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Abstract
SGD performs worse than Adam by a significant margin on Transformers, but the
reason remains unclear. In this work, we provide an explanation through the lens
of Hessian: (i) Transformers are “heterogeneous”: the Hessian spectrum across
parameter blocks vary dramatically, a phenomenon we call “block heterogeneity";
(ii) Heterogeneity hampers SGD: SGD performs worse than Adam on problems
with block heterogeneity. To validate (i) and (ii), we check various Transformers,
CNNs, MLPs, and quadratic problems, and find that SGD can perform on par
with Adam on problems without block heterogeneity, but performs worse than
Adam when the heterogeneity exists. Our initial theoretical analysis indicates
that SGD performs worse because it applies one single learning rate to all blocks,
which cannot handle the heterogeneity among blocks. This limitation could be
ameliorated if we use coordinate-wise learning rates, as designed in Adam.1

1 Introduction
Transformers [83] have become a major workhorse behind AI development (e.g., [1]). However, the
understanding of Transformer training remains limited. For instance, Transformer training largely
relies on the Adam optimizer [45, 57]. In contrast, stochastic gradient descent with momentum
(SGD)2, the de-facto optimizer for convolution neural networks (CNNs) [49], performs significantly
worse than Adam on Transformers (e.g., Figure 3). Yet, the reasons behind this performance gap
remain unclear. Understanding why SGD performs worse than Adam on Transformers is an intriguing
question. First, from a theoretical perspective, this can help us better understand the training of
Transformers and more generally, neural networks. Second, from a computational perspective, the
understanding may inspire the design of better algorithms for training neural networks.

In this work, we explore why SGD largely underperforms Adam on Transformers through the lens of
Hessian. We start by investigating the full Hessian spectrum of Transformers, i.e., the full eigenvalue
density of Hessian (see Figure 1). By theory, the full Hessian spectrum largely determines the
behavior of gradient-based methods [63, 33, 79, 37], so we suspect it may also help explain SGD’s
unsatisfactory performance. Using tools from numerical linear algebra [7], we empirically compare
the full spectra of CNNs (where SGD is on par with Adam) and those of Transformers (where
SGD largely lags behind Adam). Unfortunately, as shown in Figure 1, the spectra for CNNs and
Transformers are often largely similar despite the different optimizer behaviors. As such, we have not
identified critical features in the full Hessian spectra associated with the gap between Adam and SGD
on Transformers. To reveal the cause, a more fine-grained investigation into the Hessian is needed.

∗: Correspondence author.
1Our code is available at https://github.com/zyushun/hessian-spectrum.
2We introduce the update rules of Adam(W) and SGD in Appendix C.1.
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Figure 1: The full Hessian spectra of CNNs (VGG16 and ResNet18) and Transformers (GPT2,
GPT2-nano, and ViT-base) at different training stages. The x-axis records the eigenvalues and the
y-axis records the frequency in the log scale. To allow comparison in the same figure, the plotted
spectra are normalized by their 10th largest eigenvalues. We find that the spectra on CNNs and
Transformers are largely similar.

What would cause SGD to perform significantly worse than Adam on Transformers, but not on CNNs?
By dissecting the structures of CNNs and Transformers, we notice that CNNs are constructed by the
repetitive stacking of similar parameter blocks (convolution layers), while Transformers involve the
non-sequential stacking of disparate parameter blocks (e.g. Query, Key, Value, Output projection
blocks in attention and MLP layers). We hypothesize that these architectural differences might lead
to different optimization properties. Intuitively, disparate parameter blocks contribute differently to
the overall loss. So each block might benefit from a specialized treatment by optimizers, a flexibility
offered by Adam but not by SGD. This observation motivates us to investigate the Hessian spectrum
of each parameter block, which we refer to as the blockwise Hessian spectrum.

By inspecting the blockwise Hessian spectrum, we discover a possible explanation for why SGD
is worse: the “heterogeneity” inherent in Transformers. We provide both empirical and theoretical
evidence to support this explanation. Our contributions can be summarized as follows:
• Why SGD underperforms Adam on Transformers. We explain why SGD is worse than Adam

on Transformers by examining the blockwise Hessian spectrum. First, we identify a phenomenon
called “block heterogeneity", which refers to the large differences in the Hessian spectra across
parameter blocks. This block heterogeneity is observed in all examined Transformers but not in
CNNs. Second, we verify that block heterogeneity hinders SGD. Across various Transformers,
CNNs, and MLPs, we show that SGD consistently performs worse than Adam on problems with
block heterogeneity but can perform similarly to Adam, otherwise.

• Theoretical results on quadratic models. We construct convex quadratic problems with and
without block heterogeneity and find that gradient descent (GD) largely underperforms Adam on
problems with block heterogeneity, but can perform comparably otherwise. Our theoretical analysis
shows that GD can be slower than Adam on quadratic problems with block heterogeneity. We point
out GD is slower than Adam because it uses a single learning rate for all blocks. The deficiency
can be mitigated by assigning different learning rates across blocks, as Adam does.

We emphasize that we do not claim block heterogeneity is the only cause for the performance gap
between Adam and SGD, but just that it is at least one important cause. We verify, both empirically
and theoretically, that SGD underperforms Adam when block heterogeneity is present.

2 Problem Settings and Initial Attempts
2.1 Problem Settings
Notations. We denote the training loss as L(w), where w ∈ Rd is the neural network parameters. We
denote the gradient and Hessian of the training loss w.r.t. neural network parameters as ∇L(w) ∈ Rd

and ∇2L(w) ∈ Rd×d, respectively. We use [d] to denote the index set {1, 2, · · · , d}. Given an
arbitrary partition {Dl}Ll=1 over [d] with dl ≜ |Dl|, we can split w into L parameter blocks {wl}Ll=1,
where wl = Rdl consists of parameters with indexes in the l-th block Dl. We denote [∇2L(w)]l ∈
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Rdl×dl as the Hessian of l-th parameter-block wl, where [∇2L(w)]l,i,j = ∂2

∂wl,i
∂wl,j

L(wl). Note that

[∇2L(w)]l is the l-th principal block sub-matrix of ∇2L(w).
Setups. Hessian of large-scale NNs are intractable to compute and store. In this work, we apply a
numerical tool called Stochastic Lanczos Quadrature method (SLQ) [7] to approximate the Hessian
spectrum. SLQ uses a smooth curve on R to approximate the histograms of eigenvalues (see Figure 1
as an example). A detailed introduction to SLQ is provided in Appendix C.2. All experimental setups
are shown in Appendix D. We focus primarily on the following models/tasks.

• CNNs. We study ResNet18 (11M) and VGG16 (138M) on ImageNet [40, 78]. On these tasks,
SGD performs on par with Adam. See Figure 9 in Appendix B for the evidence.

• Transformers. We study Transformer with various scales and modalities, including GPT2 (125M)
on OpenWebText [71]; ViT-base (86M) on ImageNet [27]; BERT (40M) on Cornell Movie-Dialogs
Corpus [25]; GPT2-nano3 (11M) on English corpus. On these tasks, SGD performs significantly
worse than Adam. See Figure 10 in Appendix B for the evidence.

For each model, we estimated (1) the full Hessian spectrum ∇2L(w), and (2) the blockwise Hessian
spectrum [∇2L(w)]l, l ∈ [L]. For the latter, we split w according to the default partition in PyTorch
implementation, e.g., Embedding layer, Query in each attention layer, Key in each attention layer,
Value in each attention layer, etc. Note that the term “block" differs from the term “layer". For
instance, Query and Key can reside in the same layer but are different parameter blocks.

2.2 Full Hessian Spectrum Is Not Informative Enough
We study the full Hessian spectrum of Transformers for two reasons. First, as stated in Section 1, the
Hessian spectrum significantly influences the behavior of gradient methods [63]. Second, previous
research shows that the Hessian spectrum provides insights into neural network phenomena, like
BatchNorm’s effect on training speed [32]. Therefore, we hypothesize that the Hessian spectrum may
also explain why SGD largely lags behind Adam on Transformers.

We compare the full Hessian spectra of CNNs (where SGD performs similarly to Adam) and those of
Transformers (where SGD underperforms Adam), as shown in Figure 1. Unfortunately, the results
suggest that the full Hessian spectrum alone may not suffice to explain the gap between Adam and
SGD on Transformers. We elaborate as follows. The primary information in the spectrum lies in
its (A) dispersion, (B) shape, and (C) evolution during training. Regarding (A), we observe that
the eigenvalues are dispersed similarly across different models, with no notably large outlier for
Transformers. Thus, dispersion does not seem to be related to why SGD is worse than Adam. We
further investigate (B) and (C). For all CNNs and Transformers in Figure 1, we observe similar
phenomena: the spectrum’s shape is approximately symmetrical around 0 at initialization. As training
proceeds, the majority of negative eigenvalues disappear, and the shape evolves into a combination
of a “bulk” and some “outliers”. Since the spectral shape and evolution are quite similar for both
Transformers and CNNs, they cannot explain why SGD is worse than Adam on Transformers, either.
In summary, we have not identified any critical phenomena in the full Hessian spectra that can be
linked to the performance gap between Adam and SGD on Transformers.

2.3 Motivations of Investigating Blockwise Hessian Spectra
What other factors could cause SGD to perform significantly worse than Adam on Transformers but
not on CNNs? We identify one critical feature that has been overlooked in the full Hessian spectrum
analysis above: the building-up rules of Transformers. As shown in Figure 3, CNNs are constructed
by the repetitive stacking of similar parameter blocks (convolution layers). In contrast, Transformers
consist of disparate parameter blocks, e.g. Query, Key, Value in attention, and MLP layers. Further,
these blocks are stacked in a non-sequential manner. We hypothesize that the “different designs
among parameter blocks" can be reflected in the Hessian of these parameter blocks, which might
affect algorithmic behavior. This inspires us to investigate the blockwise Hessian spectra, i.e., the
spectrum of principal blocks of Hessian [∇2L(w)]l, l ∈ [L].

In parallel to the motivation above, we further provide another evidence that blockwise spectra might
be helpful. Classical literature showed that the Hessians of neural nets are near-block-diagonal
matrices [18], i.e., the magnitudes in the Hessian principle blocks are much larger than those in
the off-diagonal blocks. We restate their findings in Figure 2 (a). This implies that the majority of

3https://github.com/karpathy/nanoGPT/
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(a) Hessian of an MLP
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Figure 2: (a): The Hessian of an MLP after 1 training step reported in [18]. (b,c,d): We calculate the
Hessians of an MLP (with 8 neurons) at different training stages. We find the near-block-diagonal
structure maintains along the training.

Hessian information indeed lies in its principle blocks, and the blockwise Hessian of neural nets
might contain valuable information.

To summarize, the “heterogeneous" building-up rules of Transformers inspire us to check the block-
wise Hessian, i.e., the principle blocks of the Hessian. The classical results of neural nets [18]
further support us to explore this direction since they find that the majority of Hessian information
indeed lies in its principle blocks. In the following, we study the blockwise Hessian spectra of
various neural networks. For ease of implementation, we define parameter blocks under the PyTorch
partition. We show that the blockwise spectra indeed carry more information than the full spectrum
for distinguishing CNNs and Transformers.

Remark: why near-block-diagonal? We briefly restate the analysis in [18, Section 7] to explain the
near-block-diagonal Hessian structure of neural nets. Consider minimizing ℓ(f(θ, x), y) where ℓ(·, ·)
is the Cross-Entropy (CE) loss, f(θ, x) =

∑n
i=1 viϕ(w

⊤
i x) is an 1-hidden-layer neural network with

input x ∈ Rd, weight wi ∈ Rd, vi ∈ R, and label y ∈ {0, 1}, then the off-diagonal-block Hessian
elements will contain

∂2ℓ(f(θ, x), y)

∂wi∂wj
= pθ(y|x) (1− pθ(y|x))vivjϕ′

(
w⊤

i x
)
ϕ′
(
w⊤

j x
)
xx⊤ for i ̸= j, (1)

where pθ(y|x) = 1/(1 + exp(−yf(θ, x))) and ϕ′(·) is the derivative of ϕ(·). Note that the term
pθ(y|x) (1− pθ(y|x)) will vanish rapidly since the training objective is to maximize pθ(y|x). Con-
sequently, this drives the Hessian towards a near-block-diagonal configuration, with each block
representing an output neuron. This result is validated in Figure 2: we find that the near-block-
diagonal structure appears at 1% step and it maintains along the training.

3 Main Results
3.1 Transformers Exhibit Block Heterogeneity in Hessian, while CNNs Do Not
We now compare the shape of blockwise spectra in VGG16 [40] (CNN) and BERT [25] (Transformer).
We sample four blocks for each model and present the spectra in Figure 3. In BERT, the spectra of
embedding, attention, and MLP blocks are largely different. In contrast, in ResNet, the spectra of
convolution layers are similar. We further verify this observation for the rest of the parameter blocks.
We calculate the Jensen-Shannon (JS) distance between two eigenvalue densities of all possible block
pairs and show the results in Figure 4. We summarize our findings in Observation 1.

(a) VGG16
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Figure 3: (a) (c): The blockwise Hessian spectra of VGG16 (CNN) and BERT (Transformer) at
initialization. The x-axis records the eigenvalues and the y-axis records the frequency in the log scale.
To allow comparison in the same figure, we sample 4 blocks in each model. The plotted spectra are
normalized by their 10th largest eigenvalues. The spectra are similar among blocks for VGG and
differ significantly across blocks for BERT. (b) (d) Adam v.s. SGD for training VGG16 and BERT.
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Figure 4: The JS distance among blockwise Hessian spectra at initialization. We find that the JS
distance of blockwise spectra in CNNs is significantly smaller than that in Transformers.

Observation 1: For all Transformers we checked, the blockwise Hessian spectra are largely different
from each other. In contrast, the blockwise Hessian spectra of CNNs are similar.

In the following, we refer to the phenomenon of Transformers as “block heterogeneity", and refer
to that of CNN as “block homogeneity". The observations in Figure 3 and 4 indicate that block
heterogeneity is informative in distinguishing CNNs and Transformers. In the following, we will
show that the block heterogeneity is strongly correlated with the performance gap between SGD and
Adam on Transformers.

3.2 SGD Performs Worse than Adam on Various Tasks with Block Heterogeneity
Figure 3 and 4 have shown that (1) SGD is worse than Adam on Transformers. (2) Transformers have
block heterogeneity. Now we further link block heterogeneity to SGD’s unsatisfactory performance on
non-Transformer models. This would directly establish a connection between “block heterogeneity"
and “why SGD is worse than Adam", without going through Transformers or attention blocks as an
intermediary. We consider one man-made example and one real-world example.
Example 1: A man-made MLP. We consider a 4-layer MLP on MNIST and change the degree of
heterogeneity by scaling each layer by constant c. Figure 5 (a) shows SGD gradually performs worse
than Adam as heterogeneity grows.
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(a) Final performance of Adam
and SGD on a man-made MLP
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Figure 5: (a) SGD v.s. Adam on a man-made MLP with different degrees of heterogeneity c. Each
point records the best-converged test accuracy under the learning rate grid search. SGD performs
worse as heterogeneity grows. (b) The JS distance among blockwise Hessian spectra for MLP-mixer
[81] at initialization. We observe heterogeneity. (c) SGD performs worse than Adam on MLP-mixer.

Example 2: MLP-mixer. We consider MLP-mixer [81], a famous all-MLP architecture that
outperforms CNNs and ViTs on some vision tasks. Figure 5 (b) (c) show that the initial Hessian of
MLP-mixer has block heterogeneity and SGD lags behind Adam on this architecture.
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We summarize the findings so far in Observation 2.

Observation 2: For all tasks that we checked, SGD is worse than Adam when block heterogeneity
exists, regardless of whether Transformers or attention mechanisms are utilized.

3.3 Reduced Block Heterogeneity in Pre-trained Transformers
We remark that different Transformers exhibit different levels of block heterogeneity. Although
all examined Transformers show strong block heterogeneity, we find that this heterogeneity can be
mitigated, resulting in less performance deterioration for SGD. As illustrated in Figure 6, pre-trained
GPT2 on SFT tasks can exhibit less block heterogeneity compared to pre-training GPT2 from scratch
(Figure 4 (f)). In this case, although SGD is still slower than Adam, it achieves a similar loss
at convergence. Compared with training GPT2 from scratch (Figure 10 (d) in Appendix B), the
performance gap between SGD and Adam is significantly narrowed down. These findings suggest
that the heterogeneity induced by architectural design can be alleviated by selecting “good” weights.
This partly explains why simpler methods like SGD and even its zeroth-order version can still be
effective for fine-tuning language models, albeit with slower convergence [59, 60].
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Figure 6: We fine-tune GPT2 (pre-trained) on Alpaca Eval, and plot (a) the JS distance among
blockwise Hessian spectra; (b) the training loss of SGD and Adam.

In Figure 13 in Appendix B, we further report the evolution of the block heterogeneity of ViT-base
along the training. Similarly to GPT2 in Figure 6, we find that the block heterogeneity of ViT-base
tends to reduce after the training. In addition, we find that SGD can perform better when initializing
at the weight with less heterogeneity, e.g., initializing at 50% total training steps. We hypothesize
that “the attenuation of Hessian heterogeneity" is a common phenomenon after training, and we leave
detailed investigation as a future direction.

Observation 3: Block heterogeneity in Hessian tends to reduce after (pre)-training.

3.4 Implication on Choosing SGD or Adam
We have shown that SGD can largely underperform Adam on various architectures. This leads to an
intriguing question: Can we predict the incompetence of SGD before the training begins?

Our findings can bring up an empirical guidance: we can compute the blockwise spectrum of initial
Hessian, and then decide whether to use Adam or SGD. Such a method could be useful in scenarios
in training large models that are not mainstream Transformers or CNNs, e.g., Mamba [38]. In these
cases, there is not much prior experience in choosing optimizers. It would be intriguing to decide
whether SGD is suitable for the task before the training is launched. One might argue that simple
trial is enough: try both SGD and Adam; if Adam is remarkably better, then pick Adam; if Adam
and SGD are similar, then pick SGD. Nevertheless, this simple approach may not be easy for large
models. First, for large models, it may take days to know one run of an algorthm is good or not.
Second, it requires tuning hyperparameters at least a few times to get a reasonably good judgement,
making the cost of trial even higher.

We here propose a quantitative metric that could predict the incompetence of SGD before the training.
With the help of this metric, we could save much expense on the trial and error for SGD. The metric is
simply the averaged JS distance among blockwise Hessian spectra at initialization, i.e., the averaged
value in the heatmap of Figure 4. We denote it as JS0. We present JS0 of various models in Table 1.
Note that JS0 establishes a quantitative difference between the loss landscape of Transformers and
CNNs. Further, JS0 is independent of optimizers and could be checked before training.
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Table 1: JS0 denotes the average JS distance between the initial Hessian spectra of each pair of
parameter blocks. A larger JS0 suggests that the task is more difficult for SGD.

Model ResNet18 VGG16 GPT2 (pretrained) MLP-mixer BERT GPT2 ViT-base
JS0 0.10 0.09 18.84 34.90 53.38 83.23 286.41

To validate the effectiveness of the quantitative metric JS0, we summarize JS0 of different models
and the corresponding SGD performance in Figure 7. We find that the performance gap between
SGD and Adam becomes greater as JS0 increases. Thus, JS0 can serve as a potential indicator to
predict whether SGD may underperform Adam.

Figure 7: Comparison of JS0 and the performance of SGD on different models. We find the
performance gap between SGD and Adam becomes greater as JS0 increases.

Finally, we remark JS0 is rather expensive to compute due to the overhead of SLQ: it requires
comparable time to one training run. Fortunately, we find the original SLQ is rather redundant
for measuring hessian heterogeneity. We propose some simple tricks to significantly reduce the
computation time, while still effectively detecting the Hessian heterogeneity. We call it simplified
SLQ and we present it in Table 3 in Appendix B. As a result, the simplified SLQ can obtain the same
message as in Table 1 while only taking negligible time (e.g., < 0.001s for ResNet18).

4 Case Study of Quadratic Models and Preliminary Theory
Now we study quadratic functions with block diagonal Hessian, with or without block heterogeneity.
Note that insights on quadratic models could be important for understanding realistic NNs, as
mentioned by researchers such as LeCun et al. [50] and OpenAI team [44].

Setups and additional notations. We consider the following quadratic minimization.

min
w∈Rd

L(w) = 1

2
wTHw − hTw,

where H ∈ Rd×d is positive definite and h ∈ Rd. We denote L∗ as the minimum value of L(w). We
set H as a block diagonal matrix: H = diag(H1, · · · , HL), where Hl ∈ Rdl×dl and d =

∑L
l=1 dl.

We use wl ∈ Rdl to denote the variable in the l-th block and w = (wT
1 , · · · , wT

L)
T ∈ Rd. Similarly

for hl ∈ Rdl . Similarly, we use [∇L(w)]l ∈ Rdl to denote the gradient in the l-th block and
denote [L(w)]l = 1

2 (w
t
l )

THlw
t
l − hT

l wl as the objective function w.r.t. the l-th block. Note that
L(w) =

∑L
l=1[L(w)]l. We denote λ1 ≥ λ2 · · · ≥ λd as the eigenvalues of H . Similarly for

λl,1 · · ·λl,dl
. We denote κ = λ1

λd
and κl =

λl,1

λl,dl

as the condition number of H and Hl, respectively.

We say an algorithm has complexity Õ(C) if it takes O(C log(1/ϵ)) iterations to achieve error
L(w)−L∗

L(w0)−L∗ ≤ ϵ, where w0 is the initial point.

4.1 Experimental Observations
We consider four types of Hessian H as follows. For all cases, we set condition number = 5000.
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blockwise spectrum
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(c) Hessian with simplified
heterogeneous blocks
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homogeneous blocks

Figure 8: The performance of Adam and GD on homo/heterogeneous quadratic problems. The
condition numbers of Hessian equal to 5000 for all four cases. When blocks are heterogeneous, GD
largely lags behind Adam, and GD performs similarly to Adam if otherwise.

• Case 1: Hessian with Transformer-type spectra. We choose L = 4 and dl = 25. For l ∈ [L],
we construct Hl = QlΛlQ

T
l where Ql are matrices with i.i.d. standard Gassian entries and Λl

are diagonal matrices. For the diagonal elements in Λl, we sample dl numbers according to the
spectrum of the embedding layer; 3rd Query, 3rd Value, 3rd MLP (fc layer) in GPT2. Shifting and
proportional scaling are performed to ensure all elements in Λl lie in the interval [1, 5000]. This
ensures strong convexity and controls the condition number of H equals 5000. The spectra of Hl

are in Figure 14 in Appendix B. We choose h = 0 for all cases.
• Case 2: Hessian with CNN-type spectra. We use the same setup as in Case 1. For the diagonal

elements in Λl, we sample dl numbers according to the spectrum of the 1st to 4th convolution
layers in ResNet18. We then shift and scale Λl to the interval [1, 5000] to ensure strong convexity
and a condition number of 5000. The spectra of Hl are shown in Figure 15 in Appendix B.

• Case 3: Hessian with simplified heterogeneous spectra. We choose L = 3 and dl =
3. For l ∈ [L], we construct Hl = QlΛlQ

T
l where Ql are independent standard Gas-

sian random matrix and Λl are diagonal matrices. We set the diagonal elements of Λl as
{1, 2, 3}, {99, 100, 101}, {4998, 4999, 5000} for l = 1, 2, 3, respectively. The spectra of Hl are
different due to their different supports. The condition number of Hessian H is 5000.

• Case 4: Hessian with simplified homogeneous spectra. We consider the same setup as Case 3.
We set the diagonal elements of Λl as {1, 99, 4998}, {2, 100, 4999}, {3, 101, 5000} for l = 1, 2, 3,
respectively. The spectra of Hl are similar. The condition number is 5000.

Now we study two types of optimizers: one that assigns a single learning rate for all blocks, and one
that assign different learning rates across blocks.

• Single-learning-rate optimizer. We study gradient descent (GD).

wt+1 = wt − η∇L(w) = wt − η(Hwt − h) (2)

We use the optimal learning rate η = 2
µ+L [63]. We use standard Gaussian initialization.

• Coordinate-wise-learning-rate optimizer. We study Adam with a constant learning rate and with
no bias correction for simplicity (Algorithm 3). We set β1 = 0 to erase the effect of momentum.
This helps us to focus on the effect of coordinate-wise learning rate (or the effect of diagonal
preconditioning) in Adam. We use ϵ = 0. We consider β2 = 1 and β2 = 0.99, respectively. When
β2 = 1, Adam assigns coordinate-wise learning rates according to the initial gradient, but these
learning rates are fixed along iteration. The update rule is as follows.

wt+1 = wt − η(D0
Adam)−1∇L(w) = wt − η(D0

Adam)−1(Hwt − h), (3)

where D0
Adam = diag(∇L(w0) ◦ ∇L(w0))

1
2 and ∇L(w0) = Hw0 − h. When β2 < 1, the

coordinate-wise learning rates adaptively change along iteration. The update rule is as follows
(note that ∇L(wk) = Hwk − h.).

wt+1 = wt − η(Dt
Adam)−1∇L(w) = wt − η(Dt

Adam)−1(Hwt − h), where (4)

Dt
Adam = diag

(
(1− β2)

(
t∑

k=1

βt−k
2 ∇L(wk) ◦ ∇L(wk)

)
+ βt diag(∇L(w0) ◦ ∇L(w0))

) 1
2

We grid search η and use the standard Gaussian initialization. We remark that when β2 < 1,
Adam would bounce among non-optimal points. This will be shown in Proposition 2.

Summary of experimental observations. Figure 8 presents two phenomena. For Hessian with
heterogeneous blocks (Case 1 and 3), GD largely lags behind Adam. For Hessian with homogeneous
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blocks (Case 2 and 4), GD is on par with Adam. We emphasize that all Hessians have the same
condition number. Further, Hessian in Case 3 and 4 share all the eigenvalues (not just the extreme
ones). The gap between Adam and GD is purely due to the different blockwise spectra caused by
the different locations of eigenvalues. Case 3 and 4 help reveal the causal relation between “block
heterogeneity in Hessian" and “GD is worse than Adam". We hypothesize that GD performs badly
because it uses one single learning rate for all blocks, which cannot handle the heterogeneity among
blocks. Such heterogeneity can be better handled using different learning rates across blocks, as
designed in Adam.

4.2 Initial Theoretical Results
We now provide initial theoretical results to characterize how GD lags behind Adam in problems with
heterogenous Hessian. Note that classical optimization theory depicts the rate of first-order methods
by the condition number of the full Hessian κ. However, we point out that κ is not informative enough
to describe the performance gap in Figure 8 since κ is the same in all four cases. To distinguish Adam
and GD, we need to utilize more fine-grained quantities like blockwise spectra of sub-matrices.

Note that the blockwise spectrum is not common in the optimization area. The most related notion is
perhaps “block Lipschitz constant" [8] for studying block coordinate descent (BCD) type methods,
but it was not linked to the performance of SGD or Adam before. To our knowledge, we are not
aware of any theory of Adam or GD built on the block diagonal structures or the blockwise spectra of
Hessian. We now make an initial attempt in this direction. We first present the lower bound for GD.
Proposition 1. (Lower bound for GD.) Consider minw L(w) = 1

2w
THw − hTw where H ∈ Rd×d

is positive definite and h ∈ Rd. Let wt
GD be the output of GD after t steps. There exists a block

diagonal matrix H , h and an initial point w0, s.t., for any η, we have:

L(wt+1
GD )− L∗ ≥

(
1− 2

κ+ 1

)(
L(wt

GD)− L∗) (5)

where κ is the condition number of H .
Proposition 1 shows that GD has complexity Õ(κ) and such complexity is tight. Now we prove
that Adam can achieves better complexity. This is because it chooses different learning rates for
different block sub-matrix Hl via its diagonal preconditinoner D0

Adam. We consider generic random
initialization that covers commonly used distributions such as Gaussian, Uniform, etc.
Assumption 1. (Random initialization.) Assume the initialization w0 is sampled from a continuous
distribution, i.e., the probability measure (induced by w0) of any zero-Lebesgue-measure set is 0.
Theorem 1. (Upper bound for Adam with β2 = 1.) Consider the same setting as Proposition 1 and
consider Adam with β1 = 0 and β2 = 1 as in (3). Assume the initialization satisfies Assumption 1.
Let wt

Adam be the output of Adam after t steps. Let η = minl∈[L]
1

Cl,1
. Then w.p.1., we have

L(wt+1
Adam)− L∗ ≤ max

l∈[L]

(
1− 1

κAdam,l

)(
L(wt

Adam)− L∗) (6)

where κAdam,l = rκl, κl is the condition number of Hl, constant r relates to w0 defined as:

r =
maxl∈[L] C

2
l,2

minl∈[L] C2
l,1

, where Cl,1 = min
i∈[dl]

|[∇L(w0)]l,i|
λl,1

, Cl,2 = max
i∈[dl]

|[∇L(w0)]l,i|
λl,1

. (7)

The proofs of the above theorems are shown in Appendix E. Theorem 1 states that Adam (with
β2 = 1) has complexity Õ

(
r ·maxl∈[L] κl

)
. We note that coefficient r depends on the ratio between

initial gradient and the principal eigenvalue for each block, and smaller ratio would give faster
convergence. We further remark that condition β2 = 1 is necessary because any β2 < 1 causes
non-convergence issue [10, 21]. We restate their results in Proposition 2. The non-convergence is also
observed in Figure 8 (c), where we find that the iterates of Adam quickly converge to near-optimal
solutions, and then bounce back. As such, β2 = 1 is necessary for asymptotic analysis. The analysis
for β2 = 1 is still meaningful since it still shows the effect of Adam’s preconditioner.

As shown in [21], the non-convergence is due to the constant learning rate. Reducing the learning
rate reduces the gap between L(wt

Adam) and L∗, but does not remove it.
Proposition 2. (Non-convergence of constant-learning-rate Adam with β2 < 1.) [21, Proposition
12, Figure 1] Consider minw∈R L(w) = 1

2w
2. Consider Adam with β1 = 0 and β2 < 1 as in

(4). Let wt
Adam be the output of Adam after t steps. There exists a discrete limit cycle for (4) and

lim inft→∞
(
L(wt

Adam)− L∗) > 0.
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We now compare the complexity of Adam and that of GD. By Theorem 1, Adam is faster than GD
when r ·maxl∈[L] κl ≤ κ. In the quadratic model with heterogeneous blocks (Case 3), our simulation
over 1000 trials shows that r ≤ 1000 with probability ≥ 2

3 when using standard Gaussian random
initialization. Since maxl∈[L] κl ≈ 1, we have r · maxl∈[L] κl ≤ 1000, w.h.p., and is about 5×
smaller than κ = 5000. So Adam could be 5× faster than GD, w.h.p.. This is indeed observed in
Figure 8 where Adam outperforms GD by a significant margin. We summarize the complexity of GD
and Adam in Table 2.

Remark: some common misconceptions. During the review process, we find that readers might
conclude that “Theorem 1 implies Adam under homogeneity has worse complexity than Adam under
heterogeneity". We now clarify that this claim is not correct, and there is no conclusion on “whether
Adam under homogeneity is faster or slower than Adam under heterogeneity". Similarly, Theorem 1
does not imply “Adam always converges similarly as GD under homogeneity". Though it is observed
on CNNs, there is no general conclusion of this kind. For interested readers, we provide a detailed
explanation in Appendix B.

Table 2: The complexity of GD and Adam for minimizing a strongly convex quadratic function
with block diagonal Hessian. The symbol ✗ means non-convergence. κ and κl denote the condition
number of the full Hessian and the block submatrix, respectively. r is defined in (7).

Optimizer GD Adam with Adam with
β1 = 0 and β2 = 1 (3) β1 = 0 and β2 < 1 (4)

Complexity Õ(κ) Õ
(
r ·maxl∈[L] κl

)
✗

How to obtain a tighter complexity bound of Adam? It is valid to ask whether the complexity
upper bound in Theorem 1 can be tightened, e.g., improve the factor of r. We point out it would
be difficult if there is no extra structure on Hl. A key technical step is to bound the condition
number of the preconditioned matrix κ

(
(D0

Adam,l)
−1Hl

)
. Intuitively, a diagonal preconditioner

of Hl is powerful when Hl itself has a near-diagonal structure, e.g., pure diagonal, tridiagonal or
diagonal dominant [30]. Unfortunately, it is unclear whether these structures hold in Transformers.
Without any assumption on Hl, we find that the diagonal preconditioner of D0

Adam could increase
the condition number. For instance, when using standard Gaussian initialization, in case 3, we find
κ
(
(D0

Adam,l)
−1Hl

)
equals 7.09κ1, 18.98κ2, 18.76κ3 for the 3 blocks, respectively (all averaged

over 1000 trials). It would be interesting to explore if there are special structures of Hl in Transformers
such that Adam preconditioner can reduce κl, rather than increase it. We leave it as a future direction.

More discussions on the theoretical advantage of Adam. Although Adam preconditioner might not
always reduce the “local" condition number κl, the coefficient in the complexity is now independent
of the “global" condition number κ. As argued above, such changes in coefficient could lead
to considerable improvement over GD. Such improvement in complexity is attributed to the block
diagonal structure in Hessian as well as its heterogeneous blockwise spectrum. To our knowledge,
such improvement is not shown in the existing literature. One possible reason is that: for the
optimization community, it is very rare to analyze (near-) block-diagonal Hessian structure since
typical problems do not have such structure. For instance, in the classical non-linear programming
dataset [48], all problems have non-block-diagonal Hessian. We suggest a different perspective to
characterize modern optimization problems. We believe our perspective is new because it is built
upon multiple non-trivial findings.

In summary, our theory indicates that: for problems with block heterogeneity, the single-learning rate
methods like GD can largely lag behind coordinate-wise learning rate methods like Adam.

5 Conclusion
In this work, we explore why SGD largely underperforms Adam on Transformers. we establish a
phenomenon called block heterogeneity in Hessian and link it to the performance gap between Adam
and SGD. We numerically verify our claim on various Transformers, CNNs, MLPs, and quadratic
problems. Initial theory is also provided to support the claim.
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Broader Impacts

We explore why SGD performs worse than Adam for training Transformers. Our work can help the
community better understand large AI model training. However, it would be a potential threat if the
AI models are used for illegal usage.
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A Related Works

On the unsatisfactory performance of SGD on Transformers There is an active line of works
that explores why SGD performs significantly worse than Adam on Transformers. One representative
hypothesis is that SGD cannot handle the heavy-tailed stochastic noise in language tasks [105].
However, Chen et al. [14], Kunstner et al. [46] reported that the gap between Adam and SGD
maintains even in the full-batch case with no stochasticity, so there might be other reasons. Further,
SGD performs worse than Adam on Vision Transformers on ImageNet (See Figure 10. Also see [92]
for more evidence), so the data modality (e.g., language or vision tasks) might not be as crucial as
the architecture. [104] showed that NLP tasks have “unbounded smoothness" issue and SGD with
gradient clipping performs better than SGD in this case. Although clipping is an effective trick, we
still observe a huge gap between clipped SGD and Adam 4, so there might be other reasons. Different
from these works, we find SGD underperforms Adam because it uses one single learning rate for all
blocks, which cannot handle the Hessian heterogeneity among blocks.

Understanding of Adam. There was once a long-standing debate on the possible divergence
of Adam [72]. The convergence for the unmodified versions is later established in [77, 107] for
RMSprop and Adam. More convergence analyses of general adaptive gradient methods are listed
later in this section. We here focus on the literature that explores the benefit of Adam. Xie et al. [93]
show that Adam can help avoid saddle points, which is an orthogonal direction to this work. Wang
et al. [84], Crawshaw et al. [19], Li et al. [51] show that Adam and its variant outperform SGD under
relaxed smoothness conditions, based on the intuition that Adam can adaptively change its learning
rate along iteration (over time). We pointed out that the theory is not complete: even for quadratic
functions where the smoothness is fixed, SGD sometimes performs largely worse than Adam (Figure
8). This indicates that the benefit of Adam is not merely due to its ability to adaptively change the
learning rate (over time), and there are other reasons for Adam’s success. We show that an important
benefit of Adam is its ability to handle the heterogeneity across blocks (over space).

Recent works [9, 91, 46, 54, 3] build a relation between Adam and the sign-based methods. Wu
et al. [91] further showed that sign-based methods can be effective when the Hessian is diagonal and
satisfies several other properties. However, as put by the authors, it seems “unclear to what extent
these properties hold for real problems". Pan and Li [66] numerically found that the Adam can reduce
the directional sharpness along trajectories, while its relation to fast convergence remains mysterious.
A recent work [43] point out that Adam biases the trajectories towards regions where Hessian has
“uniform diagonal entries" while SGD cannot. The distribution of Hessian diagonal entries is also
investigated in [54]. The theory in [43] implies that Adam is faster when the Hessian is diagonal.
However, as argued above, it is unclear whether the diagonal Hessian structure commonly holds in
real problems. In fact, we find the Hessian is closer to a block-diagonal (instead of pure diagonal)
structure on some small Transformers. In these cases, blockwise eigenvalues carry more information
than diagonal entries, providing extra details such as the location of eigenvalues. We find that these
extra details are important for distinguishing Adam and SGD.

Hessian Spectrum Analysis. There are several important attempts to explore the Hessian spectrum
of MLPs and CNNs. Early works [74, 75, 12] found that the Hessian spectra of MLPs and CNNs
consist of a “bulk" together with a few “outliers". Papyan [69], Wu et al. [91], Liao and Mahoney [52]
further characterized the bulks and outliers in theory. Papyan [67, 68] numerically built the relation
between these "outliers" and the Gauss-Newton matrix. Sankar et al. [76] numerically explored the
relation between Hessian of CNNs and Gauss-Newton matrix in each layer. They further found that
most CNN layers contribute similarly to the overall loss surface. We find that this result is restricted to
CNNs and does not hold on Transformers due to the heterogeneity. Gur-Ari et al. [39] showed that for
MLPs and CNNs, gradient descent converges to a small subspace spanned by a few top eigenvectors
of the Hessian. Yao et al. [97], Zhang et al. [103] explored the relation between the Hessian spectrum
of CNNs and some training phenomena such as the effect of batch sizes. Ghorbani et al. [32], Yao
et al. [98] focused on explaining the effectiveness of techniques such as BatchNorm. Note that all
these works are restricted to MLPs and CNNs, while we study the Hessian of Transformers (in
addition to CNNs and MLPs) as well as its impacts on different optimizers.

4For all NLP tasks, clipping is performed immediately after backpropagation. So in Figure 10, SGD in NLP
tasks essentially refers to clipped SGD.
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On the difficulties of Transformer training. Transformers are known to be difficult to train.
Researchers have attributed the training difficulties to various phenomena in different components
of Transformers, including: the logits divergence or the rank degeneracy in the outputs of attention
layers [26, 65, 90, 101, 24, 17]; the growth of parameter norm in attention layers [61]; over-reliance
on residue branches [56]; and some negative impact of layer norm [15, 102, 41]. These phenomena
have a strong correlation with gradient vanishing or explosion in Transformers [102, 56, 41, 94, 65,
87, 90, 62], which leads to training difficulties.

Several solutions have been proposed. Liu et al. [56] numerically observed that adaptive gradient
methods can (partly) overcome gradient vanishing by giving “consistent update magnitude", while it
seems unclear how consistent update magnitude would help optimization in principle. Researchers
further develop training tricks such as warmup learning rate [55, 94], temperature scaling [65], better
initialization [102, 41, 87, 5, 96], and variants of Layer Norm [64, 88, 94, 87, 24]. Recent researchers
also suggest using z-loss regularization [17, 95] and tuning hyperparameters of Adam [107, 90]. All
these tricks can help mitigate gradient explosion or vanishing. Nevertheless, training large-scale
Transformers remains challenging [106, 100, 90, 62, 17]. Different from all aforementioned works,
we investigate the training difficulties of Transformers through the eigenvalues of Hessian. We
establish a strong correlation between “the blockwise Hessian spectra of Transformers" and “why
SGD largely underperforms Adam on Transformers". We realize that our attempt is just a first step
towards understanding Transformer training, and we believe there is rich information hidden in
Hessian and we leave more fine-grained analysis as future works.

Convergence analysis of general adaptive gradient methods There is extensive convergence
analysis for adaptive gradient methods. For instance, researchers study the convergence of AMSGrad
[72, 108], RMSprop [99], AdaFom [16], AdaBound [58], and Adam with iterate-dependent hyper-
parameters [109, 13, 31]. The convergence of Adam is also explored in [23, 85]. There is also an
active line of theoretical research on the convergence of AdaGrad [28], we recommend [86] for more
detailed introduction. In this work, we do not focus on the convergence analysis. Rather, we explore
the quantitative difference between the loss landscape of CNNs and Transformers and how it impact
the behaviors of SGD and Adam.
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B More Results and Discussions

Performance comparison of AdamW and SGD on different Architectures. Here, we show the
performance comparison of AdamW and SGD on different models. All the vision models are trained
on ImageNet. Language models are trained on different English corpus. We grid-search the learning
rates for SGD and Adam under the same budget and report the best result for each optimizer. See
Appendix D.1 for more implementation details.
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Figure 9: Performance of AdamW and SGD on CNNs including ResNet18 and VGG16. SGD and
Adam perform similarly on these tasks.
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Figure 10: Performance of AdamW and SGD on Transformers including ViT, BERT, GPT2-nano,
and GPT2. SGD performs significantly worse than Adam on these tasks.

More results for SGD under careful tuning. For ViT-base, GPT2-nano, and BERT, we further
present the performance of SGD under learning rate grid search. For ViT-base training on ImageNet,
we report the results after 30 epochs (or equivalently, about 30k iterations). We cannot afford further
training ViT-base due to the limited hardware resources (a complete run of 90 epochs would take
> 2 weeks for each curve). As shown in Figure 11, SGD consistently performs worse than Adam on
ViT-base, GPT2, and BERT. The best results for SGD are picked out and presented in Figure 10.
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Figure 11: Performance of SGD under careful tuning. On ViT-base, GPT2-nano, and BERT, we
carefully tune the learning rate of SGD and show all the results here. For all these Transformer tasks,
SGD is still significantly worse than AdamW even after careful tuning.

Note that we are not the first ones to report that “SGD performs worse than Adam on ViT". An
influential work [92] also reports that SGD is worse than Adam on vanilla ViT. The authors report
that “SGD yields significantly worse results than AdamW (on ViT)", and “ViT often fails to converge
with SGD " (their Figure 3). These results align with our findings in Figure 11.
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Detailed training curves of Figure 5. In Figure 12, we present the detailed training curves for the
man-made MLP in Figure 5. We find that SGD performs worse as heterogeneity grows, while Adam
still performs well.
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Figure 12: The training curves of SGD and Adam on MNIST with 4-layer MLPs under different
degrees of block heterogeneity c. We observe that SGD performs worse as heterogeneity grows,
while Adam remains unaffected.

The evolution of Hessian heterogeneity along training. For ViT-base, we further investigate
the evolution of block heterogeneity of Hessian along the training. As shown in Figure 13, we find
that heterogeneity attenuates along the training. We further take the checkpoint of ViT-base at 50%
training step and switch AdamW to SGD, we observe that now SGD performs better than training
from scratch as in Figure 10 (a). SGD performs better here because there is less heterogeneity when
initializing in the middle of training.
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Figure 13: For ViT-base, we plot the evolution of heterogeneity of Hessian along training. We find
that heterogeneity attenuates along training. (d): we take the checkpoint of ViT-base at 50% training
step and switch AdamW to SGD, we find that now SGD performs better than training from scratch as
in Figure 10 (a).

Simplifed SLQ for calculating JS0 in Section 3.4. We note that JS0 in Table 1 is rather expensive
to compute due to the computational overhead of SLQ: it requires comparable time to one training run.
Fortunately, we find the original SLQ is redundant for measuring hessian heterogeneity. We propose
the following simple tweaks to significantly reduce the computation time, while still effectively
detecting the Hessian heterogeneity. We call it simplified SLQ.

• Change the hyperparemters of SLQ, including:
– We change numv = 10 to numv = 1. In SLQ, numv decides the number of random Gaussian

vectors to approximate the expected quadrature. It is reasonable to reduce numv because in
high dimensional space, random vectors tend to concentrate around their mean, so one random
sample can already be informative enough.

– We change the Lanzcos step m = 100 to m = 10. The reduction on Lanzcos step will have a
coarse estimation on the middle eigenvalue, but won’t affect much the heterogeneity, which is
more dependent on the extreme eigenvalues.

• Randomly sample a subset of blocks and reduce batch size for estimating the spectrum. We
uniformly sample 50% blocks and choose batch size = 32 (previously batch size = 1024).
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We report the result and runtime in Table 3. As a result, the simplified SLQ can obtain the same
message as the original SLQ: JS0 of ResNet is about 100x smaller than that of BERT. Further, the
simplified SLQ is highly efficient to compute. With this simplified SLQ, we believe our method can
efficiently scale to larger models. The result is tested on a single V100.

Table 3: JS0 computed by simplified SLQ. We find that the simplified SLQ can obtain the same
message as the original SLQ: JS0 of ResNet is about 100x smaller than that of BERT. Further, the
simplified SLQ is efficient to compute.

Model JSO Time for JSO Time for Training Time for JSO / Time for training
BERT 98.8344 20 s 4 h 0.0014

ResNet18 0.3569 65 s 87.5 h 0.0002

Blockwise spectra for quadratic models in Section 4.1. We here visualize the blockwise spectrum
for the quadratic models in Case 1 and Case 2. These spectra are collected from GPT2 and ResNet18,
respectively.
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Figure 14: Histogram of eigenvalues of each block in Case 1 (the heterogeneous case). The
eigenvalues in the four blocks are sampled from the spectrum of the embedding layer; 3rd Query, 3rd
Value, 3rd MLP (fc layer) in GPT2, respectively. All the eigenvalues are shifted and proportionally
scaled such that: the objective function is strong convex; the condition number of Hessian equals
5000; their relative ranges are preserved; and the block heterogeneity is preserved.
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Figure 15: Histogram of eigenvalues of each block in Case 2 (the homogeneous case). The eigenvalues
in the four blocks are sampled from the spectrum of 1st to 4th convolution layers in ResNet18,
respectively. All the eigenvalues are shifted and proportionally scaled such that: the objective
function is strong convex; the condition number of Hessian equals 5000; their relative ranges are
preserved; and the block homogeneity is preserved.

Does our theory imply that Adam under homogeneity is slower than Adam under heterogeneity?
5 During the review process, we find that readers might conclude that “Theorem 1 implies Adam
under homogeneity has worse complexity than Adam under heterogeneity". We would like to clarify
that this conclusion is not correct, and there is no conclusion on “whether Adam under homogeneity
is faster or slower than Adam under heterogeneity ". We explain as follows.

Our theoretical result states that Adam has complexity O (maxl κl). If our result implies the above
conclusion, one needs the following argument: when changing heterogeneity to homogeneity, maxl κl

5We would like to thank the anonymous Reviewer pTmy for raising this insightful question.
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increases, and thus Adam is slower. However, “changing heterogeneity to homogeneity" does not
necessarily mean “maxl κl increases". Actually, maxl κl can change in an arbitrary way (can increase,
decrease, or keep the same) when changing the heterogeneity. We provide three examples below.

We will use Adam (homo) to denote the convergence rate of Adam on homogeneous Hessian, similarly
for Adam (hetero).

Example 1: Adam (homo) is same as Adam (hetero).

• Case 1-1 (homogeneous): eigenvalues are {1,2}, {1,2}
• Case 1-2 (heterogeneous): eigenvalues are {1,2}, {11,12}

Since maxl κl are the same for both Case 1-1 and 1-2, Adam (homo) is the same as Adam (hetero).

Example 2: Adam (homo) is faster than Adam (hetero).

• Case 2-1 (homogeneous): eigenvalues are {1,1.5}, {1,1.5}
• Case 2-2 (heterogeneous): eigenvalues are {1,2}, {11,12}

Since Case 2-1 has smaller maxl κl than Case 2-2, Adam (homo) is faster than Adam (hetero).

Example 3: Adam (homo) is slower than Adam (hetero).

• Case 3-1 (homogeneous): eigenvalues are {1,12}, {1,12}
• Case 3-2 (heterogeneous): eigenvalues are {1,2}, {11,12}

Since Case 3-1 has larger maxl κl than Case 3-2, Adam (homo) is slower than Adam (hetero).

To sum up, there is no conclusion on “whether Adam under homogeneity is faster or slower than
Adam under heterogeneity ". Either case can happen.

One possible source of confusion may come from the numerical examples (Case 3 and 4 in Section
Section 4.1). If comparing two figures, Adam (homo) in Case 3 is slower than Adam (hetero) in
Case 4. But as argued above, this is just one example, and it does not show Adam (homo) is always
slower than Adam (hetero).
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C More Preliminaries

C.1 Preliminaries on Optimizers

Here we provide a detailed description of the optimizers mentioned in the full script. We consider the
minimizing L(w) ≡ 1

n

∑n
i=1 Li(w), where n is the number of minibatches, Li(w) is the loss of i-th

minibatch and w ∈ Rd is the neural network parameters. We denote the gradient of the training loss
w.r.t. neural network parameters as ∇L(w) ∈ Rd. We use ∇Li(w) ∈ Rd to denote the i-th minibatch
counterparts. We use wt to denote the variable at the t-th step. In Algorithm 2 and 3, ◦, division and
square-root are elementwise operations. In the line 7 and 8 of Algorithm 2, (β1)

t and (β2)
t indicates

the t-th power of β1, β2. In the PyTorch default setting, (β1, β2, ϵ) = (0.9, 0.999, 1e-8) for Adam
and β1 = 0.9 for SGD.

Algorithm 1 Stochastic Gradient Descent with Momentum (SGD)

1: Initialize w0 and choose 0 ≤ β1 < 1 and η0 > 0
2: for t = 1 → ∞ do
3: Uniformly sample τ t from the index set {1, 2, · · · , n}
4: mt = β1m

t +∇Lτt(xt)
5: xt+1 = xt − ηtm

t

6: end for

Algorithm 2 AdamW

1: Initialize x0, m0 = v0 = 0, 0 ≤ β1 < 1, 0 ≤ β2 < 1, ϵ > 0, η0 > 0, and weight decay
coefficient λ

2: for t = 1 → ∞ do
3: Uniformly sample τ t from the index set {1, 2, · · · , n}
4: wt+1 = wt − ηtλwt

5: mt = β1m
t + (1− β1)∇Lτt(wt)

6: vt = β2v
t + (1− β2)∇Lτt(wt) ◦ ∇Lτt(wt)

7: m̂t = mt

1−(β1)t

8: v̂t = vt

1−(β2)t

9: wt+1 = wt+1 − ηt
m̂t

√
v̂t+ϵ

10: end for

Algorithm 3 Adam with no bias correction

1: Initialize x0, m0 = ∇Lτt(w0), v0 = ∇Lτt(w0) ◦ ∇Lτt(w0), 0 ≤ β1 < 1, 0 ≤ β2 < 1, ϵ > 0,
η0 > 0

2: for t = 1 → ∞ do
3: Uniformly sample τ t from the index set {1, 2, · · · , n}
4: mt = β1m

t + (1− β1)∇Lτt(wt)
5: vt = β2v

t + (1− β2)∇Lτt(wt) ◦ ∇Lτt(wt)

6: wt+1 = wt+1 − ηt
mt

√
vt+ϵ

7: end for

C.2 Preliminaries on the Stochastic Lanczos Quadrature Method

Additional notations. Given a real symmetric matrix H ∈ Rd×d, we denote tr(H) as its trace
and QTΛQ as its spectral decomposition, where Q = [q1, . . . , qd] ,Λ = diag (λ1, . . . , λd) and
λ1 ≥ λ2 · · · ≥ λd. We denote the condition number of H as κ = λ1/λd. We define matrix function
as f(H) := QT f(Λ)Q, where f(Λ) = diag (f (λ1) , . . . f (λd)) ∈ Rd×d. We use N to denote the
set of positive integers. We use ∥ · ∥2 to denote the Euclidean norm.

Approximation of the Hessian spectrum can be formulated as a trace estimation problem, as
introduced in [53, 82]. First, the spectrum (eigenvalue density) of Hessian H can written as:
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ϕ(t) = 1
d

∑d
i=1 δ (t− λi), where λi are the eigenvalues of H and δ is the Dirac δ-function. Then,

we replace the delta functions by a Gaussian blurring function: ϕ(t) ≈ g(t) := 1
d

∑d
i=1 f (λi),

where f(λ) := 1
σ
√
2π

exp
(
− (t−λ)2

2σ2

)
. By definition of matrix function, it is easy to see that

g(t) = 1
d tr(f(H)). As such, spectrum approximation could be formulated as a trace estimation

problem, i.e., estimating 1
d tr(f(H)), where H ∈ Rd×d is a real symmetric matrix.

Trace estimation problems could be solved efficiently by the Stochastic Lanczos Quadrature Method
(SLQ) [35]. For the ease of readers, we re-organize and summarize the existing literature ([35, 82, 32])
and provide a detailed description of SLQ in our context. SLQ consists of the following steps.

Step 1. We Approximate the trace of matrix function as 1
d tr(f(H)) = E(vT f(H)v) ≈

1
nv

∑nv

i vTi f(H)vi, where v = u/∥u∥2 and u is a Rademacher random vector (each entry of u
independently takes ±1 with probability 1/2). This step is called Huchinson’s estimation [42].

Note that we can also replace the Rademacher random vector u by a unit Gaussian vector (i.e., u ∼
N(0, Id×d)) and the unbiasedness still holds [4]. In our implementation, we sample u ∼ N(0, Id×d)
because there is an efficient built-in PyTorch function for generating Gaussian vectors.

SLQ estimates vTi f(H)vi for i ∈ [nv] and then take the average. To understand SLQ, we only need
to understand how it estimates each individual quadratic form. To simplify the notation regarding i,
from now on, we will discuss how to estimate vT f(H)v, where v = u/∥u∥2 and u is a unit Gaussian
vector.

Step 2-1. We rewrite vT f(H)v as a Riemann-Stieltjes integral [34]:

vT f(A)v =

d∑
i=1

(
vT qi

)2
f (λi) =

∫ λ1

λd

f(λ)dµ(λ), (8)

where µ is a measure on (R,B) defined as follows (µ(λ) denotes the measure of set {x;x ≤ λ}):

µ(λ) =


0 λ < λd∑k

i=1

(
vT qi

)2
λk ≤ λ < λk+1∑d

i=1

(
vT qi

)2
λ ≥ λ1

. (9)

Step 2-2. Unfortunately, this integral is difficult to compute. This is because the measure µ are
related to the eigen-pairs of H , which are unknown. It seems unclear how to directly integrate over
an unknown measure. As such, we further approximate this integral by a computationally friendly
quantity, such as:

∫ λ1

λd

f(λ)dµ(λ) ≈
m∑
j=1

cjf(xj). (10)

We hope to design {(cj , xj)}mj=1 with a reasonable number of m such that the estimation error is small.
Fortunately, the Gaussian Quadrature method provides a generic design principle of {(cj , xj)}mj=1

[34, 29]. It is proved that: when f(λ) is not "too complicated" (e.g. f(λ) is a polynomial), then
there exists {(cj , xj)}mj=1 which gives a high quality estimation of integral (8). The required number
of m is related to "how complicated the f(λ) is". Such {(cj , xj)}mj=1 are called the Gaussian
Quadrature rules. cj and xj are called the "weights" and the "nodes" of the Gaussian Quadrature
rules. A representative theorem is as follows: when f(λ) is a polynomial with degree < 2m, then the
Gaussian Quadrature rules give the exact approximation of integral (8).
Theorem 2. [Rewrited based on [89]] Suppose we have a sequence of orthogonal polynomials
{pk(x)}mk=1 w.r.t. measure µ, that is:

∫ λ1

λd
pn(x)pm(x)dµ(x) = δm,n, where δm,n = 1 if m = n

and δm,n = 0, otherwise. Assume f(x) is a polynomial with degree < 2m, then there exists
{(cj , xj)}mj=1 s.t.

∫ λ1

λd
f(λ)dµ(λ) =

∑m
i=j cjf (xj). The equality holds when xj are the roots
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of pm(x) and cj =
∫ λ1

λd

∏
j ̸=i

x−xi

xj−xi
dµ. Such choice of {(cj , xj)}mj=1 are called the Gaussian

Quadrature rules.

Theorem 2 shows the existence of good {(cj , xj)}mj=1 and their general form. In fact, it is also shown
that Gaussian Quadrature is optimal: no other{(cj , xj)}mj=1 can achieve zero approximation error for
higher degree polynomials f(λ) [34]. However, it is often difficult to find these quadrature rules [36].
There are at least three questions in sequel:

• 1) how to find the orthogonal polynomials {pk(x)}mk=1 w.r.t. an unknown measure µ?
• 2) how to efficiently find the roots of pm(x), which gives the nodes xj?

• 3) how to efficiently calculate the weights cj =
∫ λ1

λd

∏
j ̸=i

x−xi

xj−xi
dµ?

We first answer question 2) and 3) and leave question 1) for later discussion.

Now suppose that we have found the orthogonal polynomials {pk(x)}mk=1 w.r.t. µ. Recall that any
orthogonal polynomial has the following "three-term" recursion [34]:

pk+1(x) = (x− αk+1) pk(x)− βkpk−1(x), k = 0, 1, . . . ,

where p−1(x) ≡ 0, p0(x) ≡ 1, αk+1 = ⟨xpk,pk⟩
⟨pk,pk⟩ and βk = ⟨pk,pk⟩

⟨pk−1,pk−1⟩ . Define Pm(x) =

(p0(x), p1(x), . . . pm−1(x))
T ∈ Rm, we can rewrite the recursion formula in matrix form (given x):

xPm = JmPm+βmpm(x)em, where em is the last column of identity matrix Im,m and Jm is called
Jacobi matrix of order m:

Jm =


α1

√
β1√

β1 α2

√
β2√

β2 α3

√
β3

. . . . . . . . .

 ∈ Rm×m

It turns out that Jm can help us find the Gaussian Quadrature rules {(cj , xj)}mj=1 and thus provide
answers for question 2) and 3). This is shown in the following theorem.
Theorem 3. [34] For the Gaussian Quadrature, {xj}mj=1 are the eigenvalues of Jm and {cj}mj=1
are the squares of the first elements of the normalized eigenvectors of Jm.

The proof of Theorem 3 is based on Christoffel-Darboux relation [11]. Now, the remaining question
is: how to find the Jacobian matrix Jm of a sequence of orthogonal polynomials w.r.t. an unknown
measure µ? Note that we no longer need to answer question 1) if Jm is found, since Jm is sufficient
for us to find the Gaussian quadrature rules. However, it seems impossible to find Jm if no information
of µ is provided. The good news is: when the µ is specified as in (9), there exists an efficient way to
find Jm.

Step 3. When µ is specified as in (9), Jm can be exactly found in m steps using the Lanczos
algorithm [47], as shown in Algorithm 4. This method takes a real symmetric matrix as input
and returns a tridiagonal matrix. It was originally proposed to solve eigenvalue problems. Later,
researchers found a deep connection between the Lanczos algorithm and orthogonal polynomials,
which further connects this method to the Gaussian quadrature. The method (of finding the Gaussian
quadrature by the Lanczos algorithm) is called the Lanczos quadrature [35, 6, 34]. An extremely
elegant but highly nontrivial result is as follows:
Theorem 4. [34] Given a real symmetric matrix H ∈ Rd×d and an arbitrary vector v ∈ Rd with
unit Euclidean norm, we define the measure µ as in (9) based on this H and v. Then m steps of the
Lanzcos algorithm return the Jacobian matrix Jm of orthogonal polynomials w.r.t. to µ.

After Jm is found by the Lanczos algorithm, we perform spectral decomposition of Jm ∈ Rm×m to
get its eigen-pairs. Using Theorem 3, we successfully get the Gaussian quadrature rules and thus we
can approximate the quadratic form vT f(H)v. By averaging over different random vectors v we can
then approximate 1

d tr(f(H)). This concludes the derivation of SLQ for the trace estimation problem.
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The full procedure of SLQ is shown in Algorithm 5. We note that SLQ is efficient in theory. Ubaru
et al. [82] show that SLQ converges faster than any other polynomial expansion method for spectrum
estimation (e.g., Chebyshev methods used in [2]). See [82, Theorem 4.1] for a formal statement.

We remark that there are at least four versions of the Lanczos algorithm in Step 3. Here, we
adopt the version in Algorithm 4 since it is known to be the most numerically stable version
[20, 73, 89]. Throughout this work, we choose f (·) as the Gaussian blurring function f(λ) :=

1
σ
√
2π

exp
(
− (t−λ)2

2σ2

)
for spectrum approximation. We plot the spectrum by sweeping t from the

minimal node to the maximal node in Gaussian Quadrature rules.

Algorithm 4 The Lanczos Algorithm

1: Input a matrix-vector product Hv1 ∈ Rd, where H is a real symmetric matrix and v1 is an
arbitrary vector with Euclidean norm 1. Choose m ∈ N

2: Initialization: Let w′
1 = Hv1, α1 = (w′

1)
T v1, w1 = w′

1 − α1v1
3: for j = 2 → m do
4: Let βj = ∥wj−1∥2 (also Euclidean norm)
5: If βj ̸= 0, then let vj = wj−1/βj ,

else pick as vj an arbitrary vector with Euclidean norm 1 that is orthogonal to all of
v1, . . . , vj−1

6: Let w′
j = Avj

7: Let αj = (w′
j)

T vj
8: Let wj = w′

j − αjvj − βjvj−1

9: end for
10: Let V be the matrix with columns v1, . . . , vm

11: Let T =



α1 β2 0
β2 α2 β3

β3 α3
. . .

. . . . . . βm−1

βm−1 αm−1 βm

0 βm αm


12: Return T

Algorithm 5 The Stochastic Lanczos Quadrature Method

1: Choose numv,m ∈ N. Sample numv i.i.d. vi from normalized Rademacher distribution, i ∈
[numv]

2: for i = 1 → numv do
3: Run m steps of the Lanczos Algorithm 4 with input Hvi, returns T ∈ Rm×m

4: Compute eigenvalue decomposition T = QΛQT

5: Compute the nodes xi = (Λii)
m
i=1 and weights ci =

(
Q2

1,i

)m
i=1

6: Return qi(t) =
∑m

i=1 cif
(
xi; t, σ

2
)

7: end for
8: Return 1

numv

∑numv
i=1 f

(
ℓi; t, σ

2
)
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D More Eperimental Details

D.1 Implementation Details on SLQ and Training Configurations

Implementation and Running Time Analysis. We provide a simple PyTorch implementation
of SLQ. The only query SLQ makes to the neural network is the Hessian vector product, which
is attained using the auto-differentiation framework [70]. To assure the accuracy of the Lanczos
algorithm, we remove all the randomness in the forward and backward passes, including: data
shuffling order, data augmentation, and dropout, etc.. Since Flash Attention [22] does not support
the calculation of Hessian-vector product, we implement all attention blocks in the naive way. For
the calculation of the blockwise Hessian spectrum ∇2L(wl), we sample ul ∼ N(0, Idl×dl

) and set
vl = ul/∥ul∥2 ∈ Rdl . Then we run Algorithm 5 by taking ∇2L(wl) and vl as inputs. We choose
the hyperparameters as m = 100 and nv = 10 in all experiments. σ is tuned based on visual effects.
These hyperparameters are reported to reach highly accurate estimation with error < 10−14 [32].

We now briefly discuss the computational cost of SLQ. The major computational expense of SLQ is
the repeated Hessian-vector product operations in Lanczos algorithm in Step 3. Recall ∇2L(w)d =
1
n

∑n
i=1 ∇2Li(w)d, so each Hessian-vector product operation requires (i) calculating ∇2Li(w)d; (ii)

repeating (i) on all data. We point out that (i) can be computed efficiently and precisely with just two
backpropagation passes [70]. The major computational bottleneck lies in (ii) due to the large n. Our
largest-scale experiment for Hesian spectrum is GPT2 (125M) on Openwebtext, where the number of
tokens n = 9 Billon. To calculate ∇2L(w)d on all these 9B tokens, it requires about 9 GPU days on
eight A100-80GB GPUs. Since SLQ requires at least 1,000 times query of ∇2L(w)d, a complete
run of SLQ would take at least 9,000 days on eight A100-80GB GPUs, which is unaffordable. In
this work, we use the largest possible batch size (with gradient accumulation tricks) to approximate
∇2L(w) under the constraints of GPU bandwidth and time limit. More detailed setup of SLQ are
shown as follows.

• ResNet18 (18M) and VGG16 (138M) on ImageNet. We use the code base of PyTorch Examples
6. We use batch size = 1024. For the calculation of the blockwise Hessian spectra, we apply SLQ
to all parameter blocks except for the BatchNorm layers. In total, it takes about 3 days on one
V100 GPU to estimate all the blockwise Hessian spectra and the full Hessian spectrum.

• ViT-base (86M) on ImageNet. We use the code base of PyTorch Image Models 7. We use batch
size = 1024. Due to the large number of parameters, we are not able to calculate the blockwise
Hessian spectra for all parameter blocks. Instead, we apply SLQ to: the embedding layer; the
output layer; the 1-st, 6-th, 12-th attention blocks; and the 1-st, 6-th, 12-th MLP blocks (note that
the 12-th attention and MLP blocks are the final ones). In total, it takes about 3 days on one V100
GPU to estimate all the blockwise Hessian spectra and the full Hessian spectrum.

• BERT(40M) on Cornell Movie-Dialogs Corpus. We use the code base from the blog 8. We use
batch size = 327, 680 tokens. For the calculation of the blockwise Hessian spectra, we apply SLQ
to all parameter blocks except for the LayerNorm layers. In total, it takes about 12 hours on one
V100 GPU to estimate all the blockwise Hessian spectra and the full Hessian spectrum.

• GPT2-nano (11M) on Shakespeare. We use the code base of NanoGPT 9. We use batch size
= 163, 840 tokens. For the calculation of the blockwise Hessian spectra, we apply SLQ to all
parameter blocks with even indices, except for the LayerNorm layers. In total, it takes about
12 hours on one V100 GPU to estimate all the blockwise Hessian spectra and the full Hessian
spectrum.

• GPT2 (125M) on Openwebtext 10. We use the code base of NanoGPT. We use batch size
= 245, 760 tokens. Due to the large number of parameters, we are not able to calculate the
blockwise Hessian spectra for all parameter blocks. Instead, we apply SLQ to: the embedding
layer; the output layer; the 1-st, 4-th, 8-th, 12-th attention blocks; and the 1-st, 4-th, 8-th, 12-th
MLP blocks (note that the 12-th attention and MLP blocks are the final ones). In total, it takes

6https://github.com/pytorch/examples/blob/main/imagenet/main.py
7https://github.com/huggingface/pytorch-image-models
8https://medium.com/data-and-beyond/complete-guide-to-building-bert-model-from-sratch-3e6562228891
9https://github.com/karpathy/nanoGPT/

10https://huggingface.co/datasets/Skylion007/openwebtext
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about 7 days on one A100 GPU to estimate all the blockwise Hessian spectra and the full Hessian
spectrum.

Training configuration. In all cases, we train all the models under the default configurations in the
above codebase. We grid-search the learning rates for SGD and Adam under the same budget and
report the best result for each optimizer. We use the cosine-decay learning rate schedule for vision
tasks. For SFT task, we use nanoGPT codebase. We first pre-train GPT2 on OpenwebText for 25B
tokens and then fine-tune it on a subset of Alpaca Eval 11.

D.2 Ablation Studies of SLQ on a Small Tranformer

On a small GPT model with 75k parameters, we compare (1) the true Hessian spectrum and (2) the
estimated Hessian spectrum curve by SLQ method. As shown in Figure 16, we find that the SLQ
method can produce accurate estimation.

(a) embd_layer (b) attn.c_attn (c) attn.c_proj (d) mlp.c_proj

Figure 16: (a, b, c, d): The comparison of (1) the true Hessian spectrum; and (2) the estimated
Hessian spectrum curve by SLQ method. The experiments are conducted on a small GPT model with
75k parameters. We find that the SLQ method can produce accurate estimation.

D.3 Implementation Details on Figure 2

We employ a synthetic dataset designed for binary classification, with 100 data points generated
through the process outlined below. Our model is a 1-hidden-layer neural network, featuring an
input size of 64 and a layer width of 8, utilizing the hyperbolic tangent (Tanh) as the activation
function. We train this model over 1000 iterations using the Adam optimizer with a learning rate set
to 1× 10−4, achieving the classification accuracy of 100%.

1 def generate_data(n_samples_per_class , n_classes , input_dim):
2 # Generate synthetic data for specified dimensions
3 X = []
4 y = []
5 for i in range(n_classes):
6 center = np.random.rand(input_dim) * 10 # Random class center
7 class_samples = np.random.randn(n_samples_per_class , input_dim

) * 0.5 + center # Add some noise
8 X.append(class_samples)
9 y.extend ([i] * n_samples_per_class)

10

11 X = np.vstack(X) # Combine all class samples
12 y = np.array(y) # Convert labels to a NumPy array
13 return X, y

D.4 Implementation Details on the MLP experiments in Figure 5

We train a 4-layer MLP on MNIST. We use batch size = 128 and width = 300, 128, and 64 for the
hidden layers. We use ReLU activation. We change the degree of heterogeneity by scaling the output
of each layer with constant c ∈ N. We scale c from 1 to 15. For each c, we train SGD and Adam with
default hyperparameters by grid-searching the learning rate from 1e-4 to 1e-1 and report the best test
accuracy after 1 epoch.

11https://huggingface.co/datasets/tatsu-lab/alpaca_eval
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E Proofs

E.1 Proof of Proof of Proposition 1

Let H =

[
L 0
0 µ

]
, where L > µ > 0. We choose the initial point as w0 = (w0

1, w
0
2) =

(
√
µ/L,

√
L/µ). By the update rule of GD, we have

L(wt+1) = L
(
wt − η∇L(wt)

)
=

1

2
(wt − ηHwt)TH(wt − ηHwt)

= (wt
1)

2|1− ηL|L+ (wt
2)

2|1− ηµ|µ

= |1− ηL|tLµ

L
+ |1− ηµ|tµL

µ

= µ|1− ηL|t + L|1− ηµ|t (11)

To proceed, we discuss the following cases:

When η ≤ 1/L, since |1− ηL|t and |1− ηµ|t are monotonically decreasing , the optimal solution is
η = 1/L.

When η ≥ 1/µ, since |1− ηL|t and |1− ηµ|t are monotonically increasing , the optimal solution is
η = 1/µ.

When 1/L ≤ η ≤ 1/µ, (11) can be written as gt(η) = µ(ηL− 1)t+L(1− ηµ)t. Take the first-order
and the second-order derivative of the g, we can obtain g′t(η) = tLµ(ηL − 1)t−1 − tµL(1− ηµ)t−1

and g′′t (η) = t(t− 1)L2µ(ηL− 1)t−2 + t(t− 1)µ2(1− ηµ). Since g′′t (η) ≥ 0 for all η ∈ [1/L, 1µ],
the function g is convex. By solving the equation that g′t(η) = 0, we can obtain η = 2

L+µ is a
solution for all t. Plugging this result into (11) and rearranging the terms, we conclude the proof of
Proposition 1.

E.2 Proof of Theorem 1

We first show that Cl,2 and Cl,1 are non-zero w.p.1. under the random initialization in Assumption 1.
We define set Si = {w;hT

i w = 0} where hi ∈ Rd is the i-th row of H . Since H is positive definite,
there is at least one non-zero entry in hi, i ∈ [d]. As such, Si is a (d− 1)-dimensional subspace of
Rd and thus has zero Lebesgue measure in Rd. Since w0 follows continuous distribution, we have
Pr

(
{w0;hT

i w
0 = 0}

)
= 0, for i = [d]. Then we have

Pr
(
∇L(w0) has at least one zero entry

)
= Pr

(
Hw0 has at least one zero entry

)
(12)

= Pr
(
∪d
i=1{w0;hT

i w
0 = 0}

)
(13)

≤
d∑

i=1

Pr
(
{w0;hT

i w
0 = 0}

)
(14)

= 0. (15)

Therefore, ∇L(w0) is elementwise non-zero w.p.1.., so Cl,1 and Cl,2 are non-zero for all l ∈ [L],
w.p.1.. In the following analysis, We will assume Cl,1 and Cl,2 are non-zero.

Without loss of generality, we assume h = 0. This is because minimizing L(w) = 1
2w

THw − hTw

is equivalent to minimizing L(w) = 1
2 (w − w∗)

T
H (w − w∗) where w∗ = H−1h. By a linear

transformation z = w − w∗, Adam for minimizing 1
2 (w − w∗)

T
H (w − w∗) starting from w0 is

equivalent to Adam for minimizing 1
2z

THz starting from z0 = w0 − w∗. Thus we can assume
w∗ = 0, or equivalently, h = 0. The update rule of Adam becomes
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wt+1 = wt − η(D0
Adam)−1Hwt,

where D0
Adam = diag(∇L(w0) ◦ ∇L(w0))

1
2 = diag(|Hw0|). We denote dt = η(D0

Adam)−1Hwt

and thus we have wt = 1
ηH

−1D0
Adamdt and wt+1 = wt − dt. These relations also hold for each

block by changing the notation to Hl w
t
l , D

0
Adam, and dtl , etc.. Following the framework in [80],

we try to bound the error yet to be optimized (a.k.a., cost-to-go) and the per-step improvement,
respectively. The ratio of these two terms characterizes the rate of convergence. We now express both
terms using dtl . For the cost-to-go term for the l-th block, we have

[L(wt)]l − [L∗]l =
1

2
(wt

l )
THlw

t
l =

1

2η2
(dtl)

TD0
Adam,lH

−1
l D0

Adam,ld
t
l . (16)

For the per-step improvement, we have

[L(wt)]l − [L(wt+1)]l =
1

2
(wt

l )
THlw

t
l −

1

2
(wt+1

l )THlw
t+1
l

=
1

2
(wt

l )
THlw

t+1
l − 1

2
(wt

l − dt)THl(w
t
l − dtl)

= (dtl)
THlw

t
l −

1

2
(dtl)

THld
t
l

=
1

2
(dtl)

T

(
2

η
D0

Adam,l −Hl

)
dtl . (17)

To proceed, we denote Ĥ = (D0
Adam)−1H and we denote its eigenvalues as λ̂1 ≥ λ̂2 ≥ · · · λ̂d.

Similarly, we denote Ĥl = (D0
Adam,l)

−1Hl and its eigenvalues λ̂l,1 ≥ λ̂l,2 ≥ · · · λ̂l,dl
. Let

η = minl∈[L] Cl,1, we have

[L(wt)]l − [L∗]l
[L(wt)]l − [L(wt+1)]l

=

1
η2 (d

t
l)

TD0
Adam,lH

−1
l D0

Adam,ld
t
l

(dtl)
T
(

2
ηD

0
Adam,l −Hl

)
dtl

≤

∥∥∥∥∥ 1

η2

(
2

η
D0

Adam,l −Hl

)−1

D0
Adam,lH

−1
l D0

Adam,l

∥∥∥∥∥
2

(18)

(∗)
≤

C2
l,2λ

2
l,1

(minl∈[L] C
2
l,1)λl,1λl,dl

(19)

≤
maxl∈[L] C

2
l,2

minl∈[L] C
2
l,1

κl, (20)

where (∗) is due to: by Assumption 1, D0
Adam,l ≼ Cl,2λl,1I , 2

ηD
0
Adam,l − Hl ≽(

2
Cl,1

C1l,λl,1 − λl,1

)
I ≽ λl,1I , where ≼ and ≽ are matrix inequalities. By rearranging both

sides of (20), we have [L(wt+1)]l− [L∗]l ≤

1− 1(
maxl∈[L] C

2
l,2

minl∈[L] C
2
l,1

)
κl

 ([L(wt)]l − [L∗]l). Summing

up both sides over l ∈ [L] and we conclude the proof.

L(wt+1)− L∗ =

L∑
l=1

(
[L(wt+1)]l − [L∗]l

)

≤
L∑

l=1

1− 1(
maxl∈[L] C

2
l,2

minl∈[L] C
2
l,1

)
κl

([L(wt)]l − [L∗]l
)
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≤ max
l∈[L]

1− 1(
maxl∈[L] C

2
l,2

minl∈[L] C
2
l,1

)
κl

 L∑
l=1

(
[L(wt)]l − [L∗]l

)

= max
l∈[L]

1− 1(
maxl∈[L] C

2
l,2

minl∈[L] C
2
l,1

)
κl

(L(wt)− L∗) .
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NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope?
Answer: [Yes]
Justification: The main results in the experimental sections match the claims in the abstract and
introduction.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims made in
the paper.

• The abstract and/or introduction should clearly state the claims made, including the contribu-
tions made in the paper and important assumptions and limitations. A No or NA answer to
this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how much
the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals are
not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The limitation is discussed in Section 5.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that the
paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to vi-

olations of these assumptions (e.g., independence assumptions, noiseless settings, model
well-specification, asymptotic approximations only holding locally). The authors should
reflect on how these assumptions might be violated in practice and what the implications
would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was only
tested on a few datasets or with a few runs. In general, empirical results often depend on
implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach. For
example, a facial recognition algorithm may perform poorly when image resolution is low or
images are taken in low lighting. Or a speech-to-text system might not be used reliably to
provide closed captions for online lectures because it fails to handle technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms and how
they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to address
problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by review-
ers as grounds for rejection, a worse outcome might be that reviewers discover limitations that
aren’t acknowledged in the paper. The authors should use their best judgment and recognize
that individual actions in favor of transparency play an important role in developing norms
that preserve the integrity of the community. Reviewers will be specifically instructed to not
penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and a
complete (and correct) proof?
Answer: [Yes]
Justification: The full set of assumptions are in Section 4.2 and the complete proof is in E.
Guidelines:
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• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if they

appear in the supplemental material, the authors are encouraged to provide a short proof
sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented by
formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main experi-
mental results of the paper to the extent that it affects the main claims and/or conclusions of the
paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: In Appendix D, we carefully describe all the needed information to reproduce the
experimental results.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived well by

the reviewers: Making the paper reproducible is important, regardless of whether the code
and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken to
make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways. For
example, if the contribution is a novel architecture, describing the architecture fully might
suffice, or if the contribution is a specific model and empirical evaluation, it may be necessary
to either make it possible for others to replicate the model with the same dataset, or provide
access to the model. In general. releasing code and data is often one good way to accomplish
this, but reproducibility can also be provided via detailed instructions for how to replicate the
results, access to a hosted model (e.g., in the case of a large language model), releasing of a
model checkpoint, or other means that are appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submissions
to provide some reasonable avenue for reproducibility, which may depend on the nature of
the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how to

reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe the

architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct the
dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case authors
are welcome to describe the particular way they provide for reproducibility. In the case
of closed-source models, it may be that access to the model is limited in some way (e.g.,
to registered users), but it should be possible for other researchers to have some path to
reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instructions to
faithfully reproduce the main experimental results, as described in supplemental material?
Answer: [Yes]
Justification: We provide code in the supplementary materials.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
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• Please see the NeurIPS code and data submission guidelines (https://nips.cc/public/
guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not including
code, unless this is central to the contribution (e.g., for a new open-source benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https://
nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how to
access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new proposed
method and baselines. If only a subset of experiments are reproducible, they should state
which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized versions
(if applicable).

• Providing as much information as possible in supplemental material (appended to the paper)
is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyperparameters,
how they were chosen, type of optimizer, etc.) necessary to understand the results?
Answer: [Yes]
Justification: The experimental details are described in Appendix D.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail that

is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: We did not provide the error bar since the experiments on large Transformers are too
expensive to repeat for multiple runs.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confidence

intervals, or statistical significance tests, at least for the experiments that support the main
claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for example,
train/test split, initialization, random drawing of some parameter, or overall run with given
experimental conditions).

• The method for calculating the error bars should be explained (closed form formula, call to a
library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error of the

mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should preferably

report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of Normality
of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or figures
symmetric error bars that would yield results that are out of range (e.g. negative error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how they
were calculated and reference the corresponding figures or tables in the text.
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8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the computer
resources (type of compute workers, memory, time of execution) needed to reproduce the experi-
ments?
Answer: [Yes]
Justification: The computation resource is described in Section D.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster, or

cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual experi-

mental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute than the

experiments reported in the paper (e.g., preliminary or failed experiments that didn’t make it
into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the NeurIPS
Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We conform with the NeurIPS code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consideration

due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative societal
impacts of the work performed?
Answer: [Yes]
Justification: Positive and negative social impacts are discussed in Section 5.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal impact

or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses (e.g.,

disinformation, generating fake profiles, surveillance), fairness considerations (e.g., deploy-
ment of technologies that could make decisions that unfairly impact specific groups), privacy
considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied to
particular applications, let alone deployments. However, if there is a direct path to any
negative applications, the authors should point it out. For example, it is legitimate to point out
that an improvement in the quality of generative models could be used to generate deepfakes
for disinformation. On the other hand, it is not needed to point out that a generic algorithm
for optimizing neural networks could enable people to train models that generate Deepfakes
faster.

• The authors should consider possible harms that could arise when the technology is being
used as intended and functioning correctly, harms that could arise when the technology is
being used as intended but gives incorrect results, and harms following from (intentional or
unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks, mechanisms
for monitoring misuse, mechanisms to monitor how a system learns from feedback over time,
improving the efficiency and accessibility of ML).

36

https://neurips.cc/public/EthicsGuidelines


11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible release of
data or models that have a high risk for misuse (e.g., pretrained language models, image generators,
or scraped datasets)?
Answer: [NA]
Justification: Our paper poses no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with necessary

safeguards to allow for controlled use of the model, for example by requiring that users
adhere to usage guidelines or restrictions to access the model or implementing safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors should
describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do not
require this, but we encourage authors to take this into account and make a best faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in the
paper, properly credited and are the license and terms of use explicitly mentioned and properly
respected?
Answer: [Yes]
Justification: All assets are properly cited.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of service

of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the package

should be provided. For popular datasets, paperswithcode.com/datasets has curated
licenses for some datasets. Their licensing guide can help determine the license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of the
derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to the
asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: We do not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license, limitations,
etc.

• The paper should discuss whether and how consent was obtained from people whose asset is
used.

• At submission time, remember to anonymize your assets (if applicable). You can either create
an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as well as
details about compensation (if any)?
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Answer: [NA]
Justification: Our paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribution
of the paper involves human subjects, then as much detail as possible should be included in
the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or
other labor should be paid at least the minimum wage in the country of the data collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human Sub-
jects
Question: Does the paper describe potential risks incurred by study participants, whether such
risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals
(or an equivalent approval/review based on the requirements of your country or institution) were
obtained?
Answer: [NA]
Justification: Our paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent) may
be required for any human subjects research. If you obtained IRB approval, you should
clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions and
locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines
for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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