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Abstract

Graphs are a natural representation of brain ac-
tivity derived from functional magnetic imaging
(fMRI) data. It is well known that communities of
nodes extracted from brain graphs, referred to as
functional connectivity networks (FCNs), serve
as useful biomarkers for understanding brain func-
tion and dysfunction. Previous works, however,
ignore the temporal dynamics of the brain and
focus on static graph representations. In this pa-
per we propose NeuroEvolve, a dynamic brain
graph deep generative model which simultane-
ously learns graph-, node-, and community-level
embeddings in an unsupervised fashion. Specifi-
cally, NeuroEvolve represents brain graph nodes
as embeddings sampled from a distribution over
communities that evolve over time. The com-
munity distribution is parameterized using neu-
ral networks that learn from subject and node
embeddings as well as past community assign-
ments. Experiments on real-world fMRI data
demonstrate NeuroEvolve outperforms state-of-
the-art baselines in graph generation, dynamic
link prediction, and is comparable for graph clas-
sification. Finally, an interpretability analysis of
the learnt community distributions reveals over-
lap with known FCNs reported in neuroscience
literature.

1. Introduction
Functional magnetic resonance imaging (fMRI) is a non-
invasive imaging technique primarily used for measur-
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ing blood-oxygen level dependent (BOLD) signal in the
brain (Huettel et al., 2004). A natural representation of
fMRI data is as a discrete-time graph, henceforth referred
to as a dynamic brain graph (DBG), consisting of a set of
fixed nodes corresponding to anatomically separated brain
regions (Lawrence et al., 2021; Hess et al., 2018) and a
set of time-varying edges determined by a measure of dy-
namic functional connectivity (FC) (Calhoun et al., 2014;
Hutchison et al., 2013). DBGs have been widely used in
graph-based network analysis for understanding brain func-
tion (Hirsch & Wohlschlaeger, 2022; Raz et al., 2016) and
dysfunction (Alonso Martı́nez et al., 2020; Dautricourt et al.,
2022; Yu et al., 2015).

Recently, there is growing interest in using deep learning-
based methods for learning representations of graph-
structured data (Goyal & Ferrara, 2018; Hamilton, 2020). A
graph representation typically consists of a low-dimensional
vector embedding of either the entire graph (Narayanan
et al., 2017) or a part of it’s structure such as nodes (Grover
& Leskovec, 2016), edges (Gao et al., 2019), or sub-
graphs (Adhikari et al., 2017). Although originally formu-
lated for static graphs, several existing methods have been
extended (Mahdavi et al., 2018; Goyal et al., 2020), and
new ones proposed (Zhou et al., 2018; Sankar et al., 2020),
for dynamic graphs. The embeddings are usually learnt in
either a supervised or unsupervised fashion and are typically
used in tasks such as node classification (Pareja et al., 2020)
and dynamic link prediction (Goyal et al., 2018).

To date, very few deep learning-based methods have been
designed for, or existing methods applied to, representation
learning of DBGs. Those that do tend to use graph neu-
ral networks (GNNs) (Wu et al., 2020) that are designed
for learning node- and graph-level embeddings (Kim et al.,
2021; Dahan et al., 2021). Although these embeddings
are effective at representing local/global graph structure,
they are less adept at representing topological structures
in-between these two extremes such a clusters of nodes or
communities (Wang et al., 2017). Recent methods that ex-
plicitly incorporate community embeddings alongside node
embeddings have shown improved performance for static
graph representation learning tasks (Sun et al., 2019; Caval-
lari et al., 2017). How to leverage the relatedness of graph,
node, and community embeddings in a unified framework
for DBG representation learning remains under-explored.
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Contributions To address these shortcomings, we pro-
pose NeuroEvolve1, a hierarchical structured deep genera-
tive model (DGM) specifically designed for unsupervised
learning of DBGs derived from multi-subject fMRI data.
NeuroEvolve combines graph, node, and community em-
beddings in a unified framework, utilizing neural networks
(NNs) to parameterize a community distribution over the
nodes that evolves over time. NeuroEvolve also incorpo-
rates inductive biases in its structure inspired from prior
knowledge about brain FCNs. We evaluate NeuroEvolve
on multiple real-world fMRI datasets and show that it out-
performs state-of-the-art baselines for graph reconstruction,
dynamic link prediction, and achieves comparable results
for graph classification.

2. Related work
Dynamic graph generative models Classic generative
models for graph-structured data are typically designed for
modeling a small set of specific properties (e.g. degree
distribution, eigenvalues, modularity) of static graphs (Er-
dos et al., 1960; Barabási & Albert, 1999; Nowicki & Sni-
jders, 2001). DGMs that exploit the learning capacity
of NNs are able to learn more expressive graph distribu-
tions (Mehta et al., 2019; Kipf & Welling, 2016b; Sarkar
et al., 2020). Recent DGMs for dynamic graphs are major-
ity VAE-based (Kingma & Welling, 2013) and are unable
to learn community representations (Hajiramezanali et al.,
2019; Gracious et al., 2021; Zhang et al., 2021). The few
that do, are designed for static graphs (Sun et al., 2019;
Khan et al., 2021; Cavallari et al., 2017).

Learning representations of dynamic brain graphs
BOLD signals derived from fMRI, whether at the voxel
or brain region level, represent non stationary timeseries
(Guan et al., 2020). As such, how BOLD signals relate
to each other spatially changes over time. Within the con-
text of dynamic FC, it is essential to capture these time
varying spatial relationships. Most unsupervised representa-
tion learning methods for DBGs tend to focus on clustering
DBGs into a finite number of connectivity patterns that re-
cur over time (Allen et al., 2014; Spencer & Goodfellow,
2022). Community detection is another commonly used
method but is mainly applied to static brain graphs (Pavlović
et al., 2020; Esfahlani et al., 2021). Extensions to DBGs
are typically not end-to-end trainable and do not scale to
multi-subject datasets (Ting et al., 2020; Martinet et al.,
2020a). Recent deep learning-based methods are predom-
inately GNN-based (Kim et al., 2021; Dahan et al., 2021).
Unlike NeuroEvolve, these methods are supervised and
focus on learning deterministic node- and/or graph-level

1Code available at https://
github.com/simeon-spasov/
dynamic-brain-graph-deep-generative-model

Figure 1. Plate diagram summarizing the generative model of Neu-
roEvolve. Latent and observed variables are denoted by white-and
gray-shaded circles, respectively. Solid black squares denote map-
pings parameterized by a neural network.

representations.

3. Problem formulation
We consider a dataset of multi-subject DBGs derived from
fMRI data D ≡ G(1:S, 1:T ) = {G(s, t)}S, Ts, t=1 that share a
common set of nodes V = {v1, . . . , vV } over T ∈ N
snapshots for S ∈ N subjects. Each G(s, t) ∈ G(1:S, 1:T )

denotes a non-attributed, unweighted, and undirected brain
graph for the s-th subject at the t-th snapshot. We define a
brain graph snapshot as a tuple G(s, t) = (V, E(s, t)) where
E(s, t) ⊆ V × V denotes an edge set. The i-th edge for the
s-th subject at the t-th snapshot e(s, t)i ∈ E(s, t) is defined
e
(s, t)
i = (w

(s, t)
i , c

(s, t)
i ) where w(s, t)

i is a source node and
c
(s, t)
i is a target node.

We assume each node corresponds to a brain region making
the number of nodes |V| = V ∈ N fixed over subjects and
snapshots. We also assume edges correspond to a measure
FC allowing the number of edges |E(s, t)| = E(s, t) ∈ N to
vary over subjects as well as snapshots. We further assume
there exists K ∈ N clusters of nodes, or communities, the
membership of which dynamically changes between snap-
shots for each subject. Let z(s, t)i ∈ [1 : K] denote the latent
community assignment of the i-th edge for the s-th subject
at the t-th snapshot.

For each subject’s DBG we aim to learn, in an unsuper-
vised fashion, graph α(s) ∈ RHα , node ϕ(s, t)

1:V = [ϕ(s, t)
n ] ∈

RV×Hϕ , and community ψ(s, t)
1:K = [ψ

(s, t)
k ] ∈ RK×Hψ em-

beddings of dimensions Hα, Hϕ, Hψ ∈ N, respectively, for
use in a variety of downstream tasks.

4. Method
NeuroEvolve is a hierarchical deep generative model and
inference network that accomplishes end-to-end learning of
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graph, node, and community embeddings from multi-subject
DBG data. NeuroEvolve treats the embeddings and edge
community assignments as latent random variables Ω(s, t) =

{α(s), ϕ
(s, t)
1:V , ψ

(s, t)
1:K , {z(s, t)i }E(s, t)

i=1 }, which along with
the observed DBGs, characterize a probabilistic latent vari-
able model with joint density pθ(G1:S, 1:T ,Ω1:S, 1:T ).

4.1. Generative model

Algorithm 1 NeuroEvolve generative process
1: Input: Common node set V , source nodes from all edges
{w(s, t)

i : i = 1, . . . , E(s, t)}S, Ts, t=1

2: Require: Number of communities K ∈ N; embedding dimen-
sions Hα, Hϕ, Hψ ∈ N; number of layers in NNs Lϕ, Lψ ,
Lz ∈ N; temporal smoothness σψ , σϕ ∈ R>0

3: D ← ∅
4: for s← 1 to S do
5: α(s) ∼ p(α(s)) = Normal(0Hα , IHα)
6: for t← 1 to T do
7: for k ← 1 to K do
8: if t = 1 then
9: ψ

(s, 0)
k = MLPθψ (α

(s))
10: end if
11: p(ψ

(s, t)
k |ψ(s, t−1)

k ) = Normal(ψ(s, t−1)
k , σψIHψ )

12: ψ
(s, t)
k ∼ p(ψ

(s, t)
k |ψ(s, t−1)

k )
13: end for
14: for n← 1 to V do
15: if t = 1 then
16: ϕ(s, 0)

n = MLPθϕ(α
(s))

17: end if
18: p(ϕ(s, t)

n |ϕ(s, t−1)
n ) = Normal(ϕ(s, t−1)

n , σϕIHϕ)

19: ϕ(s, t)
n ∼ p(ϕ(s, t)

n |ϕ(s, t−1)
n )

20: end for
21: E(s, t) ← ∅
22: for i← 1 to E(s, t) do
23: logit π̂(s, t)

i = MLPθz (ϕ
(s, t)
wi

)

24: p(z
(s, t)
i |w(s, t)

i ) = Categorical(π̂(s, t)
i )

25: z
(s, t)
i ∼ p(z

(s, t)
i |w(s, t)

i )

26: logit π̃(s, t)
i = MLPθc(ψ

(s, t)
zi

)

27: pθc(c
(s, t)
i |z(s, t)i ) = Categorical(π̃(s, t)

i )

28: c
(s, t)
i ∼ pθc(c

(s, t)
i |z(s, t)i )

29: E(s, t) ← E(s, t) ∪ {(w(s, t)
i , c

(s, t)
i )}

30: end for
31: G(s, t) ← (V, E(s, t))
32: D ← D ∪ {G(s, t)}
33: end for
34: end for

Graph embeddings The generative process of NeuroE-
volve begins by sampling graph embeddings from a prior
α(s) ∼ pθα(α

(s)) implemented as a normal distribution

pθα(α
(s)) = Normal(0Hα , IHα) (1)

where 0Hα and IHα denote a zero matrix a identity ma-
trix, respectively. Each embedding, represented as a Hα-
dimensional vector α(s) ∈ RHα , encapsulates subject-
specific information that remains constant over snapshots.

Node and community embeddings Next, let ϕ(s, t)
n ∈

RHϕ and ψ(s, t)
k ∈ RHψ denote the n-th node and the k-

th community embedding, respectively. To incorporate
temporal dynamics, we assume the node and community
embeddings are related through Markov chains with prior
transition distributions ϕ(s, t)

n ∼ pθϕ(ϕ
(s, t)
n |ϕ(s, t−1)

n ) and
ψ

(s, t)
k ∼ pθψ (ψ

(s, t)
k |ψ(s, t−1)

k ). We specify each prior to
be a normal distribution following

pθϕ(ϕ
(s, t)
n |ϕ(s, t−1)

n ) = Normal(ϕ(s, t−1)
n , σϕIHϕ) (2)

pθψ (ψ
(s, t)
k |ψ(s, t−1)

k ) = Normal(ψ(s, t−1)
k , σψIHψ ). (3)

The means of each distribution are initialized via NN
transformations of the graph embeddings, i.e. ϕ(s, 0)

n =

MLPθϕ(α
(s)), ψ(s, 0)

k = MLPθψ (α
(s)), where MLPθj :

RHα → RHj is a Lj-layered multilayer perceptron (MLP)
for j ∈ {ϕ, ψ}. The standard deviations σϕ, σψ ∈ R≥0 are
hyperparameters controlling how smoothly each embedding
changes between consecutive snapshots.

Edge generation We next describe the edge genera-
tive process of a graph snapshot G(s, t) ∈ G(1:S, 1:T ).
Similar to Sun et al. (2019), for each edge e

(s, t)
i =

(w
(s, t)
i , c

(s, t)
i ) ∈ E(s, t) we first sample a latent commu-

nity assignment z(s, t)i ∈ [1 : K] from a conditional prior
z
(s, t)
i ∼ pθz (z

(s, t)
i |w(s, t)

i ) implemented as a categorical
distribution

pθz (z
(s, t)
i |w(s, t)

i ) = Categorical(π̃(s, t)
i ) (4)

logit π̃(s, t)
i = MLPθz (ϕ

(s, t)
wi ) (5)

where MLPθz : RHϕ → RK is a Lz-layered MLP that
parameterizes community probabilities using node embed-
dings indexed by w(s, t)

i . In other words, each source node
w

(s, t)
i is represented as a mixture of communities.

A linked target node c(s, t)i ∈ [1 : V ] is then sampled from
the conditional likelihood c(s, t)i ∼ pθc(c

(s, t)
i |z(s, t)i ) which

is also implemented as a categorical distribution

pθc(c
(s, t)
i |z(s, t)i ) = Categorical(π̂(s, t)

i ) (6)

logit π̂(s, t)
i = MLPθc(ψ

(s, t)
zi ) (7)

where MLPθc : RHψ → RV is a Lc-layered MLP that
parameterizes node probabilities using community embed-
dings indexed by z(s, t)i . That is, each community assign-
ment z(s, t)i is represented as a mixture of nodes. By inte-
grating out the latent community assignment variable

p(c
(s, t)
i |w(s, t)

i ) =∑
z
(s, t)
i ∈[1:K]

pθc(c
(s, t)
i |z(s, t)i )pθz (z

(s, t)
i |w(s, t)

i ) (8)
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we define the likelihood of node c(s, t)i being a linked neigh-
bor of node w(s, t)

i , in a given graph snapshot.

Factorized generative model Given this generative pro-
cess, the joint probability of the observed data and the latent
variables can be factorized following

pθ(G1:S 1:T , Ω1:S, 1:T ) =

S∏
s=1

(
pθα(α

(s))

×
T∏
t=1

(
V∏
n=1

pθϕ(ϕ
(s, t)
n |ϕ(s, t−1)

n )

×
K∏
k=1

pθψ (ψ
(s, t)
k |ψ(s, t−1)

k ) (9)

×
E(s, t)∏
i=1

pθz (z
(s, t)
i |ϕ(s, t)

wi )

× pθc(c
(s, t)
i |ψ(s, t)

zi )

))

where θ = {θϕ, θψ, θz, θc} is the set of generative model
parameters, i.e. NN weights. See Figure 1 for a graphi-
cal representation of NeuroEvolve and Algorithm 1 for a
summary of the generative process.

4.2. Inference model

Inferring the posterior distribution pθ(Ω(1:S, 1:T )|G(1:S, 1:T ))
is intractable so we resort to variational inference (Jordan
et al., 1999) to approximate the true posterior with a vari-
ational distribution qλ(Ω(1:S, 1:T )). For our training algo-
rithm, we maximize a lower bound on the log marginal
likelihood of the DBGs, referred to as the ELBO (evidence
lower bound)

LELBO(θ, λ) = Eqλ

[
log

pθ(G(1:S, 1:T ), Ω(1:S, 1:T ))

qλ(Ω(1:S, 1:T ))

]
≤ log pθ(G(1:S, 1:T )) (10)

where Eqλ [·] denotes the expectation with respect to the
variational distribution qλ(Ω(1:S, 1:T )). By maximizing the
ELBO with respect to the generative and variational param-
eters θ and λ we train our generative model and perform
Bayesian inference, respectively.

Structured variational distribution To ensure a good
approximation to the true the posterior, we retain the Markov
properties of the node and community embeddings resulting
in a structured variational distribution (Hoffman & Blei,

Figure 2. Plate diagram summarizing the inference model of Neu-
roEvolve. Latent and observed variables are denoted by white-and
gray-shaded circles, respectively. Solid black squares denote map-
pings parameterized by a neural network.

2015; Saul & Jordan, 1995) which factorizes following

qλ(Ω
(1:S, 1:T )) =

S∏
s=1

(
qλα(α

(s))

×
T∏
t=1

(
V∏
n=1

qλϕ(ϕ
(s, t)
n |ϕ(s, t−1)

n )

×
K∏
k=1

qλψ (ψ
(s, t)
k |ψ(s, t−1)

k ) (11)

×
E(s, t)∏
i=1

qλz (z
(s, t)
i |ϕ(s, t)

wi , ϕ(s, t)
ci )

))
.

Moreover, we specify each variational distribution to be
from the same family of distribution as it’s equivalent in the
generative model. For the graph embeddings we have

qλα(α
(s)) = Normal(µ(s), σ(s)IHα). (12)

Next, for the node embeddings

qλϕ(ϕ
(s, t)
n |ϕ(s, t−1)

n ) = Normal(µ̂(s, t)
n , σ̂(s, t)

n IHϕ) (13)

{µ̂(s, t)
n , log σ̂(s, t)

n } = GRUλϕ(ϕ
(s, t−1)
n ) (14)

and community embeddings

qλψ (ψ
(s, t)
k |ψ(s, t−1)

k ) =Normal(µ̃(s, t)
k , σ̃

(s, t)
k IHψ ) (15)

{µ̃(s, t)
k , log σ̃

(s, t)
k } = GRUλψ (ψ

(s, t−1)
k ) (16)

where GRUλj : RHj → RHj is a Lj-layered gated re-
current unit (GRU) (Cho et al., 2014) for j ∈ {ϕ, ψ}.
Furthermore, we use MLPs to initialize the GRUs with
graph embeddings such that ϕ(s, 0)

n = MLPλϕ(α
(s)) and

ψ
(s, 0)
k = MLPλψ (α

(s)) where MLPλj : RNα → RNj for
j ∈ {ϕ, ψ}. This allows for subject-specific variation to
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be incorporated in the temporal dynamics of the node and
community embeddings. Finally, for the latent community
assignment of each edge we define

qλz (z
(s, t)
i |ϕ(s, t)

wi , ϕ(s, t)
ci ) = Categorical(π(s, t)

i ) (17)

logit π(s, t)
i = MLPλz (ϕ

(s, t)
wi ⊙ ϕ(s, t)

ci ) (18)

where MLPλz : RHϕ → RK is Lz-layered MLP. In con-
trast to the generative model, the variational distribution of
the community assignment now includes information from
neighboring nodes via c(s, t)i . See Figure 2 for a graphical
representation of the inference model.

Training objective Substituting the variational distribu-
tion from (11) and the joint distribution from (9) into the
ELBO (10) gives the full training objective, which for the
s-th subject is defined as

L(s)
ELBO(θ, λ) =

T∑
t=1

E(s, t)∑
i=1

(
Eqλz qλψ

[
log pθc(c

(s, t)
i |w(s, t)

i , ψ(s, t)
zi )

]

−Eqλϕ
[
DKL[qλz (z

(s, t)
i |ϕ(s, t)

wi , ϕ(s, t)
ci )||

pθz (z
(s, t)
i |ϕ(s, t)

wi )]
])

−DKL[qλα(α
(s))||pθα(α(s))]

T∑
t=1

(
(19)

−
V∑
n=1

Eqλϕ
[
DKL[qλϕ(ϕ

(s, t)
n |ϕ(s, t−1)

n )||

pθϕ(ϕ
(s, t)
n |ϕ(s, t−1)

n )]
]

−
K∑
k=1

Eqλψ
[
DKL[qλψ (ψ

(s, t)
k |ψ(s, t−1)

k )||

pθψ (ψ
(s, t)
k |ψ(s, t−1)

k )]
])

where DKL[·||·] denotes the Kullback-Leibler (KL) diver-
gence. By maximizing the ELBO, the parameters (θ, λ) of
the generative model and inference model can be jointly
learnt. See Figure 2 for a graphical representation of the
inference model of NeuroEvolve.

Algorithm 2 NeuroEvolve inference model
1: Input: Common node set V , source nodes of all edges
{w(s, t)

i : i = 1, . . . , E(s, t)}S, Ts, t=1

2: Require: Number of communities K ∈ N; embedding dimen-
sions Hα, Hϕ, Hψ ∈ N; number of layers in NNs Lϕ, Lψ
Lz ∈ N

3: L ← 0
4: {µ(s), logσ(s)}Ss=1 ← Normal(0Hα , IHα)
5: repeat
6: for s← RandomShuffle [1 : S] do
7: qλα(α

(s)) = Normal(µ(s), σ(s)IHα)

8: α(s) ∼ qλα(α
(s))

9: for t← 1 to T do
10: for k ← 1 to K do
11: if t = 1 then
12: ψ

(s, 0)
k = MLPλψ (α

(s))
13: end if
14: {µ̃(s, t)

k , log σ̃
(s, t)
k } = GRUλψ (ψ

(s, t−1)
k )

15: qλψ (ψ
(s, t)
k |ψ(s, t−1)

k ) =

Normal(µ̃(s, t)
k , σ̃

(s t)
k IHψ )

16: ψ
(s, t)
k ∼ qλψ (ψ

(s, t)
k |ψ(s, t−1)

k )
17: end for
18: for n← 1 to V do
19: if t = 1 then
20: ϕ(s, 0)

n = MLPλϕ(α
(s))

21: end if
22: {µ̂(s, t)

n , log σ̂
(s, t)
n } = GRUλϕ(ϕ

(s, t−1)
n )

23: qλϕ(ϕ
(s, t)
n |ϕ(s, t−1)

n ) =

Normal(µ̂(s, t)
n , σ̂

(s, t)
n IHϕ)

24: ϕ(s, t)
n ∼ qλϕ(ϕ

(s, t)
n |ϕ(s, t−1)

n )
25: end for
26: for i← 1 to E(s, t) do
27: logit π̂(s, t)

i = MLPλz (ϕ
(s, t)
wi
⊙ ϕ(s, t)

ci
)

28: qλz (z
(s, t)
i |ϕ(s, t)

wi
, ϕ(s, t)

ci
) = Categorical(π̂(s, t)

i )

29: z
(s, t)
i ∼ qλz (z

(s, t)
i |ϕ(s, t)

wi
, ϕ(s, t)

ci
)

30: logit π̃(s, t)
i = MLPθc(ψ

(s, t)
zi

)

31: pθc(c
(s, t)
i |z(s, t)i ) = Categorical(π̃(s, t)

i )

32: c
(s, t)
i ∼ pθc(c

(s, t)
i |z(s, t)i )

33: end for
34: end for
35: Compute gradients of L(s)

ELBO(θ, λ) w.r.t. (θ, λ)
36: Perform gradient-based updates for (θ, λ)
37: L ← L+ 1

S
L(s)

ELBO(θ, λ)
38: end for
39: until L converges

Inference and learning In order to use efficient stochastic
gradient-based optimization techniques (Robbins & Monro,
1951) for learning the parameters, the gradient of the ELBO
(19) must be estimated with respect to (θ, λ). The main
challenge is obtaining gradients of the variables under ex-
pectation, i.e. Eq∗ [·], since they are stochastic. To allow
gradients to pass through these sampling steps, we use the
reparameterization trick (Kingma & Welling, 2013; Rezende
et al., 2014) for the normal distributions and the Gumbel-
softmax trick (Jang et al., 2016; Maddison et al., 2016)
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Table 1. Results for graph reconstruction (top) and dynamic link prediction (bottom). First and second-best results shown in bold and
underlined. Results with a statistically significant difference from NeuroEvolve are marked *.

Model
HCP UKB

NLL (↓) MSE (↓) NLL (↓) MSE (↓)

VGAE 5.857 ± 0.017 * 0.051 ± 0.002 * 5.851 ± 0.027 * 0.061 ± 0.002 *
OSBM 5.808 ± 0.026 * 0.051 ± 0.003 * 5.726 ± 0.039 * 0.052 ± 0.003 *
VGRAPH 5.569 ± 0.046 * 0.022 ± 0.004 * 5.716 ± 0.037 * 0.020 ± 0.003 *
VGRNN 5.674 ± 0.034 * 0.011 ± 0.003 * 5.649 ± 0.035 * 0.014 ± 0.002 *
ELSM 5.924 ± 0.040 * 0.081 ± 0.002 * 5.809 ± 0.024 * 0.115 ± 0.003 *
NeuroEvolve 4.587 ± 0.045 0.001 ± 0.002 4.586 ± 0.084 0.004 ± 0.003

AUROC (↑) AP (↑) AUROC (↑) AP (↑)

VGAE 0.661 ± 0.010 * 0.674 ± 0.008 * 0.688 ± 0.010 * 0.607 ± 0.009 *
OSBM 0.655 ± 0.027 * 0.675 ± 0.024 * 0.678 ± 0.032 * 0.682 ± 0.033 *
VGRAPH 0.689 ± 0.004 * 0.682 ± 0.002 * 0.664 ± 0.002 * 0.621 ± 0.001 *
VGRNN 0.689 ± 0.007 * 0.698 ± 0.006 * 0.698 ± 0.009 * 0.696 ± 0.007 *
ELSM 0.669 ± 0.004 * 0.662 ± 0.002 * 0.661 ± 0.001 * 0.662 ± 0.002 *
NeuroEvolve 0.768 ± 0.026 0.732 ± 0.032 0.786 ± 0.040 0.762 ± 0.038

for the categorical distributions. This allows for the gradi-
ent of (19) w.r.t. θ and λ to be easily computed via back-
propagation (Rumelhart et al., 1986) making NeuroEvolve
end-to-end trainable. In addition, we analytically calculate
the KL terms for both normal and categorical distributions,
which leads to lower variance gradient estimates and faster
training as compared to noisy Monte Carlo estimates.

Parameter sharing We use the same NNs from the gen-
erative model to parameterize the variational distributions
for the node and community embeddings as well as the
edge community assignments. This not only spares addi-
tional trainable parameters for the variational distribution
but also further links the variational parameters of qλ(·)
to generative parameters of pθ(·) resulting in more robust
learning (Farnoosh & Ostadabbas, 2021). The set of pa-
rameters for the inference network is therefore λ = {λα =
{µ(s), σ(s)}Ss=1, λϕ = θϕ, λψ = θψ, λz = θz}.

5. Experiments
We evaluate NeuroEvolve against a range of unsupervised
probabilistic graph representation learning baseline models
on the tasks of graph reconstruction, dynamic link predic-
tion, and graph classification. A good graph representation
learning method should be able to preserve most of the orig-
inal graph structure in it’s embeddings. Since NeuroEvolve
learns a hierarchy of embeddings, we use each task to quan-
titatively asses it’s ability at preserving different levels of
graph structure compared to baselines.

Datasets We construct two multi-subject DBG datasets
using publicly available fMRI data from the Human Con-
nectome Project (HCP) (Van Essen et al., 2013) and UK
Biobank (UKB) (Sudlow et al., 2015). Both data sources
represent well-characterized population cohorts that have
undergone standardized neuroimaging and clinical assess-
ments to ensure high quality. We randomly sample S = 300
subjects from each dataset ensuring an even split in biolog-
ical sex. To create DBGs, we parcellate each image into
V = 360 BOLD signals using the Glasser atlas (Glasser
et al., 2016), apply sliding-window Pearson correlation (Cal-
houn et al., 2014) with a non-overlapping window of size
and stride 30, and threshold the top 5% values of each cor-
relation matrix as connected following Kim et al. (2021).
This results in T = 16 graph snapshots for each subject.
Biological sex is taken as graph-level labels. We refer to
Appendix C for further details on each dataset.

Baselines We compare NeuroEvolve against a range
of different unsupervised probabilistic graph representa-
tion learning baseline models. For static baselines, we
include variational graph autoencoder (VGAE) (Kipf &
Welling, 2016b), a deep generative version of the overlap-
ping stochastic block model (OSBM) (Mehta et al., 2019),
and vGraph (VGRAPH) (Sun et al., 2019). For dynamic
baselines we include variational graph recurrent neural net-
work (VGRNN) (Hajiramezanali et al., 2019) and evolving
latent space model (ELSM) (Gupta et al., 2019). Finally, for
graph classification we include a support vector machine
which takes as inputs static FC matrices (FCM) (Abraham
et al., 2017). Further details about baseline models can be
found in Appendix D.
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Figure 3. Graph classification results (5 runs). Results with a statistically significant difference from NeuroEvolve are marked *.

Implementation We split both datasets into 80/10/10%
training/validation/test data along the snapshot dimension.
All models are trained for 1,000 epochs using the Adam
optimizer (Kingma & Ba, 2014) with decoupled weight de-
cay (Loshchilov & Hutter, 2017). For static graph baselines
VGAE, OSBM, VGRAPH we train on each snapshot in-
dependently and use node/community embeddings at the
last training snapshot to make predictions. All models are
trained 5 times using different random seeds and the model
with the lowest validation negative log-likelihood (NLL) is
saved. See Appendix E for further implementation details.

Evaluation metrics For graph reconstruction, we calcu-
late the probability of observing edges over test snapshots
using NLL and also compare the mean-squared error (MSE)
between actual and reconstructed node degree over all snap-
shots. For dynamic link prediction, we sample an equal num-
ber of positive and negative edges and measure performance
using area under the receiver operator curve (AUROC) and
average precision (AP). Finally, for graph classification,
we predict the biological sex for each subject’s DBG and
evaluate on accuracy. To do this, we average per-subject
node-level embeddings for the baseline models and use the
graph-level embeddings for NeuroEvolve before training
a support vector machine (Murphy, 2012) using 10-fold
cross-validation. Finally, for comparing results we use the
almost stochastic order (ASO) test (Del Barrio et al., 2018;
Dror et al., 2019) with significance level 0.05 and correct
for multiple comparisons (Bonferroni, 1936).

6. Results
Graph reconstruction and dynamic link prediction Ta-
ble 1 summarizes the test results averaged over 5 runs. From
the results, it is clear that on both tasks NeuroEvolve outper-

forms all baselines by statistically significant margins. In
particular, for graph reconstruction NeuroEvolve achieves
an 18% and 30% relative improvement in NLL on HCP and
UKB compared to the second-best baselines, respectively.
For dynamic link prediction, the relative improvement of
NeuroEvolve is > 11% in AUCROC and > 5% in AP
compared to second-best baselines depending on dataset.

Graph classification For graph classification, NeuroE-
volve achieves ∼ 75% accuracy for HCP and ∼ 73% for
UKB (see Fig. 3). We outperform 4 baselines and show in-
discernible performance to VGAE and OSBM. To show the
interpretative power of NeuroEvolve, we re-run the graph
classification experiment for HCP with the embeddings of
each community separately. We find a community which
comprises brain regions in the Cingulo-opercular (CON)
and the Somatomotor (SMN) networks, which achieves
68% accuracy. This finding is in agreement with studies
that show SMN is predictive of gender (Zhang et al., 2018).
With the exception of VGRAPH, which NeuroEvolve out-
performs, such an interpretability analysis cannot be done in
a computationally feasible way by any of the other baselines.

7. Interpretability analysis
Evidence from fMRI studies suggests complex community
structures exist within DBGs (Ting et al., 2020; Martinet
et al., 2020b). These communities often correspond to
groups of anatomically neighboring and/or functionally re-
lated brain regions that are engaged in specialized informa-
tion processing.

Community overlap In order to interpret the community
embeddings learnt by NeuroEvolve, for the k-th community
embedding we create a node score vector ψ̄k ∈ [0, 1]V by
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Figure 4. Overlap between node communities learned by NeuroEvolve and FCNs from Ji et al. (2019).

averaging sampled community embeddings over subjects
and snapshots following

ψ̄k =
1

ST

S∑
s=1

T∑
t=1

Softmax
(
MLPλc(ψ

(s, t)
k )

)
. (20)

We keep the top 10% highest scoring nodes in each score
vector and compare their node composition, in terms of
proportion of overlap, with known communities from neu-
roscience literature.

Figure 4 shows the proportion of overlap between nodes in
each community and the nodes from FCNs described in Ji
et al. (2019) (see Appendix B). It is clear that NeuroEvolve
finds communities consisting of nodes that significantly
overlap with existing FCNs. In particular, across HCP and
UKB nodes in community labelled “0” almost fully corre-
spond to the visual network (VIS1 and VIS2). This is in
keeping with the image acquisition protocol of both datasets:
subjects were required to keep their eyes open and fixed on
a cross-hair. Remarkably, communities “1” and “2”, the
second and third most homogeneous communities across
both datasets, corresponds largely to the default mode net-
work (DMN), which is well known to dominate resting-state
activity (Yeshurun et al., 2021). The inspection of addi-
tional communities, along with their evolution over time,
has the potential to unveil the relationship between dynamic
brain connectivity changes and brain disorders (Heitmann
& Breakspear, 2017).

8. Conclusion
We propose NeuroEvolve, a hierarchical deep generative
model designed for unsupervised representation learning
of DBGs derived from fMRI data. Specifically, NeuroE-
volve jointly learns distributions over graph-, community-,
and node-level embeddings that evolve over time. Using
these embeddings, NeuroEvolve is able to significantly out-
perform state-of-the-art baselines on the tasks of graph re-
construction and dynamic link prediction. Moreover, an
analysis of the learnt dynamic community-node distribu-
tions shows significant overlap with existing FCNs from
neuroscience literature further validating our method.
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A. Notation

Table 2. Summary of notation.

Notation Description

S ∈ N Number of subjects.
T ∈ N Number of snapshots.
G(1:S, 1:T ) = {G(s, t)}S, Ts, t=1 Multi-subject dynamic brain graph (DBG) dataset derived from functional

magnetic resonance imaging (fMRI).
G(s, t) = (V, E(s, t)) DBG of the s-th subject at the t-th snapshot.
V = {v1, . . . , vV } Set of common nodes.
V ∈ N Number of nodes.
E(s,t) ⊆ V × V Edge set.
(w

(s, t)
i , c

(s, t)
i ) ∈ E(s,t) Source node and target node of the i-th edge.

E(s, t) ∈ N Number of edges.

K ∈ N Number of communities.
α(s) ∈ RHα Subject embedding of dimensionality Hα.
ϕ(s, t)
n ∈ RHϕ Node embedding of dimensionality Hϕ.
ψ

(s, t)
k ∈ RHψ Community embedding of dimensionality Hψ .

z
(s, t)
i ∈ [1 : K] Community assignment for the i-th edge.
Ω(s, t) = {α(s),ϕ(s, t),ψ(s, t),

{z(s, t)i }E(s, t)

i=1 }
Set of latent variables.

pθ(G(1:S, 1:T ),Ω(1:S, 1:T )) Joint distribution of observed DBG and unobserved latent variables, i.e. genera-
tive model with parameters θ.

qλ(Ω
(1:S, 1:T )|G(1:S, 1:T )) Approximate posterior distribution, i.e. inference model with parameters λ.

σj ∈ R≥0 Temporal smoothness hyperparameter for j ∈ {ϕ, ψ}.
MLPθ∗(·) Multilayered perception (MLP) with Lθ∗ layers and parameters θ∗.
GRUθ∗(·) Gated recurrent unit (GRU) with Lθ∗ layers and parameters θ∗

B. Functional connectivity networks

Abbreviation Functional connectivity network

AUD Auditory network
CON Cingulo-opercular network
DAN Dorsal-attention network
DMN Default mode network
FPN Frontoparietal network
LAN Language network
ORA Orbito-affective network
PMM Posterior-multimodal network
SMN Somatomotor network
VIS1 Visual network 1
VIS2 Visual network 2
VMM Ventral-multimodal network

Table 3. Functional connectivity networks (FCNs) from Ji et al. (2019).
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C. Datasets
To create multi-subject DBG datasets, we use real fMRI scans of the brain from the UK Biobank (Sudlow et al., 2015) and
Human Connectome Project (Van Essen et al., 2013). Both data sources represent well-characterized population cohorts that
have undergone standardized neuroimaging and clinical assessments to ensure high quality.

UK Biobank2 (UKB) The UKB dataset consists of S = 300 resting-rate fMRI scans (i.e. 3D image of the brain taken
over consecutive timepoints) randomly sampled from the v1.3 January 2017 release ensuring an equal male/female split
(i.e. sex balanced) with an age range of 44 − 57 years. The total number of images for each scan is 490 timepoints (6
minutes duration with a repetition time of 0.74s). The dataset is minimally preprocessed following the pipeline described in
Alfaro-Almagro et al. (2018).

Human Connectome Project3 (HCP) The HCP dataset similarly consists of S = 300 sex balanced resting-state fMRI
scans randomly sampled from the S1200 release with an age range of 22− 35 years. Only images from the first scanning-
session using left-right phase encoding are used. The total number of images for each scan is 1, 200 timepoints (15 minutes
duration with a repetition time of 0.72s). The dataset is minimally preprocessed following the pipeline described in Glasser
et al. (2013)

Further preprocessing The fMRI scans from each dataset are further preprocessed to create DBGs. First, each scan is
transformed into a multivariate timeseries of BOLD signals using the Glasser atlas (Glasser et al., 2016) to average voxels
within V = 360 brain regions. Next, to ensure comparability with UKB, we truncate the length of HCP timeseries to 490
timepoints. Following the commonly used sliding-window method (Calhoun et al., 2014), we use Pearson correlation to
calculate FC matrices within non-overlapping windows of length 1 < W ≤ 490 along the temporal dimension. At every
window, we create an edge set of a unweighted and undirected graph with no self-edges by thresholding the top 1 ≤ ϵ < 100
percentile values of the lower triangle of the FC matrix (excluding the principal diagonal) as connected following Kim
et al. (2021). For both datasets, we choose W = 30 and ϵ = 5 resulting in T = ⌊490/30⌋ = 16 graph snapshots each with
E(s, t) = ⌊(360(360− 1)/2)(5/100)⌋ = 3, 231 edges.

D. Baselines
We compare NeuroEvolve against a range of static and dynamic unsupervised probabilistic graph representation learning
models, all with publicly available code. We leave comparisons to popular deterministic baselines such as Dynamic-
Triad (Zhou et al., 2018), DySAT (Sankar et al., 2020), and DynNode2Vec (Mahdavi et al., 2018) for future work. Since
all of the baselines were originally designed to model large single-subject dynamic graphs, we had to further adapt each
implementation to work with multi-subject dynamic graphs.

Variational graph auto encoder4 (VGAE) (Kipf & Welling, 2016b) An extension of the variational autoencoder (Kingma
& Welling, 2013) for graph structured data. Specifically, VGAE uses a graph convolutional network (GCN) (Kipf & Welling,
2016a) to learn a distribution over node embeddings. Originally designed for static graphs, we train VGAE on each dynamic
graph snapshot independently.

Overlapping stochastic block model5 (OSBM) (Mehta et al., 2019) A deep generative version of the overlapping
stochastic block model (Miller et al., 2009). In particular, OSBM places a stick-breaking prior over the number of
communities which allows the model to automatically infer the optimal number of communities from the data during
training. Similar to VGAE, OSBM uses a GCN to parameterize the distribution over node embeddings and is designed for
static graphs.

Variational graph recurrent neural network6 (VGRNN) (Hajiramezanali et al., 2019) An extension of VGAE for
dynamic graphs. Using a modified graph recurrent neural network, VGRNN is able to learn dependencies between and within

2https://www.ukbiobank.ac.uk
3https://www.humanconnectome.org
4https://github.com/tkipf/gae
5https://github.com/nikhil-dce/SBM-meet-GNN
6https://github.com/VGraphRNN/VGRNN
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Figure 5. Elbow plot for finding the optimal number of communities K based on validation NLL.

changing graph topology over time. Similar to NeuroEvolve, the prior distribution over node embeddings is parameterized
using embeddings from previous snapshots.

Evolving latent space model7 (ELSM) (Gupta et al., 2019) A generative model for dynamic graphs that learns node
embeddings and performs community detection. In particular, node embeddings are initially sampled from a Gaussian
mixture model over communities and then evolved over snapshots using long-short term memory units (Hochreiter &
Schmidhuber, 1997). Unlike the previous baselines, ELSM does not use a GNNs to parameterize model distributions.

vGraph8 (VGRAPH) (Sun et al., 2019) Similar to NeuroEvolve, VGRAPH simultaneously learns node embeddings and
community assignments by modeling nodes as being generated from a mixture of communities. The generative process of
VGRAPH also relies on edge information. Since VGRAPH only models static graphs, we train it on each dynamic graph
snapshot independently.

E. Implementation details
Software and hardware All models were developed in Python 3.7 (Python Core Team, 2019) using scikit-learn 1.1.1 (Pe-
dregosa et al., 2011), PyTorch (Paszke et al., 2019), and numpy 1.1.1 (Harris et al., 2020). Statistical significance tests were
carried out using deep-significance 1.1.1 (Ulmer et al., 2022). Experiments were performed on a Linux server (Debian
5.10.113-1) with a NVIDIA RTX A6000 GPU with 48 GB memory and 16 CPUs.

Hyperparameter optimization We use model and training hyperparameter values described in the original implementation
of each baseline as a starting point for tuning on the validation dataset. Since searching for optional values for each
hyperparameter configuration was outside the scope of the paper, we focused mainly on tuning the dimensions of NN hidden
layers and embeddings, as well as the learning rate. For OSBM, VGRAPH and ELSM, we set the number of communities
to the optimally tuned value of NeuroEvolve. To prevent overfitting, all models were trained using early-stopping with a
patience of 15 based on the lowest validation NLL.

For NeuroEvolve, we choose the optimal number of communities K = 16 using the the elbo method (Thorndike, 1953)
applied to validation NLL as shown in Figure 5. In the generative model, we fix the temporal smoothness hyperparameters
σϕ = σψ = 0.01. In the inference model, we fix the number of layers for all NNs to Lϕ = Lψ = Lz = 1. For the
Gumbel-softmax reparameterization trick we anneal the softmax temperature parameter starting from a maximum of 1 to a
minimum of 0.05 at a rate of 3e-4.

7https://github.com/sh-gupta/ELSM
8https://github.com/fanyun-sun/vGraph
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