
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

LABEL SMOOTHING IMPROVES MACHINE UNLEARN-
ING

Anonymous authors

Paper under double-blind review

ABSTRACT

The objective of machine unlearning (MU) is to eliminate previously learned data
from a model. However, it can be challenging to strike a balance between com-
putation cost and performance when using existing MU techniques. Taking inspi-
ration from the influence of label smoothing on model confidence and differential
privacy, we propose a simple gradient-based MU approach that uses an inverse
process of label smoothing. This work introduces UGradSL, a simple, plug-and-
play MU approach that uses smoothed labels. We provide theoretical analyses
demonstrating why properly introducing label smoothing improves MU perfor-
mance. We conducted extensive experiments on several datasets of various sizes
and different modalities, demonstrating the effectiveness and robustness of our
proposed method. UGradSL also shows close connection to improve the local
differential privacy. The consistent improvement in MU performance is only at a
marginal cost of additional computations. For instance, UGradSL improves over
the gradient ascent MU baseline constantly on different unlearning tasks with-
out sacrificing unlearning efficiency. A self-adaptive UGradSL is also given for
simple parameter selection.

1 INTRODUCTION

Building a reliable ML model has become an important topic in this community. Machine unlearning
(MU) is a task requiring to remove the learned data points from the model. The concept and the
technology of MU enable researchers to delete sensitive or improper data in the training set to
improve fairness, robustness, and privacy and get a better ML model for product usage (Chen et al.,
2021; Sekhari et al., 2021). Retraining from scratch (Retrain) is a straightforward method when we
want to remove the data from the model; yet it incurs prohibitive computation costs for large models
due to computing resource constraints. Therefore, an efficient and effective MU method is desired.

The most straightforward MU approach should be retraining-based method (Bourtoule et al., 2021),
meaning that we retrain the model from scratch without using the data to be forgotten. The method
can guarantee privacy protection but the computational cost is intensive. Most existing works (Koh
& Liang, 2017; Golatkar et al., 2020; Warnecke et al., 2021; Graves et al., 2021; Thudi et al., 2021;
Izzo et al., 2021; Becker & Liebig, 2022; Jia et al., 2023) focus on approximate MU to achieve
a balance between unlearning efficacy and computational complexity, making them more suitable
for real-world applications, meaning that make the model unlearn the forgetting dataset without
retraining the model.

We desire an approach that enjoys both high performance and fast speed. Since MU can be viewed
as the inverse process of ML, we are motivated to think it would be a natural and efficient way to
develop an unlearning process that imitates the reverse of gradient descent. Indeed, gradient ascent
(GA) (Thudi et al., 2021) is one of the MU methods but unfortunately, it does not fully achieve the
potential of this idea. One of the primary reasons is that once the model completes training, the
gradient of well-memorized data that was learned during the process is diminishing (close to 0 loss)
and therefore the effect of GA is rather limited.

Our approach is inspired by the celebrated idea of label smoothing (Szegedy et al., 2016). In the
forward problem (gradient descent), the smoothed label proves to be able to improve the model’s
generalization power. In our setting, we treat the smoothed label term as the regularization in the
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(a) Performance of classwise forgetting on ImageNet.
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Figure 1: The performance comparison of our proposed methods and baseline methods using aver-
age gap and runtime (RTE), where lower values indicate better performance. Bars represent average
gap while red dotted lines show RTE. Since retraining does not have gap by definition, only RTE
is reported for this baseline and the bar is empty. For classwise forgetting on ImageNet, UGradSL
achieves the lowest average gap (2.23%) with acceptable RTE increase. For random forgetting on
CIFAR-100, UGradSL+ attains the best average gap (3.75%), while UGradSL demonstrates an op-
timal gap-runtime trade-off.

loss function, making the unlearning more controllable. Specifically, we show that GA with a “neg-
ative” label smoothing process (which effectively results in a standard label smoothing term in a
descending fashion) can quickly improve the model’s deniability in the forgetting dataset, making
the model behave close to the retrained model, which is exactly the goal of MU. We name our
approach UGradSL, Unlearning using Gradient-based Smoothed Labels.

Our approach is a plug-and-play method that can improve the gradient-based MU performance con-
sistently and does not hurt the performance of the remaining dataset and the testing dataset in a
gradient-mixed way. At the same time, we provide a theoretical analysis of the benefits of our
approach for the MU task. The core contributions of this paper are summarized as follows:

⌐ We propose a lightweight tool to improve MU by joining the label smoothing and gradient ascent.
⌐ We theoretically analyze the role of gradient ascent in MU and how negative label smoothing is

able to boost MU performance.
⌐ Extensive experiments in six datasets in different modalities and several unlearning paradigms

regarding different MU metrics show the robustness and generalization of our method.
⌐ We investigate the relationship between label smoothing and label differential privacy (LDP),

showing that label smoothing can aid LDP.

2 RELATED WORK

Machine Unlearning (MU) was developed to address information leakage concerns related to pri-
vate data after the completion of model training (Cao & Yang, 2015; Bourtoule et al., 2021; Nguyen
et al., 2022), gained prominence with the advent of privacy-focused legislation (Hoofnagle et al.,
2019; Pardau, 2018). One direct unlearning method involves retraining the model from scratch
after removing the forgetting data from the original training set. It is computationally inefficient,
prompting researchers to focus on developing approximate but much faster unlearning techniques
(Becker & Liebig, 2022; Golatkar et al., 2020; Warnecke et al., 2021; Graves et al., 2021; Thudi
et al., 2021; Izzo et al., 2021; Jia et al., 2023). Beyond unlearning methods, other research efforts
aim to create probabilistic unlearning concepts (Ginart et al., 2019; Guo et al., 2019; Neel et al.,
2021; Ullah et al., 2021; Sekhari et al., 2021) and facilitate unlearning with provable error guar-
antees, particularly in the context of differential privacy (DP) (Dwork et al., 2006; Ji et al., 2014;
Hall et al., 2012). However, it typically necessitates stringent model and algorithmic assumptions,
potentially compromising effectiveness against practical adversaries, such as membership inference
attacks (Graves et al., 2021; Thudi et al., 2021). Additionally, the interest in MU has expanded to
encompass various learning tasks and paradigms (Wang et al., 2022b; Liu et al., 2022b; Chen et al.,
2022; Chien et al., 2022; Marchant et al., 2022; Di et al., 2022). These applications demonstrate the
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growing importance of MU techniques in safeguarding privacy. The rest of the related work about
influence function label smoothing and differential privacy are given in Appendix.

3 LABEL SMOOTHING ENABLES FAST AND EFFECTIVE UNLEARNING

This section sets up the analysis and shows that properly performing label smoothing enables fast
and effective unlearning. The key ingredients of our approach are gradient ascent (GA) and label
smoothing (LS). We start with understanding how GA helps with unlearning and then move on to
show the power of LS. At the end of the section, we formally present our algorithm.

3.1 PRELIMINARY

Machine Unlearning Consider a K-class classification problem on the training data distributionDtr = (X ⌐ Y), where X and Y are feature and label space, respectively. Due to some privacy
regulations, there exists a forgetting data distributionDf that the model needs to unlearn. We denote
by ωtr the original model trained on Dtr and ωu the model without the influence of Df . The goal of
machine unlearning (MU) is how to generate ωu from ωtr.

Label Smoothing In a K-class classification task, let yi denote the one-hot encoded vector form
of yi ∈ Y . Similar to Wei et al. (2021), we unify positive label smoothing (PLS) and negative
label smoothing (NLS) into generalized label smoothing (GLS). The random variable of smoothed
label yGLS,ω

i
with smooth rate ω ∈ (−⋊,1] is y

GLS,ω
i

= (1 − ω) ⋅ yi + ω

K
⋅ 1 = [ ω

K
,⋉, ω

K
, (1 +

1⌐K
K

ω), ω

K
,⋉, ω

K
], where (1+ 1⌐K

K
ω) is the yi-th element in the encoded label vector. When ω < 0,

GLS becomes NLS.

3.2 GRADIENT ASCENT CAN HELP GRADIENT-BASED MACHINE UNLEARNING

We discuss three sets of model parameters in the MU problem: 1) ω∗
tr

, the optimal parameters trained
from Dtr ∼ Dtr , 2) ω∗

r
, the optimal parameters trained from Dr ∼ Dr, such that Dr = Dtr⌜Df and

3) ω∗
f

, the optimal parameters unlearned using gradient ascent (GA) on Df ∼ Df . Note ω
∗
r

can be
viewed as the exact MU model. The definitions of ω∗

tr
and ω

∗
r

follow the standard empirical risk
minimization as

ω
∗ = argmin

ω

1

n
⩀
z∈D

ε (hω, z) . (1)

and by using the influence function, ω∗
f

is

ω
∗
f
= argmin

ω
{Rtr(ω) + ϑ ⩀

zf ∈Df

ε(hω, z
f)}

where Rtr(ω) = ⊍ztr∈Dtr
ε(hω, z

tr) and Rf(ω) = ⊍zf ∈Df
ε(hω, z

f) are the empirical risk on Dtr

and Df , respectively. We use notations ε(hω, z) to specify the loss of an example z = (x, y) in the
dataset. hω is a function h parameterized by ω. ϑ is the weight of Df compared with Dtr. The
optimal parameter can be found when the gradient is 0:

∇ωRtr(ω∗f) + ϑ ⩀
zf ∈Df

∇ωε(hω⌐f , z
f) = 0. (2)

Expanding Eq. (2) at ω = ω∗
tr

using the Taylor series, we have

ω
∗
f
− ω∗

tr
≈ −⌜ ⩀

ztr∈Dtr

∇2
ωε(hω⌐tr , z

tr) + ϑ ⩀
zf ∈Df

∇2
ωε(hω⌐tr , z

f)⌝⌐1 ⌝⌝ϑ ⩀
zf ∈Df

∇ωε(hω⌐tr , z
f)⌝⌝ . (3)

Similarly, we can expand ∇ωRtr(ω∗tr) at ω = ω∗
r

and derive ω
∗
r
− ω∗

tr
as

ω
∗
r
− ω∗

tr
≈ ⌞⌞⌞⌞⌞⌞ ⩀ztr∈Dtr

∇2
ωε(hω⌐r , z

tr)⌞⌞⌞⌞⌞⌟
⌐1 ⌝
⌝ ⩀
ztr∈Dtr

∇ωε(hω⌐r , z
tr)⌝⌝ . (4)
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We ignore the average operation in the original definition of the influence function for computation
convenience because the size of Dtr or Df are fixed. For GA, let ϑ = −1 in Eq. (3) and we have

ω
∗
r
− ω∗

f
= ω∗

r
− ω∗

tr
− (ω∗

f
− ω∗

tr
) =!ωr −!ωf , (5)

where (−!ωr) represents the learning gap from ω
∗
r

to ω
∗
tr

while vector !ωf represents how much
the model unlearns (backtracked progress) between ω

∗
f

and ω
∗
tr

. The details of !ωr and !ωf are
given in Eq. (17) in Appendix. Ideally, when !ωr and !ωf are exactly the same vectors, GA can
lead the model to the optimal retrained model since we have ω

∗
r
= ω

∗
f

. However, this condition is
hard to satisfy in practice. Thus, GA cannot always help MU. We summarize it in Theorem 1 and
the proof is given in Appendix C.1.
Theorem 1. Given the approximation in Eq. (5), GA achieve exact MU if and only if

⩀
zf ∈Df

∇ωε(hω⌐r , z
f) ≈ −H(ω∗

r
,ω
∗
tr
) ⋅ ⩀

zf ∈Df

∇ωε(hω⌐tr , z
f),

H(ω⌐r ,ω⌐tr) = ⌜⩀ztr∈Dtr
∇2

ωω(hω⌐r , z
tr)⌜ ⌝⩀zr∈Dr

∇2
ωω(hω⌐tr , z

r)⌝−1. Otherwise, there exist ω
∗
r
,ω
∗
tr

such

that GA can not help MU, i.e., ⌟ω∗
r
− ω∗

f
⌟ > ⌟ω∗

r
− ω∗

tr
⌟.

3.3 LABEL SMOOTHING IMPROVES MU

Practically, we cannot guarantee that GA always helps MU as shown in Theorem 1. To alleviate the
possible undesired effect of GA, we propose to use label smoothing as a plug-in module. Consider
the cross-entropy loss as an example. For GLS, the loss is calculated as

ε(hω, z
GLS,ω) = ⌟1 + 1 −K

K
ω⌟ ⋅ ε(hω, (x, y)) + ω

K
⩀

y′∈Y⌜y
ε(hω, (x, y⋊)), (6)

where ε(hω, (x, y)) ⧖= ε(hω, z) and ε(hω, (x, y⋊)) to denote the loss of an example when its label is
replaced with y

⋊. Intuitively, Term⊍y′∈Y⌜y ε(hω, (x, y⋊)) in Eq. (6) leads to a state where the model
makes wrong predictions on data in the forgetting dataset with equally low confidence (Wei et al.,
2021; Lukasik et al., 2020).

With smoothed label given in Eq. (6), we show that there exists a vector !ωn such that Eq. (5) can
be written as

ω
∗
r
− ω∗

f,LS ≈!ωr −!ωf + 1 −K
K

ω ⋅ (!ωn −!ωf), (7)

We leave the detailed form of !ωn to Eq. (21). But intuitively, !ωn captures the gradient influence
of the smoothed non-target label on the weight. We show the effect of NLS (ω < 0) in Theorem 2
below and its proof is given in Appendix C.2.
Theorem 2. Given the approximation in Eq. (5) and ⌟!ωr −!ωf ,!ωn −!ωf ⟩ ≤ 0, there exists an

ω < 0 such that NLS improves GA in unlearning, i.e., ⌟ω∗
r
− ω∗

f,NLS
⌟ < ⌟ω∗

r
− ω∗

f
⌟, where ω

∗
f,NLS

is the

optimal parameters unlearned using GA and NLS, and ⌟⋅, ⋅⟩ the inner product of two vectors.

Now we explain the above theorem intuitively. Vector !ωf − !ωr is the resultant of Newton’s
direction of learning and unlearning. Vector !ωf−!ωn is resultant of Newton’s direction of learning
non-target labels and unlearning the target label. When the condition ⌟!ωr −!ωf ,!ωn −!ωf ⟩ ≤ 0
holds, !ωn−!ωf captures the effects of the smoothing term in the unlearning process. If we assume
that the exact MU model is able to fully unlearn an example, vector !ωn contributes a direction that
pushes the model closer to the exact MU state by leading the model to give the wrong prediction.
The illustration of ⌟!ωr −!ωf ,!ωn −!ωf ⟩ is shown in Figure 4 in the Appendix.

The effect of the smoothed term in gradient ascent (GA) with NLS is equivalent to performing a
gradient descent optimization with traditional defined (positive) LS. The gradient of the smoothed
term is exactly the same as ω/K ⋅⊍y′∈Y⌜y∇ε(hω, (x, y⋊)) in both cases.

3.4 LABEL SMOOTHING HELPS LOCAL DIFFERENTIAL PRIVACY

When ω < 0, the smoothing term will incur a positive effect in the gradient ascent (GA) step. Label
smoothing can also be viewed through the lens of privacy protection. This interpretation stems from

4
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the fact that label smoothing reduces the likelihood of a specific label, thereby allowing it to better
blend in with other candidate labels. Particularly, we consider a local differential privacy (LDP)
guarantee for labels as follows.
Definition 1 (Label-LDP). A privacy protection mechanism M satisfies ϖ-Label-LDP, if for any

labels y, y
⋊
, y

pred ∈ Y ,
P⌜M(y)=ypred⌝
P(M(y′)=ypred) ≤ eε.

The operational meaning of M is to guarantee any two labels y and y
⋊ in the label space, after

privatization, have a similar likelihood to become any y
pred in the label space. That is, the prediction

on the forgetting dataset should be similar no matter what the ground-truth label is. The similarity is
measured by the privacy budget ϖ ∈ [0,+⋊). Smaller ϖ implies stronger indistinguishability between
y and y

⋊, and hence, stricter privacy.

Recall Rtr(ω) = ⊍ztr∈Dtr
ε(hω, z

tr). Denote by R
NLS
f
(ω;ω) = ⊍zLS,ω∈Df

ε(hω, z
LS,ω),ω < 0 the

empirical risk of forgetting data with NLS. After MU with label smoothing on Df by GA, the
resulting model can be seen as minimizing the risk ϱ1 ⋅Rtr(ω)−ϱ2 ⋅RNLS

f
(ω;ω), which is a weighted

combination of the risk from two phases: 1) machine learning on Dtr with weight ϱ1 > 0 and 2)
machine unlearning on Df with weight ϱ2 > 0. By analyzing the risk, we have the following theorem
to show NLS in MU induces ϖ-Label-LDP for the forgetting data.

Theorem 3. Suppose ϱ1 − ϱ2(1 + 1⌐K
K

ω) > 0. MU using GA+NLS achieves ϖ-Label-LDP on Df

where

ϖ = ∣log ⌟K
ω
⌟1 − ϱ1

ϱ2
⌟ + 1 −K⌟∣ , ω < 0.

Intuitively, when ω is more negative, the privacy of the labels in the forgetting dataset is better.
When ω → (1 − ϱ1/ϱ2), we have ϖ → 0, indicating the best label-LDP result, which is the goal of
MU. The theorem also warns that ω cannot be arbitrarily negative.

4 UGRADSL: A PLUG-AND-PLAY AND GRADIENT-MIXED MU METHOD

Request: Forget the cat class
Cat

LS on!!

!!

!"

∇ℓ(ℎ! , &"#)) − ∇ℓ(ℎ! , &"
$,	'(,)!))

Gradient
Descent

Gradient
Ascent

Cat 1 1

0
ℎ#

# $ $$%,'#

Dog Horse
1 1

# $ # $

Figure 2: The framework of UGradSL. When there is an unlearning request, we can split the Dtr

into Df and Dr. We first apply label smoothing on z
f

i
= {x, y} ∈ Df to get zLS,ωi

i
= {x, yLS,ωi},

where the smooth rate can be pre-defined or self-adaptive. In back-propagation process, we apply
gradient descent on the data z

r

i
∈ Dr and gradient ascent on the data smoothed Df , which is the

mix-gradient way.

Given the effect of label smoothing on MU and LDP, we propose our method here. Compared
with retraining, Fine-Tune (FT) and GA are much more efficient as illustrated in Section 5 with
comparable or better MU performance. FT and GA focus on different perspectives of MU. FT is to
transfer the knowledge of the model from Dtr to Dr using gradient descent (GD) while GA is to
remove the knowledge of Df from the model.

Due to the flexibility of label smoothing, our method is suitable for the gradient-based methods
including FT and GA, making our method a plug-and-play algorithm. UGradSL is based on GA

while UGradSL+ is on FT. Compared with UGradSL, UGradSL+ will lead to a more compre-

hensive result but with a larger computation cost.
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Algorithm 1 UGradSL+: A plug-and-play, efficient, gradient-based MU method using LS.
UGradSL can be specified by imposing the dataset replacement in the bracket. If ε is not given, the
algorithm turns to the self-adaptive version.
Require: A almost-converged model hω̂tr

trained with Dtr. The retained dataset Dr. The forgetting
dataset Df . Unlearning epochs E. GA ratio p. Distance threshold ς. The optional smoothing
ratio ε.

Ensure: The unlearned model hωf .
1: Set the current epoch index as tc ↢ 1
2: while tc < E do

3: while Dr(Df) is not fully iterated do

4: Sample a batch Br in Dr

5: Sample a batch Bf from Df where ∣Bf ∣ = ∣Br ∣
6: if ε is not given then ▷ The improved and self-adaptive version
7: Calculate the distance d(zr

i
, z

f

i
) for each (zr

i
, z

f

i
) pair where z

r

i
∈ Br and z

f

i
∈ Bf .

8: For each z
f

i
, count the number cf

i
of zr

i
whose d(zr

i
, z

f

i
) < ς

9: Calculate the smooth rate ωi = cfi /∣Bf ∣ for each z
f

i
∈ Bf

10: end if

11: Update the model using Br, Bf , p and ωi according to Eq. (8)
12: end while

13: tc ↢ tc + 1
14: end while

How to choose the smooth rate ε is worth discussion. Normally, the ωi ∈ ε for every data point
z
f

i
∈ Df can be the same. To gain better performance, we improve UGradSL and UGradSL+ by

taking every data point into consideration and assigning ωi individually and adaptively based on
the distance d(zr

i
, z

f

i
) ∈ [0,1] for each (zr

i
, z

f

i
) pair. The intuition is that if an instance z

f

i
resides

in a dense neighborhood of Dr, its inherent deniability is higher and therefore the requirement for
“forgetting” is lesser and should be reflected through a smaller ωi. The algorithm is presented in
Algorithm 1 and the framework is illustrated in Figure 2. We leave the details of the implementation,
the additional classification results in Appendix D.

Assuming the amount of retained data is significantly larger than the amount of data to be forgotten
(∣Dr ∣ > ∣Df ∣), Df will be iterated several times when Dr is fully iterated once. We calculate the loss
using a gradient-mixed method as:

L(hω,B
NLS,ε
f

,Br, p) = p ⋅ ⩀
zr∈Br

ε(hω, z
r) − (1 − p) ⋅ ⩀

z
f,NLS,ωi
i ∈BNLS,ω

f

ε(hω, z
f,NLS,ωi

i
) (8)

where p ∈ [0,1] is used to balance GD and GA and the minus sign between two elements on
the RHS stands for the GA. ε is the vector for the smoothing rate of every data point zf

i
. hω is

updated according to L in Eq. (8). UGradSL is similar to UGradSL+ and the dataset used is given
in bracket in Algorithm 1. The difference between UGradSL and UGradSL+ is the convergence
standard. UGradSL is based on the convergence of Df while UGradSL+ is based on Dr. It should
be noted that the Hessian matrix in Theorem 1 is only used in the theoretical proof. In the practical
calculation, there is no need to calculate the Hessian matrix. Thus, our method does not incur
substantially more computation but improves the MU performance on a large scale. We present
empirical evidence in Section 5. Compared with applying the label smoothing evenly, the improved
version takes the similarity of the data points between Dr and Df into consideration and provides
self-adaptive smoothed labels for individual zf

i
as well as protects the LDP.

5 EXPERIMENTS AND RESULTS

5.1 EXPERIMENT SETUP

Dataset and Model Selection We validate our method using various datasets in different scales and
modality, including CIFAR-10, CIFAR-100 (Krizhevsky et al., 2009), SVHN (Netzer et al., 2011),

6
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Table 1: Results of class-wise forgetting in CIFAR-100 and ImageNet. The best comprehensive
metrics are bold.

CIFAR-100 ImageNet

Method UA MIAScore RA TA Avg. Gap (↓) RTE (↓, min) UA MIAScore RA TA Avg. Gap (↓) RTE (↓, hr)

Retrain 100.00±0.00 100.00±0.00 99.96±0.01 71.10±0.12 - 26.95 100.00±0.00 100.00±0.00 71.62±0.12 69.57±0.07 - 26.18

FT 0.67±0.38 27.20±1.34 99.96±0.01 71.46±0.09 43.12 1.74 52.42±15.81 55.86±18.02 70.66±2.54 69.25±0.78 23.25 2.87
GA 99.00±0.57 99.07±0.50 77.83±2.07 53.73±0.96 10.36 0.06 81.23±0.69 83.52±2.08 66.00±0.03 64.72±0.02 11.43 0.01

IU 2.07±1.65 33.20±8.83 99.96±0.01 71.39±0.19 41.26 1.24 33.54±19.46 49.83±21.57 66.25±1.99 66.28±1.19 31.32 1.51
BE 99.07±0.34 99.00±0.49 70.81±2.69 49.85±1.32 13.08 0.55 98.62±0.58 0.15±0.11 53.13±0.27 56.72±0.31 33.14 0.24
BS 98.87±0.57 98.73±0.68 71.16±2.60 50.03±1.36 13.06 0.77 98.85±0.50 0.13±0.12 53.35±0.16 56.93±0.03 32.98 0.37

ε1-sparse 98.97±1.03 100.00±0.00 86.99±0.76 79.08±0.75 4.56 0.15 100.00±0.00 100.00±0.00 39.01±1.03 44.62±0.91 14.39 0.16
RL 99.80±0.35 100.00±0.00 99.97±0.62 77.31±0.35 0.67 1.10 100.00±0.00 100.00±0.00 62.06±4.19 62.93±0.45 4.05 1.17

EU-k 100.00±0.00 0.00±0.00 63.79±1.10 43.90±0.73 40.84 4.50 100.00±0.00 0.00±0.00 32.99±0.07 37.19±0.15 42.75 0.62
CF-k 100.00±0.00 0.00±0.00 94.88±0.46 61.32±1.17 28.72 3.01 99.79±0.36 0.00±0.00 66.84±0.03 68.35±0.28 26.55 1.25

SCRUB 30.07±49.48 66.60±29.19 99.98±0.01 77.97±0.56 26.62 1.07 56.59±2.17 75.59±1.19 66.98±0.11 68.24±0.07 18.45 0.21
SalUN 99.90±0.01 99.96±0.00 99.98±0.01 75.02±0.10 1.02 2.15 100.00±0.00 100.00±0.00 63.00±5.03 62.72±0.31 3.87 1.95

UGradSL 66.59±0.90 90.96±5.05 95.45±1.42 70.34±1.78 12.87 0.07 100.00±0.00 100.00±0.00 76.91±1.82 65.94±1.35 2.23 0.01

UGradSL+ 100.00±0.00 100.00±0.00 98.44±0.62 74.12±0.70 0.57 3.37 100.00±0.00 100.00±0.00 78.16±0.07 66.84±0.06 2.32 4.19

CelebA (Liu et al., 2015), Tiny-ImageNet, ImageNet (Deng et al., 2009) and 20 Newsgroups (Lang,
1995) datasets. For the vision and language dataset, we use ResNet-18 (He et al., 2016) and Bert
(Devlin et al., 2018) as the backbone model, respectively. Due to the page limit, the details of
the training parameter and the additional results of different models including VGG-16 (Simonyan
& Zisserman, 2014) and vision transformer (ViT) (Dosovitskiy et al., 2020) are given in the Ap-
pendix E.5.

Baseline Methods We compare the proposed methods with a series of baselines, including retrain,
fine-tuning (FT) (Warnecke et al., 2021; Golatkar et al., 2020), gradient ascent (GA) (Graves et al.,
2021; Thudi et al., 2021), unlearning based on the influence function (IU) (Izzo et al., 2021; Koh
& Liang, 2017), boundary unlearning (BU) (Chen et al., 2023), ε1-sparse (Jia et al., 2023), random
label (RL) (Hayase et al., 2020), SCRUB (Kurmanji et al., 2023), SalUN (Fan et al., 2023), EU-k and
CF-k (Goel et al., 2022). The implementation details of these baselines are given in Appendix E.1.

Evaluation Metrics The evaluation metrics we use follows Jia et al. (2023), where we jointly con-
sider unlearning accuracy (UA), membership inference attack (MIA), remaining accuracy (RA),
testing accuracy (TA), and run-time efficiency (RTE). UA is the ratio of incorrect prediction on Df ,
showing the MU performance. TA is the accuracy used to evaluate the performance on the whole
testing set Dte, except for the class-wise forgetting because the task is to forget the specific class.
RA is the accuracy on Dr. To evaluate the effectiveness of ”forgetting”, we resort to the MIA met-
rics described in Jia et al. (2023); Fan et al. (2023), i.e. accuracy of an attack model against target
model φu, such that the score is reported as true negative rate (TNR) on the forget set. Formally,
this is a global MIA score Yeom et al. (2018), which we rewrite as MIAScore = 1 − Pr (xf ∣φ⋆),
where xf ∈ Df are the forget samples and φ⋆ is the model under test. Overall, we use Avg. Gap

to quantifies the mean performance gap between each unlearning method and the retrained model
across all individual metrics above. A lower value indicates better performance.

Unlearning Paradigm We mainly consider three unlearning paradigms, including class-wise forget-

ting, random forgetting, and group forgetting. Class-wise forgetting is to unlearn the whole specific
class where we remove one class in Dr and the corresponding class in Dte completely. Random
forgetting across all classes is to unlearn data points belonging to all classes. As a special case of
random forgetting, group forgetting means that the model is trained to unlearn the group or sub-class
of the corresponding super-classes. A more detailed description is given in Appendix E.2.

5.2 EXPERIMENT RESULTS

5.2.1 CLASS-WISE FORGETTING

We select the class randomly and run class-wise forgetting on five datasets. We report the results of
CIFAR-100 / ImageNet and CIFAR-10 in Table 1 and 3, respectively. The results of 20 NewsGroup
and SVHN is given in Appendix E.3. As we can see, UGradSL and UGradSL+ can boost the
performance of GA and FT, respectively without an increment in RTE or drop in TA and RA, leading
to comprehensive satisfaction in the main metrics, even in the randomness on Df , showing the
robustness and flexibility of our methods in MU regardless of the size of the dataset and the data
modality. Moreover, in terms of Avg. Gap, the proposed method shows its similarity to the retrained
model.
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Table 2: Results of random forgetting in CIFAR-100 and Tiny-ImageNet. The best comprehensive
metrics are bold.

CIFAR-100 Tiny-ImageNet

Method UA MIAScore RA TA Avg. Gap (↓) RTE (↓, min) UA MIAScore RA TA Avg. Gap (↓) RTE (↓, min)

Retrain 29.47±1.59 53.50±1.19 99.98±0.01 70.51±1.17 - 25.01 49.35±0.38 58.44±0.89 83.80±0.29 59.66±0.44 - 235.68

FT 2.55±0.03 10.59±0.27 99.95±0.01 75.95±0.05 18.83 1.95 29.23±0.29 37.02±0.33 82.51±0.20 60.96±0.23 11.03 18.61
GA 2.58±0.06 5.95±0.17 97.45±0.02 76.09±0.01 20.64 0.29 19.34±1.67 25.19±0.68 81.51±1.56 59.66±0.61 16.39 8.65
IU 15.71±5.19 18.69±4.12 84.65±5.29 62.20±4.17 18.05 1.20 60.61±0.01 83.67±0.15 16.36±0.37 23.44±0.29 35.04 7.30
BE 0.01±0.00 1.45±0.02 99.97±0.18 78.26±0.00 22.32 0.24 17.65±0.31 24.48±0.42 82.85±0.20 58.16±0.08 17.03 3.53

BS 2.20±1.21 10.73±9.37 98.22±1.26 70.23±1.67 18.02 0.34 19.47±0.69 25.45±0.15 81.23±0.74 56.75±0.80 17.09 5.63
ε1-sparse 8.19±0.38 19.11±0.52 88.39±0.31 80.26±0.16 23.75 1.00 35.73±0.35 41.98±0.73 78.19±0.05 61.44±0.12 9.37 23.40

RL 4.06±0.37 50.12±3.48 99.92±0.01 71.30±0.12 7.41 1.20 40.52±0.15 59.01±0.76 77.58±0.06 60.18±0.19 4.04 27.08
EU-k 1.73±0.06 3.33±0.07 98.44±0.05 59.92±0.43 22.51 1.96 33.55±0.35 22.19±1.75 81.41±0.27 58.08±0.21 14.01 20.02
CF-k 0.07±0.02 0.47±0.16 99.98±0.01 67.86±0.12 21.27 0.88 19.31±0.38 23.22±2.28 81.59±0.37 58.15±0.19 17.25 13.18

SCRUB 0.09±0.59 4.01±1.25 99.97±0.34 77.45±0.26 21.46 1.06 20.11±1.15 25.35±7.53 80.91±0.77 60.11±0.99 16.42 25.79
SalUN 35.23±0.32 89.39±0.46 99.53±0.04 64.26±0.58 12.10 3.33 40.39±0.15 52.32±10.67 77.60±0.11 60.30±0.31 5.48 34.42

UGradSL 18.36±0.17 40.71±0.13 98.38±0.03 68.23±0.16 6.95 0.55 40.73±0.71 37.58±0.21 67.30±0.04 50.38±0.77 13.82 9.47
UGradSL+ 21.69±0.59 49.47±1.25 99.87±0.34 73.60±0.26 3.75 3.52 53.06±1.27 59.46±1.01 81.38±0.75 52.52±0.84 3.57 25.93

5.2.2 RANDOM FORGETTING

We select data randomly from every class as Df , making sure all the classes are selected and the
size of Df is 10% of the Dtr. We report the results of CIFAR-100 and TinyImageNet in Table 2.
Compared with class-wise forgetting, it is harder to improve the MU performance and still keep the
RA and TA close to the retrained model. Benefit from the mix-gradient design, the proposed method
can make a good balance between forgetting Df and retaining the knowledge in Dr. The rest of the
experiments are given in Appendix E.4.

5.2.3 GROUP FORGETTING

Although group forgetting can be seen as part of random forgetting, we want to highlight its use
case here due to its practical impacts on e.g., facial attributes classification. The identities can be
regarded as the subgroup in the attributes.

CIFAR-10 and CIFAR-100 share the same image dataset while CIFAR-100 is labeled with 100
fine-grained classes and 20 coarse (super) classes (Krizhevsky et al., 2009; Chundawat et al., 2023).
We train a model to classify 20 super classes using CIFAR-100 training set. The setting of the
group forgetting within one coarse class is to remove one fine-grained class from one super class in
CIFAR-100 datasets. For example, there are five fine-grained fishes in the Fish coarse class and we
want to remove one fine-grained fish from the model. Different from class-wise forgetting, we do
not modify the testing set. We report the group forgetting in Table 3.

CelebA We select CelebA dataset as another real-world case and show the results in Table 3. We
train a binary classification model to classify whether the person is smile or not. There are 8192
identities in the training set and we select 1% of the identities (82 identities) as Df . Both smiling
and non-smiling images are in Df . This experiment has significant practical meaning, since the
bio-metric, such as identity and fingerprint, needs more privacy protection (Minaee et al., 2023).
Compared with baseline methods, our method can forget the identity information better without
forgetting too much remaining information in the dataset. This paradigm provides a practical usage
of MU and our methods provide a faster and more reliable way to improve the MU performance.

5.3 DISCUSSION

Influence Function in Deep Learning Influence function is proposed for the convex function. As
given in Section 3.2, we apply the influence function to the converged model, which can be regarded
as a local convex model. A plot of loss landscape of the retrained model ωr on CIFAR-10 dataset is
given in Figure 5 in Appendix.

MIA as a Proxy for ”Forgetfulness”. Given a model φ⋆, we can evaluate the degree of its general-
ization by running a membership inference attack on the model. In the context of the current work,
generalization is equivalent to the degree of ”forgetfulness” that the forgetting algorithm achieves.
Given the distribution of model response observations Af = A(φ⋆,Df) and Ate = A(φ⋆,Dte),
where A is an adversary and A = Af ∪Ate is the observation visible to A, one can get the degree of
generalization by analyzing the observations. In the context of MU, the most straightforward way is
to get the accuracy of A on the seen and unseen samples (Dte and Df respectively. This could be
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Table 3: Results of Group Forgetting on CIFAR-20 and CelebA. For CIFAR-20, the model is trained
to classify 20 super-classes, with Df representing one of five subclasses within a single super-class.
In the CelebA dataset, the model performs binary classification to determine whether a person is
smiling, with Df selected based on specific identities. The best comprehensive metrics are bold.

CIFAR-20 CelebA

UA MIAScore RA TA Avg. Gap (↓) RTE (↓, min) UA MIAScore RA TA Avg. Gap (↓) RTE (↓, min)

Retrain 13.33±1.64 28.47±0.75 99.94±0.01 81.23±0.13 - 27.35 6.74±0.26 9.77±1.49 94.38±0.49 91.78±0.33 - 258.69

FT 1.00±0.43 2.73±0.52 99.37±0.08 79.02±0.03 10.21 7.47 5.36±0.17 5.87±0.11 93.91±0.04 93.18±0.03 1.79 25.94
GA 87.93±2.92 88.93±2.33 81.46±0.77 64.07±0.95 42.68 0.11 6.00±0.16 5.76±0.14 92.86±0.13 92.52±0.08 1.70 1.20

IU 0.00±0.00 2.07±1.29 99.95±0.01 80.92±0.34 10.01 1.10 5.90±0.11 4.91±0.30 93.05±0.01 92.62±0.01 1.97 219.77
BE 89.07±1.39 91.73±1.75 76.36±0.92 60.17±0.92 45.91 0.33 11.50±0.80 48.41±8.86 88.37±0.81 88.07±0.81 13.28 48.91
BS 88.60±1.13 90.67±1.18 76.70±1.08 60.41±1.17 45.38 0.29 8.95±5.11 27.35±30.20 91.00±5.22 90.63±5.65 6.08 50.99

ε1-sparse 0.13±0.09 2.27±0.57 99.57±0.04 80.44±0.08 10.14 0.38 9.46±1.82 36.91±30.96 90.52±1.75 90.35±1.77 8.79 37.49
RL 56.93±3.24 98.60±0.29 99.92±0.01 80.28±0.05 28.67 0.37 8.31±0.43 28.55±16.74 91.85±0.51 91.62±0.42 5.76 40.09

EU-k 8.00±4.57 16.33±7.18 97.07±0.18 69.67±0.35 7.98 0.87 7.20±0.19 18.77±3.69 92.55±0.30 91.04±0.67 3.01 1.98
CF-k 0.00±0.00 0.80±0.40 99.98±0.01 77.46±0.03 11.20 1.21 5.46±0.32 17.26±0.08 94.45±0.04 92.72±0.04 2.45 1.60

SCRUB 0.00±0.00 1.13±0.34 99.93±0.01 81.05±0.20 10.21 0.30 8.78±0.77 13.37±5.22 91.21±0.86 90.65±0.86 2.49 70.13
SalUN 52.93±2.21 99.80±0.35 99.55±0.00 76.48±0.26 29.02 2.88 6.53±0.28 25.57±8.22 92.97±0.03 92.27±0.07 4.48 83.43

UGradSL 22.87±0.90 38.93±1.57 97.20±0.19 75.84±0.16 7.03 0.13 6.29±1.41 5.73±3.50 93.44±0.14 92.80±0.27 1.61 2.17
UGradSL+ 78.44±1.19 88.67±0.35 97.93±0.71 79.77±0.58 32.20 8.12 6.12±0.31 5.54±0.34 92.79±0.01 92.49±0.04 1.79 51.41

done by computing the (TP + TN)/(∣Df ∣ + ∣Dte∣), where the true positive (TP) predictions corre-
spond to ”seen” samples, and true negative (TN) predictions are ”unseen” samples. We conducted
the experiments on CIFAR-10 both for class-wise and random forgetting. The results are given in
Table 4, where Avg. Gap is calculated with additional MIA. We assume that the distribution of Dtr

and Dte should be the same. For class-wise forgetting, the additional MIA is almost 1 because Df

is a separate single class and the distribution of Df and Dte without the corresponding class are
totally different. For random forgetting, the additional MIA is almost 0.5 because Df is randomly
selected from Dtr and the distribution of Df and Dte should the same. The plots of loss distribu-
tion for random and class-wise forgetting are given in Figure 6 in the Appendix. In Table 4, the
proposed methods still outperform the other baseline methods, showing the robustness to the other
MIA auditing methods and the generalization capability in privacy preservation.

Difference between UGradSL and UGradSL+ Although two methods are similar in the math-
ematical formulation, there exists fundamental difference in their design and behavior. Compared
with UGradSL, UGradSL+ can be more stable and less sensitive due to its origin from FT. As shown
in the experiment results in the tables, UGradSL+ can always perform as top-tier methods. However,
the RTE of UGradSL+ would be higher. We present more analysis in Appendix E.8.

Table 4: Results of class-wise forgetting and random forgetting on CIFAR-10 with additional (add.)
MIA. The best comprehensive metrics are bold. Avg. Gap is calculated with additional MIA.

Class-wise Random

UA MIAScore RA TA Add. MIA Avg. Gap (↓) RTE (↓, min) UA MIAScore RA TA Add. MIA Avg. Gap (↓) RTE (↓, min)

Retrain 100.00±0.00 100.00±0.00 98.19±3.14 94.50±0.34 99.23±0.08 - 24.62 8.07±0.47 17.41±0.69 100.00±0.01 91.61±0.24 50.69±0.73 - 24.66

FT 22.71±5.31 79.21±8.60 99.82±0.09 94.13±0.14 99.09±0.07 20.04 2.02 1.10±0.19 4.06±0.41 99.83±0.03 93.70±0.10 54.05±0.31 5.19 1.58
GA 25.19±11.38 73.48±9.68 96.84±0.58 73.10±1.62 99.43±0.09 24.86 0.08 0.56±0.01 1.19±0.05 99.48±0.02 94.55±0.05 55.04±0.66 6.31 0.31

IU 83.92±1.16 92.59±1.41 98.77±0.12 92.64±0.23 99.71±0.07 5.28 1.18 17.51±2.19 21.39±1.70 83.28±2.44 78.13±2.85 53.98±0.55 9.37 1.18
BE 64.93±0.01 98.19±0.00 99.47±0.00 94.00±0.11 99.60±0.02 7.81 0.20 0.00±0.00 0.26±0.02 100.00±0.00 95.35±0.18 55.41±0.49 6.74 3.17
BS 93.69±4.32 99.82±0.04 97.69±1.29 92.89±1.26 99.56±0.10 1.79 0.29 0.48±0.07 1.16±0.04 99.47±0.01 94.58±0.03 55.88±0.72 6.51 1.41

ε1-sparse 100.00±0.00 100.00±0.00 97.86±1.29 96.11±1.26 99.02±0.15 0.43 1.00 2.80±0.37 18.59±3.48 99.97±0.01 94.08±0.12 52.17±0.87 2.09 1.98
RL 99.99±0.01 100.00±0.00 100.00±0.00 95.50±0.11 99.08±0.07 0.59 1.04 2.80±0.37 18.59±3.48 99.97±0.01 94.08±0.12 52.17±0.87 2.09 1.98

EU-k 100.00±0.00 100.00±0.00 100.00±0.00 75.04±1.10 99.89±0.18 4.39 1.45 0.00±0.00 0.50±0.30 99.99±0.01 77.21±1.21 61.88±1.33 10.12 1.58
CF-k 100.00±0.00 100.00±0.00 100.00±0.00 78.95±0.53 100.00±0.00 3.63 1.32 0.00±0.00 0.00±0.00 100.00±0.00 80.98±0.27 69.91±1.33 11.07 1.47

SCRUB 100.00±0.00 100.00±0.00 99.93±0.01 95.22±0.07 100.00±0.00 0.65 1.09 0.70±0.59 3.88±1.25 99.59±0.34 94.22±0.26 55.33±0.59 5.71 4.05
SalUN 90.74±13.91 100.00±0.00 98.20±0.34 80.49±1.21 98.63±0.59 4.78 2.22 46.95±0.15 86.33±1.29 97.75±0.42 77.22±0.77 69.95±0.12 28.74 2.42

UGradSL 94.99±4.35 97.95±1.78 95.47±4.08 86.78±5.68 99.94±0.01 3.64 0.22 5.87±0.51 13.33±0.70 98.82±0.28 92.17±0.23 53.54±0.97 1.78 0.45
UGradSL+ 100.00±0.00 100.00±0.00 99.26±0.01 94.29±0.07 100.00±0.00 0.41 3.07 6.03±0.17 10.65±0.13 99.79±0.03 93.64±0.16 52.29±0.85 2.53 3.07

The study of the Streisand effect Jansen & Martin (2015) and gradient analysis are given in Ap-
pendix E.6 and E.7, respectively.

6 CONCLUSIONS AND LIMITATIONS

We have proposed UGradSL, a plug-and-play, efficient, gradient-based MU method using smoothed
labels. Theoretical proofs and extensive numerical experiments have demonstrated the effectiveness
of the proposed method. Our work has limitations. For example, we desire an efficient way to find
the exact MU state in experiments and further explore the applications of MU to promote privacy
and fairness. Our method can be further validated and tested in other tasks, such as unlearning
recommendation systems, etc.
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