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Abstract

Imbalanced data is ubiquitous in machine learning,
such as medical or fine-grained image datasets. The
existing continual learning methods employ vari-
ous techniques such as balanced sampling to im-
prove classification accuracy in this setting. How-
ever, classification accuracy is not a suitable metric
for imbalanced data, and hence these methods may
not obtain a good classifier as measured by other
metrics (e.g., Area under the ROC Curve). In this
paper, we propose a solution to enable efficient
imbalanced continual learning by designing an al-
gorithm to effectively maximize one widely used
metric in an imbalanced data setting: Area Under
the ROC Curve (AUC). We find that simply replac-
ing accuracy with AUC will cause gradient inter-
ference problem due to the imbalanced data distri-
bution. To address this issue, we propose a new al-
gorithm, namely DIANA, which performs a novel
synthesis of model DecouplIng ANd Alignment.
In particular, the algorithm updates two models si-
multaneously: one focuses on learning the current
knowledge while the other concentrates on review-
ing previously-learned knowledge, and the two
models gradually align during training. The results
show that the proposed DIANA achieves state-of-
the-art performance on all the imbalanced datasets
compared with several competitive baselines.
Code is available at https://github.com/
MingruiLiu-ML-Lab/Lifelong-AUC.

1 INTRODUCTION

Models can achieve superior performance on a single task
[Goodfellow et al., 2016]. However, they often lack the ca-
pability to mimic the continual learning ability of the human
brain. Specifically, the model performance drops drastically

on old tasks when being trained on a new task, also referred
to as “catastrophic forgetting" [French, 1999, Kemker et al.,
2018, Nguyen et al., 2019]. Current research on lifelong
learning [Kirkpatrick et al., 2017, Lopez-Paz et al., 2017,
Chaudhry et al., 2018b] mostly focuses on balanced datasets,
while ignoring the more challenging imbalanced classifica-
tion problem. This impedes applications of lifelong learning
to online advertisement [Hu et al., 2022], satellite imagery
[Tasar et al., 2019], or medical image classification [Irvin
et al., 2019]. Moreover, it is not suitable to use classification
accuracy to assess the model performance in these domains
due to the data imbalanced issue. One of the popular metrics
for measuring the performance of classifiers on the imbal-
anced task is the Area Under the Curve (AUC) [Hanley
and McNeil, 1982, 1983]. For example, if the imbalanced
data ratio is 99 : 1, then a naive classifier that classifies
every example to be positive has 99% accuracy, but it is
definitely not a good classifier. In this case, AUC is much
more informative and we should directly optimize AUC
rather than accuracy. However, the current lifelong learning
methods are limited to maximize the classification accuracy
[Kirkpatrick et al., 2017, Lopez-Paz et al., 2017, Chaudhry
et al., 2018b] which makes them not suitable for imbalanced
lifelong learning. Although one may tackle the imbalanced
problem by class balanced sampling [Chrysakis and Moens,
2020, De Lange and Tuytelaars, 2021, Kim et al., 2020] to
form balanced training batches, these approaches still may
not be able to directly optimize metrics such as AUC.

Memory-based lifelong learning methods Lopez-Paz et al.
[2017], Chaudhry et al. [2018b], Aljundi et al. [2019]
achieve competitive performance across commonly used
lifelong learning benchmarks. In memory-based lifelong
learning methods, a replay buffer is used to store a subset
of examples from old tasks for rehearsal. The gradient com-
puted on the replay buffer [Lopez-Paz et al., 2017] is used
as a reference to alter the direction of the gradient computed
on the current task.

Proceeding from the memory-based lifelong learning meth-
ods for maximizing classification accuracy, one may think

Accepted for the 39th Conference on Uncertainty in Artificial Intelligence (UAI 2023).

https://github.com/MingruiLiu-ML-Lab/Lifelong-AUC
https://github.com/MingruiLiu-ML-Lab/Lifelong-AUC


of applying the existing methods and replacing the metric of
classification accuracy with AUC. One possible approach to
directly maximize AUC for imbalanced lifelong learning is
to employ the minimax reformulation of AUC as in the lit-
erature of online AUC maximization [Ying et al., 2016, Liu
et al., 2020] . This minimax reformulation introduces a data-
dependent decision threshold of the model to decouple the
pairwise formulation of the AUC objective which facilitates
model update in an online fashion. However, we find that
maximizing AUC with memory-based lifelong learning in-
troduces an issue called gradient interference. In particular,
when the data stream is imbalanced, the gradients computed
on the current task can interfere with the gradients computed
on the replay buffer severely.

In this paper, we propose a novel algorithm, called DIANA,
to address the gradient interference problem when replac-
ing accuracy with AUC in the imbalanced lifelong learning
setting. We first formulate the objective as a composite op-
timization problem as in works Lopez-Paz et al. [2017],
Chaudhry et al. [2018b], Guo et al. [2020]. Similar to ex-
isting memory-based lifelong learning methods, we aim
to maximize AUC on both the current task and the replay
buffer to prevent catastrophic forgetting. Notably, DIANA is
designed with two novel techniques to address the gradient
interference problem: model decoupling and alignment. In
particular, DIANA decouples the learning of previous tasks
and current task into two models: one focuses on learning
the current task while the other reviews previously-learned
knowledge. The two models gradually align during training
due to an alignment penalty. Since each model computes
its own gradients, we can reduce interference between the
learning of the current task and the reviewing of old tasks.
As we will show, the introduction of the additional model
greatly alleviates the gradient interference problem for max-
imizing AUC with an imbalanced data stream continually,
while still being computationally efficient.

Our contributions can be summarized as follows:

• We advance imbalanced lifelong learning through a
completely orthogonal approach to the traditional bal-
anced sampling techniques, which enables the lifelong
learning algorithm to directly maximize an important
metric (AUC). We also identify the gradient interfer-
ence problem under imbalanced setting when the ex-
isting memory-based lifelong learning methods are
simply applied to maximize AUC.

• We design a new algorithm for maximizing AUC in im-
balanced lifelong learning, DIANA, which decouples
conflicting gradients into two models with an align-
ment penalty. We show that DIANA can alleviate the
gradient interference problem.

• We verify the efficacy of DIANA on imbalanced life-
long learning benchmarks across natural images, medi-
cal images, and satellite images. We show that DIANA

outperforms several state-of-the-art lifelong learning
algorithms by a large margin (e.g., 6.5% AUC score on
average over five benchmark datasets), including the
approaches which purely use balanced sampling.

• We further expand the scope of our algorithm by con-
sidering maximizing AUC on balanced multi-class clas-
sification problems, which are standard benchmarks in
lifelong learning literature.

2 RELATED WORK

2.1 LIFELONG LEARNING

Lifelong learning is an important topic in machine learning
[Thrun and Mitchell, 1995] and is extensively studied in
recent years [Parisi et al., 2019, Mai et al., 2022, Borsos
et al., 2020, Ahrens et al., 2021]. The current methods tackle
lifelong learning from multiple objectives.

Regularization-based approaches: Regularization-based
approaches aim at preserving important weights for old
tasks. Representative works include EWC [Kirkpatrick et al.,
2017] which adopted Fisher information matrix, PI [Zenke
et al., 2017] which introduced intelligent synapses, RWALK
[Chaudhry et al., 2018a] which utilized a KL-divergence
based regularization for preserving knowledge of old tasks,
and MAS [Aljundi et al., 2018] in which the importance
measure for each parameter was computed based on how
sensitive the predicted output function is to a change in this
parameter.

Memory-based approaches: Episodic memory based life-
long learning methods [Hayes et al., 2021, Verwimp et al.,
2021, Jin et al., 2021] leverage a small episodic memory for
storing examples from old tasks. In GEM [Lopez-Paz et al.,
2017], A-GEM [Chaudhry et al., 2018b], MEGA [Guo et al.,
2020] and OGD [Farajtabar et al., 2019], the direction of the
current gradient is modified to overcome forgetting in life-
long learning. In MER [Riemer et al., 2018], meta-learning
is employed as a subroutine for mitigating catastrophic for-
getting. In iCARL [Rebuffi et al., 2017], class exemplars are
stored for each class and used for classification in class in-
cremental lifelong learning. In experience replay (ER) based
methods [Chaudhry et al., 2019, Aljundi et al., 2019], the
model is trained continuously with batch gradient descent
by sampling examples from the current task and the episodic
memory. CTN [Pham et al., 2020] exploits memory to store
task features.

Imbalanced lifelong learning: Existing imbalanced life-
long learning methods mainly focus on maintaining a bal-
anced memory. CBRS [Chrysakis and Moens, 2020] tackles
imbalanced lifelong learning by using a Class-Balanced
memory population strategy. Similar to CBRS, PRS [Kim
et al., 2020], CoPE [De Lange and Tuytelaars, 2021] and
Rainbow Memory [Bang et al., 2021] introduces different



balanced sampling strategies. Zhou et al. [2022] discusses
imbalanced lifelong learning in Reinforcement Learning.
ROSE [Cano and Krawczyk, 2022] designs an online en-
semble classifier to handle imbalanced data streams.

2.2 AUC OPTIMIZATION

Online AUC maximization aims to design algorithms to
overcome the difficulty of sampling pairwise data due to
the definition of AUC. Zhao et al. [2011] addressed this
problem by maintaining a buffer and stored representative
examples to construct the positive-negative label pair to
calculate the gradient. Gao et al. [2013] maintained the
mean and the covariance matrix for the streaming data and
performed a gradient-based update. Ying et al. [2016] intro-
duced the saddle point reformulation of AUC maximization
with the squared loss and developed an algorithm that can
update the model once receiving one data to maximize AUC.
There are some future extensions of solving the saddle point
formulation under different scenarios, including algorithms
with fast rate under function growth condition [Liu et al.,
2018], deep learning [Liu et al., 2020], proximal gradient
methods [Lei and Ying, 2021], variance reduction [Dan and
Sahoo, 2021]. However, none of them are directly applica-
ble in continual learning setting, since they do not take into
account the catastrophic forgetting.

3 PRELIMINARIES

Lifelong Learning. We closely follow the lifelong learn-
ing settings in Lopez-Paz et al. [2017], Chaudhry et al.
[2018b], Guo et al. [2020]. Specifically, we consider task-
incremental lifelong learning in which case the tasks are
arriving sequentially. Suppose we have a total of T tasks:
{D1, ..., DT }. For each task Di, we have a set of training ex-
amples {xj , yj}Kj=1. In this paper, we consider imbalanced
classification, i.e., each class can have a different number of
samples. The given model fw is trained continuously on the
tasks over a single pass of the samples. After training, the
model is evaluated on the test datasets to assess its perfor-
mance. The goal of task-incremental lifelong learning is to
achieve high performance across all tasks. The crux of task-
incremental lifelong learning is the catastrophic forgetting:
the model tends to forget previously acquired knowledge
while being trained on a new task.

In memory-based lifelong learning methods [Lopez-Paz
et al., 2017, Chaudhry et al., 2018b, Guo et al., 2020], a
replay buffer is used to store a subset of examples from old
tasks. The central idea of Lopez-Paz et al. [2017], Chaudhry
et al. [2018b], Guo et al. [2020] is to utilize the replay buffer
for computing gradients which serves as the reference for
modifying the direction of the gradient computed on the
current task.

Online AUC Optimization. AUC is defined as the probabil-
ity of the score of the positive sample being larger than the
negative example. Denote x ∈ Rd and y ∈ {+1,−1} by
feature and label respectively, and denote z = (x, y) by the
feature-label pair. We assume that z is sampled from an un-
known distribution P. Define p = Pr(y = 1) = Ey

[
I[y=1]

]
as the likelihood of a random data being positive, where I(·)
is the indicator function. AUC for a general scoring function
h : Rd → R is defined as

AUC(h) = Pr (h(w;x) ≥ h(w;x′)|y = 1, y′ = −1) ,
(1)

where w is the model parameter, z = (x, y) and z′ =
(x′, y′) are drawn independently from P, h(w;x) is the
scoring function parameterized by w. Following Gao et al.
[2013], Ying et al. [2016], Liu et al. [2020], we use the
squared function as a surrogate to replace the indication
function and end up with the following loss function:

min
w∈Rd

Ez,z′
[
(1− h(w;x) + h(w;x′))2

∣∣y = 1, y′ = −1
]
.

(2)

The above formulation depends on pairwise data with both
positive and negative labels, so it is hard to optimize in the
online learning setting. It was shown in Ying et al. [2016]
that the AUC maximization problem can be formulated as a
minimax saddle point problem, and the stochastic gradient
descent ascent algorithm can be employed to solve this
saddle point problem. The saddle point reformulation is
described in Proposition 1.

Proposition 1 [Ying et al., 2016] The optimization prob-
lem (2) is equivalent to

min
w∈Rd,(a,b)∈R2

max
α∈R

f (w, a, b, α) := Ez [F (w, a, b, α; z)] ,

(3)

where z = (x, y) ∼ P, and

F (w, a, b, α, z) = (1− p) (h(w;x)− a)
2 I[y=1]

+ p(h(w;x)− b)2I[y=−1] − p(1− p)α2

+ 2 (1 + α)
(
ph(w;x)I[y=−1] − (1− p)h(w;x)I[y=1]

)
,

(4)

Intuitively speaking, the Proposition 1 allows us to update
the model parameter w and the decision threshold α simul-
taneously to effectively improve AUC each time receiving
a new individual sample. This mechanism avoids the re-
quirement of updating model with pairwise data which is
typically infeasible in online learning. It is worth mentioning
that DIANA is also built upon the saddle point reformulation.
The main difference between our work and previous works
is that our work focuses on developing memory-based life-
long learning to maximize AUC in the imbalanced continual
learning setting (to alleviate catastrophic forgetting).



Figure 1: Illustration of DIANA. The loss function is based on the Equation 9. lossW aims to maximize AUC of model A
on the current task, while lossV aims to optimize model B on replay buffer. The alignment of two models is implemented
by lossWV .

4 DIANA

In this section, we introduce a novel algorithmic frame-
work for optimizing AUC in the lifelong learning setting
with an imbalanced data stream. The proposed algorithmic
framework is built upon the memory-based lifelong learning
methods which leverage a replay buffer for rehearsal. The
essence of the algorithmic framework is to maximize the
AUC score both on the current task and replay buffer as a
composite optimization problem. We circumvent the require-
ment of a pair of samples for computing AUC score based
on the literature of online AUC optimization [Ying et al.,
2016, Liu et al., 2018]. By decoupling conflict gradients into
two models and aligning gradually, we effectively overcome
the gradient interference problem caused by imbalanced
data.

4.1 IMBALANCED LIFELONG LEARNING BY
MAXIMIZING AUC

In lifelong learning, the model fw is trained sequentially
over T tasks. On each task t, the samples are arriving in
a batch-wise fashion. Let wk

t denote the model parameter
on the k-th minibatch of the t-th task. Define zt and ẑt as
random variables following the distribution of the t-th task’s
data and the replay buffer’s data upon t-th task respectively.
To balance the current task and the replay buffer, similar
to Guo et al. [2020], we define λ1(·), λ2(·) : Rd 7→ R+

as real-valued functions which depend on the state of the
model. On the k-th minibatch of the t-th task, we aim to
solve the following optimization problem:

max
w

λ1(w
t
k) · AUCt(w) + λ2(w

t
k) · AUCref(w) :=

λ1(w
t
k) · Ez+,z− [AUCt(w; z+, z−)]

+ λ2(w
t
k) · Eẑ+,ẑ− [AUCref(w; ẑ+, ẑ−)] ,

(5)
where w is the model parameter, AUCt(w) denotes the
population AUC at the t-th task, AUCref(w) denotes the
population AUC of the replay buffer, z+ (z−) and ẑ+ (ẑ−)
denote random samples with positive (negative) labels on
current task and replay buffer respectively, λ1(w

t
k) and

λ2(w
t
k) characterize the scaling factors of the two AUC

values on current task and replay buffer respectively on

the k-th minibatch at the t-th task. The choice of the scal-
ing factors determines the degree of prioritizing the current
task or replay buffer. Inspired by Guo et al. [2020], we
choose λ1 = AUCref(w)/AUCt(w) and λ2 = 1 based on
the model performance. If AUC score on replay buffer is
worse compared with current task, then λ1 < 1 = λ2 and
hence our algorithm puts more weights on replay buffer.
Observing from our experiments, the weight λ1 varies from
0.1 to 10 most of the time.

However, by the pairwise formulation of AUC, to solve the
problem (5), one needs to sample a pair of positive and neg-
ative examples (z+ and z−, ẑ+ and ẑ−) at every iteration,
which is not feasible for lifelong learning. A natural idea to
address this issue is to employ the minimax reformulation
(Proposition 1) of AUC [Ying et al., 2016, Liu et al., 2020],
which ends up with the following problem:

min
w

[λ1(w
t
k) min

(a,b)∈R2
max
α∈R

EztF (w, a, b, α; zt)

+ λ2(w
t
k) min

(a,b)∈R2
max
α∈R

Eẑt
F (w, a, b, α; ẑt)],

(6)

where F is defined in Equation (4). This is equivalent to the
following formulation,

min
w,a1,a2,b1,b2

max
α1,α2

[λ1(w
t
k)Ezt

F (w, a1, b1, α1; zt)

+ λ2(w
t
k)Eẑt

F (w, a2, b2, α2; ẑt)].
(7)

We can solve the problem (7) by stochastic gradi-
ent descent on variables w, a1, a2, b1, b2 and stochas-
tic gradient ascent on variables α1, α2. The stochas-
tic gradient w.r.t. w is λ1(w

t
k)∇Fw(w, a1, b1, α1; zt) +

λ2(w
t
k)∇Fw(w, a2, b2, α2; ẑt) which consists of the gra-

dients on the current task and the gradients on the replay
buffer, we refer to the gradients as the current gradient and
reference gradient respectively.

4.2 GRADIENT INTERFERENCE PROBLEM

Imbalanced datasets are ubiquitous [Ramyachitra and
Manikandan, 2014] but are largely overlooked by current
research efforts on lifelong learning. We find that the imbal-
anced nature of the data stream poses severe challenges for
optimization. Specifically, the gradients on the current task



and the gradients on the replay buffer may interfere with
each other during training due to a mismatch of the data
distribution of the current task and the replay buffer. This
resembles the observations made in GEM [Lopez-Paz et al.,
2017] when the gradient is calculated based on the standard
loss function: the angle between gradient of current task
(the replay buffer) is used to evaluate whether the gradient
update would harm previous tasks. When the angle is acute,
the gradient is unlikely to increase the loss at previous tasks
and vice versa. It proposes gradient projection to align gra-
dients with obtuse angles and get remarkable improvement
on performance. Similarly, we use the angle between the
gradients as the metric of gradient interference.

In the following, we empirically demonstrate this phe-
nomenon on a real-world dataset. We consider two settings:
imbalanced data distribution and balanced data distribution.
We construct imbalanced data from the medical dataset
ISIC2019 [Gutman et al., 2016] which consists of 25331 im-
ages and 8 classes. These classes are divided into 4 disjoint
tasks representing positive and negative samples, respec-
tively. We reduce the number of positive samples to be 5%
of the negative ones. The setting of balanced data is to keep
the number of samples of different classes equal.

We train the models based on the formulation of Equation (7)
on balanced and imbalanced data respectively. We compute
the current gradient and reference gradient in each mini-
batch. The angle distribution is shown in Figure 2. In the
balanced case, the angles between the current gradient and
the reference gradient are almost acute angles. In the im-
balanced case, there appear to be more obtuse angles. That
means, the gradients computed on the current task interfere
with the gradients computed on the replay buffer, severely
affecting the training of the model.

To investigate this further, we analyzed the gradient an-
gles and present more results in Appendix Figures 5 and 6.
They illustrates that the imbalanced case has a larger vari-
ance and show that after making the dataset imbalanced,
the proportion of obtuse angles increased from 1.05% to
3.16% on Split-CUB200 and from 0.13% to 9.68% on Split-
CIFAR100. Please notice on Split-CIFAR, the number of
obtuse angles increase by around 75 times.

4.3 MODEL DECOUPLING AND ALIGNMENT

To address the gradient interference problem, we introduce
our algorithm DIANA. The high-level idea is to use a re-
laxation of Equation (7) such that we can still learn useful
information even if the gradients at the current task and the
replay buffer are conflicting. In particular, we first note the
equivalent formulation of (7):

min
w,v,a1,a2,b1,b2

max
α1,α2

[λ1(w
t
k)EztF (w, a1, b1, α1; zt)

+ λ2(v
t
k)Eẑt

F (v, a2, b2, α2; ẑt)], s.t. w = v.
(8)
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(b) Imbalanced ISIC2019

Figure 2: The distributions of the angles between the current
gradient and reference gradient.

Algorithm 1 Lifelong AUC Maximization with Model De-
coupling and Alignment (DIANA)

1: Buffer← {}
2: for t← 1 to T do
3: for k ← 1 to |Dtr

t | do
4: if Buffer ̸= {} then
5: ζtk ← SAMPLE(Buffer)
6: Compute λ1(w

t
k) and λ2(v

t
k)

7: else
8: Set λ1(w

t
k) = 1 and λ2(v

t
k) = 0.

9: end if
10: Update w,v, a1, a2, b1, b2 by one step of stochastic

gradient descent w.r.t. the objective function defined in (9)
11: Update α1, α2 by one step of stochastic gradient as-

cent w.r.t. the objective function defined in (9) .
12: Buffer← Buffer

⋃
(ξtk)

13: Remove samples if the Buffer is full.
14: end for
15: end for

Since using the same model for data distribution of different
tasks would lead to the gradient interference problem, we
propose a model decoupling and alignment technique to
address the issue. In particular, we propose to solve the
following problem (9) to relax the equality constraint in (8),

min
w,v,a1,a2,b1,b2

max
α1,α2

[λ1(w
t
k)Ezt

F (w, a1, b1, α1; zt)

+ λ2(v
t
k)Eẑt

F (v, a2, b2, α2; ẑt)] + β · dist(w,v),
(9)

where dist(·, ·) denotes a distance function between two
models, and β > 0 is a penalty parameter. The typical
choice of dist can be squared loss, distillation loss [Hinton
et al., 2015], etc. The term β · dist(w,v) is referred to as
the alignment penalty.

In view of Equation (9), we know that we are decoupling
one model as in (8) into two models w and v under the co-
ordination of an alignment penalty, which has the following
two benefits. First, the formulation is a standard minimax op-
timization, where stochastic gradient descent ascent suffices
to solve it efficiently. Second, it can partially alleviate the
gradient interference problem since conflicting gradients are



decoupled. For example, in DIANA, the gradient w.r.t. w
is λ1(w

t
k)∇wF (w, a1, b1, α1; zt) + β∇wdist(w,v). The

gradient w.r.t. w consists of two terms, the first term rep-
resents the current gradient which depends on the current
data, while the second term characterizes the gradient of the
distance function between two models and it is independent
of data. Essentially, we undermine the impact of some noisy
gradients on the model update. By pulling the current model
close to the model on the replay buffer in each step, the
current model can essentially learn from the model on the
replay buffer to retain performance on old tasks.

For implementation, since we cannot solve (9) exactly, we
use one step of stochastic gradient descent ascent as an
approximate solution. This is consistent with the literature
of memory-based lifelong learning [Chaudhry et al., 2018b,
Guo et al., 2020]. Please refer to Algorithm 1 and Figure 1
for details.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUPS

Datasets. We perform experiments on popular lifelong learn-
ing benchmarks, Split-CIFAR [Zenke et al., 2017], Split-
CUB and Split-AWA2 [Chaudhry et al., 2018b]. Moreover,
to further explore the application of lifelong AUC Maxi-
mization in industry, a medical dataset ISIC2019 [Gutman
et al., 2016] and a satellite dataset EuroSat [Helber et al.,
2019] are also introduced as new benchmarks. The medical
dataset ISIC2019 consists of 25331 medical images and 8
different diagnostic categories. While satellite dataset Eu-
roSat covers 13 spectral bands and consists of 10 classes
with in total of 27,000 labeled and geo-referenced images,
We believe it is important to measure performance in real in-
dustrial scenarios, especially for the medical scenario, which
is naturally imbalanced and prefers AUC as the criterion
rather than accuracy. A false positive causes severe conse-
quences, such as fault diagnosis of cancers. Split-CIFAR
and Split-CUB consist of 20 tasks, while Split-AWA2 has
25 tasks, ISIC2019 has 4 tasks and EuroSat has 5 tasks. For
ISIC2019, every two classes constitute a task (4 tasks in
total since ISIC2019 has 8 classes). Similar to ISIC2019,
we construct one task with data from two classes (5 tasks in
total).

Make Imbalanced. Following Yuan et al. [2021], we make
training set imbalanced with a pre-defined imbalanced ratio
(imratio) and leave validation set and test set unchanged.
According to chosen imbalanced ratio, positive samples are
randomly discarded, until the ratio of positive samples to all
samples equals the imbalanced ratio. We set imratio=0.05 in
all experiments, which means that only 5% data are positive.
In addition, an ablation study of different imbalanced ratios
is proposed in Appendix, which conducts experiments with
proportions from 0.01 to 0.1. If a task has multiple classes,

half of the classes are regarded as negative and the rest
are regarded as positive. For example, in Split-CIFAR, the
negative class is defined as classes {0+i∗n ∼ 3+i∗n}Ti=1 in
the original CIFAR100 dataset, where T is the total number
of tasks, n is the number of classes in each task in the
original Split CIFAR-10 dataset. The rest of classes are all
defined as positive. To clarify, Split-CIFAR is separated into
20 disjoint tasks, each task contains 5 classes, classes 0-3
in each task are regarded as negative, and classes 4-5 are
positive.

Metrics. Since our purpose is to maximize the AUC score,
AUC (AUCT ) is used as the primary metric. AUCT repre-
sents the averaged AUC value when finishing training the
T -th task, where T is the total number of tasks. To be con-
sistent with previous works [Kamp et al., 2018], Accuracy
(ACCT ) and Forgetting (FGTT ) are also reported. ACCT

is the average accuracy tested on all tasks after finishing
training T -th task. FGTT measures the drop of AUC on past
tasks after training on the T -th task. It’s defined as FGTT =

1
T−1

∑T−1
j=1 (maxl∈{1,··· ,T−1} AUCl,j −AUCT,j). where

AUCl,j is the AUC score tested on the j-th task after train-
ing on the l-th task.

Implementation Details. For Split-CIFAR, ISIC2019 and
EuroSAT, we use a reduced ResNet18 [Chaudhry et al.,
2018b] to handle small input resolution. For Split-CUB and
Split-AWA2, we use a standard ResNet18 pre-trained model
on ImageNet. We set batch size as 64 for Split-CIFAR,
Split CUB, and Split-AWA2, while batch size as 128 for
ISIC2019 and EuroSAT. The learning rate is 0.1 across
different datasets and methods. As to memory size for each
task, it’s fixed to 64 for Split-CIFAR, Split CUB, and Split-
AWA. Fixed to 128 for ISIC2019 and EuroSAT.

Baselines. We consider EWC [Kirkpatrick et al., 2017] ,
MAS [Aljundi et al., 2018], GEM [Lopez-Paz et al., 2017],
A-GEM [Chaudhry et al., 2018b], MEGA [Guo et al., 2020],
DER [Buzzega et al., 2020] and GDumb [Prabhu et al.,
2020] as baselines. EWC and MAS are regularization-based
approaches. GEM, A-GEM, MEGA, DER, and GDumb
are built upon episodic memory. We also consider a sim-
ple baseline that uses stochastic gradient descent to train
these tasks sequentially without any memory or regular-
ization. It’s marked as SINGLE in our experiments. All
baselines are task-incremental and only require one-pass, so
class-incremental[Shim et al., 2021, Mai et al., 2021] and
multiple-passes methods [Ebrahimi et al., 2020, Mallya and
Lazebnik, 2018] are not considered. To clarify, SINGLE,
EWC, and MAS are only trained on current task. GEM,
A-GEM, MEGA, DER are trained on the combination of
current task and replay buffer. GDumb is only trained on
replay buffer.

Sampling. For a fair comparison, we use the same mem-
ory size and regular reservoir sampling [Chaudhry et al.,
2019] for all the memory-based methods, including GEM,



0 2 4 6 8 10 12 14 16 18 20
Tasks

0.50

0.55

0.60

0.65
Av

g A
UC

(a) Split-CIFAR

0 2 4 6 8 10 12 14 16 18 20
Tasks

0.50

0.55

0.60

0.65

0.70

Av
g A

UC

(b) Split-CUB

0 2 4 6 8 10 12 14 16 18 20 22 24 26
Tasks

0.5
0.6
0.7
0.8
0.9
1.0

Av
g A

UC

(c) Split-AWA2

0 1 2 3 4
Tasks

0.50
0.55
0.60
0.65
0.70
0.75

Av
g A

UC

(d) ISIC2019

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.5

1.0

SINGLE EWC MAS GEM A-GEM GDumb DER MEGA DIANA

Figure 3: Evolution of average AUC during the lifelong learning process. For the results on EuroSat, please see Appendix.

Table 1: Comparison of ONE-MODEL and TWO-MODEL (DIANA)

Method
Split-CIFAR Split-CUB Split-AWA2 ISIC2019 EuroSat

AUC (↑) AUC (↑) AUC (↑) AUC (↑) AUC (↑)

ONE-MODEL 58.7 ± 1.7 73.5 ± 2.3 79.1 ± 2.7 71.3 ± 9.2 72.4 ± 6.5
TWO-MODEL 68.4 ± 2.0 70.4 ± 0.7 98.2 ± 1.1 73.6 ± 4.8 86.7 ± 1.5

A-GEM, DER, MEGA, and DIANA. Since the bench-
mark datasets are imbalanced, to be fair, GDumb is also
implemented with reservoir sampling [Chaudhry et al.,
2019] instead of class-balanced sampling.Data from the
current task and replay buffer are both imbalanced. The
sampling size is the same as the batch size used on the
current task similar to existing continual learning methods
Chaudhry et al. [2018b], namely 64 on Split-CIFAR100,
Split-CUB200, and Split-AWA2. To clarify, when running
on Split-CIFAR100, the replay buffer feeds 64 samples and
the current data stream feeds 64 samples. We also compare
our method with Rainbow-memory (RM) [Bang et al., 2021]
and CBRS [Chrysakis and Moens, 2020], which use class-
balanced sampling. Thus, the train batches from the replay
buffer are collected in a balanced form, while data from the
current task stay imbalanced. The results are presented in
Appendix A. We show that our method and class-balanced
sampling can be combined to further improve performance.

5.2 RESULTS

In Figure 3, we present the evolution of average AUC during
the lifelong learning process. We can observe that DIANA
dominates the baselines in most cases. An interesting ob-
servation is that DIANA begins to gain advantages over
baselines as the training proceeds. One plausible reason is
that it is harder to learn useful features for maximizing the

AUC objective in the initial training process. However, as
shown in Figure 3, by optimizing the right objective as in
the proposed DIANA, we can achieve a high average AUC
score in the long run. This observation indicates that DIANA
has the potential to handle large amounts of tasks.

We report results of AUCT , ACCT , and FGTT for all
algorithms on the imbalanced benchmarks. Details can be
found in Appendix: Figure 2, Table 3 and Table 4. In terms
of AUC score, our DIANA outperforms other baselines
with a large margin. In particular, compared with the best
baseline, DIANA improves 2.9% on Split-CIFAR, 9.0% on
Split-CUB, 13.0% on Split-AWA2, 1.4% on ISIC2019, and
6.2% on EuroSat. This shows that it is more effective to
directly optimize AUC as in the proposed DIANA. It can
also be observed that DIANA achieves the highest Accuracy
ACCT on all the datasets except ISIC2019. this further
shows the discriminativeness of the learned features.

One interesting observation is that GDumb generally
achieves a high AUC than other baselines on the imbal-
anced benchmarks. However, it is worth noting that GDumb
is trained offline on the replay buffer with multiple passes
over the data. GDumb avoids the gradient interference prob-
lem by only leveraging the gradients on the replay buffer.
This impedes the practical applicability of GDumb.



Table 2: Comparison of capacity on Split-CIFAR100

Method architecture AUC(↑) % memory GFLOPS params

ONE-MODEL ResNet34 56.2 1280 0.11 2.50M
TWO-MODEL ResNet18(x2) 68.4 1280 0.12 2.24M

5.3 ABLATION

One model vs. two models. To verify the gradient interfer-
ence problem discussed in Section 4.2, we conduct ablation
on ONE-MODEL and TWO-MODEL. ONE-MODEL de-
notes the method of solving Equation (7) which is a naive
combination of AUC maximization and memory-based life-
long learning. It would suffer from the gradient interfer-
ence problem due to conflict gradients computed on the
current task and the replay buffer. TWO-MODEL denotes
the method of solving Equation (9) (a.k.a., DIANA). We
denote the model w and v in Equation (9) as the current
model and reference model respectively. The gradient w.r.t.
current (reference) model is the summation over two parts:
the gradient calculated based on current (reference) task
data, and the gradient of the distance function between two
models.

As shown in Table 1, TWO-MODEL outperforms ONE-
MODEL in all benchmarks except for Split-CUB. In par-
ticular, TWO-MODEL is better than ONE-MODEL by
+10.3%, +19.9%, +2.3%, and +14.3% on Split-CIFAR,
Split-AWA2, ISIC2019, and EuroSat respectively.

We analyze why TWO-MODEL is better than ONE-
MODEL on Split-CIFAR but a bit worse on Split-CUB.
We probe this problem by observing the angle between the
current gradient and reference gradient in ONE-MODEL.
Concretely, we follow GEM and A-GEM by firstly storing
the gradients computed on the current mini-batch and the
episodic memory, then calculating the angle between them.
We repeat this in each iteration and show the distribution the
angles on two standard datasets (balanced and imbalanced)
with a histograms in Figure 6 in Appendix. Especially, we
experimentally find that 9.68% of the angles are obtuse in
imbalanced Split-CIFAR; while only 3.16% are obtuse in
imbalanced Split-CUB. Fewer obtuse angles indicate less
gradient interference, so ONE-MODEL is better on Split-
CUB. One possible reason for the Split-CUB dataset to have
fewer obtuse angles is that the images in Split-CUB dataset
are fine-grained and different tasks have high similarity, so
the gradients between tasks are more likely to be similar.

We have the following conjecture: when the data on differ-
ent tasks has very different distributions, TWO-MODEL is
preferred over ONE-MODEL and vice versa.

Furthermore, to eliminate the concern of unfair comparison,
we compare the capacity in terms of episodic memory size,
computation (GFLOPS, i.e., one billion (109) floating-point
operations per second), and the parameters. We enlarged the

one-model approach’s model architecture to match the two-
model capacity. Table 2 presents the comparison under same
capacity. With nearly the same capacity, TWO-MODEL still
outperforms ONE-MODEL. In conclusion, it’s the decou-
pled and aligned mechanism itself that benefits imbalanced
lifelong learning, not the extra model parameters.

Multi-class Balanced Classification. To further verify the
effectiveness of our algorithm on general lifelong learning,
we conduct experiments on standard multi-class classifi-
cation benchmarks without making datasets imbalanced.
Similar to most of the existing AUC maximization litera-
ture, our algorithm focuses on binary classification. In order
to apply DIANA for general lifelong learning problems,
we extend our method to accommodate multi-class AUC
maximization following works Liu et al. [2020], Yang et al.
[2021]. If there are c classes, we have c output scores from
the network, one score for each class. If a sample belongs to
i-th class, the corresponding score at i-th position is treated
as positive and the rest scores negative, a binary AUC loss is
calculated based on these scores. By iterating over c classes,
multi-class AUC loss accumulates. To obtain AUC metric
in multi-class form, we calculate AUC score for each class
pair (i.e., one versus all) and then perform the average.

Table 3 presents results on standard Split-CIFAR, Split-
CUB200 and Split-AWA2. Because most of the baselines
have reported the accuracy and tuned hyper-parameters
on Split-CIFAR, we just follow their settings. As to Split-
CUB200 and Split-AWA2, the setups follow Section 5.1.
DIANA outperforms other baselines in terms of AUC, Ac-
curacy, and forgetting. Particularly, on Split-CUB200, DI-
ANA obtains a slightly lower accuracy than Gdumb but
the highest on the AUC metric. The results show that our
method is not only suitable for imbalanced scenarios but
also works well under general lifelong learning settings such
as multi-class classification on balanced datasets.

Time and space complexity. All the experiments are per-
formed on a single GTX-1080Ti GPU. The running time
is reported in Table 4. Our TWO-MODEL-based approach
increases slightly computational cost but improves signifi-
cantly performance. As for space complexity, DIANA uses
the same memory size as those reply methods like A-GEM.
Model decoupling with an alignment penalty can be com-
putationally expensive compared with training one model
because of maintaining two models. However, this approach
can often yield better results and faster than using a single
model with a complex function. According to Table 4, al-
though our approach cost 34.5s, it is still faster than EWC,



Table 3: The multi-class results of average AUC, average ACC, and average Forgetting (FGT) of different methods on Split
CIFAR100, Split CUB200, and Split AWA2.

Method
Split-CIFAR Split-CUB Split-AWA2

AUC (↑)% ACC (↑)% FGT (↓)% AUC (↑)% ACC (↑)% FGT (↓)% AUC (↑)% ACC (↑)% FGT (↓)%

SINGLE 75.8 ± 2.0 42.8 ± 3.4 12.7 ± 2.1 91.9 ± 2.4 48.1 ± 6.3 3.2 ± 2.3 51.0 ± 2.1 58.0 ± 0.7 28.4 ± 2.9
EWC 76.4 ± 1.8 43.9 ± 2.4 11.9 ± 1.4 91.5 ± 2.6 47.2 ± 6.3 3.8 ± 2.5 51.7 ± 1.3 57.9 ± 1.6 28.7 ± 3.8
MAS 78.2 ± 1.7 44.5 ± 3.3 8.1 ± 1.9 92.7 ± 2.1 49.9 ± 6.2 2.6 ± 2.1 50.1 ± 0.1 53.6 ± 6.2 28.5 ± 3.9
A-GEM 81.6 ± 0.9 54.5 ± 1.7 7.2 ± 0.9 92.8 ± 0.8 54.4 ± 7.5 1.1 ± 1.1 51.1 ± 3.2 59.6 ± 0.8 27.3 ± 1.6
GDumb 75.9 ± 0.9 49.4 ± 1.4 2.6 ± 0.4 92.8 ± 1.8 65.5 ± 2.3 0.3 ± s0.2 54.4 ± 3.4 60.8 ± 2.7 14.1 ± 6.1
DER 80.3 ± 1.2 40.7 ± 2.5 8.9 ± 1.2 92.6 ± 2.8 59.5 ± 9.0 1.5 ± 0.7 71.3 ± 16.0 63.1 ± 3.4 15.3 ± 9.2
MEGA 62.2 ± 2.7 32.3 ± 2.4 10.8 ± 2.2 89.6 ± 4.0 50.6 ± 7.3 4.3 ± 2.5 51.1 ± 1.0 59.6 ± 5.6 12.8 ± 2.9

DIANA 89.5 ± 0.3 65.5 ± 0.9 1.2 ± 1.2 93.4 ± 0.6 64.3 ± 1.8 0.2 ± 0.1 92.6 ± 1.4 82.5 ± 2.3 0.3 ± 0.2

MAS, and GEM, which cost 78.6s, 77.3s, and 109s respec-
tively.

Table 4: Time and space complexity on Split-CIFAR

Method Training time (s) memory

Single 8.8 0
EWC 78.6 0
MAS 77.3 0
GEM 109 1280
A-GEM 17.1 1280
GDumb 8.8 1280
DER 20.0 1280
MEGA 15.7 1280
DIANA 34.5 1280

Hyperparameters. λ and β are two hyperparameters used
in the alignment penalty. λ is adaptively changed according
to our algorithm so practitioners do not need to tune λ. Now
we provide some results in varying β because β is a tuned
hyperparameter that controls the tradeoff of maximizing
AUC and alignment of two models, the result is presented
in Table 5. We find that the best tradeoff is choosing β to be
0.1 in various benchmarks, so we suggest practitioners use
β = 0.1 for their own tasks.

Table 5: Varing hyperparameter β

β CIFAR100 CUB200 AWA2

0.1 68.4 70.4 98.2
0 66.09 72.03 95.8
0.01 65.8 69.6 93.7
1.0 63.6 51.11 54.1

Combine AUC maximization. To further validate the
advantage of AUC maximization in imbalanced setting,
we combine AUC maximization with previous methods,
like EWC and DER. Table 6 shows when replacing the
cross-entropy loss with AUC maximization, both EWC and
DER have significant improvement. However, our proposed

method achieve superior performance compared to these
existing approaches, owing to the incorporation of an ad-
ditional model decoupling mechanism. Our algorithm DI-
ANA is slightly worse than DER-AUC on split-CIFAR100,
but much better than all other baselines on datasets split-
CUB200 and split-AWA2.

Table 6: Combine AUC maximization with Existing litera-
ture β

method CIFAR100 CUB200 AWA2

EWC 64.4 51.5 56.2
EWC-auc 62.4 69.7 97.1
DER 62.6 65.7 80.4
DER-auc 70.1 62.1 91.5
DIANA 68.4 70.4 98.2

More ablations in Appendix. Due to limited space, more
ablations are studied in Appendix, including results with
balanced sampling in Appendix A, imbalanced ratio in Ap-
pendix C, balanced vs. imbalanced in Appendix D.

6 CONCLUSION

We study AUC optimization under imbalanced continual
learning settings. We propose a novel algorithm DIANA
based on the minimax reformulation of the AUC objective.
We systematically study the gradient interference problem
on imbalanced data. We demonstrate that this problem can
be alleviated by employing two models with model decou-
pling and alignment. We extend our algorithm to multi-class
AUC maximization in general balanced lifelong learning.
Compared to existing approaches, the proposed algorithm
achieves a higher AUC score as well as less forgetting. One
limitation is that our approach uses two models and slightly
increases the computational cost.
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