set of some known continuously differentiable
function h : Rn → R with 0 a regular value 1:

C ≜ {x ∈ Rn | h(x) ≥ 0}.

This specification of C allows us to achieve safety through
the control barrier function framework, which we discuss
in the following section. This paper considers a compact
C and a Lipschitz continuous functions h, as stated in the
following assumption.

Assumption 2.3. The safe set C is compact and the function
h admits a Lipschitz constant Lh, i.e., |h(x) − h(x′)| ≤
Lh∥x− x′∥2 holds for all x, x′ ∈ X .

Given an arbitrary nominal controller πnom : X → U , we
aim to design a control law π that renders the closed loop

1A function h has 0 as a regular value if h(x) = 0 =⇒
∂h
∂x

(x) ̸= 0.
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system (2) safe while following πnom as closely as possible.
We make the following assumption regarding the nominal
controller:

Assumption 2.4. The nominal controller πnom is locally
Lipschitz in X .

Assumption 2.4 is not restrictive, as it includes a broad class
of controllers, including most types of neural networks.

2.1. Safety through Control Barrier Functions

Our method attempts to ensure safety using control barrier
functions, which we introduce in the following.

Definition 2.5 (Control Barrier Function (CBF) (Ames et al.,
2017)). Let C ⊂ X be the 0-superlevel set of a continuously
differentiable function h : Rn → R with 0 a regular value.
Furthermore, let α be a radially unbounded, strictly mono-
tonically increasing function with α(0) = 0. The function
h is a control barrier function (CBF) for (1) on C if, for all
x ∈ X ,

sup
u∈U

ḣ(x, u) ≜ sup
u∈U

∂h

∂x
(x) (f(x) + g(x)u) > −α(h(x)).

(3)

Intuitively, (3) states that there exists a control input that
decreases the time derivative of the CBF as the boundary
of the safe set C is approached, effectively slowing down
the system as the boundary gets closer. If f and g were
known perfectly, we could leverage this property to compute
certifiably safe control inputs by including a CBF increase
condition as a constraint when synthesizing control inputs:

π(x) = argmin
u∈U

∥u− πnom(x)∥2

s.t. ḣ(x, u) ≥ −α(h(x)).
(4)

Given the affine form of this constraint, this safety filter is
a quadratic program (QP) that has a closed form solution
(Ames et al., 2017) and can be solved fast enough for online
safe controller synthesis (Gurriet et al., 2018).

Since we are dealing with unknown systems (3) is not di-
rectly applicable, and we need to formulate a robust CBF
constraint that accounts for potential modeling errors. To
this end, we assume the CBF constraint is feasible up to a
positive margin ϵ > 0:

Assumption 2.6 (Robust CBF Feasibility). There exists a
radially unbounded, strictly monotonically increasing func-
tion α with α(0) = 0 and a positive scalar ϵ > 0, such
that

sup
u∈U

∂h

∂x
(x) (f(x) + g(x)u) ≥ −α(h(x)) + ϵ (5)

holds for all x ∈ X .

Given the existence of a CBF, we note that this assumption
is not very conservative. Intuitively, it states that we can
violate the non-robust CBF by a margin of at most ϵ.

2.2. Gaussian Processes and Reproducing Kernel
Hilbert Spaces

We now introduce the tools used to model the the unknown
functions f and g.

Consider a prior model of the system f̂ and ĝ, which can
be set to zero if no prior knowledge is available. For the re-
mainder of this paper, we assume f̂ = ĝ = 0 for simplicity.
We then model the residuals f− f̂ and g− ĝ jointly by using
a GP model. To obtain theoretical guarantees on the growth
of the model error as new data is added, we assume that
the residual model belongs to a reproducing kernel Hilbert
space (RKHS). This is codified later in this section. In the
following, we review both GPs and RKHSs, and provide
some preliminary theoretical results.

A GP is a collection of random variables, of which any
finite number is jointly Gaussian distributed. GPs are fully
specified by a prior mean, which we set to zero without loss
of generality, and kernel k : X × X → R. We model each
dimension of the unknown dynamics f(x) + g(x)u using
a separate GP. This is achieved by employing composite
kernels

ki(z, z
′) ≜ kfi(x, x

′) +

m∑
j=1

ujkgi,j (x, x
′)u′

j , (6)

where z ≜ (x⊤, u⊤)⊤. The kernels kfi and kgi,j capture
the behavior of the individual entries of the residuals f and
g, respectively. In this paper, we do not require a specific
form of kernel kfi and kgi,j , though the choice of kernel
significantly affects performance. We employ a composite
kernel (6) because this allows us to leverage measurements
of ẋ to improve our learned model.

Consider N noisy measurements Di,N ≜

{z(q), y(q)i }q=1,...,N of the i-th entry of the time-derivative
of the state, where

y
(q)
i =fi(x

(q)) +

m∑
j=1

gi,j(x
(q))u

(q)
j + ξ

(q)
i (7)

and the measurement noise ξ(q) satisfies the following as-
sumption.

Assumption 2.7. The measurement noise ξ(q) is iid σi,ns-
sub Gaussian for every i ∈ {1, ..., n}.

The posterior of the model at an arbitrary state z∗ is then
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given by

µi,N (z∗) ≜ k⊤
i,∗

(
Ki,N + σ2

i,nsIN
)−1

yi,

σ2
i,N (z∗) ≜ ki(z

∗, z∗)− k⊤
i,∗

(
Ki,N + σ2

i,nsIN
)−1

ki,∗,

where ki,∗ ≜ (ki(z
∗, z(1)), ..., ki(z

∗, z(N)))⊤, and the en-
tries of the covariance matrix are given by [Ki,N ]pq =
ki(z

(p), z(q)). In our approach, we employ µi,N as a model
of our system, and σi,N as a measure of uncertainty, which
we employ to inform the data-collection trigger.

In the following, we refer to the mean and covariance matrix
of the full multivariate Gaussian process model as

µN (·) ≜ (µ1,N (·), . . . , µn,N (·))⊤,
Σ2

N (·) ≜ diag(σ2
1,N (·), . . . , σ2

n,N (·)).
(8)

Furthermore, we employ DN = {z(q),y(q)}q=1,...,N ,
where y(q) ≜ (y

(q)
1 , ..., y

(q)
n )⊤, to refer to the full data set

corresponding to N system measurements.

To be able to ensure safety, we need to estimate how data
affects the worst-case model error. Though this is impossi-
ble in a general setting, an estimate is possible if we assume
that the entries of f and g belong to an RKHS, a very rich
function space specified by the composite kernel (6).

Assumption 2.8. For every i = 1, .., n, the i-th entry of
f(x)+g(x)u belongs to the RKHS with reproducing kernel
ki, and the corresponding RKHS norm is bounded by a
known positive scalar Bi ∈ (0,∞).

The satisfaction of Assumption 2.8 hinges on choosing the
kernels correctly. In practice, if little is known about the
system, then so-called “universal kernels” (e.g. Matérn or
squared-exponential kernels) are often employed, which
can approximate continuous functions arbitrarily accurately
(Micchelli et al., 2006). Furthermore, there exist several
techniques to mitigate kernel specification that can easily be
applied to the methods described in this paper (Berkenkamp
et al., 2019; Capone et al., 2022; Fiedler et al., 2021).

3. Safe Control Through Bandit Exploration
In this section, we present our main algorithm and theoreti-
cal guarantees.

Our algorithms employs two key quantities: the lower confi-
dence bound (LCB) and upper confidence bound (UCB) of
the time derivative of h given the data. These quantities are

computed as

LCBN (x, u) =
∂h

∂x
(x)µN (x, u)− LhβN

√
tr (ΣN (x, u))

(9)

UCBN (x, u) =
∂h

∂x
(x)µN (x, u) + LhβN

√
tr (ΣN (x, u)),

(10)

where Lh > 0 is the global Lipschitz constant of h, specified
in Assumption 2.3 and

βN ≜ max
i≤n

(
Bi + σi,ns

√
2 (γi,N + 1 + log (nδ−1))

)
.

(11)

Here, γi,N denotes the maximal information gain after N
rounds of data collection, and is computed as

γi,N = max
z(1),...z(N)

1

2
log

∣∣IN + σ−1
i,nsKi,N

∣∣ .
Intuitively, the LCB (9) and UCB (10) respectively corre-
spond to the lowest and highest permissible value for ḣ(x, u)
given the model error bound.

Given the nominal controller πnom, we leverage the LCB
(9) to compute robustly safe control inputs by solving the
second-order cone program

πN,safe(x) = argmin
u∈U

∥u− πnom(x)∥2
s.t. LCBN (x, u) ≥ −α(h(x)) + ϵ

2 .

(12)

Note that, due to the nature of the composite kernels (6),
µN (x, u) is a linear function of u and ΣN (x, u) is a di-
agonal matrix whose entries are positive definite quadratic
functions of u. Hence, (12) can be solved straightforwardly
with conventional second-order cone program optimizers.

We include the term ϵ
2 in the constraint in (12) because this

keeps the system from getting too close to the boundary.
This ensures that when (12) becomes infeasible, there is still
some distance to go until it reaches the boundary of the safe
set, leaving us with enough time to explore the system.

As long as the robust safety filter (12) is strictly feasible, the
resulting control policies are locally Lipschitz continuous
(Castañeda et al., 2022), yielding unique and well-behaved
closed-loop system trajectories.

If (12) is feasible for all x ∈ C, we can leverage standard
results from CBF theory (Ames et al., 2017) to show that
the resulting trajectory is safe. However, since (12) includes
model uncertainty, it becomes potentially infeasible in re-
gions of the state space where uncertainty is high. We
address this by employing a bandit-type exploration algo-
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rithm to acquire new data whenever infeasibility occurs.
Our algorithm is designed to collect sufficiently informative
data to render (12) feasible before exiting the safe set. We
now describe the corresponding sampling scheme in detail.

Let N denote the number of data collected up to the current
time. If (12) is strictly feasible, it is used to compute control
inputs. As soon as strict feasibility is impossible, we switch
to our bandit exploration strategy. This corresponds to the
first instance in time when

max
u∈U

LCBN (x, u) = −α(h(x)) +
ϵ

2
(13)

holds and can be easily verified using a quadratic program.
We denote this point in time by tN+1. At this point, we
switch to an exploration-driven controller π̄N+1, which can
be chosen freely, provided that it is locally Lipschitz con-
tinuous and satisfies π̄(x(tN+1)) = u(N+1), where u(N+1)

maximizes the upper confidence bound

u(N+1) =argmax
u∈U

UCBN (x(tN+1), u). (14)

In our experiments in Section 5, we choose π̄(x) ≡ u(N+1).
Choosing a control input this way is very similar to bandit
exploration algorithms, which aim to find the maximum of
an unknown function. In our case, we wish to maximize the
unknown time derivative of the CBF ḣ(x, u) given the state
x, which we know to satisfy Assumption 2.6. We apply
π̄N+1 for a time length of ∆t, where ∆t corresponds to the
data sampling frequency and is specified a priori. We then
collect a noisy measurement of the time-derivative of the
system

y(N+1) = f(x(tN+1)) + g(x(tN+1))u
(N+1) + ξ(N+1)

and update the GP model with the measurement data pair
(z(N+1),y(N+1)), where

z(N+1) =

((
x(tN+1)

)⊤
,
(
u(N+1)

)⊤
)⊤

.

After a time of ∆t has passed, we check if the optimization
problem (12) is strictly feasible. To this end, we check if

max
u∈U

LCBN (x, u) > −α(h(x)) +
ϵ

2
(15)

holds. If so, we apply πN,safe. Otherwise, we repeat the
sampling procedure. These steps are summarized in Algo-
rithm 1.

Remark 3.1. The condition (13) specifies that exploration
starts when strict infeasibility is not given, as opposed to
waiting until infeasibility occurs. In general, it is not ad-
visable to wait for infeasibility to start exploring, as this
means that the control law is not well-defined, which can be

Algorithm 1 Safe Control via On-the-Fly Bandit Explo-
ration
Input: Sampling time ∆t, GP prior, CBF h, class-KL func-

tion α
1: Set EXPLORE = FALSE
2: for t ∈ [0,∞) do
3: if EXPLORE==FALSE then
4: if maxu∈U LCBN (x, u) > −α(h(x)) + ϵ

2 then
5: Solve (12) and apply πN,safe(x)
6: else
7: Set EXPLORE=TRUE
8: Set N = N + 1.
9: Set tN = t.

10: Set x(N) = x.
11: Compute u(N) by solving (14).
12: end if
13: end if
14: if EXPLORE==TRUE then
15: if t < tN +∆t then
16: Apply a locally Lipschitz controller π̄ with

π̄(x(N)) = u(N).
17: Collect noisy measurement y(N) =

ẋ(tN )−f̂ (x(tN ))− ĝ (x(tN ))u(N) + ξ(N)

18: else if t = tN +∆t then
19: Set EXPLORE=FALSE
20: Set DN = DN−1 ∩ {z(N),y(N)} and update

GP.
21: end if
22: end if
23: end for

detrimental to control.

We then show that, if we choose ∆t high enough, the closed-
loop system under Algorithm 1 is safe with high probability.

Theorem 3.2. Let Assumptions 2.1, 2.3, 2.4 and 2.6 to 2.8
hold. Choose δ ∈ [0, 1] and βN as in (11). Moreover,
choose the sampling time as

∆t >
ϵ

LαLhLẋ∆Nmax
, (16)

where ∆Nmax satisfies

∆Nmax >
32β2

∆Nmax
L2
h

ϵ2 log
(
1 + σ−2

i,ns

) n∑
i=1

γi,∆Nmax (17)

Let the initial state x(0) be strictly within the safe set, such
that α(h(x(0))) ≥ ϵ. Then, with probability at least 1− δ,
the closed-loop system under the policy specified by Algo-
rithm 1 is safe. Furthermore, the closed-loop stops collect-
ing data after at most ∆Nmax collected observations.

The proof of Theorem 3.2 can be found in Appendix B.
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(a) Value of control barrier function h(x) for cruise control
example. Since no prior model is available for control, safety
is obtained by efficiently learning a model online.
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(b) Minimum of LCB of CBF time derivative for cruise control
example. Spikes are due to training data set updates, leading
to decreased model uncertainty. Positive values indicate infea-
sibility of the robust safety filter (12).

Figure 2. CBF and LCB for a single cruise control simulation using a sampling time of ∆t = 10−5s.

Intuitively, Theorem 3.2 states that if we choose the data
collection frequency high enough, we guarantee safety
after collecting a finite number of data. The quantity
β2
∆Nmax

∑n
i=1 γi,∆Nmax is the only part in the right-hand side

of (17) that depends on ∆Nmax. It is closely related to the
regret metric frequently found in bandit literature, which
measures the deviation from optimal decisions. This quan-
tity grows sublinearly for most commonly employed kernels,
meaning there exists a ∆Nmax that satisfies (17). In practice,
we can approximate by sampling the state and input space.
Alternatively, we can obtain a (potentially crude) bound
for this term based on the kernel hyperparameters. This is
discussed in Appendix C.

4. Discussion and Limitations
Although we assume that the system structure (1) is affine
in the control input, this is not strictly a requirement for
theoretical guarantees and can be relaxed, provided that the
optimization problems (12), (13) and (14) can be solved
adequately.

Theorem 3.2 points at an interaction between various quan-
tities, including the sampling frequency, model uncertainty,
measurement noise, CBF violation tolerance, and Lipschitz
constants of the system and CBF. In simple terms, Theo-
rem 3.2 indicates that a higher sampling frequency is likely
more beneficial for safety. However, other practical con-
siderations can also improve safety. For instance, we can
reduce the Lipschitz constant Lẋ of the system by cleverly
restricting the permissible control input space U , thereby
reducing the bound (17).

A practical concern that may arise with control inputs u
geared towards exploration is that the corresponding inputs
may strain the system and lead to undesirable behavior,
e.g., if the input exhibits a high frequency and amplitude.
However, computing the input by maximizing the UCB

(14) corresponds to choosing the optimistically safest input
under uncertainty. Hence, it is reasonable to expect the
corresponding input to be acceptable to the system, i.e., not
damaging.

The primary focus of this work is the safety of the closed-
loop function, and we do not address closed-loop control
performance. However, the tools presented here can be
straightforwardly extended to address performance, e.g.,
by designing a data collection scheme that aims to reduce
model uncertainty whenever control performance is not
satisfactory. Furthermore, our method can be potentially
improved by preemptively exploring before infeasibility
occurs, increasing the space of permissible control actions.

Although Assumption 2.6 can seem strict, it still offers flex-
ibility, and there are ways to relax it in practice. Typically,
only a portion of the safe set is visited during control. Hence,
it is enough if the CBF is valid only for the corresponding
subset of the state space. Furthermore, we can achieve con-
servatism by initially restricting the safe set to a region that
is easy to control and then iteratively expanding it as more
data is collected. This potentially allows us to gradually
improve the CBF as more system knowledge allows us to
expand the safe set. Alternatively, we can include conser-
vatism in the safety requirement by computing the CBF
condition from a collection of (potentially valid) CBFs and
taking the worst case.

5. Numerical Experiments
We now showcase how our approach performs using two nu-
merical simulations: a cruise control system and a quadrotor
with ground dynamics. We assume to have either no prior
model (cruise control example) or to know only the model
component corresponding to the time derivatives (quadro-
tor). Note that this is insufficient to implement any state-
of-the-art approach, as the prior model does not include
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(a) The quadrotor starts at a state within
the safe region where (12) is infeasible.

(b) Our algorithm computes exploratory
control inputs without leaving the safe set.
The observations are used to update the
model. This phase corresponds roughly to
the first two seconds of the simulation.

(c) After a finite amount of data is collected
without exiting the safe set, the uncertainty
is small enough to achieve the feasibility
of the safety filter (12). This is expected
from Theorem 3.2.

Figure 3. Visualization of a single trajectory of the quadrotor experiment using a sampling time of ∆t = 10−5s.
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(a) Value of control barrier functions for quadrotor example.
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(b) Minimum of the LCB of the CBF time derivative for
quadrotor example.

Figure 4. CBF and LCB for a single quadrotor run using a sampling time of ∆t = 10−5s.

the influence of the control input. We additionally perform
experiments that aim to answer the following questions:

• How does our method compare with random explo-
ration during infeasibility?

• How does the choice of sampling time ∆t affect safety?

5.1. Cruise Control

We employ our approach to learn the road vehicle model pre-
sented in Castañeda et al. (2021) while applying an adaptive
cruise control system. The states are given by x = [v z]⊤,
where z is the distance between the ego vehicle and the
target vehicle in front, and v denotes the ego vehicle speed.
Our setup is fully described in Appendix A.1.

As a control barrier function, we employ h(x) = z − Thv,
where Th = 1.8, which aims to maintain a safe distance
between the ego vehicle and the vehicle in front. The nomi-
nal controller πnom(x) used for the robust CBF-SOCP (12)
is a P-controller πnom = −10(v − vd), where vd = 24

corresponds to the desired velocity. We employ squared-
exponential kernels to model f and g and assume to have
N = 10 data points at the start of the simulation, which we
employ exclusively to learn the kernel hyperparameters. We
do so by minimizing the posterior likelihood (Rasmussen &
Williams, 2006).

We simulate the system for 100 seconds. The CBF value
for a single simulation run using a sampling time of ∆t =
10−5s is shown in Figure 2a. The minimum of the LCB is
depicted in Figure 2b. The CBF value h(x) is always above
zero, meaning the system is safe. This is to be expected
from Theorem 3.2. As can be seen in Figure 2b, the min-
imum of the LCB is frequently positive in the beginning
of the simulation. This means that the safety filter (12) is
infeasible during these time instances, particularly in the
beginning. This leads to a high rate of exploratory inputs,
which suddenly decreases model uncertainty, causing the
LCB to spike. After approximately 6 seconds, enough in-
formation was collected to recover feasibility, after which a
safe input can be obtained without further exploration.

7
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(a) Cruise control. (b) Quadrotor.

Figure 5. Rate of failure using our approach and random inputs for the cruise control (left) and quadrotor (right) settings at varying
sampling frequencies (∆t)−1.

5.2. Quadrotor

We additionally showcase our approach using a numeri-
cal simulation of a quadrotor with ground dynamics. The
quadrotor dynamics are described in detail in Appendix A.2.

The quadrotor states are given by x = [p, v, q], where where
p ∈ R3 is the global position, v ∈ R3 the global velocity,
and q ∈ R4 is the system orientation in quaternion for-
mat. The control inputs u = [T ω]⊤ consist of the thrust
acceleration T and the body-frame angle rates ω ∈ SO(3).

In this example, we employ two CBFs. The first is h(x) =
10(pz − Tzvz), where Tz = 0.1, and is geared toward
keeping altitude higher than zero. The second CBF utilizes
the differential flatness of the quadrotor to restrict velocities,
orientation we add a rotation, and the orientation of the
thrust vector. It is fully described in Appendix A.2. When
computing the exploratory control inputs (14), we alternate
between CBFs. The nominal controller πnom(x) used for
the robust safety filter (12) corresponds to a differentially
flat controller, computed as in Faessler et al. (2018), and we
consider bounded thrust, with |T | ≤ 15000. Similarly to the
cruise control setting, we use squared-exponential kernels
and assume to have N = 10 data points at the start of the
simulation to learn the kernel hyperparameters.

We simulate the system for 50 seconds. The CBF value for
a single run using a sampling time of ∆t = 10−5s can be
seen in Figure 4a, the minimum of the LCB is depicted in
Figure 4b.Figure 4 depicts the corresponding quadrotor tra-
jectory. Similarly to the cruise control setting, infeasibility
is frequently encountered initially, causing our algorithm
to explore. After approximately 2 seconds, feasibility is
recovered, causing the quadrotor to hover in place for the
remainder of the simulation.

5.3. Comparison with Random Exploratory Control

Theorem 3.2 states that it is sufficient to collect data by
applying (14) to the system in order to guarantee safety.
However, other types of control inputs may also satisfy this
requirement. In the following, we investigate how our ap-
proach performs compared to random exploratory control
inputs. More specifically, we apply our method to the sys-
tem with the following difference: instead of computing
exploratory inputs by solving (14), we sample the control
inputs from a uniform distribution on U . We again consider
the adaptive cruise control and quadrotor settings and inves-
tigate how our approach and the random input-based one
perform using various sampling frequencies ∆t. This is
especially relevant, as many practical settings do not allow
for arbitrarily high sampling frequencies.

We perform 100 simulations with different initial conditions,
uniformly sampled from a region within the safe set. We
report how often each method fails, i.e., leads to a positive
value for the CBF during the simulation. The average num-
ber of failures for both settings is shown in Figure 5. A
non-zero failure rate is expected at low sampling frequen-
cies since too little data is collected to learn a model quickly.
However, our approach nonetheless performs better than the
random control input-based approach. This is because the in-
puts applied to the system are geared towards recovering the
feasibility of the robust safety filter (12), whereas random
inputs are not. We also observe that data efficiency is higher
at higher sampling, leading to less collected data. This is
because a higher sampling rate means that the elapsed time
between data collection and model update is smaller, i.e.,
the model captures the true system more faithfully imme-
diately after an update. This suggests that, if the maximal
permissible sampling frequency is low, then particular effort
should be put into updating the model as fast as possible.

8
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6. Related Work
6.1. Control Barrier Functions

CBFs have been studied extensively in settings with per-
fectly known dynamics (Agrawal & Sreenath, 2017; Ames
et al., 2017; Bansal et al., 2017; Wabersich & Zeilinger,
2018; Zeng et al., 2021). However, the setting where a
known CBF is used to guide data collection when dynam-
ics are unknown is an ongoing research question that has
recently garnered increased attention. In (Choi et al., 2020;
Taylor et al., 2020), the authors employ a neural network to
learn the residual dynamics in a reinforcement learning set-
ting. The safety of the learned policy is enforced by includ-
ing a CBF constraint during training. An event-triggered
approach for improving the learned dynamics model is pro-
posed in (Lederer et al., 2024), where a CBF and the system
structure are leveraged to guarantee safety.

6.2. Safe Exploration with Gaussian Processes

Gaussian processes have been used extensively in the con-
text of safe control and exploration. The work of (Sukhija
et al., 2023) leverages contextual bandits to safely tune
a parametric controller. By formulating an upper confi-
dence bound for the safety function, the method switches
to safe parameters whenever the boundary of the safe set
is reached. The works of Prajapat et al. (2022); Sui et al.
(2015); Turchetta et al. (2016); Wachi & Sui (2020) con-
sider exploration with finite state spaces, known dynamics,
and unknown functions specifying safe state-action pairs.
A lower confidence bound of the safety constraints ensures
safe actions, whereas an upper confidence bound for the
reward drives exploration. A significant difference between
our method and those described above is that they explore
safe states to expand the safe set and maximize return,
whereas exploration in our approach is driven by the need to
ensure safety. The methods of (Hewing et al., 2019; Koller
et al., 2018) use a GP to formulate safety constraints over a
finite horizon for a model predictive control algorithm.

7. Conclusion
We have presented a learning-based control approach for
exploring on the fly to guarantee safety. Using a Gaussian
process model, we have formulated a robust safety filter that
guarantees safe inputs whenever feasible. Whenever infea-
sibility occurs we revert to a bandit exploration algorithm
that is geared toward ensuring that feasibility is recovered
before exiting the safe set. We show that if the sampling rate
is chosen high enough, we can provably ensure safety with
high probability. In future, we aim to apply the proposed
approach to real-life and other complex systems.
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A. Full Description of Numerical Experiments
A.1. Cruise Control

In the following, we omit physical dimensions when describing the system model. The state space model of the cruise
control is given by ẋ = f(x) + g(x)u, with state-dependent functions

f(x) =

[
− 1

m (ζ0 + ζ1v + ζ2v
2)

v0 − v

]
, g(x) =

[
0
1
m

]
(18)

and state x = [v z]⊤, where z denotes the distance between the ego vehicle and the target vehicle in front, v denotes the ego
vehicle speed, m = 1650 its mass, and ζ0 = 0.2, ζ1 = 10, ζ2 = 0.5 are parameters that specify the rolling resistance.

A.2. Quadrotor

The quadrotor dynamics are specified by the functions

ṗ = v, v̇ = ggrez + ζ(pz)RezT, (19a)

Ṙ = R[ω]× (19b)

where p ∈ R3 is the global position, v ∈ R3 the global velocity, and R ∈ SO(3) the system orientation. The parameter
ggr = 9.81 denotes gravity, [ · ]× : R3 → R3×3 is the skew-symmetric mapping, and ez = [0 0 1]⊤ is the unit-z vector. The
function ζ : R+ → [0, 1] models ground effects and takes the quadrotor height pz as an input variable. It is computed as
Danjun et al. (2015)

ζ(pz) = 1− ρ

(
rrot

4pz

)2

, (20)

where ρ = 5 and rrot = 0.09 is the rotor radius.

The first CBF is h(x) = 10(pz − Tzvz), where Tz = 0.1. It is geared toward keeping altitude higher than zero. The second
CBF utilizes the differential flatness of the quadrotor to synthesize a viable safe set. In particular, we are concerned with
restricting the system to safe positions defined as the 0-superlevel set of hp(p) = r2 − ∥p∥2. We extend hp to include
velocities as he(p, v) = ḣp(p, v) + αhp(p) for some α > 0 to produce a relative degree-1 CBF for a double integrator
system as in Nguyen & Sreenath (2016). To include orientation we add a rotation term to produce a CBF for the drone,
h(p, v,R) = he(p, v) − λ(1 − 1

2r
∂h
∂pRez), with some λ ∈ (0, r2/2) which shrinks the safe set to ensure that the thrust

vector is pointing inwards whenever he(p, v) = 0.

B. Proof of Theorem 3.2
We prove Theorem 3.2 in two steps. First, we show that the control inputs are well-behaved and the closed-loop system is
safe if the robust CBF-SOCP (12) is strictly feasible. Afterward, we show that strict feasibility is always recovered before
exiting the safe set when using our exploration approach.

We begin by leveraging Assumptions 2.7 and 2.8 to obtain a bound on the model error, which is crucial to establish safety.

Lemma B.1. Let Assumptions 2.7 and 2.8 hold and let

βN ≜ max
i≤n

(
Bi + σi,ns

√
2 (γi,N + 1 + log (nδ−1))

)
.

Then, with probability at least 1− δ,

∥f(x∗) + g(x∗)u∗ − µ(x∗, u∗)∥2 ≤ βN

√
tr (ΣN (x∗, u∗))

holds for all x ∈ X , u ∈ U and all N ∈ N.
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Proof. By Capone & Hirche (2019, Lemma 1), with probability at least 1− δ,∣∣∣∣fi(x∗) +

m∑
j=1

gi,j(x
∗)u∗

j − µi,N (x∗, u∗)

∣∣∣∣ ≤ (
Bi + σi,ns

√
2 (γi,N + 1 + log (nδ−1))

)
σi,N (x∗, u∗)

holds for all i = 1, ..., n, all x ∈ X , u ∈ U , and all N ∈ N. We then have

∥f(x∗) + g(x∗)u∗ − µ(x∗, u∗)∥22 ≤
n∑

i=1

∣∣∣∣fi(x∗) +

m∑
j=1

gi,j(x
∗)u∗

j − µi,N (z∗)

∣∣∣∣2

≤
n∑

i=1

β2
i,Nσ2

i,N (z∗)

≤
n∑

i=1

β2
Nσ2

i,N (z∗)

=β2
N tr (ΣN (x∗, u∗)) .

Lemma B.1 allows us to bound the GP model error at any given point z∗ given any data with high probability. This plays a
crucial role in establishing robust system safety in the face of model uncertainty.

Safety under Strict Feasibility

We first demonstrate that when the robust safety filter (12) is strictly feasible, the control law πN,safe ensures the system
remains strictly within the safe set with high probability. Specifically, the control barrier function value of the closed-loop
system increases over time whenever α(h(x)) < ϵ

2 . To prove this statement formally, we first present some preliminary
results.

Lemma B.2. Let the robust safety filter (12) be strictly feasible for some x ∈ X . Then the policy πN,safe specified by the
safety filter (12) is Lipschitz continuous in a neighborhood of x.

Proof. The proof is identical to that of Castañeda et al. (2022, Lemma 6).

Lemma B.2 is important to guarantee that the trajectory resulting from applying πN,safe is unique and well-behaved, allowing
us to establish safety.

Lemma B.3. Let Assumptions 2.1, 2.3 and 2.6 to 2.8 hold. Then, with probability at least 1− δ, the following holds for all
x ∈ X , all u ∈ U , and all N ∈ N:

LCBN (x, u) ≤ ḣ(x, u) ≤ UCBN (x, u). (21)

Proof. We show the result only for the lower bound LCBN since the argument is identical for the upper bound UCBN . By
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Lemma B.1, with probability at least 1− δ,

ḣ(x, u) =
∂h

∂x
(x) (f(x) + g(x)u)

=
∂h

∂x
(x) (µN (x, u)) +

∂h

∂x
(x) (f(x) + g(x)u− µN (x, u))

≥∂h

∂x
(x) (µN (x, u))−

∥∥∥∥∂h∂x (x)
∥∥∥∥
2

∥(f(x) + g(x)u− µN (x, u))∥2

≥∂h

∂x
(x) (µN (x, u))−

∥∥∥∥∂h∂x (x)
∥∥∥∥
2

βN

√
tr (ΣN (x, u)) +

ϵ

2

≥∂h

∂x
(x) (µN (x, u))− LhβN

√
tr (ΣN (x, u))

=LCBN (x, u).

holds for all x ∈ X , all u ∈ U , and all N ∈ N.

We additionally require the following result, which is a direct consequence of a classical result on CBFs (Ames et al., 2017,
Theorem 1).

Lemma B.4. For some τmax ∈ R ∪∞, let x̃(t), t ∈ [0, τmax), be the unique and well-defined solution to the differential
equation

˙̃x = f̃(x̃), x̃ ∈ X , x̃(0) = x̃0 (22)

where f̃ is Lipschitz continuous around a neighborhood of x̃(t) for all t ∈ [0, τmax). If h(x̃(0)) > 0 and

∂h

∂x̃
(x̃(t))f̃(x̃(t)) ≥ −α(h(x̃(t))) +

ϵ

2
(23)

holds for all t ∈ [0, τmax), then α(h(x̃(t))) > 0 for all t ∈ [0, τmax).

Proof. The proof is identical to that of Ames et al. (2017, Theorem 1). Note that, although Ames et al. (2017, Theorem
1) requires f̃ to be locally Lipschitz continuous in X and (23) to hold for any state in X , these properties are only used to
generalize the result to all solutions of (22) with arbitrary x̃(0) ∈ X , which we do not require in this case.

We now show that finite-time trajectories obtained with the controller πN,safe are always strictly within the safe set, provided
that the safety filter (12) is strictly feasible.

Lemma B.5. Let Assumptions 2.1, 2.3 and 2.6 to 2.8 hold. For all N ∈ N, define

XN =

{
x ∈ X

∣∣∣ max
u∈U

LCBN (x, u) > −α (h(x)) +
ϵ

2

}
and the dynamical system

ẋN = f(xN ) + g(xN )πsafe,N (xN ), t ∈ [tN +∆t, tN+1), (24)

specified within the time interval [tN +∆t, tN+1), where the initial condition satisfies xN (tN +∆t) ∈ XN , tN+1 is given
by

tN+1 ≜ inf

{
t ≥ tN +∆t

∣∣∣∣∣ max
u∈U

LCBN (x, u) = −α(h(x)) +
ϵ

2

}
, (25)

and α(h(xN (tN +∆t))) > 0, and πsafe,N is given by (12). Then, if XN is non-empty, (24) has a unique solution xN (t).
Furthermore, with probability at least 1− δ, the trajectories xN (t) satisfy the following conditions for all N ∈ N:
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(i) xN (t) ∈ C for t ∈ [tN +∆t, tN+1).

(ii) If α
(
h(xN (t̂))

)
< ϵ

2 for any t̂ ∈ [tN +∆t, tN ), then α (h(xN (t))) > α
(
h(xN (t̂))

)
for all t ∈ (t̂, tN ).

(iii) If α
(
h(xN (t̂))

)
≤ ϵ

2 for any t̂ ∈ [tN +∆t, tN ], then α (h(xN (t))) ≥ α
(
h(xN (t̂))

)
for all t ∈ [t̂, tN ].

Proof. We begin by showing condition (i), then show (ii) and (iii).

(i) Due to the definition of XN , the safety filter (12) is strictly feasible for all x ∈ XN . Furthermore, the definition of tN+1

implies that a candidate solution xN (t) satisfies xN (t) ∈ XN for all t ∈ [tN +∆t, tN+1). Moreover, πN,safe is well-defined
and strictly feasible in XN . By Lemma B.2, πN,safe is Lipschitz continuous around a neighborhood of any x ∈ XN . Since
f and g are locally Lipschitz continuous, this implies that f(x) + g(x)πN,safe(x) is locally Lipschitz continuous in XN .
Hence, by the Picard-Lindelöf Theorem, (24) has a unique solution xN (t). Since XN is bounded and xN (t) ∈ XN for all
t ∈ [tN +∆t, tN+1), xN (t) is also well-defined for all t ∈ [tN +∆t, tN+1). Moreover, due to the definition of πN,safe,
Lemma B.3 implies that, with probability at least 1− δ,

∂h

∂x
(xN ) (f(xN ) + g(xN )πN,safe(xN )) ≥ −α(h(xN )) +

ϵ

2

holds for all N and all xN ∈ XN . By Lemma B.4, xN (t) ∈ C holds for all t ∈ [tN + ∆t, tN+1) and all N ∈ N with
probability at least 1− δ.

(ii) The following holds with probability at least 1 − δ: For all xN (t) and all N ∈ N, if α(h(xN (t′)) < ϵ
2 for any

t′ ∈ [tN +∆t, tN+1), then, by Lemma B.3 and the definition of πsafe,N :

ḣ(x, πsafe,N (xN (t′))) ≥ −α (h(x(t′))) +
ϵ

2
> − ϵ

2
+

ϵ

2
= 0

Due to continuity with respect to time, this means there exists an instance in time tc ∈ (t′, tN+1) and an ε̃ > 0, such
that ḣ(xN (t), πsafe,N (xN (t))) > ε̃ holds for all t ∈ (t′, tc]. By the Comparison Lemma (Khalil, 1996), h(xN (t)) >
h(xN (t′)) + ε̃(tc − t′) > h(xN (t′)) for all t ∈ (t′, tc]. By the same argument, h(xN (t)) is strictly increasing in t whenever
h(xN (t′)) < h(xN (t)) < ϵ

2 , hence h(xN (t)) > h(xN (t′)) for all t ∈ (tc, tN ]. Since α is strictly increasing, this implies
the desired result.

(iii) The proof is identical to that of (ii), except that the strict inequality is replaced by a non-strict one.

A consequence of Lemma B.5 is that safety is guaranteed if infeasibility never occurs within the safe set:

Corollary B.6. Let Assumptions 2.3, 2.4 and 2.6 to 2.8 hold. With probability 1− δ, if

max
u∈U

LCBN (x, u) > −α(h(x)) +
ϵ

2
, ∀ x ∈ C (26)

holds for any N ∈ N, πsafe,N (x) is well-defined for all x ∈ C. Furthermore, tN+1 = ∞ and the closed-loop system

ẋN = f(xN ) + g(xN )πN,safe(xN ), t ∈ [tN +∆N,∞),

is safe.

Proof. Due to the definition of πsafe,N , (26) directly implies that its feasible region is non-empty, i.e., πsafe,N is well-defined,
for all x ∈ C. We now show that tN+1 = ∞ by contradiction. Hence, suppose tN+1 < ∞ holds. By Item (ii) in Lemma B.5,
the trajectory xN (t) stays strictly in the interior of C for t ∈ [tN + ∆N, tN+1). Due to continuity with respect to time,
xN (tN+1) = limt→tN+1

xN (t) ∈ C. Recall that tN+1 denotes the earliest instance when the CBF-SOCP specifying
πsafe,N is no longer strictly feasible. Since xN (t) ∈ C and πsafe,N is strictly feasible in C, this is a contradiction, meaning
tN+1 = ∞.

Recovering Feasibility Through Bandit Exploration

We now analyze the effect of data collected under Algorithm 1 on the feasibility of the safety filter. Specifically, we
demonstrate that by gathering enough data before exiting the safe set C, strict feasibility is ensured anywhere in C. To
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achieve this, we will need the following preliminary results, which bound the growth of the cumulative worst-case model
error.

Lemma B.7. The posterior variance satisfies

N∑
q=1

σ2
i,q

(
z(q−1)

)
≤ 2

log
(
1 + σ−2

i,ns

)γi,N (27)

for all N , all i and all z(1), ..., z(N) ∈ X̃ .

Proof. Employing the same argument as in the proof of Srinivas et al. (2012, Lemma 5.4), we get

σ2
i,q

(
z(q)

)
≤ 1

log
(
1 + σ−2

i,ns

) log (1 + σ−2
i,nsσ

2
i,q

(
z(q)

))
.

The result then follows from Srinivas et al. (2012, Lemma 5.3).

Lemma B.8. For all N , the posterior covariance matrices satisfy

N∑
q=1

tr
(
ΣN (x(N), u(N))

)
≤

n∑
i=1

2

log
(
1 + σ−2

i,ns

)γi,N . (28)

Proof. By Lemma B.7,

N∑
q=1

tr
(
ΣN (x(N), u(N))

)
=

N∑
q=1

n∑
i=1

σ2
i,N

(
z(N−1)

)
≤

n∑
i=1

2

log
(
1 + σ−2

i,ns

)γi,N .

Lemma B.8 bounds the growth of the posterior covariance matrices.

We now show that strict feasibility in C is recovered after collecting at most ∆Nmax data points.

Lemma B.9. Let Assumptions 2.3, 2.4 and 2.6 to 2.8 hold. The following holds with probability at least 1−δ: If Algorithm 1
collects ∆Nmax − 1 measurements in C, where ∆Nmax satisfies

∆Nmax >
32β2

∆Nmax
L2
h

ϵ2 log
(
1 + σ−2

i,ns

) n∑
i=1

γi,∆Nmax

then the safety filter is strictly feasible everywhere in C.

Proof. We employ a proof by contradiction. Hence, assume that after ∆Nmax − 1 observations have been collected, there
exists an xc ∈ C, such that

max
u∈U

LCB∆Nmax(x
c, u) ≤ −α(h(xc)) +

ϵ

2
. (29)

In the following, we set

x(∆Nmax) ≜ xc,

u(∆Nmax) ≜ argmax
u∈U

LCB∆Nmax(x
c, u).
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Recall that Algorithm 1 only collects observations x(N),u(N) if (12) is not strictly feasible, i.e.,

LCBN

(
x(N), u(N)

)
≤ max

u∈U
LCBN

(
x(N), u

)
≤− α

(
h(x(N))

)
+

ϵ

2

for all u ∈ U . Furthermore, due to Lemma B.3, with probability at least 1− δ,

sup
u∈U

ḣ
(
x(N), u

)
≤ max

u∈U
UCBN

(
x(N), u

)
=UCBN

(
x(N), u(N)

)
,

holds for all u ∈ U and all N ∈ N. By employing the identity

LCBN (x, u)− UCBN (x, u) = −2LhβN

√
tr (ΣN (x, u)),

we then obtain, with probability at least 1− δ, for all N ∈ N:

−α(h(x(N))) +
ϵ

2
≥LCBN

(
x(N), u(N)

)
≥LCBN

(
x(N), u(N)

)
+ sup

u∈U
ḣ(x(N), u)− UCBN

(
x(N), u(N)

)
= sup

u∈U
ḣ(x(N), u)− 2LhβN

√
tr
(
ΣN (x(N), u(N))

)
≥− α(h(x(N))) + ϵ− 2LhβN

√
tr
(
ΣN (x(N), u(N))

)
,

where the last inequality is due to Assumption 2.6. Hence, with probability at least 1− δ,

2LhβN

√
tr
(
ΣN

(
x(N), u(N)

))
≥ ϵ

2
, ∀ N ∈ N.

By squaring and summing up from N = 1 to ∆Nmax, then employing Lemma B.8 and (29), we get

∆Nmax

( ϵ

2

)2

=

∆Nmax∑
N=1

( ϵ

2

)2

≤
∆Nmax∑
N=1

(
2LhβN

√
tr
(
ΣN (x(N), u(N))

))2

≤β2
∆Nmax

4L2
h

∆Nmax∑
N=N0

tr
(
ΣN (x(N), u(N))

)
≤β2

∆Nmax
4L2

h

n∑
i=1

2

log
(
1 + σ−2

i,ns

)γi,∆Nmax .

This implies

∆Nmax ≤
32β2

∆Nmax
L2
h

ϵ2 log
(
1 + σ−2

i,ns

) n∑
i=1

γi,∆Nmax ,

which is a contradiction. Hence, the safety filter is strictly feasible in all of C.

Next, we analyze the amount of data collected under Algorithm 1 before potentially exiting the safe set C. Specifically, we
show that the closed-loop system under Algorithm 1 collects at least ∆Nmax data points before exiting the safe set. To do so,
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we will require the following result:

Lemma B.10. Let Assumptions 2.1, 2.3, 2.4 and 2.6 to 2.8 hold. Then, with probability at least 1 − δ: consider the
closed-loop system (2) and assume there exists a time interval [t′, t′′] with t′ < t′′, such that

α(h(x(t′)) ≤ ϵ

2
,

α(h(x(t)) <α(h(x(t′)), ∀ t ∈ (t′, t′′],
(30)

and let

tN ′ = max
N∈N

tN , s.t. tN ≤ t′ (31)

denote the last time instance when data is collected up until t′. Then, the safety filter is not strictly feasible at times t′ and
tN , and

|α(h(x(tN )))− α(h(x(t′)))| < LαLhLẋ∆t

holds, where ∆t is the sampling frequency used by Algorithm 1.

Proof. We begin by showing that the safety filter is not strictly feasible at time t′ by contradiction. Hence, assume that the
safety filter is strictly feasible at t′. Since α(h(x(t′))) ≤ ϵ

2 , by Item (iii) in Lemma B.5, α(h(x(t))) ≥ ϵ
2 holds for some

t ∈ (t′, t′′]. This contradicts (30).

We now show that strict feasibility does not hold at tN ′ by contradiction. Hence, assume strict feasibility holds at tN ′ . Due
to the definition of tN ′ (31), a new data point is not collected until strictly after t′. This implies strict feasibility at time t′,
which is a contradiction.

Since the safety filter is not strictly feasible at time tN ′ , and tN ′ is the last time instance when data is collected before t′,
from the sampling frequency ∆t, we have

∆t = tN ′+1 − tN ′ > t′ − tN ′ .

The result then follows from the Lipschitz continuity of α, x and h.

We now show that if the closed-loop system ever exits the safe set, it must collect at least ∆Nmax data points before doing so.

Lemma B.11. Let Assumptions 2.1, 2.3, 2.4 and 2.6 to 2.8 hold and let x(0) be strictly within the safe set, such that
α(h(x(0))) ≥ ϵ. Then the following holds with probability at least 1− δ: if the closed-loop system under Algorithm 1 ever
exits the safe set C, then it collects at least ∆Nmax data points before doing so.

Proof. Assume that the closed-loop trajectory x(t) reaches the boundary of the safe set C at some time texit before exiting it:

texit = sup
{
t̂ ≥ 0

∣∣ α(h(x(t)) ≥ 0 ∀ t ∈ [0, t̂]
}
. (32)

Due to the continuity of x, α and h, and α(h(x(0))) ≥ ϵ, there exists a time t ϵ
2
< texit, such that

t ϵ
2
= sup

{
t̂ ≥ 0

∣∣∣ α(h(x(t̂)) = ϵ

2
, α(h(x(t)) <

ϵ

2
, ∀ t ∈ (t̂, texit]

}
. (33)

Let N ϵ
2

and Nexit denote the number of collected observations at time t ϵ
2

and texit, respectively:

N ϵ
2
= argmax

N∈N
tN , s.t. tN ≤ t ϵ

2

Nexit = argmax
N∈N

tN , s.t. tN ≤ texit.
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Then, with probability at least 1− δ: Due to Lemma B.10, we have

|α(h(x(tN ϵ
2
)))− α(h(x(t ϵ

2
)))| ≤ LαLhLẋ∆t (34)

|α(h(x(tNexit)))− α(h(x(texit)))| ≤ LαLhLẋ∆t. (35)

We now analyze the growth of α(h(x(t))) between t = tN and t = tN+1. We separately analyze the case where the
safety filter is strictly feasible and the case where it is not. If the safety filter is not strictly feasible at time tN−1, due to
Assumption 2.1 and the sampling frequency ∆t, the CBF changes between tN−1 and tN at most by

|α(h(x(tN )))− α(h(x(tN−1)))|
≤LẋLαLh|tN − tN−1|
≤LẋLαLh∆t.

(36)

By Item (iii) in Lemma B.5, if the safety filter is strictly feasible at time tN−1 and α(h(x(tN−1))) ≤ ϵ
2 , then α(h(x(tN ))) ≥

α(h(x(tN−1)). Hence, for all tN−1 ∈ [t ϵ
2
, texit], whether the safety filter is feasible or not,

α(h(x(tN−1))− α(h(x(tN ))) ≤ LẋLαLh∆t (37)

holds. We then have

ϵ

2
=α(h(x(t ϵ

2
))− α(h(x(texit))

=α(h(x(t ϵ
2
))− α(h(x(texit)) + α(h(x(tNexit))− α(h(x(tN ϵ

2
))− α(h(x(tNexit)) + α(h(x(tN ϵ

2
))

≤α(h(x(tN ϵ
2
))− α(h(x(tNexit)) + 2LαLhLẋ∆t

=

Nexit∑
N=N ϵ

2
+1

α(h(x(tN−1)))− α(h(x(tN ))) + 2LαLhLẋ∆t

≤(Nexit −N ϵ
2
− 1)LαLhLẋ∆t+ 2LαLhLẋ∆t

=(Nexit + 1−N ϵ
2
)LαLhLẋ∆t,

where the first inequality is due to (34), and the second inequality is due to (37). This implies

Nexit −N ϵ
2
+ 1 ≥ ϵ

2LαLhLẋ∆t
> ∆Nmax,

where the last equality follows from the sampling frequency specification (16). Since Nexit, N ϵ
2

and ∆Nmax are integers,
this implies that the amount of collected data satisfies Nexit −N ϵ

2
≥ ∆Nmax.

We now put everything together and prove Theorem 3.2.

Proof of Theorem 3.2. By Lemma B.11, Algorithm 1 collects at least ∆Nmax observations before ever exiting the safe set
C. Lemma B.9 states that the safety filter is strictly feasible within all of C after collecting at most ∆Nmax observations.
Together with Corollary B.6 this implies that, with probability at least 1− δ, the closed-loop system is safe and Algorithm 1
collects at most ∆Nmax observations.

C. Kernel-Dependent Bounds for ∆Nmax

Theorem 3.2 specifies that

∆Nmax >
32β2

∆Nmax
L2
h

ϵ2 log
(
1 + σ−2

i,ns

) n∑
i=1

γi,∆Nmax (38)
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is a sufficient condition to guarantee safety. We now analyze how the right-hand side term behaves for different kernels. We
begin by analyzing how the maximal information gain γi,N depends on the maximal information gain of the kernels kfi and
kgi,j used to model f and g.

Lemma C.1. Let ki be given as in (6), and let γfi,N and γgi,j ,N denote the maximal information gain after N rounds of
data collection under the kernels kfi and kgi,j , respectively. Then

γi,N ≤ γfi,N +

m∑
j=1

γgi,j ,N + 3m log(N) (39)

Proof. The proof follows directly the definition of the composite kernel ki, Krause & Ong (2011, Theorem 2) and Krause &
Ong (2011, Theorem 3).

We now dissect the right-hand side of (40). Define γ∆Nmax ≜ maxi≤n γi,∆Nmax and B ≜ maxi≤n Bi. From the definition of
β∆Nmax , it follows that

β2
∆Nmax

n∑
i=1

γi,∆Nmax ≤ β2
∆Nmax

nγ∆Nmax

=nγ∆NmaxB
2 + nγ∆Nmax2Bσi,ns

√
2 (γ∆Nmax + 1 + log (nδ−1)) + nγ∆Nmaxσ

2
i,ns2

(
γ∆Nmax + 1 + log (nδ−1)

)
≤C1(B, σi,ns, n)γ∆Nmax + C 3

2
(B, σi,ns, n)γ

3
2

∆Nmax
+ C2(B, σi,ns, n)γ

2
∆Nmax

≤
(
C1(B, σi,ns, n) + C 3

2
(B, σi,ns, n) + C2(B, σi,ns, n)

)
max{γ2

∆Nmax
, 1}

≤
(
C1(B, σi,ns, n) + C 3

2
(B, σi,ns, n) + C2(B, σi,ns, n)

)
(γ2

∆Nmax
+ 1),

where

C1(B, σi,ns, n) = nB2 + n2Bσi,ns
√

2 (1 + log (nδ−1)) + nσ2
i,ns2

(
1 + log (nδ−1)

)
C 3

2
(B, σi,ns, n) = n2Bσi,ns

√
2

C2(B, σi,ns, n) = 2nσ2
i,ns.

For most commonly used kernels, the growth rate of the maximal information gain is of the form O(Nω log(N)), where
0 ≤ ω < 1 (Srinivas et al., 2012). Hence, using Lemma C.1, we can bound γN as γN ≤ CγN

ω(log(N))θ for some positive
Cγ , ω and θ, and N large enough. Using an estimate of this type, we can compute a (potentially crude) upper bound for the
right-hand side of (40) as

32β2
∆Nmax

L2
h

ϵ2 log
(
1 + σ−2

i,ns

) n∑
i=1

γi,∆Nmax ≤ C(B, σi,ns, n)
(
Cγ∆N2ω

max(log(N))θ + 1
)
≤ C̃(B, σi,ns, n)∆N2ω

max(log(N))2θ (40)

where C and C̃ are appropriate constants. This yields the sufficient condition for choosing ∆Nmax

∆Nmax ≥
(
C̃(B, σi,ns, n)(log(∆Nmax))

2θ
) 1

1−2ω

, (41)

which can easily be solved using numerical methods. For squared-exponential kernels, ω = 0 and θ = n. For linear kernels,
ω = 0 and θ = 1, whereas for Matérn kernels, θ = 0 and ω depends on its smoothness parameter (Srinivas et al., 2012).

20


