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ABSTRACT

The objective of machine unlearning (MU) is to eliminate previously learned data
from a model. However, it can be challenging to strike a balance between com-
putation cost and performance when using existing MU techniques. Taking inspi-
ration from the influence of label smoothing on model confidence and differential
privacy, we propose a simple gradient-based MU approach that uses an inverse
process of label smoothing. This work introduces UGradSL, a simple, plug-and-
play MU approach that uses smoothed labels. We provide theoretical analyses
demonstrating why properly introducing label smoothing improves MU perfor-
mance. We conducted extensive experiments on several datasets of various sizes
and different modalities, demonstrating the effectiveness and robustness of our
proposed method. UGradSL also shows close connection to improve the local
differential privacy. The consistent improvement in MU performance is only at a
marginal cost of additional computations. For instance, UGradSL improves over
the gradient ascent MU baseline constantly on different unlearning tasks with-
out sacrificing unlearning efficiency. A self-adaptive UGradSL is also given for
simple parameter selection.

1 INTRODUCTION

Building a reliable ML model has become an important topic in this community. Machine unlearning
(MU) is a task requiring to remove the learned data points from the model. The concept and the
technology of MU enable researchers to delete sensitive or improper data in the training set to
improve fairness, robustness, and privacy and get a better ML model for product usage (Chen et al.,
20215 [Sekhari et al., 2021)). Retraining from scratch (Retrain) is a straightforward method when we
want to remove the data from the model; yet it incurs prohibitive computation costs for large models
due to computing resource constraints. Therefore, an efficient and effective MU method is desired.

The most straightforward MU approach should be retraining-based method (Bourtoule et al.l|2021),
meaning that we retrain the model from scratch without using the data to be forgotten. The method
can guarantee privacy protection but the computational cost is intensive. Most existing works (Koh
& Liang| 2017; |Golatkar et al., [2020; |Warnecke et al., [2021} |Graves et al., 2021} Thudi et al., 2021}
[zzo et al. 2021} Becker & Liebig| 2022} Jia et al. [2023)) focus on approximate MU to achieve
a balance between unlearning efficacy and computational complexity, making them more suitable
for real-world applications, meaning that make the model unlearn the forgetting dataset without
retraining the model.

We desire an approach that enjoys both high performance and fast speed. Since MU can be viewed
as the inverse process of ML, we are motivated to think it would be a natural and efficient way to
develop an unlearning process that imitates the reverse of gradient descent. Indeed, gradient ascent
(GA) (Thudi et al.| 2021) is one of the MU methods but unfortunately, it does not fully achieve the
potential of this idea. One of the primary reasons is that once the model completes training, the
gradient of well-memorized data that was learned during the process is diminishing (close to 0 loss)
and therefore the effect of GA is rather limited.

Our approach is inspired by the celebrated idea of label smoothing (Szegedy et al., [2016). In the
forward problem (gradient descent), the smoothed label proves to be able to improve the model’s
generalization power. In our setting, we treat the smoothed label term as the regularization in the
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(a) Performance of classwise forgetting on ImageNet. (b) Performance of random forgetting on CIFAR-100.

Figure 1: The performance comparison of our proposed methods and baseline methods using aver-
age gap and runtime (RTE), where lower values indicate better performance. Bars represent average
gap while red dotted lines show RTE. Since retraining does not have gap by definition, only RTE
is reported for this baseline and the bar is empty. For classwise forgetting on ImageNet, UGradSL
achieves the lowest average gap (2.23%) with acceptable RTE increase. For random forgetting on
CIFAR-100, UGradSL+ attains the best average gap (3.75%), while UGradSL demonstrates an op-
timal gap-runtime trade-off.

loss function, making the unlearning more controllable. Specifically, we show that GA with a “neg-
ative” label smoothing process (which effectively results in a standard label smoothing term in a
descending fashion) can quickly improve the model’s deniability in the forgetting dataset, making
the model behave close to the retrained model, which is exactly the goal of MU. We name our
approach UGradSL, Unlearning using Gradient-based Smoothed Labels.

Our approach is a plug-and-play method that can improve the gradient-based MU performance con-
sistently and does not hurt the performance of the remaining dataset and the testing dataset in a
gradient-mixed way. At the same time, we provide a theoretical analysis of the benefits of our
approach for the MU task. The core contributions of this paper are summarized as follows:

e We propose a lightweight tool to improve MU by joining the label smoothing and gradient ascent.

e We theoretically analyze the role of gradient ascent in MU and how negative label smoothing is
able to boost MU performance.

o Extensive experiments in six datasets in different modalities and several unlearning paradigms
regarding different MU metrics show the robustness and generalization of our method.

e We investigate the relationship between label smoothing and label differential privacy (LDP),
showing that label smoothing can aid LDP.

2 RELATED WORK

Machine Unlearning (MU) was developed to address information leakage concerns related to pri-
vate data after the completion of model training (Cao & Yang} 2015} [Bourtoule et al., 2021}; Nguyen|
et al.| 2022), gained prominence with the advent of privacy-focused legislation (Hoofnagle et al.,
2019; [Pardaul 2018). One direct unlearning method involves retraining the model from scratch
after removing the forgetting data from the original training set. It is computationally inefficient,
prompting researchers to focus on developing approximate but much faster unlearning techniques
(Becker & Liebig) [2022} [Golatkar et al., [2020; Warnecke et al.| 2021}, [Graves et al.} 2021}, [Thudi
let al, 2021} [Izzo et al.l 2021} [Jia et al.l 2023). Beyond unlearning methods, other research efforts
aim to create probabilistic unlearning concepts (Ginart et all, 2019; [Guo et all, 2019; [Neel et al.}
2021}, [Ullah et all, 2021}, [Sekhari et al [2021)) and facilitate unlearning with provable error guar-
antees, particularly in the context of differential privacy (DP) (Dwork et all, 2006} Ji et al.} 2014}
2012). However, it typically necessitates stringent model and algorithmic assumptions,
potentially compromising effectiveness against practical adversaries, such as membership inference
attacks (Graves et al, 2021}, [Thudi et all, 2021). Additionally, the interest in MU has expanded to

encompass various learning tasks and paradigms [2022b} [Liu et al., 20220} [Chen et al.}
2022} [Chien et al} 2022}, [Marchant et al 2022} Di et al., 2022). These applications demonstrate the
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growing importance of MU techniques in safeguarding privacy. The rest of the related work about
influence function label smoothing and differential privacy are given in Appendix.

3 LABEL SMOOTHING ENABLES FAST AND EFFECTIVE UNLEARNING

This section sets up the analysis and shows that properly performing label smoothing enables fast
and effective unlearning. The key ingredients of our approach are gradient ascent (GA) and label
smoothing (LS). We start with understanding how GA helps with unlearning and then move on to
show the power of LS. At the end of the section, we formally present our algorithm.

3.1 PRELIMINARY

Machine Unlearning Consider a K-class classification problem on the training data distribution
Dy = (X x V), where X and Y are feature and label space, respectively. Due to some privacy
regulations, there exists a forgetting data distribution D that the model needs to unlearn. We denote
by 0y, the original model trained on Dy, and 8,, the model without the influence of D;. The goal of
machine unlearning (MU) is how to generate 8,, from 6;,..

Label Smoothing In a K -class classification task, let y; denote the one-hot encoded vector form
of y; € Y. Similar to Wei et al| (2021), we unify positive label smoothing (PLS) and negative
label smoothing (NLS) into generalized label smoothing (GLS). The random variable of smoothed

label yGLS(’ with smooth rate a € (—o0,1] is yGLsa =(l-a) y+g-1=[%% 0+
1 Ka), %> 3¢ ], where (1 + —oz) is the y;-th element in the encoded label vector. When a < 0,
GLS becomes NLS.

3.2 GRADIENT ASCENT CAN HELP GRADIENT-BASED MACHINE UNLEARNING

We discuss three sets of model parameters in the MU problem: 1) 6;,., the optimal parameters trained
from Dy, ~ Dy, , 2) 67, the optimal parameters trained from D,. ~ D,., such that D,. = Dy,.\D ¢ and
3) 7%, the optimal parameters unlearned using gradient ascent (GA) on Dy ~ Dy. Note 6, can be
viewed as the exact MU model. The definitions of 8;, and 6, follow the standard empirical risk
minimization as

0 —argmmf > U (hg,z). (1)

N zeD

and by using the influence function, 87 7is

0} = argmln{Rtr(G +e Z U(hg,z )}
zfeDy
where R () = Y.trep,, {(he,2"") and R;(0) = Y.ren; U(he, ') are the empirical risk on Dy,
and Dy, respectively. We use notations ¢(hg, z) to specify the loss of an example z = (x,y) in the

dataset. hg is a function h parameterized by 6. ¢ is the weight of Dy compared with D,,. The
optimal parameter can be found when the gradient is 0:

VoRu (07)+c Y. Vol(her, 2N =o. )
ZfEDf

Expanding Eq. (2) at 8 = 6;,. using the Taylor series, we have

-1
9;—9;“—[ > Vel(her 2" )+e Y Vzg(heg,zf)] (5 > Vef(he;;,zf)) 3)

2t eDy, zfeDy zfeDy

Here, we ignore the Lagrange Remainder. Similarly, we can expand Vg R (0},.) at @ = 6 and
derive 6 - 6}, as

2treDy,. ztreDy,.

-1
9;-9;ml D VZE(ha;,z”)] ( D Vee(he:,ztr)) )
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We ignore the average operation in the original definition of the influence function for computation
convenience because the size of Dy, or Dy are fixed. For GA, let ¢ = -1 in Eq. and we have

0; -0 =0,-0; -(0;-6,)=A10,-A70y, 5)

where (—A#@,.) represents the learning gap from 6, to 8}, while vector A8 represents how much
the model unlearns (backtracked progress) between 0} and 6;,. The details of Af, and Af; are
given in Eq. in Appendix. Ideally, when A, and A@; are exactly the same vectors, GA can
lead the model to the optimal retrained model since we have 6, = 67. However, this condition is
hard to satisfy in practice. Thus, GA cannot always help MU. We summarize it in Theorem[I] The
proof and the error analysis is given in Appendix [C.I]and [C.2]

Theorem 1. Given the approximation in Eq. (3), GA achieve exact MU if and only if

> Vol(he:,2') ~—H(6;,6;.)- > Vol(he:,27),

ZfGDf szDf

-1
H(6;,6;.)=[.trep,, Vgﬁ(hgi,z")] [ereu,. V%E(hesr, z”)] . Otherwise, there exist 0,0}, such
that GA can not help MU, i.e., |0, - 6%| > |0 - 67,.|.

3.3 LABEL SMOOTHING IMPROVES MU

Practically, we cannot guarantee that GA always helps MU as shown in Theorem[I] To alleviate the
possible undesired effect of GA, we propose to use label smoothing as a plug-in module. Consider
the cross-entropy loss as an example. For GLS, the loss is calculated as

K !
ORCHCVES S CACED) ©
y'eV\y

1-
((hg, 255*) = (1 +

where £(hg, (x,y)) = £(he,z) and £(hg, (x,y")) to denote the loss of an example when its label is
replaced with y'. Intuitively, Term Y, /ey, £(he, (x,y")) in Eq. @ leads to a state where the model
makes wrong predictions on data in the forgetting dataset with equally low confidence (Wei et al.,
20215 Lukasik et al., [2020).

With smoothed label given in Eq. (6)), we show that there exists a vector A@),, such that Eq. (3 can
be written as

0; ~ 0515~ A6, — A + a- (A8, - A8;), 7

We leave the detailed form of A6, to Eq. (34). But intuitively, A@,, captures the gradient influence
of the smoothed non-target label on the weight. We show the effect of NLS (« < 0) in Theorem
below and its proof is given in Appendix [C.3

Theorem 2. Given the approximation in Eq. (5) and (A6, — AO;,AO,, — ABy) <0, there exists an
a < 0 such that NLS improves GA in unlearning, i.e., |07 - 67 v, 5| < |07 — 0%, where 6% y,  is the
optimal parameters unlearned using GA and NLS, and (-,-) the inner product of two vectors.

Now we explain the above theorem intuitively. Vector A@; — A@, is the resultant of Newton’s
direction of learning and unlearning. Vector A8 ;—A#, is resultant of Newton’s direction of learning
non-target labels and unlearning the target label. When the condition (A8, — A@¢, A8, - Aff) <0
holds, A8,,— Ay captures the effects of the smoothing term in the unlearning process. If we assume
that the exact MU model is able to fully unlearn an example, vector A@,, contributes a direction that
pushes the model closer to the exact MU state by leading the model to give the wrong prediction.
The illustration of (A, — AB;, AB,, — Afy) is shown in Figure@in the Appendix.

The effect of the smoothed term in gradient ascent (GA) with NLS is equivalent to performing a
gradient descent optimization with traditional defined (positive) LS. The gradient of the smoothed
term is exactly the same as /K - ¥, icyn,, V£(he, (z,9")) in both cases.

3.4 LABEL SMOOTHING HELPS LOCAL DIFFERENTIAL PRIVACY

When « < 0, the smoothing term will incur a positive effect in the gradient ascent (GA) step. Label
smoothing can also be viewed through the lens of privacy protection. This interpretation stems from
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the fact that label smoothing reduces the likelihood of a specific label, thereby allowing it to better
blend in with other candidate labels. Particularly, we consider a local differential privacy (LDP)
guarantee for labels as follows.

Definition 1 (Label-LDP). A privacy protection mechanism M satisfies e-Label-LDP, if for any
! , pred P(M(y)=ypr9d) €

labels y7 y 7y € y’ ]P(M(y/):ypred) S €.

The operational meaning of M is to guarantee any two labels y and 3’ in the label space, after

privatization, have a similar likelihood to become any 3°**? in the label space. That is, the prediction

on the forgetting dataset should be similar no matter what the ground-truth label is. The similarity is

measured by the privacy budget € € [0, +o00). Smaller € implies stronger indistinguishability between

y and y’, and hence, stricter privacy.

Recall R (8) = X.trep,, {(he,2""). Denote by R} (6;0) = T.is.acp, £(he, 2°5%),a < 0 the
empirical risk of forgetting data with NLS. After MU with label smoothing on Dy by GA, the
resulting model can be seen as minimizing the risk ;- Ry, (6) =72+ RI}ILS (8; ), which is a weighted
combination of the risk from two phases: 1) machine learning on D, with weight v; > 0 and 2)

machine unlearning on D with weight v, > 0. By analyzing the risk, we have the following theorem
to show NLS in MU induces e-Label-LDP for the forgetting data.

Theorem 3. Suppose v1 — y2(1 + %a) > 0. MU using GA+NLS achieves e-Label-LDP on D

where X
log(—(l—ﬂ)+l—K)‘, a <.
«@ Y2

€=

Intuitively, when « is more negative, the privacy of the labels in the forgetting dataset is better.
When o — (1 —71/72), we have € — 0, indicating the best label-LDP result, which is the goal of
MU. The theorem also warns that o cannot be arbitrarily negative.

4 UGRADSL: A PLUG-AND-PLAY AND GRADIENT-MIXED MU METHOD

8 LS on Df .
Cat g I |:> Cat hy
\_ x y x | ylsa )

Request: Forget the cat class

We(hg, 2)) - V(hg, 2 "))

| Gradient | Gradient

| Descent | Ascent

Figure 2: The framework of UGradSL. When there is an unlearning request, we can split the Dy,
into Dy and D,.. We first apply label smoothing on sz ={z,y} € Dy to get zZ.LS’C” = {z,ytSi},
where the smooth rate can be pre-defined or self-adaptive. In back-propagation process, we apply
gradient descent on the data z; € D, and gradient ascent on the data smoothed Dy, which is the

mix-gradient way.

Given the effect of label smoothing on MU and LDP, we propose our method here. Compared
with retraining, Fine-Tune (FT) and GA are much more efficient as illustrated in Section E] with
comparable or better MU performance. FT and GA focus on different perspectives of MU. FT is to
transfer the knowledge of the model from Dy, to D,. using gradient descent (GD) while GA is to
remove the knowledge of D from the model.

Due to the flexibility of label smoothing, our method is suitable for the gradient-based methods
including FT and GA, making our method a plug-and-play algorithm. UGradSL is based on GA
while UGradSL+ is on FT. Compared with UGradSL, UGradSL+ will lead to a more compre-
hensive result but with a larger computation cost.
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Algorithm 1 UGradSL+: A plug-and-play, efficient, gradient-based MU method using LS.
UGradSL can be specified by imposing the dataset replacement in the bracket. If « is not given, the
algorithm turns to the self-adaptive version.

Require: A almost-converged model i 6,, trained with Dy,.. The retained dataset ;.. The forgetting
dataset Dy. Unlearning epochs E. GA ratio p. Distance threshold 5. The optional smoothing
ratio .

Ensure: The unlearned model hg ;-

1: Set the current epoch index as ¢, « 1
2: while t. < E do
3: while D, (D) is not fully iterated do

4: Sample a batch B, in D,.

5: Sample a batch By from D where |By| = | B, |

6: if o is not given then > The improved and self-adaptive version
7: Extract the feature of 2] and z}f using hg, .

8: Calculate the distance d(hg, (2] ), e, (zj)) for each (27, zjf ) pair where 2] € B,

and z{ € By.

9: For each zf , count the number c;.c of zj whose d(he, (2] ), he, (z7f )< B
10: Calculate the smooth rate a; = c]f /|By| for each ij € By
11: end if
12: Update the model using B,., By, p and «; according to Eq.

13: end while
14: te<teo+1
15: end while

How to choose the smooth rate « is worth discussion. Normally, the «; € « for every data point
zlf € Dy can be the same. To gain better performance, we improve UGradSL and UGradSL+
by taking every data point into consideration and assigning «; individually and adaptively based
on the distance d(hg,(z]), ]lgf(ZJ[)) ¢ [0,1] for each (z7,z/) pair. The intuition is that if an

197
instance zf resides in a dense neighborhood of D, its inherent deniability is higher and therefore

the requirement for “forgetting” is lesser and should be reflected through a smaller «;. The algorithm
is presented in Algorithm [I]and the framework is illustrated in Figure 2] We leave the details of the
implementation, complexity analysis and the additional classification results in Appendix D}

Assuming the amount of retained data is significantly larger than the amount of data to be forgotten
(|Dy| > |Dy|), Dy will be iterated several times when D, is fully iterated once. We calculate the loss
using a gradient-mixed method as:

L(he, BYS* B,,p)=p- . t(he,2")~(1-p)- X £(hg,2/N5")

z"eB, S I NLS i  pNLS, (8)
i f

i

where p € [0,1] is used to balance GD and GA and the minus sign between two elements on

the RHS stands for the GA. « is the vector for the smoothing rate of every data point sz . he is
updated according to L in Eq. (). UGradSL is similar to UGradSL+ and the dataset used is given
in bracket in Algorithm |I} The difference between UGradSL and UGradSL+ is the convergence
standard. UGradSL is based on the convergence of Dy while UGradSL+ is based on D,.. It should
be noted that the Hessian matrix in Theorem I]is only used in the theoretical proof. In the practical
calculation, there is no need to calculate the Hessian matrix. Thus, our method does not incur
substantially more computation but improves the MU performance on a large scale. We present
empirical evidence in Section[5] Compared with applying the label smoothing evenly, the improved
version takes the similarity of the data points between D, and Dy into consideration and provides

self-adaptive smoothed labels for individual sz as well as protects the LDP.
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5 EXPERIMENTS AND RESULTS

5.1 EXPERIMENT SETUP

Dataset and Model Selection We validate our method using various datasets in different scales and
modality, including CIFAR-10, CIFAR-100 (Krizhevsky et al.,[2009), SVHN (Netzer et al.,|2011)),
CelebA (Liu et al.| |2015)), Tiny-ImageNet, ImageNet (Deng et al.,|2009) and 20 Newsgroups (Lang,
1995)) datasets. For the vision and language dataset, we use ResNet-18 (He et al.l [2016) and Bert
(Devlin et al, |2018)) as the backbone model, respectively. Due to the page limit, the details of
the training parameter and the additional results of different models including VGG-16 (Simonyan
& Zisserman, [2014) and vision transformer (ViT) (Dosovitskiy et al., [2020) are given in the Ap-

pendix

Baseline Methods We compare the proposed methods with a series of baselines, including retrain,
fine-tuning (FT) (Warnecke et al., 2021} |Golatkar et al.| 2020)), gradient ascent (GA) (Graves et al.,
20215 (Thudi et al.| 2021), unlearning based on the influence function (IU) (Izzo et al., 2021; |Koh
& Liang| 2017), boundary unlearning (BU) (Chen et al.l 2023)), ¢;-sparse (Jia et al., [2023)), random
label (RL) (Hayase et al., 2020), SCRUB (Kurmanji et al., 2023), SalUN (Fan et al., 2023), EU-£,
CF-k (Goel et al.,2022)), GLI and PABI. The implementation details of these baselines are given in

Appendix [E. 1}

Evaluation Metrics The evaluation metrics we use follows Jia et al.| (2023)), where we jointly con-
sider unlearning accuracy (UA), membership inference attack (MIA), remaining accuracy (RA),
testing accuracy (TA), and run-time efficiency (RTE). UA is the ratio of incorrect prediction on Dy,
showing the MU performance. TA is the accuracy used to evaluate the performance on the whole
testing set Dy, except for the class-wise forgetting because the task is to forget the specific class.
RA is the accuracy on D,.. To evaluate the effectiveness of “forgetting”, we resort to the MIA met-
rics described in Jia et al.|(2023)); |[Fan et al.| (2023), i.e. accuracy of an attack model against target
model 6,,, such that the score is reported as true negative rate (TNR) on the forget set. Formally,
this is a global MIA score |Yeom et al|(2018), which we rewrite as MIAg e = 1 — Pr(zy|0.),
where xy € D are the forget samples and ¢, is the model under test. Overall, we use Avg. Gap
to quantifies the mean performance gap between each unlearning method and the retrained model
across all individual metrics above. A lower value indicates better performance.

Unlearning Paradigm We mainly consider three unlearning paradigms, including class-wise forget-
ting, random forgetting, and group forgetting. Class-wise forgetting is to unlearn the whole specific
class where we remove one class in D, and the corresponding class in D;. completely. Random
forgetting across all classes is to unlearn data points belonging to all classes. As a special case of
random forgetting, group forgetting means that the model is trained to unlearn the group or sub-class
of the corresponding super-classes. A more detailed description is given in Appendix [E.2]

5.2 EXPERIMENT RESULTS
5.2.1 CLASS-WISE FORGETTING

We select the class randomly and run class-wise forgetting on five datasets. We report the results of
CIFAR-100 / ImageNet and CIFAR-10 in TableT|and 3] respectively. The results of 20 NewsGroup
and SVHN is given in Appendix As we can see, UGradSL and UGradSL+ can boost the
performance of GA and FT, respectively without an increment in RTE or drop in TA and RA, leading
to comprehensive satisfaction in the main metrics, even in the randomness on Dy, showing the
robustness and flexibility of our methods in MU regardless of the size of the dataset and the data
modality. Moreover, in terms of Avg. Gap, the proposed method shows its similarity to the retrained
model.

5.2.2 RANDOM FORGETTING

We select data randomly from every class as Dy, making sure all the classes are selected and the
size of Dy is 10% of the D;,. We report the results of CIFAR-100 and TinyImageNet in Table 2}
Compared with class-wise forgetting, it is harder to improve the MU performance and still keep the
RA and TA close to the retrained model. Benefit from the mix-gradient design, the proposed method
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Table 1: Results of class-wise forgetting in CIFAR-100 and ImageNet. The best comprehensive
metrics are bold.

| CIFAR-100 || ImageNet
Mcthod |  UA MIAgeore RA TA | Ave.Gap()) | RTE(Jomin) ||  UA MIAg ore RA TA | Avg. Gap()) | RTE (. hn)
Retrain ‘ 100.00:0.00 100.00:0.00  99-96:0.01  71.10:0.12 ‘ - ‘ 26.95 H 100.0040.00  100.00.0.00 71.62:0.12  69.57.0.07 ‘ - ‘ 26.18
FT 0.67.085  27.20:130 99965001 71462009 4312 174 52421581 558611502 70662251 69.25.07s 2325 287
GA 99.0050.57  99.07:050  77.83:207  53.73:0.06 10.36 0.06 81.235060  83.52:2.08 64.7240.02 11.43 0.01
U 33.2048 83 99.9650.00  71.39:0.190 41.26 1.24 33.5441046  49.83.2157 66.2841.19 31.32 1.51
BE 99.0040.49 70.81.0.60  49.85.1.32 13.08 0.55 98.6240.58 0.15,40.11 56.72.0.31 33.14 0.24
BS 98.73:068  71.161260  50.0311.36 13.06 0.77 98.8540.50 0.1340.12 56.9310.03 32.98 0.37
£y-sparse 100.0020.00 86.99.0.76  79.08:0.75 4.56 0.15 100.0020.00  100.0040.00 44.6240.01 14.39 0.16
RL 99.8040.35  100.00:0.00 99.97.0.62 77.31:035 0.67 1.10 100.0040.00  100.0040.00 62.9340.45 4.05 1.17
EU-k | 100.00.000  0.00s000 6379110 43.90:073 40.84 450 100002000 0.0040.00 37.19,0.15 4275 0.62
CF-k 100.0020.00  0.0040.00  94.88:0.46  61.32:1.17 28.72 3.01 99.7940.36 0.0040.00 68.3540.28 26.55 1.25
SCRUB 30.07449.48  66.60420.00  99.98,0.01  77.97:0.56 26.62 1.07 56.5942.17 75.59:1.19 68.24.40.07 18.45 0.21
SalUN 99.9040.01 99.96.0.00 99.98,0.01  75.02.0.10 1.02 215 100.0040.00 100.0040.00 63.00:5.03 62.72.0.31 387 1.95
GLI 3078674 69.63i741  95.57i011  69.631060 24.11 1.03 53384205 73.3lis2n  73.0l.011  63.23:006 20.26 3.79
PABI 1002000 100.004000 98941016  73.41.000 0.83 20.09 - - - - - -
UGradSL  66.59.0.90  90.96:505  95.45:142  70.3441 .78 12.87 0.07 100.0050.00 100.00:0.00 76.91:1.82 65.9441 35 2.23 0.01
UGradSL+  100.0040.00 100.0020.00 98.44.062 74.12.0.70 0.57 337 100.0040.00 100.00:0.00 78.16:0.07 66.8440.06 2.32 4.19

Table 2: Results of random forgetting in CIFAR-100 and Tiny-ImageNet. The best comprehensive
metrics are bold.

| CIFAR-100 I Tiny-ImageNet
Method | UA  MiAgere  RA TA | AvgGap() | RTE(min) | UA  MiAgege  RA TA | Ave. Gap() | RTE (. min)
Retrain | 20472150 58500110 99.98.001 705117 | B | 2501 || 49.35.00s  5844uoso  83.80,020 59.66u0.11 | - | 23568
FT 2.55:0.03  10.59:027  99.95:0.01  75.95:0.05 18.83 1.95 29.235020 37.02:033 82.51i020 60.9640.23 11.03 18.61
GA 2.58.0.06 5.95.017 9745002 76.09.0.01 20.64 0.29 19.34,167  25.19.068 8151156  59.66.0.61 16.39 8.65
U 15714519  18.69.412 84.65.520 62.2044.17 18.05 1.20 60.61.0.01 83.67.0.15 16.36.037 23.44.020 35.04 7.30
BE 0.01:0.00 1455002 99974018  78.26.0.00 22.32 0.24 17.65.031 24.48:042  82.85:0.20 58.1640.08 17.03 353
BS 2204121 10.73.9.37  98.22,196 70.23.167 18.02 0.34 1947060 2545.015 81.23.0.74 56.75.0.80 17.09 5.63
£y-sparse 819,038 19.11.052 88.39.031 80.26.0.16 23.75 1.00 35.73.035  41.98.073  78.19.005 61.44.012 9.37 23.40
RL 4.06.037  50.12.348  99.92,001 71.30.0.12 7.41 1.20 40.52,0.15  59.01l.0.76  77.58.0.06 60.1840.19 4.04 27.08
EU-k 1.73.40.06 3.33:0.07  98.44.0.05  59.92:0.43 2251 1.96 33.555035 22.19:175  81.4li027 58.0850.21 14.01 20.02
CF-k 0072000  04Teo1s  99.98,001 67.86.01 2127 0.88 1931008 23.22.005 8159047 58154010 17.25 13.18
SCRUB 4.01.005  99.97.034 T77.45.0.26 21.46 1.06 20114005 2 2753 8091077 60.11.0.99 16.42 25.79
SalUN 89.39.0.46  99.53.0.00 64.26.0.58 12.10 3.33 40.39.0.15 c10.67  77.605011  60.3040.31 5.48 34.42
GLI 033,056 9716148  72.0450.50 18.78 0.63 38.40,, 74 6 % 98.37.007 61534050 9.1 292
PABI 39.31:088  99.1440.01  72.00:0.20 4.42 19.10 99.9040.03 66.46.56.83  0.50.0.01 0.00:0.00 50.38 54.58
UGradSL  18.36,0.17 40.71.013 98.38.0.03 68.23.0.16 6.95 0.55 40.73.071  37.58:0.21 67.3040.04 50.38.0.77 13.82 9.47
UGradSL+  21.69.050 49.47:125 99.87:034 73.6040.26 3.75 3.52 53.0651.27 59.46:1.01 81.38.075 52.52:0.84 357 25.93

can make a good balance between forgetting D and retaining the knowledge in D,.. The rest of the
experiments are given in Appendix

5.2.3 GROUP FORGETTING

Although group forgetting can be seen as part of random forgetting, we want to highlight its use
case here due to its practical impacts on e.g., facial attributes classification. The identities can be
regarded as the subgroup in the attributes.

CIFAR-10 and CIFAR-100 share the same image dataset while CIFAR-100 is labeled with 100
fine-grained classes and 20 coarse (super) classes (Krizhevsky et al.|[2009; (Chundawat et al., [2023).
We train a model to classify 20 super classes using CIFAR-100 training set. The setting of the

Table 3: Results of Group Forgetting on CIFAR-20 and CelebA. For CIFAR-20, the model is trained
to classify 20 super-classes, with D representing one of five subclasses within a single super-class.
In the CelebA dataset, the model performs binary classification to determine whether a person is
smiling, with Dy selected based on specific identities. The best comprehensive metrics are bold.

| CIFAR-20 I CelebA
| UA  MlAge RA TA | Avg.Gap() | RTE(l.min) || UA MIAg e RA TA | Avg Gap (1) | RTE (|, min)
Retrain | 1333101 2847.075 9994001 8123013 | - | 2735 || 6742 97Tia0  9438.040 9178.0 | - | 25869
FT 100,043 273052 99.3Ta00s 79024003 1021 747 536:0.07  58Taom 93.9Li0.01 93184003 1.79 25.94
GA 87.934002 88.93.233 8Ld6iorr  64.07u005 42.68 0.11 6002016 5.76u014  92.86:013  92.520.08 1.70 1.20
U 0.00.000 207.120 9995001 80.92,051 10.01 1.10 590,011  49L030  93.05.00 9262001 1.97 219.77
BE 89.07u130 91.73u175  76.36.002  60.17.002 4591 033 1150050 4841556 88.37s081  88.07u08 13.28 4891
BS 88.60.1.13  90.67.11s 76704108 60414117 45.38 029 8.95,5.11 523020 91004520 90.63,5.65 6.08 50.99
f-sparse | 013,000  22T.057 9957001 80.445008 10.14 0.38 946,152 36.91u3006 9052175 9035177 8.79 3749
RL 56.9315.21  98.60.020 99.92.001 80.284005 28.67 037 83Li04s  28.55u1671  9L85.051  91.620.42 576 40.09
EU-k | 8.00.157 1633.70s 97.07.01s  69.67.0.35 7.98 0.87 7204010  18.77T.360  92.55.030 91.04s0.67 3.01 1.98
CF-k 0002000 0.80s040 9998001 77465003 11.20 121 546032 1726008  9445.004  92.7%0.08 245 1.60
SCRUB | 0.00.000 L13.034  99.93.001 8105020 1021 0.30 878077 1337522 912Lioss  90.65.0.86 2.49 70.13
SalUN | 52.93.221  99.80.035  99.55.000  76.4840.26 29.02 2.88 6.53.028  25.57us22  92.97.003  922Ta007 4.48 8343
GLI 22007 34.26.4ss 91120065 75.13u0m 7.40 1.01 3u043  5.70s074  92.5940.08 620,11 1.69 052
PABI 629,53 o8 99.29.047 814700 33.22 19.96 371,019 45162107 99.83u001  99.57s0.00 1292 38.87
UGradSL  22.87.000 38.93.157 97.20.010 75.84u016 7.03 0.13 629101 57350  934di01s  92.80.027 1.61 2.17
UGradSL+ 78A44.119 88.67.035 97.93.071  79.77.058 3220 8.12 6.88.065  8.88.052  93.3%0.41 92.99.0.12 0.84 16.78
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group forgetting within one coarse class is to remove one fine-grained class from one super class in
CIFAR-100 datasets. For example, there are five fine-grained fishes in the Fish coarse class and we
want to remove one fine-grained fish from the model. Different from class-wise forgetting, we do
not modify the testing set. We report the group forgetting in Table 3]

CelebA We select CelebA dataset as another real-world case and show the results in Table 3l We
train a binary classification model to classify whether the person is smile or not. There are §192
identities in the training set and we select 1% of the identities (82 identities) as Dy. Both smiling
and non-smiling images are in Dy. This experiment has significant practical meaning, since the
bio-metric, such as identity and fingerprint, needs more privacy protection (Minaee et al., [2023).
Compared with baseline methods, our method can forget the identity information better without
forgetting too much remaining information in the dataset. This paradigm provides a practical usage
of MU and our methods provide a faster and more reliable way to improve the MU performance.

5.3 ABLATION STUDIES

To evaluate the robustness of our method, we conduct ablation studies on the forgetting set size, the
GA ratio p, and the smoothing rate «.. For the forgetting set size, we do the experiments on CIFAR-
10 and CIFAR-100. The results in Tables [I7] and [I8] show that our method is consistently robust to
the size of Dy and always outperforms the other baselines. For the trade-off parameter p, Table
indicates that pure GA is unstable, and its performance becomes more stable as more GA steps
are combined with our method. In practice, we therefore choose p > 0.9 to stabilize performance
while still leveraging the effect of GA for unlearning. We further study random forgetting (10%)
on CIFAR-10, fixing @ = —0.4 for both UGradSL and UGradSL+, and sweep p in [0.8,1.0] with
a step size of 0.01. The resulting UA, MIA, RA, TA, and Avg. Gap curves in FigureE] show that
our methods are relatively stable with respect to p. For the smoothing rate o, we fix p = 0.9 and
vary « from —0.9 to —0.1 with a step size of 0.1. The results in Figure ff] demonstrate that both
UGradSL and UGradSL+ remain stable. Overall, these ablations show that our methods are robust
to the choice of hyperparameters.

All Metrics vs p All Metrics vs p
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Figure 3: Ablation study on the GA ratio p for random forgetting (10%) on CIFAR-10. Our methods
(left: UGradSL, right: UGradSL+) remain relatively stable across a wide range of p under multiple
evaluation metrics.

Table 4: Results of class-wise forgetting and random forgetting on CIFAR-10 with additional (add.)
MIA. The best comprehensive metrics are bold. Avg. Gap is calculated with additional MIA.

| Class-wise 1 Random
| UA MIAgore RA TA | Add.MIA | Avg. Gap()) | RTE(L.min) || UA  MlAgeore RA TA | Add. MIA | Avg. Gap () | RTE (. min)
Retrain | 100.00.000 100.00,000 9819500 9450.031 | 9923008 | | 2462 || 8070047 174Ligge 100005001 9161024 | 50695075 | | 2466
FT 22.71.5.31 79.21.8.60 99.82.000 94.1350.14 | 99.09:0.07 20.04 2.02 1.1040.19 4.0650.41 99.83.0.03  93.7040.10 | 54.0540.31 5.19 1.58
GA 251951138 73.48,068  96.84s055 73104162 | 99434000 24.86 0.08 056,01 1.19:005  9948,002  94.55.0.05 | 55.0450.66 6.31 031
U 83.92,116 925941  98.77.012  92.64.003 | 99.71.007 528 118 1751000 20139170  83.280041  78.13.285 | 53.98.0.55 9.37 118
BE 649300 9819000  994T.000 94005011 | 99.60.002 7.81 020 0005000 0.26:002 100005000 95355015 | 35414000 6.74 317
BS 93.69,45 9982001 9769120 9289126 | 99.56,010 179 0.29 048,000 116,001 947,00  94.58,005 | 55884072 6.51 141
f-sparse | 100002000 100.00s0.00  97.862120  96.114126 | 99.0240.15 043 1.00 280.007 1859045 9997000 94085012 | 5217s07 2.09 198
RL 99.99.0.01 100.0040.00  100.0050.00  95.5040.11 99.0840.07 0.59 1.04 2.8040.37 1859348 99.97.001  94.08.012 | 52174087 2.09 1.98
EU-k 100.0049.00  100.0040.00  100.0040.00  75.0441.10 | 99-8940.15 4.39 145 0.0050.00 0505030  99.99:0010 77214121 | 61.88,133 10.12 1.58
CE-k | 100002000 100004000 100.00:000 78.95.0.53 | 100.00.0.00 363 132 000000  0.00:000  100.0040.00 80.98,027 | 69.9141 33 11.07 147
SCRUB 100.0020.00 100.0040.00  99.93:001  95.22.0.07 | 100.00.0.00 0.65 1.09 0.7040.50 3.88.1.25 99.59.0.3¢  94.22,0.26 | 55.33.0.50 571 4.05
SalUN | 90.74s13.01  100.00.000 98.20.034  80.49.121 | 98.6340.50 478 222 46.95,015 86331100 9T.Thsouz  TT.224077 | 69.95,0.12 2874 242
UGradSL 94.99,4.35 97.95.1.78 95.47.408  86.78.56s | 99.94.0.01 3.64 0.22 5.8740.51 13335070 98.82.028 92174023 | 53.54.0.07 178 045
UGradSL+ | 100.00.000 10000000 9926001 94.29:0.07 | 100.0050.00 0.41 3.07 603007 10655003 99.79003 93645016 | 52205085 253 3.07
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Figure 4: Ablation study on the smoothing rate a for random forgetting (10%) on CIFAR-10. Our
methods (left: UGradSL, right: UGradSL+) remain relatively stable across a wide range of o under
multiple evaluation metrics.

5.4 DISCUSSION

Influence Function in Deep Learning Influence function is proposed for the convex function. As
given in Section[3.2] we apply the influence function to the converged model, which can be regarded
as a local convex model. A plot of loss landscape of the retrained model 6,. on CIFAR-10 dataset is
given in Figure[7)in Appendix.

MIA as a Proxy for ”Forgetfulness”. Given a model 6., we can evaluate the degree of its general-
ization by running a membership inference attack on the model. In the context of the current work,
generalization is equivalent to the degree of “forgetfulness” that the forgetting algorithm achieves.
Given the distribution of model response observations Ay = A(6,,Dy) and A = A(0., Dye),
where A is an adversary and A = Ay U A, is the observation visible to .A, one can get the degree of
generalization by analyzing the observations. In the context of MU, the most straightforward way is
to get the accuracy of .4 on the seen and unseen samples (D;. and Dy respectively. This could be
done by computing the (T'P + T'N)/(|Dy| + |Dye|), where the true positive (TP) predictions corre-
spond to “seen” samples, and true negative (TN) predictions are “unseen” samples. We conducted
the experiments on CIFAR-10 both for class-wise and random forgetting. The results are given in
Table[d] where Avg. Gap is calculated with additional MIA. We assume that the distribution of D,
and Dy, should be the same. For class-wise forgetting, the additional MIA is almost 1 because D
is a separate single class and the distribution of Dy and Dy, without the corresponding class are
totally different. For random forgetting, the additional MIA is almost 0.5 because Dy is randomly
selected from Dy, and the distribution of Dy and Dy, should the same. The plots of loss distribu-
tion for random and class-wise forgetting are given in Figure [§] in the Appendix. In Table ] the
proposed methods still outperform the other baseline methods, showing the robustness to the other
MIA auditing methods and the generalization capability in privacy preservation.

Difference between UGradSL and UGradSL+ Although two methods are similar in the math-
ematical formulation, there exists fundamental difference in their design and behavior. Compared
with UGradSL, UGradSL+ can be more stable and less sensitive due to its origin from FT. As shown
in the experiment results in the tables, UGradSL+ can always perform as top-tier methods. However,
the RTE of UGradSL+ would be higher. We present more analysis in Appendix [E-T1}

The study of the Streisand effect Jansen & Martin| (2015) and gradient analysis are given in Ap-
pendix [E.6| and [E.T0] respectively.

6 CONCLUSIONS AND LIMITATIONS

We have proposed UGradSL, a plug-and-play, efficient, gradient-based MU method using smoothed
labels. Theoretical proofs and extensive numerical experiments have demonstrated the effectiveness
of the proposed method. Our work has limitations. For example, we desire an efficient way to find
the exact MU state in experiments and further explore the applications of MU to promote privacy
and fairness. Our method can be further validated and tested in other tasks, such as unlearning
recommendation systems, etc.

10
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Roadmap The appendix is composed as follows. Section [A] presents all the notations and their
meaning we use in this paper. Section |B| presents the rest of the Related Work. Section [C] gives
the proof of our theoretical analysis. Section [D] gives a more detailed explaination of the proposed
algorithm. Section [E|shows the additional experiment results with more details that are not given in
the main paper due to the page limit.

A NOTATION TABLE

The notations we use in the paper is summaried in the Table 5]

Table 5: Notation used in this paper

Notations | Description
K The number of class in the dataset
DXy The general dataset distribution, the feature space and the label space
D The dataset D € D
Dy, D,, Dy | The training set, remaining set and forgetting set
Om The distribution of models learned using mechanism M
(7] The model weight
0* The optimal model weight
0% 15 The optimal model weight trained with D whose label is smoothed
16]| The 2-norm of the model weight
n The size of dataset
€ The up-weighted weight of datapoint z in influence function
Z(2) Influence function of data point z
he A function h parameterized by 0
L(he, 2i) Loss of hg(z;) and y;
R (0) The empirical risk of training set when the model weight is
Rs(0) The empirical risk of forgetting set when the model weight is 8
R,.(0) The empirical risk of remaining set when the model weight is 6
Hg The Hessian matrix w.r.t. @
Ve The gradient w.r.t. 8
B Data batch
BS:e The smoothed batch using «
z; = (x;,9;) | A data point z; whose feature is x; and label is y;
i The one-hot encoded vector form of y;
?LS’O‘ The smoothed one-hot encoded vector form of y; where the smooth rate is «
o Smooth rate in general label smoothing
he(x) The extracted feature of « from the model parameterized by 6
Y15 V2 The weight of machine learning and machine unlearning on ERM

B RELATED WORK

Label Smoothing (LS) or positive label smoothing (PLS) (Szegedy et al.l[2016)) is a commonly used
regularization method to improve the model performance. Standard training with one-hot labels
will lead to overfitting easily. Empirical studies have shown the effectiveness of LS in noisy label
(Szegedy et al 2016} |Pereyra et al., [2017; [Vaswani et al., [2017} |Chorowski & Jaitlyl 2016). In
addition, LS shows its capability to reduce overfitting, improve generalization, etc. LS can also
improve the model calibration (Miiller et al., 2019). However, most of the work about LS is PLS.
(Wet et al., [2021) first proposes the concept of negative label smoothing and shows there is a wider
feasible domain for the smoothing rate when the rate is negative, expanding the usage of LS.

Influence Function is a classic statistical method to track the impact of one training sample. [Koh
& Liang|(2017) uses a second-order optimization approximation to evaluate the impact of a training
sample. Additionally, it can also be used to identify the importance of the training groups (Basu
et al., [2020; Koh et al., [2019). The influence function is widely used in many machine-learning
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tasks. such as data bias solution (Brunet et al, 2019} Kong et al.| 2021]), fairness (Sattigeri et al.,
2022 |Wang et al., [2022a)), security (Liu et al.,|2022a), transfer learning (Jain et al., [2022)), out-of-
distribution generalization (Ye et al., 2021), etc. The approach also plays an important role as the
algorithm backbone in the MU tasks (Jia et al., [2023; [Warnecke et al.| 2021} Izzo et al., [2021).

Differential Privacy (DP) is a mathematical framework designed to quantify and mitigate privacy
risks in machine learning models. It ensures that the inclusion or exclusion of a single data point
in a dataset does not significantly affect the model’s output, thus protecting individual data points
from being inferred by adversaries Dwork et al.| (2006). In machine learning, DP mechanisms
such as noise addition and gradient clipping are employed during the training process to provide
formal privacy guarantees while maintaining model utility |Abadi et al| (2016). These techniques
help balance the trade-off between data privacy and model performance, making DP a cornerstone
of privacy-preserving machine learning [Shokri et al.| (2015)); McMahan et al.[(2018).

A multitude of privacy risk assessment tools have been proposed to gauge the degree of leakage
associated with the training data. Specifically targeted at the training data, model attacks are often
used as a proxy metric for privacy leakage in pretrained models. For example, model inversion at-
tacks are designed to extract aggregate information about specific sub-classes rather than individual
samples |Fredrikson et al.| (2015). Data extraction attacks aim to reverse engineer individual sam-
ples used during training [Carlini et al.| (2020), while property inference attacks focus on inferring
properties of the training data|Ganju et al.[(2018).

More relevant to the current work are Membership Inference Attacks (MIA), which predict
whether a particular sample was used to train the model. First introduced by Homer et al. [Homer
et al.| (2008)), membership attack algorithms were later formalized in the context of DP, enabling
privacy attacks and defenses for machine learning models[Rahman et al.|(2018). Shokri et al. Shokri
et al.|(2017) introduced MIA based on the assumption of adversarial queries to the target model. By
training a reference attack model (shadow model) based on the model inference response, this type
of MIA has proven to be powerful in scenarios such as white-box |Leino et al.| (2019); Nasr et al.
(2019); Sablayrolles et al.| (2019)), black-box (Chen et al.| (2020); [Hisamoto et al.|(2019); Song et al.
(2020), and label-only |(Choquette-Choo et al.| (2020); |Li et al.| (2021) access. However, most MIA
mechanisms often require training a large number of shadow models with diverse subsets of queries,
making them prohibitively expensive. As a result, some recent works have focused on developing
cheaper MIA mechanisms [Steinke et al.| (2023).

Basics of Influence Function Given a dataset D = {z; : (z;,y;)}}, and a function h parameterized
by 8 which maps from the input feature space X to the output space ). Recall the standard empirical
risk minimization writes as:

0" = argminl Z l(he,2). 9)
e N zeD

To find the impact of a training point Z, we up-weight its weight by an infinitesimal amount 5[11 The

new model parameter 0? 5y can be obtained from

o 1 .
0{2} = argmelnﬁ Z;jﬁ(hg,z) +e-l(he,2) (10)

When € = —%, it is indicating removing 2. According to|Koh & Liang|(2017), 0?2} can be approxi-
mated by using the first-order Taylor series expansion as
07 ~ 0" —<c- Hgo - Vol (ho+,2), (11)

where Hg- is the Hessian with respect to (w.r.t.) 8*. The change of 8 due to changing the weight
can be given using the influence function Z(%) as

D005 0 =T() = P L p vet(he.2)
BRet: - z)= de €=0_ o+ 0 9%, %) -

"To distinguish from the e in differential privacy, we use ¢ here.
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C PROOFS

C.1 PROOF FOR THEOREMIII

Proof. For p(z), the Taylor expansion at z = a is

"(a
p() = pa) + 24 (2 —a) o
Here, p(6) = VR (0) +£ Xp, Vﬂ(h.g,zf) so we have

p(0)=VRy(a)+e Y. Vl(hg,2')+
ZfGDf

zf ED‘f

For Eq. , we expand p(6%) at 0 = 6;,. as

p(07) = VR, (60],) +¢ ), Vﬁ(h%,zf)
zfeDy

+

zfeDy

VR (a)+e Y V2€(ha,zf)] (@-a)+o

VQRtr(ez;") +e z VQK(thN Zf)] (0; - 9;) +0=0

Since we have VR;,.(0;,.) = 0 and ignore o, we can get the approximation as

0;_0;N_

2treDy, zfeDy

Similarly, we can expand ¢(6;,.) = VR (0;,) at 0 = ;' as

-1
z VQE(hgz«T,ZtT)-FE Z VQE(hgzrr,Zf)‘l l

3 Z Vf(h,;;, Zf)]

zfeDy

q(O:T) = Z vé(he,ﬁaztr) + Z v2€(h9:ﬁaztr)(0t*’r _0:) ~0

ztreDy,. ztreDy,.

ztreDy, ztreDy,

-1
e:—e:w[ > v?ahe:yz”)] S Viher. ")

Because of gradient ascent, € = —1 and we have

-1
9:-0;:0;-0;,,-(0;-0;):( » V2£(h9;,z"))

2treDyy

Z vé(h0:7zt7”)

2treDy,

AG,.

-1
—( > V2€(he:~2’")) >, Vl(he,,=")

z"eD, zfeDy

NT

Thus, [|6; - 8%[| = 0if and only if A8y = A,., where

ztreDy,. ztreDy,. z2"eD,

-1
> Vﬁ(hg;,ztr):l > Vzé(hg;,z”)][ > v%(hg;,z")]

H(6%,0%)

T tr
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ZfGDf
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13)

(14)

5)

(16)
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C.2 ERROR ANALYSIS IN THEOREM[]

If we do not ignore the Lagrange remainder in Eq.[T4)and [T6)and denote them as e, and ey, Eq.[T4]
and [[@ become

p(a;) = VRtT(H:r) +ée Z Vﬁ(he;r,zf)

ZfEDf
(19)
+|V°Ri(6;.) +e > VU(he: .2)|(07-6;.) +e, =0
zfeDy ) ’
9(0;,) = 3 Vi(he;.2")+ 3 V(hey,2")(0;,-0]) +ep =0 (20)
2treDy, ztreDy,
, respectively. Thus,
0; -0} = (60 - 6;,) - (07 -6, @1
:(A9T+er)—(A0f+ef):(AGT—ABf)+(eT—ef). (22)
We now bound the error of using the linearized difference A, — A@; to approximate 6 — 9;.
0 - 9(’; - (A6, - Aby) =€, — ey, (23)
and hence
16~ 67 (80, ~A6) | = ller —esl <er| +es]- (24)

Assume that ¢(6) = VR;,(0) and p(6) = VR, (0) - VR;(0) have Lipschitz-continuous Hessians
with constants L, and L, respectively, i.e.,

[v24(61) = V2q(6:)] < Ly[61 - 62], (25)
[V*p(61) = V2p(82)] < Ly |61 - 62 (26)
Then standard Taylor bounds imply
L * *
Irall < S0, - 6717, 27)
L D * *
Irpll < 7167 - 67, . (28)

Using e, = —H, 'r, and e; = —~H'r,, we obtain
-1 Lq -1 * * (|12
lerl < 1H " Irqll < <7 1H 1167 - 657, (29)
- L - * *
lesl < VHz T Irol < <7 1H; 1 167 - 67 (30)

Therefore, the approximation error satisfies

* * L - * * L - * %
07 - 07— (A0, - A0p)| < ZL[H 0] - 05,17+ =F [ Hy [ 07 - 05,17 31

C.3 PROOF FOR THEOREM 2]

Proof. Recall the loss calculation in label smoothing and we have

R0, () + e T ke (). @)

((he,z%*) = (1+
K v'e\y

where we use notations £(hg, (z,y)) = ¢(he,z) to specify the loss of an example z = {x,y}
existing in the dataset and ¢(hg, (x,y’)) to denote the loss of an example when its label is replaced
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with y'. Vol(he, (,y)) is the gradient of the target label and Y, /30, Vol(hg, (x,y")) is the sum
of the gradient of non-target labels.

With label smoothing in Eq. (32), Eq. becomes

1-K

Koy (-a0,)+

9:_0;}LS”AGT+(1+ % a-A8,
. (33)
:Aer—Aaf-ﬁ- a(AOn—AOf)
where
-1
AHT = Z V%f(hg;,z”) Z ng(hg;,z”)
ztreDy, ztreDy,
-1
20;=| % Witthe )| T wotlia =)
z"eD,. zfeDy
as given in Eq. ([T7). So we have
. . 1-K
0, —Hf’LS 8~ AG, - Ay + a- (A6, - Aby) (34)
where
1 -1
Aen I:K 1 Z Vgg(hOfTa ZT):| Z ve Z g(he;;n (mfa y,))
- z27eD, zfeDy y'eY\yl
When we have
(AB, - AB;,AB, - AO;) <0, (35)
o < 0 can help with MU, making
167 = 0% nisll < 1167 — 6%l (36)
O

C.4 PROOF FOR THEOREM [3]

Proof. When the optimization is gradient ascent (GA) with negative label smoothing (NLS), Eq. (6)
can be written as

1-

K
g(h97zNLS,a):_(1+ Oé)'[(hg,(l’,y))—g Z g(hea(Ivy’))aO‘<Oa (37)

y'ed\y

Recall R (0) = Y.ircp,, £(he,2"). Denote by RY™(6;0) = Y.isacp, l(hg, 2N5%), a0 < 0
the empirical risk of forgetting data with NLS. After MU with label smoothing on D by gradient
ascent, the resulting model can be seen as minimizing the risk 1 - Ry, (8) =72 - R} (6; o), which is
a weighted combination of the risk from two phases: 1) machine learning on D, with weight v, >0
and 2) machine unlearning on D with weight 2 > 0. Consider an example (z,y) in the forgetting
dataset. The loss of this example is:

l(he, (x,y)) = 72L(he, 2°5*) = [’Yl -2 (1 + C'é)] AL(he, (z,y))

K’}/Q Z g(h’ea (xvy,))
y'eV\y
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When [71 -2 (1 + %a)] > 0, the optimal solution by minimizing this loss is

r1-72(1+ 4 @)

N . ‘fypred =y
_ ,predy _ (717w2(1+—1 Koz))f—K Lanyy? 1 ’
P(M(y) Yy ) *I%"YZ ~ lf ypred + Yy
Grma (e B a) Bt e '
Accordingly, for another label ', we have
_ 1-K
-1+ o) , ifypred =y,

A redy _ — 1+12K )£y
P(M(y) = yP™=7) = (v1=2( 71%73) a2

(m-72(1+1Fa))-Etare

, ifyPTed 2y,

Then the quotient of two probabilities can be upper bounded by:

1Og(IF’(M(y)=ypred))S log(%—w(“lKKQ))’:

K ’)/1
. tog (2 (1- 2y +1- )| -
B(M(y') = y7=7) R Bla s,

D THE DETAILS OF ALGORITHM

D.1 ALGORITHM DETAILS

We provide a more detailed explanation of UGradSL and UGradSL+ in Algorithm [I] here. For
UGradSL+, we first sample a batch B, = {27 : (27, y7)}.5" from D, (Line 3-4). Additionally, we
sample a batch By = {zlf : (xﬂylf)}?jf from Dy where np, = np, (Line 5). We compute the
distance d(z!', z]) € [0,1] for each (27, 2! ) pair where 2} € B, and z/ € B (Line 6). For each 2/,
we count the number of z] whose d(z], zlf ) < B, where 3 is the distance threshold. This count is
denoted by c{ (Line 7). Then we get the smooth rate by normalizing the count as «; = c{ /|By|, where
a; € [0,1] (Line 8). GA with NLS is to decrease the model confidence of D . The larger the absolute
value of «;, the lower confidence will be given. Our intuition is that a smaller d(z], sz ) means z]
is more similar to D, and the confidence of zlf should not be decreased too much. The distances
we use is the cosine distance. UGradSL is similar and the difference is the dataset replacement.
For each epoch, UGradSL+ is terminated after completing the iterations on D,., while UGradSL is
terminated after completing the iterations on Dy.

D.2 ALGORITHM EXPLANATION

In the self-adaptive version of UGradSL+, the label smoothing rate for each forgetting sample is
computed dynamically from its proximity to the retained data in feature space. For each iteration,
the algorithm samples a batch of retained examples 3, and a batch of forgetting examples By with

equal size, extracts their features {z] } and {sz }, and computes the feature distance d(z], 4) for
every retainedforgetting pair. Then, for each forgetting feature z}f , it counts how many retained
features fall within a distance threshold 3, denoted as c]f . This count is normalized by the batch

size | By| to obtain the adaptive smoothing rate o; = cj‘ /|By|. As a result, forgetting samples that
are close to many retained samples (i.e., highly entangled in representation space) receive a higher
smoothing rate and are updated more conservatively, while those that are far from retained data get a
lower smoothing rate (possibly zero) and can be pushed away more aggressively during unlearning.

D.3 ADDITIONAL RESULTS
As mentioned in Section ] to avoid the smooth rate selection, we propose a self-adaptive smooth

rate version. We compare the performance with and without self-adaptive smooth on CIFAR-10 and
SVHN. The forgetting scenario is random forgetting. The results are given in Table [T0}
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D.4 COMPLEXITY ANALYSIS

Compared with the fixed «, the additional computation from adaptive version is the distance cal-
culation. The code we compute the distance is given below. All computations are implemented as
batched GPU tensor operations without any explicit Python loops. We assume the feature from
D, and Dy are both in R4 where n is the batch size and d is the feature dimension.

For FLOP count,

e The two normalization operations cost approximately 6nd FLOPs in total, since normaliz-
ing a single n x d tensor requires about 3nd FLOPs (square, sum, and division).

 Computing the cosine similarity matrix costs about 2n?d FLOPs, as each of the n? entries
is a dot product between two d-dimensional vectors.

« Converting similarity to distance and applying the threshold require about 2n? and n?
FLOPs, respectively.

+ The density computation costs about n? FLOPs for forming the mask and n FLOPs for the
length normalization.

Overall, the total FLOP count is 6nd + 2nd + 4n? + n, which is dominated by the O(n>?d) cosine-
similarity term. For our typical setting n = 64 and d = 512, this corresponds to roughly 4.4 x
10 FLOPs. Compared with the FP32 peak throughput of an A6000 GPU (38.71 TFLOPS), this
overhead is negligible relative to the usual forward/backward passes.

For memory usage, the additional GPU tensors have the following shapes:
e Each features: n x d
» Each normalized features: n x d
* The cosine similarity, cosine distance and the filtered mask: n x n
e The density: n
Assuming FP32 (4 bytes) for all tensors, the peak extra memory is at most 4(4nd +3n% + n) bytes,

which is 561,408 bytes (~ 0.5 MiB) for n = 64 and d = 512. This is negligible compared with the
model parameters, so the memory overhead can also be safely ignored.

forget_norm = F.normalize (forget_feature, p=2, dim=1)
retain_norm = F.normalize (retain_feature, p=2, dim=1)
# cosine similarity (batch x batch)

cos_sim = forget_norm @ retain_norm.T

# convert to distance in [0,1]

cos_dist = (1 - cos_sim) / 2 # shape: [batch, batch]

# ——— threshold and count ——-—
threshold = 0.2 # example threshold in [0,1]
# boolean matrix: True = close

close_mask = cos_dist < threshold # [batch, batch]
density = close_mask.sum(dim=0) / len(forget_feature)

D.5 ABLATION STUDY

By default, we adopt cosine distance because it naturally lies in [0, 1], and we set the threshold /3 to
the median of all pairwise distances. We conduct an ablation study on different distance metrics and
thresholds for random forgetting on CIFAR-10, where the forgetting set size is 10% of the training
data. For comparison, we also evaluate Euclidean distance. The results for cosine and Euclidean
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Table 6: The ablation studies of threshold S and different distance functions of UGradSL for the
random forgetting on CIFAR-10 and the size of forgetting set is 10% of the training set. The first

row is the results for retraining for reference.

5} Distance | UA MIA RA TA Avg. Gap ()
- - \ 8.07 17.41 100.00 91.61 -

Median Cosine 6.04i0_11 134751:0.32 994111:0_01 924071:0.02 1.76
Euclidean | 8.59.185 17.3010.98 94.39:115 88.97.1.12 2.59
0.1 Cosine 6.5040.14 14764150  95.64.0.23 89.91.0.17 2.57
: Euclidean 6.68i0.88 146911.66 953410.79 89.90“).69 2.62
02 Cosine 70110.67 15.8610'86 95.1810,44 89.6910,19 2.34
: Euclidean 6.82i0_44 15481i0_70 95458i0_73 904021:0.57 2.21
03 Cosine 7.01i0_9g 15~1311.26 952410.99 89.76i0.41 2.49
- Euclidean 7-3211.06 164512,08 94.68i0‘89 89.1610‘33 2.53
04 Cosine 7-91i0.26 15469i1_11 944691:0_51 89407i0_29 2.45
: Euclidean 6.2410.21 14.1610'12 95.7510'40 90.1310,13 2.70
05 Cosine 7.611(),56 16.5011‘(58 950310‘36 89.691(]‘72 2.26
: Euclidean 8.27i1_33 16~44i1.83 94.67i1.33 890311.28 2.68
0.6 Cosine 8.76i0.28 165311.88 943110.61 88.541().50 2.75
: Euclidean 8.67i0_23 174011:2.43 944341:0.16 88493i0_30 2.66
07 Cosine 9.88i1_05 18.331:2.82 93.551:0.92 88.081:0.42 3.44
’ Euclidean | 9.61.08s 17.934233 9411049 88.69.0.19 2.99
0.8 Cosine 9.61i1_12 16491i1_51 93468i1,20 88.48i0,76 3.08
! Euclidean 9-7510.17 16.7910.52 93.8710,02 88.3410,39 2.93
0.9 Cosine 9~19¢().66 17.8410‘72 94.191(1‘5() 88.511()‘84 2.63
: Euclidean 9.76i0_49 18.611:0.65 93.901:0.39 88.471:0.35 3.03
1.0 Cosine 9-3910.07 169410.26 94.26i0.33 88.74i0.22 2.60
: Euclidean 10-41i0.24 19-16i1.08 935010.63 88.21i0,34 3.50

Table 7: The ablation studies of threshold 5 and different distance functions of UGradSL+ for the
random forgetting on CIFAR-10 and the size of forgetting set is 10% of the training set. The first

row is the results for retraining for reference.

B Distance | UA MIA RA TA Avg. Gap ()
- - | 8.07 17.41 100.00 91.61 -

Median . Cosine 7544043  13.57.012  99.67p0.00 9297047 1.52
Euclidean 11.21i0.21 21.021:2.23 94.351:0.22 88.581:0.26 3.86
0.1 Cosine 7-7910.52 171)410.61 95.8410.27 90.1010.47 1.67
: Euclidean 7-30i0.62 164421:0.66 96416i0,94 90.46i0,91 1.69
02 Cosine 8.38i0_19 1746i1 .09 954381:0,34 89.561:0,53 1.94
! Euclidean 7.801().76 16.5511‘91 95.7511‘(]4 89.801(1‘50 1.93
03 Cosine 8-2710.65 18.19i0,29 959410.84 90.1810,62 1.71
- Euclidean 7.68i0.65 17.2810.52 95.8510.75 90.2510.55 1.62
0.4 Cosine 8.491().28 17‘9210‘52 95‘851()‘2() 90‘091()‘03 1.66
: Euclidean 8.38i0_60 174861:0,89 954601:0,78 90.061:0,57 1.80
05 Cosine 92310.89 168111.66 954610.62 89~7910.86 2.15
) Euclidean 8.98i0_69 16.77i1,52 953911.01 89.3411,17 2.31
0.6 Cosine 9-9510.64 194901:0.95 954471:0.12 89482i0_30 2.67
: Euclidean 10‘0010‘1[) 19‘0011‘92 95'1510,26 89‘531()‘28 2.66
07 Cosine 11.81i0‘74 206712,62 942510,76 88.7811‘02 3.90
: Euclidean 112510.59 215411.12 94.69i0.71 89.05i0.71 3.79
0.8 Cosine 13.0610'53 18.8110'81 92.8910'69 87.2910,75 445
: Euclidean 124071:0.45 194231:2.00 93481i0_95 88434i1_00 3.82
0.9 Cosine 11.75i0.09 210211.43 943410.38 88.81i0.31 3.94
. Euclidean 12~0111,12 21~4911,17 94~2611,08 88.7410‘38 4.16
1.0 Cosine 114483:0.06 204591:2.63 944191:0.56 88482i0_38 3.80
: Euclidean 11.7910'37 173510.85 94.3710,34 88.6710,56 3.23
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distance under different /3 values for UGradSL and UGradSL+ are reported in Table [f] and Table[7]
respectively.

E EXPERIMENTS

E.1 ADDITIONAL EXPERIMENTAL SETTINGS

The datasets and model configurations for the original model training and retraining are given in
Table[8] We run all the experiments using PyTorch 1.12 on NVIDIA A5000 GPUs and AMD EPYC
7513 32-Core Processor.

Table 8: The hyperparameters used in the original training and retraining for different models and
datasets.

Settings CIFAR-10 SVHN CIFAR-100 | ImageNet | 20 NewsGroup
& ResNet-18 \ VGG-16 \ ViT | ResNet-18 | ResNet-18 | ResNet-18 Bert
Batch Size 256 256 256 256 256 1024 128
Learning rate le72 le* le™6 le™? le7? le72 le*
Epochs 160 160 160 160 160 90 60

The settings of the baseline methods are:

¢ Fine-tuning (FT): FT is to fine-tune the original model 8, trained from Dy, using D,..
We fix the epoch of FT for 10 epochs for all the datasets except ImageNet. We fine-tune
ImageNet for 5 epochs. The learning rate is the same as the original training.

* Fisher forgetting (FF): FF is to perturb the 8, by adding the Gaussian noise, which with a
zero mean and a covariance corresponds to the 4th root of the Fisher Information Matrix
with respect to (w.r.t.) 8, on D, (Golatkar et al., 2020). We perform a greedy search for
hyperparameter tuning between le™” and 1e™°.

¢ Influence unlearning (IU): IU uses influence function (Koh & Liang}, |2017) to estimate the
change from 8, to 8,, when one training sample is removed.

* Boundary unlearninﬂ (BU): BU unlearns the data by assigning pseudo label and manip-
ulating the decision boundary. It contains boundary shrink and boundary expansion, two
types of unlearning methods. The hyper-parameters are the default value in the paper.

o /! 1-sparseE]: {1 -sparse improves machine unlearning by integrating the /; norm-based sparse
penalty to the loss function. The learning rate is 1e™® and we search v in [1e™>, 1e7!] as
given in (Jia et al., [2023)).

* SCRUB: SCRUB casts the unlearning problem into a teacher-student framework. We fol-
low the settings exact the same in the original rep where v = 0.99 and « = 0.001.

* Random Labeling (RL): Unlike FT, RL is to train the model with the random label rather
than the fixed label. The settings are the same as for FT.

. SalUNE} SalUN takes the weight saliency into consideration. We search ~ from [0.5,0.9].

E.2 DATASET SPLIT OF DIFFERENT FORGETTING PARADIGMS

We also provide the details of dataset split for different forgetting paradigms. For classwise forget-
ting, we remove the whole class from Dy, and D;.. In CIFAR-10 and CIFAR-100, the size of Dy
is 500 and 5000, respectively. For the other datasets, the size of Dy ranges from the smallest class
size to the largest class size because we remove the whole class completely. The selected class to be
forgotten is totally random. For random forgetting, we randomly select 10% data from Dy, as Dy.
We make sure the distribution of Dy is the same as Dy,. For CIFAR-20 in group forgetting, each
fine-grained class is in the same size which is 500. The coarse class is 2500.

https://github.com/TY-LEE-KR/Boundary-Unlearning-Code
*https://github.com/OPTML-Group/Unlearn-Sparse
‘nttps://github.com/meghdadk/SCRUB/tree/main
*https://github.com/OPTML-Group/Unlearn-Saliency
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Table 9: The experiment results of class-wise forgetting in 20 Newsgroup and SVHN datasets.

20 Newsgroup | UA MIAGore RA TA | Avg. Gap (1) | RTE ({, min)
Retrain 100.00.0.00 100.00+0.00 98.31.2.56 81.95.1 .69 ‘ - 26.25
FT 414011 9.23.3.40 98.8340.86  82.63.0.73 46.96 1.77
GA 1712.948  62.03.584  99.99.0.01 85.41.0.37 30.80 0.37
U 0.002000  0.255012  100.0040.00 85.58:0.20 51.27 1.52
BS 78.33.347  92.63.010 9728099  90.93.0.81 9.76 1.42
UGradSL 100‘0010.00 1000010.00 96.31i4_02 78.54i5_10 1.35 0.39
UGradSL+ 100.0040.00 100.00.0.00 99.76.023 84.21.0.41 0.93 2.13

SVHN | UA MIAG ore RA TA | Avg. Gap (1) | RTE (J, min)
Retrain ‘ 100.0040.00 100.00.0.00 100.0040.01  95.94.0.11 ‘ - ‘ 37.05
FT 6.49.1.49 99.98.0.04  100.0040.01 96.08.0.01 23.42 242
GA 87.49.41.94 99.85.0.09 99.5240.03  95.27.0.21 3.45 0.15
U 93.55,075  100.0010.00 99.541003  95.6410.51 1.80 0.23
BE 85.56.3.07  99.98,0.02  99.55.0.01  95.53.i0.07 3.83 3.17
BS 96.62.1.14  99.95.000  99.99.000 95.39:0.18 1.00 391
{1-sparse 99.78.0.31  100.00L0.00 98.63.0.01  97.360.18 0.75 291
RL 99.99,001  100.0010.00 100.004000 95.4440.13 0.13 3.53
EU-k 100.0040.00 100.00.0.00 99.61.008 65.56.2.38 7.59 4.93
CF-k 0.0940.03 218,901 99.34,0.02  69.87.4.13 55.88 5.02
SCRUB 99.99,002 100.0010.00 100.004000 95.79.0.26 0.04 4.97
RL 99.99,001  100.0010.00 100.004000 95.4440.13 0.13 3.53
SalUN 99.74.0.30  100.00L0.00 99.53.0.02  95.0041.50 0.53 4.77
UGradSL 90‘7114.08 999010.16 99.5410.04 95.6410,25 2.54 0.23
UGradSL+ | 100.0010.00 100.00s0.00 99.8240.62  94.35.0.70 0.4 4.56

E.3 ADDITIONAL CLASS-WISE FORGETTING RESULTS

We present the performance of class-wise forgetting in 20 Newsgroup and SVHN datasets in Table[9]
The observation is similar in CIFAR-100 and ImageNet given in Table[I] UGradSL and UGradSL+
can improve the MU performance with acceptable time increment, showing the generalization of the
proposed method in different modalities and different dataset size.

E.4 ADDITIONAL RANDOM FORGETTING RESULTS

We present the performance of random forgetting in CIFAR-10 and SVHN dataset in Table[I0] The
observation is similar in CIFAR-100 and Tiny ImageNet given in Table[2]

E.5 MU WITH THE OTHER CLASSIFIER

To validate the generalization of the proposed method, we also try the other classification model. We
test vision transformer (ViT) and VGG-16 on the task of class-wise forgetting and random forgetting
using CIFAR-10, respectively. The results are given in Table [[T]and [I2] The observation is similar
in Table [T]and [2] respectively.

Table 11: The experiment results of class-wise forgetting in CIFAR-10 using ViT.

CIFAR-10 |  UA MIAgcore RA TA | Avg. Gap(}) | RTE (J, min)
Retrain ‘ IUO.UOi(]‘(]() 100.00io,(}0 61.41i0‘31 5849411,09 ‘ - ‘ 189.08
FT 3.97.0.87 7.60.1.76  98.29.0.05 80.44.0.22 61.70 2.99
GA 33.77.6.36  4047.663 89.47.ia21 T71.65.279 41.63 0.32
U 1.74:000 2165061 73962001 68.88:0.00 54.65 0.24
BE 85.56.3.07  99.98.0.02  99.55.0.01 95.53.0.07 22.30 3.17
UGradSL 68‘11i11_03 73.8419_58 84.11i2>70 68.33i1_69 22.54 0.22
UGradSL+  99.99.0.01 99.9940.02 94.46.1.06 772641119 12.85 5.86
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Table 10: The experiment results of random forgetting in CIFAR-10 and SVHN.

CIFAR-10 | UA MIAGcore RA TA | Avg Gap(}) | RTE (J, min)
Retrain ‘ 8.07i0,47 17-4110.69 100.0010401 91.61i0,24 ‘ - ‘ 24.66
FT 1.1040.19 4.0640.41 99.8340.03  93.70.0.10 5.65 1.58
GA 0.5640.01 1.19.0.05 99.48.0.02  94.55.0.05 6.80 0.31
U 1751019 21.39:170  83.28.041  78.13.085 10.91 1.18
BE 0.00:000  0.26:002  100.0010.00 95.35:0.15 7.24 3.17
BS 0.48.0.07 1.16.0.04 99.47,0.01  94.58.0.03 6.84 1.41
él—sparse 1-2110.38 4-3310.52 97.3910,31 95.4910,13 6.61 1.82
SCRUB 0.7040.59 3.88.1.25 99.5940.34  94.22.0.26 5.98 4.05
Random Label 2.80&)_37 18.593:3_48 99-9710.01 94.083:0_12 2.24 1.98
UGradSL 5.87&)_51 13.333:0_70 98‘82i0_28 92.173:0_23 2.01 0.45
UGradSL+ 6.0310'17 10‘65i0>13 99‘7910_03 936410.16 2.76 3.07
UGradSL (Adp) 6.0410.11 13.75&)_32 99~11i0.01 92.07&)_02 1.76 1.35
UGradSL+ (Adp) 7.5410,43 13.5710.12 99.6710.00 92.9710.17 1.52 9.23
SVHN | uA MIAgcore RA TA | Avg. Gap({) | RTE (J, min)
Retrain | 495.005 1559005  99.99.001 95.61.020 | - | 35.65
FT 045.014 23020014 99.99s0.00  95.78.0.01 4.49 2.76
GA 0.5840.04 1.1340.02 99.5640.01  95.62.0.01 4.86 0.31
FF 0.45.0.00 1.3040.12 99.5540.01  95.49.0.03 4.84 6.02
BE 0.0040.02 0.0240.17  100.00L0.01  96.14.0.02 5.27 1.03
BS 0.45.0.14 1.1340.05 99.57.0.03  95.66.0.01 4.86 4.24
Zl-sparse 3.73i0_7g 8.44i0_34 9748410.28 96.18i0_33 2.77 0.07
SCRUB 0.35:000  4.96.003  99.94,000  95.36.0.23 3.88 3.24
RL 8.0040.64 29.40.11.92  98.72.045 94.0441 .10 4.93 1.79
UGradSL 329,053  14.32.456  99.89.000 94.38.0.08 1.07 0.57
UGradSL+ 5.7712,93 15-9512.26 100.001000 95.1210.50 0.42 4.44
UGradSL (Adp) 3.9710,29 14.6312,15 99.8910,01 94.4010,12 0.81 2.20
UGradSL+ (Adp) 5.07ﬂ)(34 15.89i1‘03 1000010‘00 95.2110‘44 0.21 14.33

Table 12: The experiment results of random forgetting across all the classes in CIFAR-10 using
VGG-16

CIFAR-10 |  UA MIAgcore RA TA | Avg. Gap(}) | RTE ({, min)
Retrain ‘ 11.41,0.41 11.97.0.50 74.65.0.23 66.13.0.16 ‘ - ‘ 9.48
FT 1.32.0.13 3.48.0.13 T4.24,0.04  67.0440.10 4.96 0.60
GA 1.35.008  218.0066  73.95:001  66.88.0.01 5.33 0.14
U 1.74.000 2161061  73.96.001  68.88:0.00 5.73 0.24
FF 1.35.0.09 2.21.0.58 73.9540.02  66.87.0.04 5.63 1.02
BE 0.01.0.01 0.23.0.05 99.98.0.00  94.04.0.21 19.10 1.09
BS 0.0140.01 0.22.0.03 99.98:0.00 94.00:0.14 19.09 3.17
él-sparse 12711.13 3.60i2_41 98.97i1_13 92~1811.46 17.22 0.08
SCRUB 61.16.50.80 44.65443.31 39.26.5057 36.95.46.68 36.75 0.91
UGradSL 13~4510,63 11.7710_54 65‘0510_48 58‘5210.38 4.86 0.19
UGradSL+ 12.4110,32 14.96:&0,52 65.90;&),52 58.5810,35 5.13 1.08

E.6 STREISAND EFFECT

From the perspective of security, it is important to make the predicted distributions are almost the
same from the forgetting set D and the testing set D, which is called Streisand effect. We inves-
tigate this effect in the random forgetting on CIFAR-10 by plotting confusion matrix as shown in
Figure 5] It can be found that our method will not lead to the extra hint of Dy.
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Table 13: Ablation studies of GA ratio p for random forgetting on CIFAR-10. The forgetting set
size is 10% training set. Thew method is UGradSL. We fix « as -0.4. The first row is the retraining
results for reference.

| UA MIA RA TA | Avg. Gap (4)
- 8.07 17.41 100.00 91.61 -

0.80 | 12.47,1.01 20.24,012 94.11,9071 88.21.057 4.13

0.81 | 11.57,160 19.68.331 94.39.141 88.56.1.04 3.79

0.82 | 10.61.0.08 17.85.0.07 94.92.018 88.94.0.37 2.73

0.83 | 9.64.052 16.49.096 95.54.071 89.63.0.71 2.26

084 | 9.33.1.04 15.84.1.17 9543005 89.48.0.71 2.38

0.85 | 827,082 14.74:136 96.05.0.41 90.08.0.40 2.21

0.86 | 796,042 15.45.000 96.10.044 90.22.018 1.94

0.87 | 751,006 15.26,347 96.05.018 90.20.0951 2.33

0.88 | 6.87.0.37 13.18:126 96.43.035 90.29.0.64 2.58

0.89 | 691,056 14.44.046 96.38.073 90.47.036 2.22

090 | 6.92,708 13.60:342 96.00.050 90.26.0.14 2.58

0.91 6.44,1 30 14.16,007 95.93.118 90.17.9.72 2.60

092 | 6.50.069 14.35.0.72 95.64.050 90.06.0.12 2.64

0.93 5.88.0.82 14.84,106 96.03.0814 90.31.0.54 2.51

094 | 5.65.030 13.55.078 96.25.044 90.54.0.10 2.77

0.95 6.1341.29 13.14,043 95.73.1.03 89.88.0.75 3.05

0.96 | 6.07.0.01 14.28,515 95.64.0.79 90.15.0.36 2.74

0.97 5.83.1.05 14.07:1.08  95.20.0.98 89.67.0.59 3.08

098 | 5.73.084 13.19.190 95.43.09s8 89.82.0.38 3.23

0.99 | 5.83:1.05 12.98:137  94.99:079  89.46.0.50 3.46

Confusion Matrix Confusion Matrix
° 3500 °
- - 800
- 3000 N
” 2500 « 600
§ N zooolé % N %
7 _1500‘" g7 oo
~ -1000 ~
=200
© - 500 @
° ’ -0
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9
Predicted Label Predicted Label

Figure 5: The confusion matrix of testing set and forgetting set D using our method on CIFAR-10
with random forgetting across all the classes. There is no big difference between the prediction
distribution. Our method will not make D ¢ more distinguishable.

E.7 ABLATION STUDY: FORGETTING SET SIZE

Since the size of the forgetting set can affect unlearning performance, we further evaluate the robust-
ness of our method under varying forgetting ratios. In addition to the 10% random forgetting results
reported in Table|2|and Table@ we consider forgetting set sizes of 20%, 30%, 40%, and 50% of the
training data on CIFAR-10 and CIFAR-100. The results are summarized in Table[I7]and[T8]

E.8 ABLATION STUDY: GA RATIO p

In addition to an overview of the performance fluctuation in Figure[3] We provide the specific value
of the ablation study regarding GA ratio p. We test the performance on random forgetting on CIFAR-
10. The forgetting set size is 10% of the training set. The results of UGradSL and UGradSL+ are

given in[T3]and T4}
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Table 14: Ablation studies of GA ratio p for random forgetting on CIFAR-10. The forgetting set
size is 10% training set. Thew method is UGradSL+. We fix « as -0.4. The first row is the retraining
results for reference.

p ‘ UA MIA RA TA Avg. Gap ()
- ‘ 8.07 17.41 100.00 91.61 -
0.80 18.84i0_7] 26-78t1.78 91.95i0_86 86-05t1-21 8.44
0.81 | 17.00,0.47 24.55,07¢ 93.21,0.01 87.50.0.49 6.74
0.82 | 16.45,033 24.22,046 93.60.049 87.64.0.25 6.39
0.83 | 14.45,0.73 21.73.082 94.66.0.38 88.59.0.19 4.76
0.84 | 13.44,077 20.92,115 94.67,071 88.67.0.44 4.29
0.85 | 12.57.065 19.18:064 95.2511.02 89.3311.09 3.32
0.86 | 11.42,014 18.34.061 95.56,046 89.49,0.97 2.71
0.87 | 10.9010.72 17.22,051 95.79.0.30 89.77.0.81 2.33
0.88 | 10.13,042 17.85,011 95.97,0.17 90.03.0.60 2.28
0.89 | 898,029 14.94,009 96.2010.27 90.23.0.33 2.14
0.90 | 8.41.033 16.87.1.17 96.53.0.03 90.64.0.09 1.43
0.91 801,030 17.33:1.17 96.50.036 90.68.0.40 1.40
092 | 7.74.033 15.62:180 96.28.0.26 90.48.0.46 1.75
093 | 6.67.0.12 15.93,022 96.86.09.10 90.96.0.34 1.67
094 | 6.79:071 16474052 96.42.083 90.7440.45 1.67
095 | 6.03.006 14.82,139 96.76.041 90.94,035 2.14
0.96 | 5.78,0.04 14.79,1.14  96.90.0.19 91.30.0.1¢ 2.08
0.97 5.98,0.49 14.96,034 96.56,045 90.81.0.53 2.20
0.98 6.46,0.74 1515176 95.52.067 90.15.0.89 2.45
0.99 5.6710_27 1440&1.18 96~]7i0,46 9().61i0,24 2.56

Table 15: The ablation study of smoothing rate o for random forgetting on CIFAR-10. The forgetting
set size is 10% training set. The method we use is UGradSL. We fix p as 0.9.

a | UA MIA RA TA | Avg Gap ()
- | 807 17.41 100.00 91.61 | -
=09 | 81741724 14964047 95.81i197 89.97.1.46 2.44
-0.8 | 6.98.0.47 1341999 96.67.088 90.75.0.22 2.32
=0.7 | 7.23.056 14334123 96.28.0.11  90.47.0.26 2.20
-0.6 | 6.69.022 12.93.067 96.46.0.39 90.64.0.04 2.59
-0.5 | 6.56.029 13.00.050 96.58.0.23 90.66.0.20 2.57
0.4 | 6.924108 13.60:342 96.00.050 90.26.0.14 2.58
-0.3 | 6.3240.43 13.63.067 96.18.0.41 90.52.0.07 2.61
-0.2 | 6.95.054 13984199 95.41.068 89.65.056 2.77
=0.1 | 7134144 1447091 95.08.155 89.5741.04 2.82

E.9 SMOOTHING RATIO «

Similar to p, we report the detailed results regarding the smoothing rate o. The results of UGradSL
and UGradSL+ are given in[[3]and [I6}

E.10 GRADIENT ANALYSIS

As mentioned in Section (AG, - ABy,AB,, — ABy) < 0 is always practically valid. We practi-
cally check the results on CelebA dataset (ResNet-18), ImageNet (ViT), CIFAR-100 (VGG-16) and
CIFAR-10 (ResNet-18). The distribution of (A8, — Afy, A8, — ABy) is shown in Figure@ which
aligns with our assumption.

E.11 THE DIFFERENCE BETWEEN UGRADSL AND UGRADSL+

Although UGradSL and UGradSL+ look similar, the intuition of these two method is totally different
because of the difference between FT and GA. We conducted experiments to illustrate the difference
between GA and FT as well as UGradSL and UGradSL+. The results are given in Table[T9] The
dataset and forgetting paradigm is CIFAR-10 random forgetting. It can be found that the difference
becomes much larger when the number of epochs is over 8. When the number of epochs is 10, the
model is useless because TA is less than 10%. We also report the performance of UGradSL and
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Table 16: The ablation study of smoothing rate o for random forgetting on CIFAR-10. The forgetting
set size is 10% training set. The method we use is UGradSL+. We fix p as 0.9.

« ‘ UA MIA RA TA ‘ Avg. Gap ()
T so7 1741 10000 9161 | -
-0.9 | 11.59.040 19.41:0590 95.77.058 89.47.056 2.97
-0.8 10.683:0_27 18-41i0.48 95-9410_24 89'9110.36 2.35
-0.7 | 10.1241.01  16.88.0.69 96.07.0.80 90.08.0.78 2.01
-0.6 | 898,015 16.29.087 96.64.09.19 90.75.0.05 1.56
=0.5 | 9.0700.21  15.8340.25 96.6510.310 90.43.0.50 1.78
-0.4 | 841,033 16.87.1.17 96.53.0.03 90.64.0.09 1.43
-0.3 | 859,007 16.86.215 96.24.938 90.20.0.15 1.87
-0.2 | 7.55.018 16.68.160 96.43.0.14 90.86.0.33 1.47
-0.1 | 757018 17.32,023 96.15.038 90.34.0.27 1.45

Count

300

(a) The group forgetting on CelebA using ResNet-18

50 201 [E
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(b) The class-wise forgetting on ImageNet using ViT
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(¢) The random forgetting on CIFAR-100 using

VGG-16
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(d) The class-wise forgetting on CIFAR-10 using

Figure 6: The distribution of (Af, — Af, A@,, — A ) using multiple models on multiple datasets.

UGradSL+ in different epochs. For UGradSL, when the epochs are over 14, the model cannot be
used at all. For UGradSL+, the algorithm is much more stable, showing the very good adaptive
capability.

0.25
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—-0.50

-0.75
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Figure 7: The loss land scape of 6,. on CIFAR-10 and the model is ResNet-18.
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1620

1621 Table 17: MU Performance across different forgetting dataamounts on ResNet-18, pre-trained on
1622 CIFAR-10 dataset, for random data forgetting.

1623
1624 Random Set Size (10%)
. Method UA  MiAgre  RA TA | Avg. Gap(}) | RTE (4, min)
oon Retrain |  8.07 17.41 100.00 oL6l | - | 24.66
FT 1104019 4064040  98.83.0.03  93.70.0.10 5.90 1.58
1627 RL 6.39:100  0.00b000  99.50.0.10  99.04.0.0s 6.76 1.92
1628 GA 0.56.001  1.19:005  99.48.002  94.55.0.05 6.80 0.31
U 17514000  21.39.170  98.00.035 98.11.0.35 548 1.18
1629 BE 0.00.000  0.265002  100.00.000 95.35.0.15 7.24 137
1630 BS 0.37.010 1104043 9993001  98.97.0.02 7.86 121
(y-sparse | 280,037  19.59.345  99.07.004  98.00.0.12 3.69 1.98
1631 SalUn 46.9510_15 86.33t2_58 97.7510.42 97-22¢0.77 28.92 242
1632 UGradSL | 5.87.050 13.33:020  98.82.008  92.17.0.20 2.01 0.45
1633 UGradSL+ 6.03i0_17 106510.13 99.79i0_03 93.64iﬂ_1ﬁ 2.76 3.07
1634 Random Set Size (20%)
. Method ‘ UA MIAG ore RA TA | Avg. Gap (1) | RTE (J, min)
Retrain | 531 13.30 100.00 9410 | - | 3874
1656 FT 0.76.455  2.69.1061  99.89.011  93.97.0.13 3.85 2.17
1637 RL 647116  28.62.15.32  99.60.0.40  92.39.1 71 4.65 2.65
1638 GA 0.67.061 14440180  9948,050  94.42,0.5 433 0.26
U 291,040 553777 97.30s070  90.64.5.46 4.08 3.29
1639 BE 0.5714_74 1-64:11.66 99-4410.56 94.32¢U.22 4.29 0.53
1640 BS 0.62.060 16241168 99.46.050  94.20.0 10 425 0.86
Zl-sparse 39211.39 8~94i4.36 98.09i1_91 91.92i2_1g 2.46 2.20
1641 SalUn 373155 13.18.012  98.6li130 92.75.1 35 111 2.66
1642 UGradSL | 6.07.0.70  13.82.103  95.71.017  90.19.0.23 237 0.24
1643 UGradSL+ | 6.39,010 12344170  97.08.044  90.91.0.05 2.04 0.31
Random Set Size (30%)
1644 i
¢ Method ‘ UA  MlAgeore  RA TA | Avg. Gap (1) | RTE (J, min)
1645 Retrain |  6.64 14.60 100.00 9278 | - | 3365
1646 FT 0.5610_03 1.66112_94 99.8310_17 94-22¢1.44 5.16 1.98
1647 RL 6.89.005 31.09.16.40 99.36.064 91.35.1 43 4.70 2.63
1648 GA O.65i5_99 1.50i13_10 99.46i0_54 94.44i1_ﬁﬁ 5.32 2.40
U 395,060 7261751  96.22.375  89.61.317 424 3.32
1649 BE 0.63.6.01 33541105  99.39,061 94.10.1 41 4.82 0.81
1650 BS 0.63.6.01 28841172 99.39.061 94.15,1 37 4.93 1.28
(y-sparse | 4704101  9.97.463  97.63.2.37  91.19.150 2.63 1.99
1651 SalUn 6.22.042 1411040 9591.400 90.72.006 1.76 2.64
1652 UGradSL | 6.78.066  15.96:0.12  96.94.056  90.7240.50 1.66 0.70
1653 UGradSL+ 6.3610_65 14»99¢0_82 97.3510_79 91.1()*1_10 1.25 0.53
Random Set Size (40 %)
1e5a Method ‘ UA MIAgore RA TA | Avg Gap () | RTE (I, min)
1655 Retrain | 7.0l 18.37 100.00 925 | - | 2847
1656 FT 07716.24 2.88.15.49 99.96.0.04 94'2711.75 5.88 1.62
1657 RL 502199 37.7611030 99.61.030 92.14.0.35 5.54 2.68
1658 GA 0.67.6.31  1.5Ti680 9947.053 94.38.1.s6 6.38 0.53
U 789,085 1099755  922l.770  86.15.6.57 5.60 3.27
1659 BE 0.86.615 1572065  99.27.073  93.46.0.04 2.62 1.04
o BS 118,583  13.97.440  98.94.1.06 93.01.0.40 2.95 1.72
{1-sparse 2.84, 417 7.09:11.28  98.75:105  92.20.0.32 4.26 1.63
1661 SalUn 6.86.0.15 15.15,3.29 95.0144.99 89.7642.7¢ 2.78 2.67
1662 UGradSL 5.81.0.11 14.98.9 65 97.31.1.06 90.73.0.48 2.27 0.62
o UGradSL+ | 5.82,037  14.53,183  97.11.040  90.7440.35 242 0.63
Random Set Size (50%)
eed Method ‘ UA  MlAgoe  RA TA | Ave. Gap(}) | RTE (4, min)
1665 Retrain | 7.91 19.29 100.00 o2 | - | 2%
1666 FT 04dir s 21501714 99.96.0.00  94.231051 6.79 131
1667 RL 761.050 37.36u18.0r 99.67.033 92.83.111 4.95 2.65
s GA 040,75  1.22,0507  99.61.050  94.34,06 7.15 0.66
66 U 397.508 7291900 96.21.570  90.00.1 79 536 325
1669 BE 3.08:4.83 24.87 558 96.84.3 16 90.41.1.31 3.72 1.31
BS 976,155 32.15.12.86 90.19.051  83.71.s.01 8.13 2.12
1670 Crsparse | Lddigar  476i1ass  99.52.045 93134141 572 131
1671 SalUn 775016 1699050 94.28.570  89.29.0.43 2.65 2.68
1672 UGradSL | 6.83.023 12.73.166 97.62.071  90.27.0.55 2.87 0.77
o UGradSL+ | 6.13,135 16.49,073  97.84.031  90.84.0.60 1.91 0.77
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1674

1675 Table 18: MU Performance across different forgetting dataamounts on ResNet-18, pre-trained on
1676 CIFAR-100 dataset, for random data forgetting.

1677
Random Set Size (10%)
e Method UA MIA RA TA | Avg. Gap()) | RTE (4, min)
1679 Score
ea0 Retrain | 29.47 53.50 99.98 7051 | - | 2501
FT 255005 10.59.007  99.95.001  75.95.0.05 18.83 1.95
1681 RL 4.062057 50124345 99.92.000  71.30.0.36 7.41 1.20
1682 GA 258,006  5.95.017  9745.002  76.09.0.01 20.64 0.29
U 1571510  18.69,412  84.65,510  62.20.417 18.05 1.20
1683 BE 0.01s000  145:002 98220106  78.2620.00 22.32 0.24
1684 BS 2.2012_11 10.7319_37 98.2211_26 70.231157 18.02 0.34
Zl-sparse 8.19*0_38 19.1110_52 88.3910_31 80.26*0_16 23.75 1.00
1685 SalUn 35.23.032  89.394046  99.53.004  64.26.0.58 12.10 3.33
1686 UGradSL | 18.36,0.17 40.71.013  98.38.00s  68.23.0.16 6.95 ‘ 0.55
1687 UGradSL+ | 21.69,050 49.47.105  99.87.081  73.60.0.26 375 3.52
Random Set Size (20%)
1ose Method ‘ UA  MIAge  RA TA | Avg Gap () | RTE (4, min)
1689 Retrain |  26.84 52.41 99.99 73.88 | - | 3688
1690 FT 27040014 11.63u407s  99.95.001  75.51.163 16.65 2.05
1691 RL 54749700 97.32.4101 99.47.052  65.50.5.20 20.41 2.11
GA 6.79.20.05 13.22.3010 94.11.555  71.39.2.49 16.90 0.26
1692 U 5349150 11794062 95.54s445  70.89.2.09 17.39 377
1693 BE 251,9033 6704571 97384261 75.07.1.10 18.46 0.49
BS 253,9031  6.57.45.80 97384261 75.05.117 18.48 0.82
1694 fl -Sparse 37.83110_99 38.90113_51 76.63123_36 58.7911509 15.74 2.05
1695 SalUn 25.8311_01 64.69112_23 96.0113_98 65.87*8_01 6.32 2.12
1696 UGradSL 30.1041.03 47.39,1 .17 93.49.0.24 64.99.0.04 4.71 ‘ 0.83
1697 UGradSL+ 272910.99 35.92i0_94 93.36;0‘03 66~59t0,37 5.45 0.59
Random Set Size (30%)
1698 Method ‘ UA MIAg ore RA TA | Avg Gap(}) | RTE (4, min)
1699 Retrain |  28.52 50.24 99.98 7091 | - | 3292
1700 FT 26520557 L118u06  99.9m001 75172106 17.81 144
1701 RL 51.46.92.01 96.34s4410 99.32.066  62.77.s14 18.96 2.14
GA 2.40.426.12 5.70446.54 97.3912 59 75.33:4.42 19.92 0.40
1702 U 5.96.9556  12.63u5061  94.50.549  69.7dv1 17 17.18 3.76
1703 BE 2.44,96.08 6.53145.71 97.3712.61 T4.77.3.86 19.56 0.76
BS 2.49i25_03 6.40i45_g4 97~33i2.65 74.65i3,74 19.56 1.24
1704 Cr-sparse | 38455095 38.52u1972  76.36.03.60  58.09:10.80 15.02 1.47
1705 SalUn 27.34u115  62.99,1075 94.50,545  63.10.7.81 6.31 2.16
1706 UGradSL | 30.1040.12  47.39.20s 9349074  64.99.1 53 47 ‘ 0.83
- UGradSL+ | 24.80,024  44.60,004 94.90.085  66.16.0.75 528 0.79
Method Random Set Size (40%) )
1708 etho UA  MiAgee ~ RA TA | Avg Gap(}) | RTE (4, min)
1709 Retrain |  30.07 58.06 99.99 6987 | - | 2829
1710 FT 26620701 11054701 99.95.001 75351545 19.99 1.51
1711 RL 51.75401.68  95.78.37.72 99.27.0.72 59.41.10.46 17.64 2.12
GA 2.46i27_51 5.91.50.15 97~39i2.60 75~40t5.53 21.97 0.51
1712 U 4580500 1032477 96.29.570  T0.92.1 05 19.49 378
1713 BE 2540753 TAdisoes  97.35.064  T4.56.469 21.37 1.00
BS 2705737 T.63.5043 9726473  74.10.403 21.19 1.66
1714 fy-sparse | 3849.5.40 40.21,17.85 T843.3156 57.66.12.01 15.01 1.52
1715 SalUn 25545055  60.08.0.02  94.64i535  62.52.7 55 4.81 2.14
1716 UGradSL 30.0741.58 49.2341 07 95.3040.34 64.52.0.28 4.72 ‘ 1.08
17 UGradSL+ 30.42i0_77 45.94i1_41 93.98t0_50 63‘21i0_35 5.47 0.77
17
Method Random Set Size (50%) )
1718 etho UA MIAg ore TA RA | Avg Gap(}) | RTE (}, min)
1719 Retrain | 32.69 61.15 99.99 6722 | - | 2501
1720 FT 2710908 10.71i5044  99.96.003  75.11.7.89 22.08 1.25
1721 RL 50.52:17.83 95.91.3476 99.47.052  56.75.10.47 15.90 2.13
GA 2613008  5.92.s503 97494050  75.27.s5.05 23.97 0.66
1722 U 12.64400.05 17.54u43.61  87.96412.05 62.76.4.46 20.04 3.80
1723 BE 2.76i29_93 8.85i52_3u 97-39:2.60 74-0516.83 22.92 1.26
BS 2.99.0070  8.76.52.30  97.24un75  73.38.6.16 22.75 2.08
1724 Zl-sparse 39.86i7_17 40.43i20_72 78~17£21.82 55.65111,57 15.32 1.26
1725 SalUn 26~1716.52 59~47i1.68 94.04i5_95 61.39i5,g3 5.00 2.13
1726 UGradSL | 33.80,161 53.38.031  95.20.011  56.88.0.50 4.86 ‘ 0.95
UGradSL+ | 32.20,040 45204144 94.47.060  61.53.0.07 4.89 0.75
1727
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Table 19: The difference between GA and FT as well as UGradSL and UGradSL+ on CIFAR-10
regarding the number of epochs. The forgetting paradigm is random forgetting.

‘ Gradient Ascent Fine-tuning
Epoch | UA  MIAg.ye RA TA | Avg.Gap(}) || UA  MIAg.oe RA TA | Avg. Gap (1)
5 0 0.32 95.31 100 3.98 0.04 0.34 95.13  99.99 3.96
6 0 0.40 95.34 100 3.96 - - - - -
7 0.82 222 93.24  99.26 3.95 - - - - -
8 3.44 4.78 90.80 96.18 4.03 - - - - -
9 10.34 12.76 83.42  89.00 7.44 - - - - -
10 76.26 72.22 6.49 2424 74.21 0.04 0.24 9497  99.99 4.02
15 - - - - - 0.02 0.80 94.68  99.96 3.97
| UGradSL UGradSL+
Epoch | UA MIAgeore RA  TA | Avg.Gap() | UA MiAgeore RA  TA | Avg Gap ()
10 14.98 33.22 77.18 84.07 16.51 6.26 14.10 9339  99.62 1.33
11 24.26 34.38 68.22  75.06 23.61 6.52 11.66 93.04 99.37 1.21
12 28.70 24.62 68.17 74.39 22.46 21.46 27.38 89.41 97.07 10.36
13 38.46 72.90 61.78 64.72 40.99 29.48 31.92 87.74 9493 14.46
14 99.86 86.74 0.45 0.20 91.26 31.62 32.68 86.53 93.36 15.88
Retrain | 45 1162 9521 100 | - | 45 1162 9521 100 | -
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