

# 000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 LABEL SMOOTHING IMPROVES MACHINE UNLEARNING

**Anonymous authors**

Paper under double-blind review

## ABSTRACT

The objective of machine unlearning (MU) is to eliminate previously learned data from a model. However, it can be challenging to strike a balance between computation cost and performance when using existing MU techniques. Taking inspiration from the influence of label smoothing on model confidence and differential privacy, we propose a simple gradient-based MU approach that uses an inverse process of label smoothing. This work introduces UGradSL, a simple, plug-and-play MU approach that uses smoothed labels. We provide theoretical analyses demonstrating why properly introducing label smoothing improves MU performance. We conducted extensive experiments on several datasets of various sizes and different modalities, demonstrating the effectiveness and robustness of our proposed method. UGradSL also shows close connection to improve the local differential privacy. The consistent improvement in MU performance is only at a marginal cost of additional computations. For instance, UGradSL improves over the gradient ascent MU baseline constantly on different unlearning tasks without sacrificing unlearning efficiency. A self-adaptive UGradSL is also given for simple parameter selection.

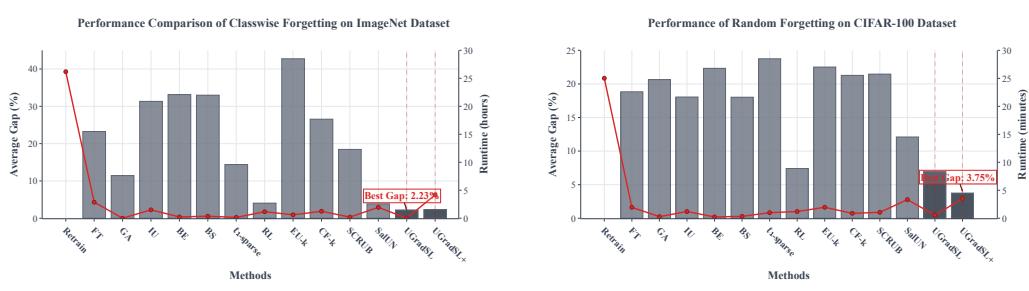
## 1 INTRODUCTION

Building a reliable ML model has become an important topic in this community. Machine unlearning (MU) is a task requiring to remove the learned data points from the model. The concept and the technology of MU enable researchers to delete sensitive or improper data in the training set to improve fairness, robustness, and privacy and get a better ML model for product usage (Chen et al., 2021; Sekhari et al., 2021). Retraining from scratch (Retrain) is a straightforward method when we want to remove the data from the model; yet it incurs prohibitive computation costs for large models due to computing resource constraints. Therefore, an efficient and effective MU method is desired.

The most straightforward MU approach should be retraining-based method (Bourtoule et al., 2021), meaning that we retrain the model from scratch without using the data to be forgotten. The method can guarantee privacy protection but the computational cost is intensive. Most existing works (Koh & Liang, 2017; Golatkar et al., 2020; Warnecke et al., 2021; Graves et al., 2021; Thudi et al., 2021; Izzo et al., 2021; Becker & Liebig, 2022; Jia et al., 2023) focus on *approximate MU* to achieve a balance between unlearning efficacy and computational complexity, making them more suitable for real-world applications, meaning that make the model unlearn the forgetting dataset without retraining the model.

We desire an approach that enjoys both high performance and fast speed. Since MU can be viewed as the inverse process of ML, we are motivated to think it would be a natural and efficient way to develop an unlearning process that imitates the reverse of gradient descent. Indeed, gradient ascent (GA) (Thudi et al., 2021) is one of the MU methods but unfortunately, it does not fully achieve the potential of this idea. One of the primary reasons is that once the model completes training, the gradient of well-memorized data that was learned during the process is diminishing (close to 0 loss) and therefore the effect of GA is rather limited.

Our approach is inspired by the celebrated idea of label smoothing (Szegedy et al., 2016). In the forward problem (gradient descent), the smoothed label proves to be able to improve the model’s generalization power. In our setting, we treat the smoothed label term as the regularization in the



(a) Performance of classwise forgetting on ImageNet. (b) Performance of random forgetting on CIFAR-100.

Figure 1: The performance comparison of our proposed methods and baseline methods using average gap and runtime (RTE), where lower values indicate better performance. Bars represent average gap while red dotted lines show RTE. Since retraining does not have gap by definition, only RTE is reported for this baseline and the bar is empty. For classwise forgetting on ImageNet, UGradSL achieves the lowest average gap (2.23%) with acceptable RTE increase. For random forgetting on CIFAR-100, UGradSL+ attains the best average gap (3.75%), while UGradSL demonstrates an optimal gap-runtime trade-off.

loss function, making the unlearning more controllable. Specifically, we show that GA with a “negative” label smoothing process (which effectively results in a standard label smoothing term in a descending fashion) can quickly improve the model’s deniability in the forgetting dataset, making the model behave close to the retrained model, which is exactly the goal of MU. We name our approach *UGradSL*, Unlearning using **G**radient-based **S**moothed **L**abels.

Our approach is a plug-and-play method that can improve the gradient-based MU performance consistently and does not hurt the performance of the remaining dataset and the testing dataset in a gradient-mixed way. At the same time, we provide a theoretical analysis of the benefits of our approach for the MU task. The core contributions of this paper are summarized as follows:

- We propose a lightweight tool to improve MU by joining the label smoothing and gradient ascent.
- We theoretically analyze the role of gradient ascent in MU and how negative label smoothing is able to boost MU performance.
- Extensive experiments in six datasets in different modalities and several unlearning paradigms regarding different MU metrics show the robustness and generalization of our method.
- We investigate the relationship between label smoothing and label differential privacy (LDP), showing that label smoothing can aid LDP.

## 2 RELATED WORK

**Machine Unlearning (MU)** was developed to address information leakage concerns related to private data after the completion of model training (Cao & Yang, 2015; Bourtoule et al., 2021; Nguyen et al., 2022), gained prominence with the advent of privacy-focused legislation (Hoofnagle et al., 2019; Pardau, 2018). One direct unlearning method involves retraining the model from scratch after removing the forgetting data from the original training set. It is computationally inefficient, prompting researchers to focus on developing approximate but much faster unlearning techniques (Becker & Liebig, 2022; Golatkar et al., 2020; Warnecke et al., 2021; Graves et al., 2021; Thudi et al., 2021; Izzo et al., 2021; Jia et al., 2023). Beyond unlearning methods, other research efforts aim to create probabilistic unlearning concepts (Ginart et al., 2019; Guo et al., 2019; Neel et al., 2021; Ullah et al., 2021; Sekhari et al., 2021) and facilitate unlearning with provable error guarantees, particularly in the context of differential privacy (DP) (Dwork et al., 2006; Ji et al., 2014; Hall et al., 2012). However, it typically necessitates stringent model and algorithmic assumptions, potentially compromising effectiveness against practical adversaries, such as membership inference attacks (Graves et al., 2021; Thudi et al., 2021). Additionally, the interest in MU has expanded to encompass various learning tasks and paradigms (Wang et al., 2022b; Liu et al., 2022b; Chen et al., 2022; Chien et al., 2022; Marchant et al., 2022; Di et al., 2022). These applications demonstrate the

108 growing importance of MU techniques in safeguarding privacy. The rest of the related work about  
 109 influence function label smoothing and differential privacy are given in Appendix.  
 110

### 111 3 LABEL SMOOTHING ENABLES FAST AND EFFECTIVE UNLEARNING

114 This section sets up the analysis and shows that properly performing label smoothing enables fast  
 115 and effective unlearning. The key ingredients of our approach are gradient ascent (GA) and label  
 116 smoothing (LS). We start with understanding how GA helps with unlearning and then move on to  
 117 show the power of LS. At the end of the section, we formally present our algorithm.  
 118

#### 119 3.1 PRELIMINARY

120 **Machine Unlearning** Consider a  $K$ -class classification problem on the training data distribution  
 121  $\mathcal{D}_{tr} = (\mathcal{X} \times \mathcal{Y})$ , where  $\mathcal{X}$  and  $\mathcal{Y}$  are feature and label space, respectively. Due to some privacy  
 122 regulations, there exists a forgetting data distribution  $\mathcal{D}_f$  that the model needs to unlearn. We denote  
 123 by  $\theta_{tr}$  the original model trained on  $\mathcal{D}_{tr}$  and  $\theta_u$  the model without the influence of  $\mathcal{D}_f$ . The goal of  
 124 machine unlearning (MU) is how to generate  $\theta_u$  from  $\theta_{tr}$ .  
 125

126 **Label Smoothing** In a  $K$ -class classification task, let  $\mathbf{y}_i$  denote the one-hot encoded vector form  
 127 of  $y_i \in \mathcal{Y}$ . Similar to Wei et al. (2021), we unify positive label smoothing (PLS) and negative  
 128 label smoothing (NLS) into generalized label smoothing (GLS). The random variable of smoothed  
 129 label  $\mathbf{y}_i^{\text{GLS}, \alpha}$  with smooth rate  $\alpha \in (-\infty, 1]$  is  $\mathbf{y}_i^{\text{GLS}, \alpha} = (1 - \alpha) \cdot \mathbf{y}_i + \frac{\alpha}{K} \cdot \mathbf{1} = [\frac{\alpha}{K}, \dots, \frac{\alpha}{K}, (1 + \frac{1-K}{K}\alpha), \frac{\alpha}{K}, \dots, \frac{\alpha}{K}]$ , where  $(1 + \frac{1-K}{K}\alpha)$  is the  $y_i$ -th element in the encoded label vector. When  $\alpha < 0$ ,  
 130 GLS becomes NLS.  
 131

#### 132 3.2 GRADIENT ASCENT CAN HELP GRADIENT-BASED MACHINE UNLEARNING

133 We discuss three sets of model parameters in the MU problem: 1)  $\theta_{tr}^*$ , the optimal parameters trained  
 134 from  $D_{tr} \sim \mathcal{D}_{tr}$ , 2)  $\theta_r^*$ , the optimal parameters trained from  $D_r \sim \mathcal{D}_r$ , such that  $D_r = D_{tr} \setminus D_f$  and  
 135 3)  $\theta_f^*$ , the optimal parameters unlearned using gradient ascent (GA) on  $D_f \sim \mathcal{D}_f$ . Note  $\theta_r^*$  can be  
 136 viewed as the *exact* MU model. The definitions of  $\theta_{tr}^*$  and  $\theta_r^*$  follow the standard empirical risk  
 137 minimization as  
 138

$$\theta^* = \arg \min_{\theta} \frac{1}{n} \sum_{z \in D} \ell(h_{\theta}, z). \quad (1)$$

139 and by using the influence function,  $\theta_f^*$  is  
 140

$$\theta_f^* = \arg \min_{\theta} \{R_{tr}(\theta) + \varepsilon \sum_{z^f \in D_f} \ell(h_{\theta}, z^f)\}$$

141 where  $R_{tr}(\theta) = \sum_{z^{tr} \in D_{tr}} \ell(h_{\theta}, z^{tr})$  and  $R_f(\theta) = \sum_{z^f \in D_f} \ell(h_{\theta}, z^f)$  are the empirical risk on  $D_{tr}$   
 142 and  $D_f$ , respectively. We use notations  $\ell(h_{\theta}, z)$  to specify the loss of an example  $z = (x, y)$  in the  
 143 dataset.  $h_{\theta}$  is a function  $h$  parameterized by  $\theta$ .  $\varepsilon$  is the weight of  $D_f$  compared with  $D_{tr}$ . The  
 144 optimal parameter can be found when the gradient is 0:  
 145

$$\nabla_{\theta} R_{tr}(\theta_f^*) + \varepsilon \sum_{z^f \in D_f} \nabla_{\theta} \ell(h_{\theta_f^*}, z^f) = 0. \quad (2)$$

146 Expanding Eq. (2) at  $\theta = \theta_{tr}^*$  using the Taylor series, we have  
 147

$$\theta_f^* - \theta_{tr}^* \approx - \left[ \sum_{z^{tr} \in D_{tr}} \nabla_{\theta}^2 \ell(h_{\theta_{tr}^*}, z^{tr}) + \varepsilon \sum_{z^f \in D_f} \nabla_{\theta}^2 \ell(h_{\theta_{tr}^*}, z^f) \right]^{-1} \left( \varepsilon \sum_{z^f \in D_f} \nabla_{\theta} \ell(h_{\theta_{tr}^*}, z^f) \right). \quad (3)$$

148 **Here, we ignore the Lagrange Remainder.** Similarly, we can expand  $\nabla_{\theta} R_{tr}(\theta_{tr}^*)$  at  $\theta = \theta_r^*$  and  
 149 derive  $\theta_r^* - \theta_{tr}^*$  as

$$\theta_r^* - \theta_{tr}^* \approx \left[ \sum_{z^{tr} \in D_{tr}} \nabla_{\theta}^2 \ell(h_{\theta_r^*}, z^{tr}) \right]^{-1} \left( \sum_{z^{tr} \in D_{tr}} \nabla_{\theta} \ell(h_{\theta_r^*}, z^{tr}) \right). \quad (4)$$

162 We ignore the average operation in the original definition of the influence function for computation  
 163 convenience because the size of  $D_{tr}$  or  $D_f$  are fixed. For GA, let  $\varepsilon = -1$  in Eq. (3) and we have  
 164

$$165 \quad \theta_r^* - \theta_f^* = \theta_r^* - \theta_{tr}^* - (\theta_f^* - \theta_{tr}^*) = \Delta\theta_r - \Delta\theta_f, \quad (5)$$

166 where  $(-\Delta\theta_r)$  represents the learning gap from  $\theta_r^*$  to  $\theta_{tr}^*$  while vector  $\Delta\theta_f$  represents how much  
 167 the model unlearns (backtracked progress) between  $\theta_f^*$  and  $\theta_{tr}^*$ . The details of  $\Delta\theta_r$  and  $\Delta\theta_f$  are  
 168 given in Eq. (17) in Appendix. Ideally, when  $\Delta\theta_r$  and  $\Delta\theta_f$  are exactly the same vectors, GA can  
 169 lead the model to the optimal retrained model since we have  $\theta_r^* = \theta_f^*$ . However, this condition is  
 170 hard to satisfy in practice. Thus, GA cannot always help MU. We summarize it in Theorem 1. **The  
 171 proof and the error analysis is given in Appendix C.1 and C.2.**

172 **Theorem 1.** *Given the approximation in Eq. (5), GA achieve exact MU if and only if*

$$174 \quad \sum_{z^f \in D_f} \nabla_{\theta} \ell(h_{\theta_r^*}, z^f) \approx -\mathbf{H}(\theta_r^*, \theta_{tr}^*) \cdot \sum_{z^f \in D_f} \nabla_{\theta} \ell(h_{\theta_{tr}^*}, z^f),$$

176  $\mathbf{H}(\theta_r^*, \theta_{tr}^*) = [\sum_{z^{tr} \in D_{tr}} \nabla_{\theta} \ell(h_{\theta_r^*}, z^{tr})] [\sum_{z^r \in D_r} \nabla_{\theta} \ell(h_{\theta_{tr}^*}, z^r)]^{-1}$ . Otherwise, there exist  $\theta_r^*, \theta_{tr}^*$  such  
 177 that GA can not help MU, i.e.,  $\|\theta_r^* - \theta_f^*\| > \|\theta_r^* - \theta_{tr}^*\|$ .  
 178

### 179 3.3 LABEL SMOOTHING IMPROVES MU

181 Practically, we cannot guarantee that GA always helps MU as shown in Theorem 1. To alleviate the  
 182 possible undesired effect of GA, we propose to use label smoothing as a plug-in module. Consider  
 183 the cross-entropy loss as an example. For GLS, the loss is calculated as  
 184

$$185 \quad \ell(h_{\theta}, z^{\text{GLS}, \alpha}) = \left(1 + \frac{1-K}{K}\alpha\right) \cdot \ell(h_{\theta}, (x, y)) + \frac{\alpha}{K} \sum_{y' \in \mathcal{Y} \setminus y} \ell(h_{\theta}, (x, y')), \quad (6)$$

187 where  $\ell(h_{\theta}, (x, y)) := \ell(h_{\theta}, z)$  and  $\ell(h_{\theta}, (x, y'))$  to denote the loss of an example when its label is  
 188 replaced with  $y'$ . Intuitively, Term  $\sum_{y' \in \mathcal{Y} \setminus y} \ell(h_{\theta}, (x, y'))$  in Eq. (6) leads to a state where the model  
 189 makes *wrong predictions on data in the forgetting dataset* with equally low confidence (Wei et al.,  
 190 2021; Lukasik et al., 2020).

191 With smoothed label given in Eq. (6), we show that there exists a vector  $\Delta\theta_n$  such that Eq. (5) can  
 192 be written as

$$194 \quad \theta_r^* - \theta_{f, \text{LS}}^* \approx \Delta\theta_r - \Delta\theta_f + \frac{1-K}{K}\alpha \cdot (\Delta\theta_n - \Delta\theta_f), \quad (7)$$

195 We leave the detailed form of  $\Delta\theta_n$  to Eq. (34). But intuitively,  $\Delta\theta_n$  captures the gradient influence  
 196 of the smoothed non-target label on the weight. We show the effect of NLS ( $\alpha < 0$ ) in Theorem 2  
 197 below and its proof is given in Appendix C.3.

199 **Theorem 2.** *Given the approximation in Eq. (5) and  $\langle \Delta\theta_r - \Delta\theta_f, \Delta\theta_n - \Delta\theta_f \rangle \leq 0$ , there exists an  
 200  $\alpha < 0$  such that NLS improves GA in unlearning, i.e.,  $\|\theta_r^* - \theta_{f, \text{NLS}}^*\| < \|\theta_r^* - \theta_f^*\|$ , where  $\theta_{f, \text{NLS}}^*$  is the  
 201 optimal parameters unlearned using GA and NLS, and  $\langle \cdot, \cdot \rangle$  the inner product of two vectors.*

202 Now we explain the above theorem intuitively. Vector  $\Delta\theta_f - \Delta\theta_r$  is the resultant of Newton's  
 203 direction of learning and unlearning. Vector  $\Delta\theta_f - \Delta\theta_n$  is resultant of Newton's direction of learning  
 204 non-target labels and unlearning the target label. When the condition  $\langle \Delta\theta_r - \Delta\theta_f, \Delta\theta_n - \Delta\theta_f \rangle \leq 0$   
 205 holds,  $\Delta\theta_n - \Delta\theta_f$  captures the effects of the smoothing term in the unlearning process. If we assume  
 206 that the exact MU model is able to fully unlearn an example, vector  $\Delta\theta_n$  contributes a direction that  
 207 pushes the model closer to the exact MU state by leading the model to give the wrong prediction.  
 208 The illustration of  $\langle \Delta\theta_r - \Delta\theta_f, \Delta\theta_n - \Delta\theta_f \rangle$  is shown in Figure 6 in the Appendix.

209 The effect of the smoothed term in gradient ascent (GA) with NLS is equivalent to performing a  
 210 gradient descent optimization with traditional defined (positive) LS. The gradient of the smoothed  
 211 term is exactly the same as  $\alpha/K \cdot \sum_{y' \in \mathcal{Y} \setminus y} \nabla \ell(h_{\theta}, (x, y'))$  in both cases.

### 213 3.4 LABEL SMOOTHING HELPS LOCAL DIFFERENTIAL PRIVACY

215 When  $\alpha < 0$ , the smoothing term will incur a positive effect in the gradient ascent (GA) step. Label  
 216 smoothing can also be viewed through the lens of privacy protection. This interpretation stems from

216 the fact that label smoothing reduces the likelihood of a specific label, thereby allowing it to better  
 217 blend in with other candidate labels. Particularly, we consider a local differential privacy (LDP)  
 218 guarantee for labels as follows.

219 **Definition 1** (Label-LDP). *A privacy protection mechanism  $\mathcal{M}$  satisfies  $\epsilon$ -Label-LDP, if for any  
 220 labels  $y, y', y^{\text{pred}} \in \mathcal{Y}$ ,  $\frac{\mathbb{P}(\mathcal{M}(y)=y^{\text{pred}})}{\mathbb{P}(\mathcal{M}(y')=y^{\text{pred}})} \leq e^\epsilon$ .*

223 The operational meaning of  $\mathcal{M}$  is to guarantee any two labels  $y$  and  $y'$  in the label space, after  
 224 privatization, have a similar likelihood to become any  $y^{\text{pred}}$  in the label space. That is, the prediction  
 225 on the forgetting dataset should be similar no matter what the ground-truth label is. The similarity is  
 226 measured by the privacy budget  $\epsilon \in [0, +\infty)$ . Smaller  $\epsilon$  implies stronger indistinguishability between  
 227  $y$  and  $y'$ , and hence, stricter privacy.

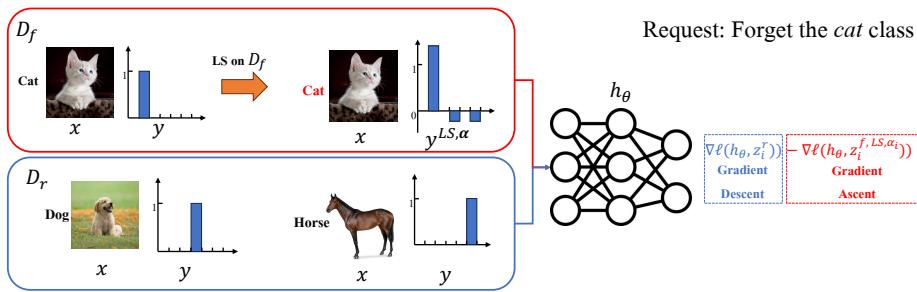
228 Recall  $R_{tr}(\theta) = \sum_{z^{tr} \in D_{tr}} \ell(h_\theta, z^{tr})$ . Denote by  $R_f^{\text{NLS}}(\theta; \alpha) = \sum_{z^{\text{LS}, \alpha} \in D_f} \ell(h_\theta, z^{\text{LS}, \alpha})$ ,  $\alpha < 0$  the  
 229 empirical risk of forgetting data with NLS. After MU with label smoothing on  $D_f$  by GA, the  
 230 resulting model can be seen as minimizing the risk  $\gamma_1 \cdot R_{tr}(\theta) - \gamma_2 \cdot R_f^{\text{NLS}}(\theta; \alpha)$ , which is a weighted  
 231 combination of the risk from two phases: 1) machine learning on  $D_{tr}$  with weight  $\gamma_1 > 0$  and 2)  
 232 machine unlearning on  $D_f$  with weight  $\gamma_2 > 0$ . By analyzing the risk, we have the following theorem  
 233 to show NLS in MU induces  $\epsilon$ -Label-LDP for the forgetting data.

234 **Theorem 3.** *Suppose  $\gamma_1 - \gamma_2(1 + \frac{1-K}{K}\alpha) > 0$ . MU using GA+NLS achieves  $\epsilon$ -Label-LDP on  $D_f$   
 235 where*

$$\epsilon = \left| \log \left( \frac{K}{\alpha} \left( 1 - \frac{\gamma_1}{\gamma_2} \right) + 1 - K \right) \right|, \alpha < 0.$$

238 Intuitively, when  $\alpha$  is more negative, the privacy of the labels in the forgetting dataset is better.  
 239 When  $\alpha \rightarrow (1 - \gamma_1/\gamma_2)$ , we have  $\epsilon \rightarrow 0$ , indicating the best label-LDP result, which is the goal of  
 240 MU. The theorem also warns that  $\alpha$  cannot be arbitrarily negative.

## 4 UGRADSL: A PLUG-AND-PLAY AND GRADIENT-MIXED MU METHOD



255 Figure 2: The framework of UGradSL. When there is an unlearning request, we can split the  $D_{tr}$   
 256 into  $D_f$  and  $D_r$ . We first apply label smoothing on  $z_i^f = \{x, y\} \in D_f$  to get  $z_i^{\text{LS}, \alpha_i} = \{x, y^{\text{LS}, \alpha_i}\}$ ,  
 257 where the smooth rate can be pre-defined or self-adaptive. In back-propagation process, we apply  
 258 gradient descent on the data  $z_i^r \in D_r$  and gradient ascent on the data smoothed  $D_f$ , which is the  
 259 mix-gradient way.

261 Given the effect of label smoothing on MU and LDP, we propose our method here. Compared  
 262 with retraining, Fine-Tune (FT) and GA are much more efficient as illustrated in Section 5 with  
 263 comparable or better MU performance. FT and GA focus on different perspectives of MU. FT is to  
 264 transfer the knowledge of the model from  $D_{tr}$  to  $D_r$  using gradient descent (GD) while GA is to  
 265 remove the knowledge of  $D_f$  from the model.

267 Due to the flexibility of label smoothing, our method is suitable for the gradient-based methods  
 268 including FT and GA, making our method a plug-and-play algorithm. **UGradSL is based on GA**  
 269 **while UGradSL+ is on FT. Compared with UGradSL, UGradSL+ will lead to a more comprehensive result but with a larger computation cost.**

---

270 **Algorithm 1** UGradSL+: A plug-and-play, efficient, gradient-based MU method using LS.  
 271 UGradSL can be specified by imposing the [dataset replacement](#) in the bracket. If  $\alpha$  is not given, the  
 272 algorithm turns to the self-adaptive version.

---

273 **Require:** A almost-converged model  $h_{\theta_{tr}}$  trained with  $D_{tr}$ . The retained dataset  $D_r$ . The forgetting  
 274 dataset  $D_f$ . Unlearning epochs  $E$ . GA ratio  $p$ . Distance threshold  $\beta$ . The optional smoothing  
 275 ratio  $\alpha$ .  
 276 **Ensure:** The unlearned model  $h_{\theta_f}$ .  
 277 1: Set the current epoch index as  $t_c \leftarrow 1$   
 278 2: **while**  $t_c < E$  **do**  
 279   3:   **while**  $D_r(\mathcal{D}_f)$  is not fully iterated **do**  
 280     4:     Sample a batch  $B_r$  in  $D_r$   
 281     5:     Sample a batch  $B_f$  from  $D_f$  where  $|B_f| = |B_r|$   
 282     6:     **if**  $\alpha$  is not given **then** ▷ The improved and self-adaptive version  
 283       7:       Extract the feature of  $z_i^r$  and  $z_j^f$  using  $h_{\theta_f}$ .  
 284       8:       Calculate the distance  $d(h_{\theta_f}(z_i^r), h_{\theta_f}(z_j^f))$  for each  $(z_i^r, z_j^f)$  pair where  $z_i^r \in B_r$   
 285        and  $z_j^f \in B_f$ .  
 286       9:       For each  $z_j^f$ , count the number  $c_j^f$  of  $z_i^r$  whose  $d(h_{\theta_f}(z_i^r), h_{\theta_f}(z_j^f)) < \beta$   
 287      10:      Calculate the smooth rate  $\alpha_j = c_j^f / |B_f|$  for each  $z_j^f \in B_f$   
 288      11:      **end if**  
 289     12:      Update the model using  $B_r$ ,  $B_f$ ,  $p$  and  $\alpha_i$  according to Eq. (8)  
 290     13:      **end while**  
 291   14:       $t_c \leftarrow t_c + 1$   
 292   15: **end while**  
 293

---

294  
 295  
 296

297 How to choose the smooth rate  $\alpha$  is worth discussion. Normally, the  $\alpha_i \in \alpha$  for every data point  
 298  $z_i^f \in D_f$  can be the same. To gain better performance, we improve UGradSL and UGradSL+  
 299 by taking every data point into consideration and assigning  $\alpha_i$  individually and adaptively based  
 300 on the distance  $d(h_{\theta_f}(z_i^r), h_{\theta_f}(z_j^f)) \in [0, 1]$  for each  $(z_i^r, z_j^f)$  pair. The intuition is that if an  
 301 instance  $z_i^f$  resides in a dense neighborhood of  $D_r$ , its inherent deniability is higher and therefore  
 302 the requirement for “forgetting” is lesser and should be reflected through a smaller  $\alpha_i$ . The algorithm  
 303 is presented in Algorithm 1 and the framework is illustrated in Figure 2. We leave the details of the  
 304 implementation, [complexity analysis](#) and the additional classification results in Appendix D.

305 Assuming the amount of retained data is significantly larger than the amount of data to be forgotten  
 306 ( $|D_r| > |D_f|$ ),  $D_f$  will be iterated several times when  $D_r$  is fully iterated once. We calculate the loss  
 307 using a gradient-mixed method as:

308  
 309

$$310 L(h_{\theta}, B_f^{\text{NLS}, \alpha}, B_r, p) = p \cdot \sum_{z^r \in B_r} \ell(h_{\theta}, z^r) - (1 - p) \cdot \sum_{z_i^f, \text{NLS}, \alpha_i \in B_f^{\text{NLS}, \alpha}} \ell(h_{\theta}, z_i^f, \text{NLS}, \alpha_i) \quad (8)$$

311  
 312  
 313

314 where  $p \in [0, 1]$  is used to balance GD and GA and the minus sign between two elements on  
 315 the RHS stands for the GA.  $\alpha$  is the vector for the smoothing rate of every data point  $z_i^f$ .  $h_{\theta}$  is  
 316 updated according to  $L$  in Eq. (8). UGradSL is similar to UGradSL+ and the dataset used is given  
 317 in bracket in Algorithm 1. The difference between UGradSL and UGradSL+ is the convergence  
 318 standard. UGradSL is based on the convergence of  $D_f$  while UGradSL+ is based on  $D_r$ . It should  
 319 be noted that the Hessian matrix in Theorem 1 is only used in the theoretical proof. In the practical  
 320 calculation, [there is no need to calculate the Hessian matrix](#). Thus, our method does not incur  
 321 substantially more computation but improves the MU performance on a large scale. We present  
 322 empirical evidence in Section 5. Compared with applying the label smoothing evenly, the improved  
 323 version takes the similarity of the data points between  $D_r$  and  $D_f$  into consideration and provides  
 324 self-adaptive smoothed labels for individual  $z_i^f$  as well as protects the LDP.

324 

## 5 EXPERIMENTS AND RESULTS

325 

### 5.1 EXPERIMENT SETUP

326 **Dataset and Model Selection** We validate our method using various datasets in different scales and  
 327 modality, including CIFAR-10, CIFAR-100 (Krizhevsky et al., 2009), SVHN (Netzer et al., 2011),  
 328 CelebA (Liu et al., 2015), Tiny-ImageNet, ImageNet (Deng et al., 2009) and 20 Newsgroups (Lang,  
 329 1995) datasets. For the vision and language dataset, we use ResNet-18 (He et al., 2016) and Bert  
 330 (Devlin et al., 2018) as the backbone model, respectively. Due to the page limit, the details of  
 331 the training parameter and the additional results of different models including VGG-16 (Simonyan  
 332 & Zisserman, 2014) and vision transformer (ViT) (Dosovitskiy et al., 2020) are given in the Ap-  
 333 pendix E.5.

334 **Baseline Methods** We compare the proposed methods with a series of baselines, including retrain,  
 335 fine-tuning (FT) (Warnecke et al., 2021; Golatkar et al., 2020), gradient ascent (GA) (Graves et al.,  
 336 2021; Thudi et al., 2021), unlearning based on the influence function (IU) (Izzo et al., 2021; Koh  
 337 & Liang, 2017), boundary unlearning (BU) (Chen et al., 2023),  $\ell_1$ -sparse (Jia et al., 2023), random  
 338 label (RL) (Hayase et al., 2020), SCRUB (Kurmanji et al., 2023), SalUN (Fan et al., 2023), EU- $k$ ,  
 339 CF- $k$  (Goel et al., 2022), **GLI and PABI**. The implementation details of these baselines are given in  
 340 Appendix E.1.

341 **Evaluation Metrics** The evaluation metrics we use follows Jia et al. (2023), where we jointly con-  
 342 sider unlearning accuracy (UA), membership inference attack (MIA), remaining accuracy (RA),  
 343 testing accuracy (TA), and run-time efficiency (RTE). UA is the ratio of incorrect prediction on  $D_f$ ,  
 344 showing the MU performance. TA is the accuracy used to evaluate the performance on the whole  
 345 testing set  $D_{te}$ , except for the class-wise forgetting because the task is to forget the specific class.  
 346 RA is the accuracy on  $D_r$ . To evaluate the effectiveness of "forgetting", we resort to the MIA met-  
 347 rics described in Jia et al. (2023); Fan et al. (2023), i.e. accuracy of an attack model against target  
 348 model  $\theta_u$ , such that the score is reported as true negative rate (TNR) on the forget set. Formally,  
 349 this is a global MIA score Yeom et al. (2018), which we rewrite as  $MIA_{Score} = 1 - \Pr(x_f | \theta_*)$ ,  
 350 where  $x_f \in D_f$  are the forget samples and  $\theta_*$  is the model under test. Overall, we use *Avg. Gap*  
 351 to quantifies the mean performance gap between each unlearning method and the retrained model  
 352 across all individual metrics above. A lower value indicates better performance.

353 **Unlearning Paradigm** We mainly consider three unlearning paradigms, including *class-wise forget-  
 354 ting*, *random forgetting*, and *group forgetting*. Class-wise forgetting is to unlearn the whole specific  
 355 class where we remove one class in  $D_r$  and the corresponding class in  $D_{te}$  completely. Random  
 356 forgetting across all classes is to unlearn data points belonging to all classes. As a special case of  
 357 random forgetting, *group forgetting* means that the model is trained to unlearn the group or sub-class  
 358 of the corresponding super-classes. A more detailed description is given in Appendix E.2.

361 

### 5.2 EXPERIMENT RESULTS

362 

#### 5.2.1 CLASS-WISE FORGETTING

363 We select the class randomly and run class-wise forgetting on five datasets. We report the results of  
 364 CIFAR-100 / ImageNet and CIFAR-10 in Table 1 and 3, respectively. The results of 20 NewsGroup  
 365 and SVHN is given in Appendix E.3. As we can see, UGradSL and UGradSL+ can boost the  
 366 performance of GA and FT, respectively without an increment in RTE or drop in TA and RA, leading  
 367 to comprehensive satisfaction in the main metrics, even in the randomness on  $D_f$ , showing the  
 368 robustness and flexibility of our methods in MU regardless of the size of the dataset and the data  
 369 modality. Moreover, in terms of *Avg. Gap*, the proposed method shows its similarity to the retrained  
 370 model.

371 

#### 5.2.2 RANDOM FORGETTING

372 We select data randomly from every class as  $D_f$ , making sure all the classes are selected and the  
 373 size of  $D_f$  is 10% of the  $D_{tr}$ . We report the results of CIFAR-100 and TinyImageNet in Table 2.  
 374 Compared with class-wise forgetting, it is harder to improve the MU performance and still keep the  
 375 RA and TA close to the retrained model. Benefit from the mix-gradient design, the proposed method

378 Table 1: Results of class-wise forgetting in CIFAR-100 and ImageNet. The best comprehensive  
379 metrics are **bold**.  
380

| 381 | CIFAR-100        |                             |                              |                              |                              |              |              | ImageNet                     |                              |                              |                              |              |             |  |
|-----|------------------|-----------------------------|------------------------------|------------------------------|------------------------------|--------------|--------------|------------------------------|------------------------------|------------------------------|------------------------------|--------------|-------------|--|
|     | Method           | UA                          | MIA_Score                    | RA                           | TA                           | Avg. Gap (↓) | RTE (↓, min) | UA                           | MIA_Score                    | RA                           | TA                           | Avg. Gap (↓) | RTE (↓, hr) |  |
|     |                  | 100.00 <sub>±0.00</sub>     | 100.00 <sub>±0.00</sub>      | 99.96 <sub>±0.01</sub>       | 71.10 <sub>±0.12</sub>       |              |              |                              | 100.00 <sub>±0.00</sub>      | 100.00 <sub>±0.00</sub>      | 71.62 <sub>±0.12</sub>       |              |             |  |
| 383 | FT               | 0.67 <sub>±0.38</sub>       | 27.20 <sub>±1.34</sub>       | 99.96 <sub>±0.01</sub>       | 71.46 <sub>±0.09</sub>       | 43.12        | 1.74         | 52.42 <sub>±15.81</sub>      | 55.86 <sub>±18.02</sub>      | 70.66 <sub>±2.54</sub>       | 69.25 <sub>±0.78</sub>       | 23.25        | 2.87        |  |
| 384 | GA               | 99.00 <sub>±0.57</sub>      | 99.07 <sub>±0.50</sub>       | 77.83 <sub>±2.07</sub>       | 53.73 <sub>±0.96</sub>       | 10.36        | <b>0.06</b>  | 81.23 <sub>±0.69</sub>       | 83.52 <sub>±2.08</sub>       | 66.00 <sub>±0.03</sub>       | 64.72 <sub>±0.02</sub>       | 11.43        | <b>0.01</b> |  |
| 385 | IU               | 2.07 <sub>±1.65</sub>       | 33.20 <sub>±8.83</sub>       | 99.96 <sub>±0.01</sub>       | 71.39 <sub>±0.19</sub>       | 41.26        | 1.24         | 33.54 <sub>±19.46</sub>      | 49.83 <sub>±21.57</sub>      | 66.25 <sub>±1.09</sub>       | 66.28 <sub>±1.19</sub>       | 31.32        | 1.51        |  |
| 386 | BE               | 99.07 <sub>±0.34</sub>      | 99.00 <sub>±0.49</sub>       | 70.81 <sub>±2.69</sub>       | 49.85 <sub>±1.32</sub>       | 13.08        | 0.55         | 98.62 <sub>±0.58</sub>       | 0.15 <sub>±0.11</sub>        | 53.13 <sub>±0.27</sub>       | 56.72 <sub>±0.31</sub>       | 33.14        | 0.24        |  |
| 387 | BS               | 98.87 <sub>±0.57</sub>      | 98.73 <sub>±0.68</sub>       | 71.16 <sub>±2.60</sub>       | 50.03 <sub>±1.36</sub>       | 13.06        | 0.77         | 98.89 <sub>±0.50</sub>       | 0.13 <sub>±0.12</sub>        | 53.35 <sub>±0.41</sub>       | 56.93 <sub>±0.03</sub>       | 32.98        | 0.37        |  |
| 388 | $\ell_1$ -sparse | 98.97 <sub>±1.03</sub>      | 100.00 <sub>±0.00</sub>      | 86.99 <sub>±0.76</sub>       | 79.08 <sub>±0.75</sub>       | 4.56         | 0.15         | 100.00 <sub>±0.00</sub>      | 100.00 <sub>±0.00</sub>      | 39.01 <sub>±1.08</sub>       | 44.62 <sub>±0.91</sub>       | 14.39        | 0.16        |  |
| 389 | RL               | 99.80 <sub>±0.38</sub>      | 100.00 <sub>±0.00</sub>      | 99.97 <sub>±0.00</sub>       | 77.31 <sub>±0.35</sub>       | 0.67         | 1.10         | 100.00 <sub>±0.00</sub>      | 100.00 <sub>±0.00</sub>      | 62.06 <sub>±4.19</sub>       | 62.93 <sub>±0.45</sub>       | 4.05         | 1.17        |  |
| 390 | EU- <i>k</i>     | 100.00 <sub>±0.00</sub>     | 0.00 <sub>±0.00</sub>        | 63.79 <sub>±1.10</sub>       | 43.90 <sub>±0.73</sub>       | 40.84        | 4.50         | 100.00 <sub>±0.00</sub>      | 0.00 <sub>±0.00</sub>        | 32.99 <sub>±0.07</sub>       | 37.19 <sub>±0.15</sub>       | 42.75        | 0.62        |  |
| 391 | CF- <i>k</i>     | 100.00 <sub>±0.00</sub>     | 0.00 <sub>±0.00</sub>        | 94.88 <sub>±0.46</sub>       | 61.32 <sub>±1.17</sub>       | 28.72        | 3.01         | 99.79 <sub>±0.36</sub>       | 0.00 <sub>±0.00</sub>        | 66.84 <sub>±0.00</sub>       | 68.35 <sub>±0.28</sub>       | 26.55        | 1.25        |  |
| 392 | SCRUB            | 30.07 <sub>±49.48</sub>     | 66.60 <sub>±29.19</sub>      | 99.98 <sub>±0.00</sub>       | 77.97 <sub>±0.56</sub>       | 26.62        | 1.07         | 56.59 <sub>±2.17</sub>       | 75.59 <sub>±1.19</sub>       | 66.98 <sub>±0.11</sub>       | 68.24 <sub>±0.07</sub>       | 18.45        | 0.21        |  |
| 393 | SalUN            | 99.90 <sub>±0.01</sub>      | 99.96 <sub>±0.00</sub>       | 99.98 <sub>±0.00</sub>       | 75.02 <sub>±0.10</sub>       | 1.02         | 2.15         | 100.00 <sub>±0.00</sub>      | 100.00 <sub>±0.00</sub>      | 63.00 <sub>±5.03</sub>       | 62.72 <sub>±0.31</sub>       | 3.87         | 1.95        |  |
| 394 | GLI              | <b>39.78<sub>±7.4</sub></b> | <b>69.63<sub>±7.44</sub></b> | <b>95.57<sub>±2.11</sub></b> | <b>69.63<sub>±6.00</sub></b> | <b>24.11</b> | <b>1.03</b>  | <b>53.38<sub>±2.96</sub></b> | <b>73.31<sub>±3.22</sub></b> | <b>73.01<sub>±0.11</sub></b> | <b>63.23<sub>±0.06</sub></b> | <b>20.26</b> | <b>3.79</b> |  |
| 395 | PABI             | 100 <sub>±0.00</sub>        | 100.00 <sub>±0.00</sub>      | 98.94 <sub>±0.16</sub>       | 73.41 <sub>±0.09</sub>       | <b>0.83</b>  | <b>20.09</b> | -                            | -                            | -                            | -                            | -            | -           |  |
| 396 | UGradSL          | 66.59 <sub>±0.90</sub>      | 90.96 <sub>±5.05</sub>       | 95.45 <sub>±4.12</sub>       | 70.34 <sub>±1.78</sub>       | 12.87        | 0.07         | 100.00 <sub>±0.00</sub>      | 100.00 <sub>±0.00</sub>      | 76.91 <sub>±1.82</sub>       | 65.94 <sub>±1.35</sub>       | <b>2.23</b>  | <b>0.01</b> |  |
| 397 | UGradSL+         | 100.00 <sub>±0.00</sub>     | 100.00 <sub>±0.00</sub>      | 98.44 <sub>±0.62</sub>       | 74.12 <sub>±0.70</sub>       | <b>0.57</b>  | 3.37         | 100.00 <sub>±0.00</sub>      | 100.00 <sub>±0.00</sub>      | 78.16 <sub>±0.07</sub>       | 66.84 <sub>±0.06</sub>       | 2.32         | 4.19        |  |

391 Table 2: Results of random forgetting in CIFAR-100 and Tiny-ImageNet. The best comprehensive  
392 metrics are **bold**.  
393

| 394 | CIFAR-100        |                              |                              |                              |                              |              |              | Tiny-ImageNet                |                              |                              |                              |                        |              |  |
|-----|------------------|------------------------------|------------------------------|------------------------------|------------------------------|--------------|--------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------|--------------|--|
|     | Method           | UA                           | MIA_Score                    | RA                           | TA                           | Avg. Gap (↓) | RTE (↓, min) | UA                           | MIA_Score                    | RA                           | TA                           | Avg. Gap (↓)           | RTE (↓, min) |  |
|     |                  | 29.47 <sub>±1.59</sub>       | 53.50 <sub>±1.19</sub>       | 99.98 <sub>±0.01</sub>       | 70.51 <sub>±1.17</sub>       |              |              |                              | 49.35 <sub>±0.38</sub>       | 58.44 <sub>±0.89</sub>       | 83.80 <sub>±0.29</sub>       | 59.66 <sub>±0.44</sub> |              |  |
| 395 | FT               | 2.55 <sub>±0.03</sub>        | 10.59 <sub>±0.27</sub>       | 99.95 <sub>±0.01</sub>       | 75.95 <sub>±0.05</sub>       | 18.83        | 1.95         | 29.23 <sub>±0.29</sub>       | 37.02 <sub>±0.33</sub>       | 82.51 <sub>±0.20</sub>       | 60.96 <sub>±0.23</sub>       | 11.03                  | 18.61        |  |
| 396 | GA               | 2.58 <sub>±0.06</sub>        | 5.95 <sub>±0.17</sub>        | 97.45 <sub>±0.02</sub>       | 76.09 <sub>±0.01</sub>       | 20.64        | <b>0.29</b>  | 19.34 <sub>±1.67</sub>       | 25.19 <sub>±0.68</sub>       | 81.51 <sub>±1.56</sub>       | 59.66 <sub>±0.61</sub>       | 16.39                  | 8.65         |  |
| 397 | IU               | 15.71 <sub>±1.59</sub>       | 18.69 <sub>±4.12</sub>       | 84.65 <sub>±5.29</sub>       | 62.20 <sub>±4.17</sub>       | 18.05        | 1.20         | 60.61 <sub>±0.00</sub>       | 83.67 <sub>±0.47</sub>       | 16.36 <sub>±0.37</sub>       | 23.44 <sub>±0.29</sub>       | 35.04                  | 7.30         |  |
| 398 | BE               | 0.01 <sub>±0.00</sub>        | 1.45 <sub>±0.02</sub>        | 99.97 <sub>±0.18</sub>       | 78.26 <sub>±0.00</sub>       | 22.32        | 0.24         | 17.65 <sub>±0.31</sub>       | 24.48 <sub>±0.42</sub>       | 82.85 <sub>±0.20</sub>       | 58.16 <sub>±0.08</sub>       | 17.03                  | <b>3.53</b>  |  |
| 399 | BS               | 2.20 <sub>±1.21</sub>        | 10.73 <sub>±9.37</sub>       | 98.22 <sub>±1.26</sub>       | 70.23 <sub>±1.67</sub>       | 18.02        | 0.34         | 19.47 <sub>±0.69</sub>       | 25.45 <sub>±0.15</sub>       | 81.23 <sub>±0.74</sub>       | 56.75 <sub>±0.80</sub>       | 17.09                  | 5.63         |  |
| 400 | $\ell_1$ -sparse | 8.19 <sub>±38.38</sub>       | 19.11 <sub>±0.52</sub>       | 88.39 <sub>±0.31</sub>       | 80.26 <sub>±0.16</sub>       | 23.75        | 1.00         | 35.73 <sub>±0.35</sub>       | 41.98 <sub>±0.73</sub>       | 78.19 <sub>±0.00</sub>       | 61.44 <sub>±0.12</sub>       | 9.37                   | 23.40        |  |
| 401 | RL               | 4.06 <sub>±0.37</sub>        | 50.12 <sub>±3.48</sub>       | 99.92 <sub>±0.01</sub>       | 71.30 <sub>±0.73</sub>       | 7.41         | 1.20         | 40.52 <sub>±0.15</sub>       | 59.01 <sub>±0.69</sub>       | 77.58 <sub>±0.00</sub>       | 60.18 <sub>±0.19</sub>       | 4.04                   | 27.08        |  |
| 402 | EU- <i>k</i>     | 1.73 <sub>±0.06</sub>        | 3.33 <sub>±0.07</sub>        | 98.44 <sub>±0.05</sub>       | 59.92 <sub>±0.43</sub>       | 22.51        | 1.96         | 33.55 <sub>±0.35</sub>       | 22.19 <sub>±1.75</sub>       | 81.41 <sub>±0.27</sub>       | 58.08 <sub>±0.21</sub>       | 14.01                  | 20.02        |  |
| 403 | CF- <i>k</i>     | 0.07 <sub>±0.02</sub>        | 0.47 <sub>±0.16</sub>        | 99.98 <sub>±0.01</sub>       | 67.86 <sub>±0.12</sub>       | 21.27        | 0.88         | 19.31 <sub>±0.38</sub>       | 23.22 <sub>±2.28</sub>       | 81.59 <sub>±0.37</sub>       | 58.15 <sub>±0.19</sub>       | 17.25                  | 13.18        |  |
| 404 | SCRUB            | 0.09 <sub>±0.59</sub>        | 4.01 <sub>±1.25</sub>        | 99.97 <sub>±0.34</sub>       | 77.45 <sub>±0.26</sub>       | 21.46        | 1.06         | 20.11 <sub>±1.15</sub>       | 25.35 <sub>±7.53</sub>       | 80.91 <sub>±0.77</sub>       | 60.11 <sub>±0.99</sub>       | 16.42                  | 25.79        |  |
| 405 | SalUN            | 35.23 <sub>±0.32</sub>       | 89.39 <sub>±0.46</sub>       | 99.53 <sub>±0.04</sub>       | 64.26 <sub>±0.58</sub>       | 12.10        | 3.33         | 40.39 <sub>±0.15</sub>       | 52.32 <sub>±10.67</sub>      | 77.60 <sub>±0.11</sub>       | 60.30 <sub>±0.31</sub>       | 5.48                   | 34.42        |  |
| 406 | GLI              | <b>2.88<sub>±1.51</sub></b>  | <b>9.35<sub>±2.36</sub></b>  | <b>97.16<sub>±1.48</sub></b> | <b>72.04<sub>±0.30</sub></b> | <b>18.78</b> | <b>0.63</b>  | <b>38.40<sub>±1.74</sub></b> | <b>67.87<sub>±2.20</sub></b> | <b>98.37<sub>±0.27</sub></b> | <b>61.53<sub>±0.30</sub></b> | <b>9.21</b>            | <b>22.92</b> |  |
| 407 | PABI             | <b>28.33<sub>±0.74</sub></b> | <b>39.31<sub>±0.88</sub></b> | <b>99.14<sub>±0.01</sub></b> | <b>72.00<sub>±0.20</sub></b> | <b>4.42</b>  | <b>19.10</b> | <b>99.90<sub>±0.00</sub></b> | <b>66.46<sub>±5.83</sub></b> | <b>50.50<sub>±0.00</sub></b> | <b>0.00<sub>±0.00</sub></b>  | <b>50.38</b>           | <b>54.58</b> |  |
| 408 | UGradSL          | 18.36 <sub>±0.17</sub>       | 47.01 <sub>±0.13</sub>       | 98.38 <sub>±0.03</sub>       | 68.23 <sub>±0.16</sub>       | 6.95         | 0.55         | 40.73 <sub>±0.71</sub>       | 37.58 <sub>±0.21</sub>       | 67.30 <sub>±0.04</sub>       | 50.38 <sub>±0.77</sub>       | 13.82                  | 9.47         |  |
| 409 | UGradSL+         | 21.69 <sub>±0.59</sub>       | 49.47 <sub>±1.25</sub>       | 99.87 <sub>±0.34</sub>       | 73.60 <sub>±0.26</sub>       | <b>3.75</b>  | 3.52         | 53.06 <sub>±1.27</sub>       | 59.46 <sub>±1.01</sub>       | 81.38 <sub>±0.75</sub>       | 52.52 <sub>±0.84</sub>       | <b>3.57</b>            | 25.93        |  |

406 can make a good balance between forgetting  $D_f$  and retaining the knowledge in  $D_r$ . The rest of the  
407 experiments are given in Appendix E.4.

408 

### 5.2.3 GROUP FORGETTING

409 Although group forgetting can be seen as part of random forgetting, we want to highlight its use  
410 case here due to its practical impacts on *e.g.*, facial attributes classification. The identities can be  
411 regarded as the subgroup in the attributes.

412 **CIFAR-10 and CIFAR-100** share the same image dataset while CIFAR-100 is labeled with 100  
413 fine-grained classes and 20 coarse (super) classes (Krizhevsky et al., 2009; Chundawat et al., 2023).  
414 We train a model to classify 20 super classes using CIFAR-100 training set. The setting of the  
415

416 Table 3: Results of Group Forgetting on CIFAR-20 and CelebA. For CIFAR-20, the model is trained  
417 to classify 20 super-classes, with  $D_f$  representing one of five subclasses within a single super-class.  
418 In the CelebA dataset, the model performs binary classification to determine whether a person is  
419 smiling, with  $D_f$  selected based on specific identities. The best comprehensive metrics are **bold**.

| 423 | CIFAR-20 |                        |                        |                        |                        |              |              | CelebA                |                       |                        |                        |              |              |  |
|-----|----------|------------------------|------------------------|------------------------|------------------------|--------------|--------------|-----------------------|-----------------------|------------------------|------------------------|--------------|--------------|--|
|     | Method   | UA                     | MIA_Score              | RA                     | TA                     | Avg. Gap (↓) | RTE (↓, min) | UA                    | MIA_Score             | RA                     | TA                     | Avg. Gap (↓) | RTE (↓, min) |  |
|     |          | 13.33 <sub>±1.64</sub> | 28.47 <sub>±0.75</sub> | 99.94 <sub>±0.01</sub> | 81.23 <sub>±0.13</sub> |              |              |                       | 9.77 <sub>±1.49</sub> | 94.38 <sub>±0.49</sub> | 91.78 <sub>±0.33</sub> |              |              |  |
| 424 | FT       | 1.00 <sub>±0.43</sub>  | 2.73 <sub>±0.52</sub>  | 99.37 <sub>±0.08</sub> | 79.02 <sub>±0.03</sub> | 10.21        | 7.47         | 5.36 <sub>±0.17</sub> | 5.87 <sub>±0.11</sub> | 93.91 <sub>±0.00</sub> | 93.18 <sub>±0.03</sub> | 1.79         | 25.94        |  |
| 425 | GA       | 87.93 <sub>±2.92</sub> | 88.93 <sub>±2.23</sub> | 81.46 <sub>±0.77</sub> | 64.07 <sub>±0.95</sub> | 42.68        | <b>0.11</b>  | 6.00 <sub>±0.16</sub> | 5.76 <sub>±0.14</sub> | 92.86 <sub>±0.13</sub> | 92.52 <sub>±0.08</sub> | 1.70         | <b>1.20</b>  |  |
| 426 | IU       | 0.00 <sub>±0.00</sub>  | 2.07 <sub>±1.29</sub>  | 99.95 <sub>±0.01</sub> | 80.92 <sub>±0.34</sub> | 10.01        | 1.10         | 5.90 <sub>±0.11</sub> | 4.91 <sub>±0.30</sub> | 93.05 <sub>±0.00</sub> | 92.62 <sub>±0.01</sub> |              |              |  |

group forgetting within one coarse class is to remove one fine-grained class from one super class in CIFAR-100 datasets. For example, there are five fine-grained fishes in the *Fish* coarse class and we want to remove one fine-grained fish from the model. Different from class-wise forgetting, we do not modify the testing set. We report the group forgetting in Table 3.

**CelebA** We select CelebA dataset as another real-world case and show the results in Table 3. We train a binary classification model to classify whether the person is smile or not. There are 8192 identities in the training set and we select 1% of the identities (82 identities) as  $D_f$ . Both smiling and non-smiling images are in  $D_f$ . This experiment has significant practical meaning, since the bio-metric, such as identity and fingerprint, needs more privacy protection (Minaee et al., 2023). Compared with baseline methods, our method can forget the identity information better without forgetting too much remaining information in the dataset. This paradigm provides a practical usage of MU and our methods provide a faster and more reliable way to improve the MU performance.

### 5.3 ABLATION STUDIES

To evaluate the robustness of our method, we conduct ablation studies on the forgetting set size, the GA ratio  $p$ , and the smoothing rate  $\alpha$ . For the forgetting set size, we do the experiments on CIFAR-10 and CIFAR-100. The results in Tables 17 and 18 show that our method is consistently robust to the size of  $D_f$  and always outperforms the other baselines. For the trade-off parameter  $p$ , Table 19 indicates that pure GA is unstable, and its performance becomes more stable as more GA steps are combined with our method. In practice, we therefore choose  $p > 0.9$  to stabilize performance while still leveraging the effect of GA for unlearning. We further study random forgetting (10%) on CIFAR-10, fixing  $\alpha = -0.4$  for both UGradSL and UGradSL+, and sweep  $p$  in  $[0.8, 1.0]$  with a step size of 0.01. The resulting UA, MIA, RA, TA, and Avg. Gap curves in Figure 3 show that our methods are relatively stable with respect to  $p$ . For the smoothing rate  $\alpha$ , we fix  $p = 0.9$  and vary  $\alpha$  from -0.9 to -0.1 with a step size of 0.1. The results in Figure 4 demonstrate that both UGradSL and UGradSL+ remain stable. Overall, these ablations show that our methods are robust to the choice of hyperparameters.

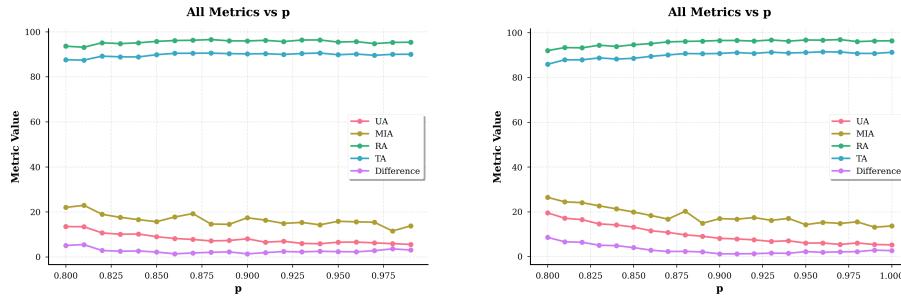


Figure 3: Ablation study on the GA ratio  $p$  for random forgetting (10%) on CIFAR-10. Our methods (left: UGradSL, right: UGradSL+) remain relatively stable across a wide range of  $p$  under multiple evaluation metrics.

Table 4: Results of class-wise forgetting and random forgetting on CIFAR-10 with additional (add.) MIA. The best comprehensive metrics are **bold**. Avg. Gap is calculated with additional MIA.

|                 | Class-wise              |                         |                         |                        |                         |              |              |                        | Random                 |                         |                        |                        |              |              |  |  |
|-----------------|-------------------------|-------------------------|-------------------------|------------------------|-------------------------|--------------|--------------|------------------------|------------------------|-------------------------|------------------------|------------------------|--------------|--------------|--|--|
|                 | UA                      | MIA Score               | RA                      | TA                     | Add. MIA                | Avg. Gap (i) | RTE (i, min) | UA                     | MIA Score              | RA                      | TA                     | Add. MIA               | Avg. Gap (i) | RTE (i, min) |  |  |
| Retrain         | 100.00 <sub>±0.00</sub> | 100.00 <sub>±0.00</sub> | 98.19 <sub>±3.14</sub>  | 94.50 <sub>±0.34</sub> | 99.23 <sub>±0.08</sub>  | -            | 24.62        | 8.07 <sub>±0.47</sub>  | 17.41 <sub>±0.69</sub> | 100.00 <sub>±0.01</sub> | 91.61 <sub>±0.24</sub> | 50.69 <sub>±0.73</sub> | -            | 24.66        |  |  |
| FT              | 22.71 <sub>±5.31</sub>  | 79.21 <sub>±8.60</sub>  | 99.82 <sub>±0.09</sub>  | 94.13 <sub>±0.14</sub> | 99.09 <sub>±0.07</sub>  | 20.04        | 2.02         | 11.10 <sub>±0.19</sub> | 4.06 <sub>±0.41</sub>  | 99.83 <sub>±0.03</sub>  | 93.70 <sub>±0.10</sub> | 54.05 <sub>±0.31</sub> | 5.19         | 1.58         |  |  |
| GA              | 25.19 <sub>±11.38</sub> | 73.48 <sub>±9.68</sub>  | 96.84 <sub>±0.58</sub>  | 73.10 <sub>±1.62</sub> | 99.43 <sub>±0.09</sub>  | 24.86        | <b>0.08</b>  | 1.56 <sub>±0.01</sub>  | 1.19 <sub>±0.05</sub>  | 99.48 <sub>±0.02</sub>  | 94.55 <sub>±0.05</sub> | 55.04 <sub>±0.60</sub> | 6.31         | <b>0.31</b>  |  |  |
| IU              | 83.92 <sub>±1.16</sub>  | 92.59 <sub>±1.41</sub>  | 98.77 <sub>±0.12</sub>  | 92.64 <sub>±0.23</sub> | 99.71 <sub>±0.07</sub>  | 5.28         | 1.18         | 17.51 <sub>±0.19</sub> | 21.39 <sub>±0.05</sub> | 83.28 <sub>±2.44</sub>  | 78.13 <sub>±2.85</sub> | 53.98 <sub>±0.55</sub> | 9.37         | 1.18         |  |  |
| BE              | 64.93 <sub>±0.01</sub>  | 98.19 <sub>±0.00</sub>  | 99.47 <sub>±0.00</sub>  | 94.00 <sub>±0.11</sub> | 99.60 <sub>±0.02</sub>  | 7.81         | 0.20         | 0.00 <sub>±0.00</sub>  | 0.26 <sub>±0.02</sub>  | 100.00 <sub>±0.00</sub> | 95.35 <sub>±0.18</sub> | 55.41 <sub>±0.49</sub> | 6.74         | 3.17         |  |  |
| BS              | 93.69 <sub>±4.32</sub>  | 99.82 <sub>±0.04</sub>  | 97.69 <sub>±1.29</sub>  | 92.89 <sub>±1.26</sub> | 99.56 <sub>±0.10</sub>  | 1.79         | 0.29         | 0.48 <sub>±0.07</sub>  | 1.16 <sub>±0.04</sub>  | 99.47 <sub>±0.01</sub>  | 94.58 <sub>±0.03</sub> | 55.88 <sub>±0.72</sub> | 6.51         | 1.41         |  |  |
| $\ell_1$ -spars | 100.00 <sub>±0.00</sub> | 100.00 <sub>±0.00</sub> | 97.86 <sub>±1.29</sub>  | 96.11 <sub>±1.26</sub> | 99.02 <sub>±0.15</sub>  | 0.43         | 1.00         | 2.80 <sub>±0.37</sub>  | 18.59 <sub>±3.48</sub> | 99.97 <sub>±0.01</sub>  | 94.08 <sub>±0.12</sub> | 52.17 <sub>±0.87</sub> | 2.09         | 1.98         |  |  |
| RL              | 99.99 <sub>±0.01</sub>  | 100.00 <sub>±0.00</sub> | 100.00 <sub>±0.00</sub> | 95.50 <sub>±0.11</sub> | 99.08 <sub>±0.07</sub>  | 0.59         | 1.04         | 2.80 <sub>±0.37</sub>  | 18.59 <sub>±3.48</sub> | 99.97 <sub>±0.01</sub>  | 94.08 <sub>±0.12</sub> | 52.17 <sub>±0.87</sub> | 2.09         | 1.98         |  |  |
| EU- <i>k</i>    | 100.00 <sub>±0.00</sub> | 100.00 <sub>±0.00</sub> | 100.00 <sub>±0.00</sub> | 75.04 <sub>±1.10</sub> | 99.89 <sub>±0.18</sub>  | 4.39         | 1.45         | 0.00 <sub>±0.00</sub>  | 0.50 <sub>±0.03</sub>  | 99.99 <sub>±0.01</sub>  | 77.21 <sub>±1.21</sub> | 61.88 <sub>±1.33</sub> | 10.12        | 1.58         |  |  |
| CF- <i>k</i>    | 100.00 <sub>±0.00</sub> | 100.00 <sub>±0.00</sub> | 100.00 <sub>±0.00</sub> | 78.95 <sub>±0.53</sub> | 100.00 <sub>±0.00</sub> | 3.63         | 1.32         | 0.00 <sub>±0.00</sub>  | 0.00 <sub>±0.00</sub>  | 100.00 <sub>±0.00</sub> | 80.98 <sub>±0.27</sub> | 69.91 <sub>±1.33</sub> | 11.07        | 1.47         |  |  |
| SCRUB           | 100.00 <sub>±0.00</sub> | 100.00 <sub>±0.00</sub> | 99.93 <sub>±0.03</sub>  | 95.22 <sub>±0.07</sub> | 100.00 <sub>±0.00</sub> | 0.65         | 1.09         | 0.70 <sub>±0.59</sub>  | 3.88 <sub>±1.25</sub>  | 99.59 <sub>±0.32</sub>  | 94.22 <sub>±0.26</sub> | 55.33 <sub>±0.59</sub> | 5.71         | 4.05         |  |  |
| SalUN           | 90.74 <sub>±13.91</sub> | 100.00 <sub>±0.00</sub> | 98.20 <sub>±3.34</sub>  | 80.49 <sub>±1.21</sub> | 98.63 <sub>±0.59</sub>  | 4.78         | 2.22         | 46.95 <sub>±1.15</sub> | 86.33 <sub>±1.29</sub> | 97.75 <sub>±0.42</sub>  | 77.22 <sub>±0.77</sub> | 69.93 <sub>±0.12</sub> | 28.74        | 2.42         |  |  |
| UGradSL         | 94.99 <sub>±4.35</sub>  | 97.95 <sub>±1.78</sub>  | 95.47 <sub>±4.08</sub>  | 86.78 <sub>±5.08</sub> | 99.94 <sub>±0.01</sub>  | 3.64         | 0.22         | 5.87 <sub>±0.51</sub>  | 13.33 <sub>±0.70</sub> | 98.82 <sub>±0.28</sub>  | 92.17 <sub>±0.23</sub> | 53.54 <sub>±0.97</sub> | <b>1.78</b>  | 0.45         |  |  |
| UGradSL+        | 100.00 <sub>±0.00</sub> | 100.00 <sub>±0.00</sub> | 99.26 <sub>±0.01</sub>  | 94.29 <sub>±0.07</sub> | 100.00 <sub>±0.00</sub> | <b>0.41</b>  | 3.07         | 6.03 <sub>±0.17</sub>  | 10.65 <sub>±0.13</sub> | 99.79 <sub>±0.03</sub>  | 93.64 <sub>±0.16</sub> | 52.29 <sub>±0.85</sub> | 2.53         | 3.07         |  |  |

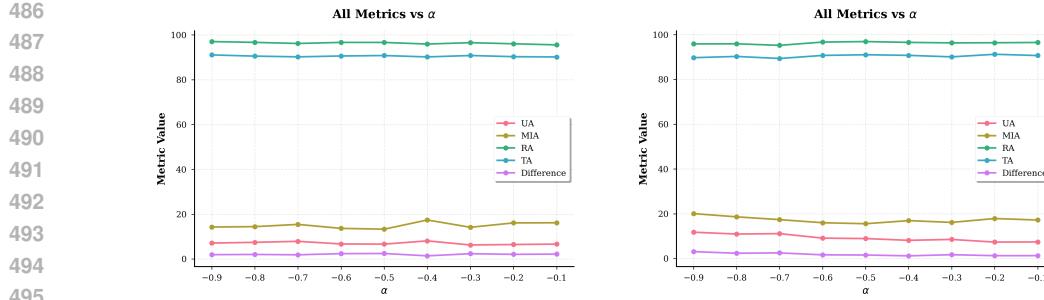


Figure 4: **Ablation study on the smoothing rate  $\alpha$  for random forgetting (10%) on CIFAR-10.** Our methods (left: UGradSL, right: UGradSL+) remain relatively stable across a wide range of  $\alpha$  under multiple evaluation metrics.

## 5.4 DISCUSSION

**Influence Function in Deep Learning** Influence function is proposed for the convex function. As given in Section 3.2, we apply the influence function to the converged model, which can be regarded as a local convex model. A plot of loss landscape of the retrained model  $\theta_r$  on CIFAR-10 dataset is given in Figure 7 in Appendix.

**MIA as a Proxy for "Forgetfulness".** Given a model  $\theta_*$ , we can evaluate the degree of its generalization by running a membership inference attack on the model. In the context of the current work, generalization is equivalent to the degree of "forgetfulness" that the forgetting algorithm achieves. Given the distribution of model response observations  $A_f = \mathcal{A}(\theta_*, \mathcal{D}_f)$  and  $A_{te} = \mathcal{A}(\theta_*, \mathcal{D}_{te})$ , where  $\mathcal{A}$  is an adversary and  $A = A_f \cup A_{te}$  is the observation visible to  $\mathcal{A}$ , one can get the degree of generalization by analyzing the observations. In the context of MU, the most straightforward way is to get the accuracy of  $\mathcal{A}$  on the seen and unseen samples ( $\mathcal{D}_{te}$  and  $\mathcal{D}_f$  respectively). This could be done by computing the  $(TP + TN) / (|D_f| + |D_{te}|)$ , where the true positive (TP) predictions correspond to "seen" samples, and true negative (TN) predictions are "unseen" samples. We conducted the experiments on CIFAR-10 both for class-wise and random forgetting. The results are given in Table 4, where Avg. Gap is calculated with additional MIA. We assume that the distribution of  $D_{tr}$  and  $D_{te}$  should be the same. For class-wise forgetting, the additional MIA is almost 1 because  $D_f$  is a separate single class and the distribution of  $D_f$  and  $D_{te}$  without the corresponding class are totally different. For random forgetting, the additional MIA is almost 0.5 because  $D_f$  is randomly selected from  $D_{tr}$  and the distribution of  $D_f$  and  $D_{te}$  should be the same. The plots of loss distribution for random and class-wise forgetting are given in Figure 8 in the Appendix. In Table 4, the proposed methods still outperform the other baseline methods, showing the robustness to the other MIA auditing methods and the generalization capability in privacy preservation.

**Difference between UGradSL and UGradSL+** Although two methods are similar in the mathematical formulation, there exists fundamental difference in their design and behavior. Compared with UGradSL, UGradSL+ can be more stable and less sensitive due to its origin from FT. As shown in the experiment results in the tables, UGradSL+ can always perform as top-tier methods. However, the RTE of UGradSL+ would be higher. We present more analysis in Appendix E.11.

The study of the Streisand effect Jansen & Martin (2015) and gradient analysis are given in Appendix E.6 and E.10, respectively.

## 6 CONCLUSIONS AND LIMITATIONS

We have proposed UGradSL, a plug-and-play, efficient, gradient-based MU method using smoothed labels. Theoretical proofs and extensive numerical experiments have demonstrated the effectiveness of the proposed method. Our work has limitations. For example, we desire an efficient way to find the exact MU state in experiments and further explore the applications of MU to promote privacy and fairness. Our method can be further validated and tested in other tasks, such as unlearning recommendation systems, etc.

540 REFERENCES  
541

542 Martn Abadi, Andy Chu, Ian Goodfellow, H. Brendan McMahan, Ilya Mironov, Kunal Talwar,  
543 and Li Zhang. Deep learning with differential privacy. *arXiv: Machine Learning*, 2016. doi:  
544 10.1145/2976749.2978318.

545 Samyadeep Basu, Xuchen You, and Soheil Feizi. On second-order group influence functions for  
546 black-box predictions. In *International Conference on Machine Learning*, pp. 715–724. PMLR,  
547 2020.

548 Alexander Becker and Thomas Liebig. Evaluating machine unlearning via epistemic uncertainty.  
549 *arXiv preprint arXiv:2208.10836*, 2022.

550 Lucas Bourtoule, Varun Chandrasekaran, Christopher A Choquette-Choo, Hengrui Jia, Adelin  
551 Travers, Baiwu Zhang, David Lie, and Nicolas Papernot. Machine unlearning. In *2021 IEEE  
552 Symposium on Security and Privacy (SP)*, pp. 141–159. IEEE, 2021.

553

554 Marc-Etienne Brunet, Colleen Alkalay-Houlihan, Ashton Anderson, and Richard Zemel. Under-  
555 standing the origins of bias in word embeddings. In *International conference on machine learn-  
556 ing*, pp. 803–811. PMLR, 2019.

557

558 Yinzh Cao and Junfeng Yang. Towards making systems forget with machine unlearning. In *2015  
559 IEEE Symposium on Security and Privacy*, pp. 463–480. IEEE, 2015.

560

561 Nicholas Carlini, Florian Tramr, Eric Wallace, Matthew Jagielski, Ariel Herbert-Voss, Katherine J.  
562 Lee, Katherine Lee, Adam Roberts, Tom B. Brown, Dawn Song, Ifar Erlingsson, Ifar Erlingsson,  
563 Ulfar Erlingsson, Alina Oprea, and Colin Raffel. Extracting training data from large language  
564 models. *arXiv: Cryptography and Security*, 2020. doi: null.

565

566 Min Chen, Zhikun Zhang, Zhikun Zhang, Tianhao Wang, Tianhao Wang, Michael Backes, Michael  
567 Backes, Mathias Humbert, Yang Zhang, and Yang Zhang. When machine unlearning jeopardizes  
568 privacy. *arXiv: Cryptography and Security*, 2020. doi: 10.1145/3460120.3484756.

569

570 Min Chen, Zhikun Zhang, Tianhao Wang, Michael Backes, Mathias Humbert, and Yang Zhang.  
571 When machine unlearning jeopardizes privacy. In *Proceedings of the 2021 ACM SIGSAC Con-  
572 ference on Computer and Communications Security*, pp. 896–911, 2021.

573

574 Min Chen, Zhikun Zhang, Tianhao Wang, Michael Backes, Mathias Humbert, and Yang Zhang.  
575 Graph unlearning. In *Proceedings of the 2022 ACM SIGSAC Conference on Computer and Com-  
576 munications Security*, pp. 499–513, 2022.

577

578 Min Chen, Weizhuo Gao, Gaoyang Liu, Kai Peng, and Chen Wang. Boundary unlearning. *arXiv  
579 preprint arXiv:2303.11570*, 2023.

580

581 Eli Chien, Chao Pan, and Olgica Milenkovic. Certified graph unlearning. *arXiv preprint  
582 arXiv:2206.09140*, 2022.

583

584 Christopher A. Choquette-Choo, Christopher A. Choquette Choo, Christopher A. Choquette Choo,  
585 Christopher A. Choquette-Choo, Florian Tramr, Florian Tramr, Nicholas Carlini, Nicholas Car-  
586 linii, Nicolas Papernot, Nicolas Papernot, and Nicolas Papernot. Label-only membership inference  
587 attacks. *International Conference on Machine Learning*, 2020. doi: null.

588

589 Jan Chorowski and Navdeep Jaitly. Towards better decoding and language model integration in  
590 sequence to sequence models. *arXiv preprint arXiv:1612.02695*, 2016.

591

592 Vikram S Chundawat, Ayush K Tarun, Murari Mandal, and Mohan Kankanhalli. Can bad teaching  
593 induce forgetting? unlearning in deep networks using an incompetent teacher. In *Proceedings of  
594 the AAAI Conference on Artificial Intelligence*, volume 37, pp. 7210–7217, 2023.

595

596 Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hi-  
597 erarchical image database. In *2009 IEEE conference on computer vision and pattern recognition*,  
598 pp. 248–255. Ieee, 2009.

594 Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep  
 595 bidirectional transformers for language understanding. *arXiv preprint arXiv:1810.04805*, 2018.  
 596

597 Jimmy Z Di, Jack Douglas, Jayadev Acharya, Gautam Kamath, and Ayush Sekhari. Hidden poison:  
 598 Machine unlearning enables camouflaged poisoning attacks. In *NeurIPS ML Safety Workshop*,  
 599 2022.

600 Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas  
 601 Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An  
 602 image is worth 16x16 words: Transformers for image recognition at scale. *arXiv preprint  
 603 arXiv:2010.11929*, 2020.

604

605 Cynthia Dwork, Krishnaram Kenthapadi, Frank McSherry, Ilya Mironov, and Moni Naor. Our data,  
 606 ourselves: Privacy via distributed noise generation. In *Annual international conference on the  
 607 theory and applications of cryptographic techniques*, pp. 486–503. Springer, 2006.

608

609 Chongyu Fan, Jiancheng Liu, Yihua Zhang, Dennis Wei, Eric Wong, and Sijia Liu. Salun: Em-  
 610 powering machine unlearning via gradient-based weight saliency in both image classification and  
 611 generation. *arXiv preprint arXiv:2310.12508*, 2023.

612

613 Matt Fredrikson, Matt Fredrikson, Somesh Jha, Somesh Jha, Thomas Ristenpart, and Thomas Ris-  
 614 tenpart. Model inversion attacks that exploit confidence information and basic countermeasures.  
 615 *Conference on Computer and Communications Security*, 2015. doi: 10.1145/2810103.2813677.

616

617 Karan Ganju, Karan Ganju, Qi Wang, Qi Wang, Wei Yang, Wei Yang, Carl A. Gunter, Carl A.  
 618 Gunter, Nikita Borisov, and Nikita Borisov. Property inference attacks on fully connected neural  
 619 networks using permutation invariant representations. *Conference on Computer and Communi-  
 620 cations Security*, 2018. doi: 10.1145/3243734.3243834.

621

622 Antonio Ginart, Melody Guan, Gregory Valiant, and James Y Zou. Making ai forget you: Data  
 623 deletion in machine learning. *Advances in neural information processing systems*, 32, 2019.

624

625 Shashwat Goel, Ameya Prabhu, Amartya Sanyal, Ser-Nam Lim, Philip Torr, and Ponnurangam  
 626 Kumaraguru. Towards adversarial evaluations for inexact machine unlearning. *arXiv preprint  
 627 arXiv:2201.06640*, 2022.

628

629 Aditya Golatkar, Alessandro Achille, and Stefano Soatto. Eternal sunshine of the spotless net:  
 630 Selective forgetting in deep networks. In *Proceedings of the IEEE/CVF Conference on Computer  
 631 Vision and Pattern Recognition*, pp. 9304–9312, 2020.

632

633 Laura Graves, Vineel Nagisetty, and Vijay Ganesh. Amnesiac machine learning. In *Proceedings of  
 634 the AAAI Conference on Artificial Intelligence*, volume 35, pp. 11516–11524, 2021.

635

636 Chuan Guo, Tom Goldstein, Awini Hannun, and Laurens Van Der Maaten. Certified data removal  
 637 from machine learning models. *arXiv preprint arXiv:1911.03030*, 2019.

638

639 Rob Hall, Alessandro Rinaldo, and Larry Wasserman. Differential privacy for functions and func-  
 640 tional data. *arXiv preprint arXiv:1203.2570*, 2012.

641

642 Tomohiro Hayase, Suguru Yasutomi, and Takashi Katoh. Selective forgetting of deep networks at a  
 643 finer level than samples. *arXiv preprint arXiv:2012.11849*, 2020.

644

645 Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-  
 646 nition. In *Proceedings of the IEEE conference on computer vision and pattern recognition*, pp.  
 647 770–778, 2016.

648

649 Sorami Hisamoto, Sorami Hisamoto, Matt Post, Matt Post, Kevin Duh, and Kevin Duh. Membership  
 650 inference attacks on sequence-to-sequence models. *arXiv: Learning*, 2019. doi: 10.1162/tacl\_a\_  
 651 00299.

648 Nils Homer, Nils Homer, Szabolcs Szelinger, Szabolcs Szelinger, Margot Redman, Margot Redman,  
 649 David Duggan, David Duggan, David Duggan, Waibhav Tembe, Waibhav Tembe, Jill Muehling,  
 650 Jill Muehling, John V. Pearson, John V. Pearson, Dietrich A. Stephan, Dietrich A. Stephan, Stan-  
 651 ley F. Nelson, Stanley F. Nelson, David W. Craig, and David Craig. Resolving individuals con-  
 652 tributing trace amounts of dna to highly complex mixtures using high-density snp genotyping  
 653 microarrays. *PLOS Genetics*, 2008. doi: 10.1371/journal.pgen.1000167.

654 Chris Jay Hoofnagle, Bart van der Sloot, and Frederik Zuiderveen Borgesius. The european union  
 655 general data protection regulation: what it is and what it means. *Information & Communications  
 656 Technology Law*, 28(1):65–98, 2019.  
 657

658 Zachary Izzo, Mary Anne Smart, Kamalika Chaudhuri, and James Zou. Approximate data dele-  
 659 tion from machine learning models. In *International Conference on Artificial Intelligence and  
 660 Statistics*, pp. 2008–2016. PMLR, 2021.

661 Saachi Jain, Hadi Salman, Alaa Khaddaj, Eric Wong, Sung Min Park, and Aleksander Madry. A  
 662 data-based perspective on transfer learning. *arXiv preprint arXiv:2207.05739*, 2022.  
 663

664 Sue Curry Jansen and Brian Martin. The streisand effect and censorship backfire. *International  
 665 Journal of Communication*, 9:16, 2015.  
 666

667 Zhanglong Ji, Zachary C Lipton, and Charles Elkan. Differential privacy and machine learning: a  
 668 survey and review. *arXiv preprint arXiv:1412.7584*, 2014.  
 669

670 Jinghan Jia, Jiancheng Liu, Parikshit Ram, Yuguang Yao, Gaowen Liu, Yang Liu, Pranay  
 671 Sharma, and Sijia Liu. Model sparsification can simplify machine unlearning. *arXiv preprint  
 672 arXiv:2304.04934*, 2023.  
 673

674 Pang Wei Koh and Percy Liang. Understanding black-box predictions via influence functions. In  
 675 *International conference on machine learning*, pp. 1885–1894. PMLR, 2017.  
 676

677 Pang Wei W Koh, Kai-Siang Ang, Hubert Teo, and Percy S Liang. On the accuracy of influence  
 678 functions for measuring group effects. *Advances in neural information processing systems*, 32,  
 2019.  
 679

680 Shuming Kong, Yanyan Shen, and Linpeng Huang. Resolving training biases via influence-based  
 681 data relabeling. In *International Conference on Learning Representations*, 2021.  
 682

683 Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.  
 2009.  
 684

685 Meghdad Kurmanji, Peter Triantafillou, and Eleni Triantafillou. Towards unbounded machine un-  
 686 learning. *arXiv preprint arXiv:2302.09880*, 2023.  
 687

688 Ken Lang. Newsweeder: Learning to filter netnews. In *Machine learning proceedings 1995*, pp.  
 331–339. Elsevier, 1995.  
 689

690 K. Rustan M. Leino, Klas Leino, Matt Fredrikson, and Matt Fredrikson. Stolen memories: Lever-  
 691 aging model memorization for calibrated white-box membership inference. *USENIX Security  
 692 Symposium*, 2019. doi: null.  
 693

694 Zheng Li, Zheng Li, Yang Zhang, and Yang Zhang. Membership leakage in label-only exposures.  
 695 *Conference on Computer and Communications Security*, 2021. doi: 10.1145/3460120.3484575.  
 696

697 Yang Liu, Mingyuan Fan, Cen Chen, Ximeng Liu, Zhuo Ma, Li Wang, and Jianfeng Ma. Backdoor  
 698 defense with machine unlearning. *arXiv preprint arXiv:2201.09538*, 2022a.  
 699

700 Yi Liu, Lei Xu, Xingliang Yuan, Cong Wang, and Bo Li. The right to be forgotten in federated  
 learning: An efficient realization with rapid retraining. *arXiv preprint arXiv:2203.07320*, 2022b.  
 701

Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang. Deep learning face attributes in the wild.  
 In *Proceedings of International Conference on Computer Vision (ICCV)*, December 2015.

702 Michal Lukasik, Srinadh Bhojanapalli, Aditya Menon, and Sanjiv Kumar. Does label smoothing  
 703 mitigate label noise? In *International Conference on Machine Learning*, pp. 6448–6458. PMLR,  
 704 2020.

705 Neil G Marchant, Benjamin IP Rubinstein, and Scott Alfeld. Hard to forget: Poisoning attacks on  
 706 certified machine unlearning. In *Proceedings of the AAAI Conference on Artificial Intelligence*,  
 707 volume 36, pp. 7691–7700, 2022.

708 H. Brendan McMahan, H. Brendan McMahan, Daniel Ramage, Daniel Ramage, Kunal Talwar,  
 709 Kunal Talwar, Li Zhang, and Li Zhang. Learning differentially private recurrent language models.  
 710 *International Conference on Learning Representations*, 2018. doi: null.

711 Shervin Minaee, Amirali Abdolrashidi, Hang Su, Mohammed Bennamoun, and David Zhang. Bio-  
 712 metrics recognition using deep learning: A survey. *Artificial Intelligence Review*, pp. 1–49, 2023.

713 Rafael Müller, Simon Kornblith, and Geoffrey E Hinton. When does label smoothing help? *Ad-*  
 714 *vances in neural information processing systems*, 32, 2019.

715 Milad Nasr, Reza Shokri, and Amir Houmansadr. Comprehensive privacy analysis of deep learning:  
 716 Passive and active white-box inference attacks against centralized and federated learning. *IEEE*  
 717 *Symposium on Security and Privacy*, 2019. doi: 10.1109/sp.2019.00065.

718 Seth Neel, Aaron Roth, and Saeed Sharifi-Malvajerdi. Descent-to-delete: Gradient-based methods  
 719 for machine unlearning. In *Algorithmic Learning Theory*, pp. 931–962. PMLR, 2021.

720 Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Bo Wu, and Andrew Y Ng. Reading  
 721 digits in natural images with unsupervised feature learning. 2011.

722 Thanh Tam Nguyen, Thanh Trung Huynh, Phi Le Nguyen, Alan Wee-Chung Liew, Hongzhi Yin,  
 723 and Quoc Viet Hung Nguyen. A survey of machine unlearning. *arXiv preprint arXiv:2209.02299*,  
 724 2022.

725 Stuart L Pardau. The california consumer privacy act: Towards a european-style privacy regime in  
 726 the united states. *J. Tech. L. & Pol'y*, 23:68, 2018.

727 Gabriel Pereyra, George Tucker, Jan Chorowski, Łukasz Kaiser, and Geoffrey Hinton. Regularizing  
 728 neural networks by penalizing confident output distributions. *arXiv preprint arXiv:1701.06548*,  
 729 2017.

730 Md. Atiqur Rahman, Md. Atiqur Rahman, Md. A. Rahman, Md. Atiqur Rahman, Tanzila Rahman,  
 731 Tanzila Rahman, Robert Laganiere, Robert Laganiere, Robert Laganiere, Noman Mohammed, and  
 732 Noman Mohammed. Membership inference attack against differentially private deep learning  
 733 model. *Transactions on Data Privacy*, 2018. doi: null.

734 Alexandre Sablayrolles, Alexandre Sablayrolles, Matthijs Douze, Matthijs Douze, Yann Ollivier,  
 735 Yann Ollivier, Cordelia Schmid, Cordelia Schmid, Herv Jeou, and Herv Jgou. White-box vs  
 736 black-box: Bayes optimal strategies for membership inference. *arXiv: Machine Learning*, 2019.  
 737 doi: null.

738 Prasanna Sattigeri, Soumya Ghosh, Inkit Padhi, Pierre Dognin, and Kush R. Varshney. Fair in-  
 739 finitesimal jackknife: Mitigating the influence of biased training data points without refitting. In  
 740 *Advances in Neural Information Processing Systems*, 2022.

741 Ayush Sekhari, Jayadev Acharya, Gautam Kamath, and Ananda Theertha Suresh. Remember what  
 742 you want to forget: Algorithms for machine unlearning. *Advances in Neural Information Pro-*  
 743 *cessing Systems*, 34:18075–18086, 2021.

744 Reza Shokri, Reza Shokri, Vitaly Shmatikov, and Vitaly Shmatikov. Privacy-preserving deep  
 745 learning. *Allerton Conference on Communication, Control, and Computing*, 2015. doi:  
 746 10.1145/2810103.2813687.

747 Reza Shokri, Reza Shokri, Marco Stronati, Marco Stronati, Marco Stronati, Congzheng Song, Cong-  
 748 zheng Song, Vitaly Shmatikov, and Vitaly Shmatikov. Membership inference attacks against ma-  
 749 chine learning models. *IEEE Symposium on Security and Privacy*, 2017. doi: 10.1109/sp.2017.41.

756 Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image  
 757 recognition. *arXiv preprint arXiv:1409.1556*, 2014.

758

759 Liwei Song, Liwei Song, Prateek Mittal, and Prateek Mittal. Systematic evaluation of privacy risks  
 760 of machine learning models. *arXiv: Cryptography and Security*, 2020. doi: null.

761

762 Thomas Steinke, Milad Nasr, and Matthew Jagielski. Privacy auditing with one (1) training run.  
 763 *Neural Information Processing Systems*, 2023. doi: 10.48550/arxiv.2305.08846.

764

765 Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon Shlens, and Zbigniew Wojna. Rethink-  
 766 ing the inception architecture for computer vision. In *Proceedings of the IEEE conference on*  
 767 *computer vision and pattern recognition*, pp. 2818–2826, 2016.

768

769 Anvith Thudi, Gabriel Deza, Varun Chandrasekaran, and Nicolas Papernot. Unrolling sgd: Under-  
 770 standing factors influencing machine unlearning. *arXiv preprint arXiv:2109.13398*, 2021.

771

772 Enayat Ullah, Tung Mai, Anup Rao, Ryan A Rossi, and Raman Arora. Machine unlearning via  
 773 algorithmic stability. In *Conference on Learning Theory*, pp. 4126–4142. PMLR, 2021.

774

775 Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,  
 776 Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. *Advances in neural informa-*  
 777 *tion processing systems*, 30, 2017.

778

779 Jialu Wang, Xin Eric Wang, and Yang Liu. Understanding instance-level impact of fairness con-  
 780 straints. In *International Conference on Machine Learning*, pp. 23114–23130. PMLR, 2022a.

781

782 Junxiao Wang, Song Guo, Xin Xie, and Heng Qi. Federated unlearning via class-discriminative  
 783 pruning. In *Proceedings of the ACM Web Conference 2022*, pp. 622–632, 2022b.

784

785 Alexander Warnecke, Lukas Pirch, Christian Wressnegger, and Konrad Rieck. Machine unlearning  
 786 of features and labels. *arXiv preprint arXiv:2108.11577*, 2021.

787

788 Jiaheng Wei, Hangyu Liu, Tongliang Liu, Gang Niu, Masashi Sugiyama, and Yang Liu. To smooth  
 789 or not? when label smoothing meets noisy labels. *Learning*, 1(1):e1, 2021.

790

791 Haotian Ye, Chuanlong Xie, Yue Liu, and Zhenguo Li. Out-of-distribution generalization analysis  
 792 via influence function. *arXiv preprint arXiv:2101.08521*, 2021.

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810     **Roadmap** The appendix is composed as follows. Section A presents all the notations and their  
 811 meaning we use in this paper. Section B presents the rest of the Related Work. Section C gives  
 812 the proof of our theoretical analysis. Section D gives a more detailed explanation of the proposed  
 813 algorithm. Section E shows the additional experiment results with more details that are not given in  
 814 the main paper due to the page limit.

## 816     A NOTATION TABLE

818     The notations we use in the paper is summaried in the Table 5.

820     Table 5: Notation used in this paper

| 822     Notations                               | 823     Description                                                                 |
|-------------------------------------------------|-------------------------------------------------------------------------------------|
| $824     K$                                     | The number of class in the dataset                                                  |
| $825     \mathcal{D}, \mathcal{X}, \mathcal{Y}$ | The general dataset distribution, the feature space and the label space             |
| $826     D$                                     | The dataset $D \in \mathcal{D}$                                                     |
| $827     D_{tr}, D_r, D_f$                      | The training set, remaining set and forgetting set                                  |
| $828     \Theta_{\mathcal{M}}$                  | The distribution of models learned using mechanism $\mathcal{M}$                    |
| $829     \theta$                                | The model weight                                                                    |
| $830     \theta^*$                              | The optimal model weight                                                            |
| $831     \theta_{f,LS}^*$                       | The optimal model weight trained with $D_f$ whose label is smoothed                 |
| $832     \ \theta\ $                            | The 2-norm of the model weight                                                      |
| $833     n$                                     | The size of dataset                                                                 |
| $834     \varepsilon$                           | The up-weighted weight of datapoint $z$ in influence function                       |
| $835     \mathcal{I}(z)$                        | Influence function of data point $z$                                                |
| $836     h_{\theta}$                            | A function $h$ parameterized by $\theta$                                            |
| $837     \ell(h_{\theta}, z_i)$                 | Loss of $h_{\theta}(x_i)$ and $y_i$                                                 |
| $838     R_{tr}(\theta)$                        | The empirical risk of training set when the model weight is $\theta$                |
| $839     R_f(\theta)$                           | The empirical risk of forgetting set when the model weight is $\theta$              |
| $840     R_r(\theta)$                           | The empirical risk of remaining set when the model weight is $\theta$               |
| $841     H_{\theta}$                            | The Hessian matrix w.r.t. $\theta$                                                  |
| $842     \nabla_{\theta}$                       | The gradient w.r.t. $\theta$                                                        |
| $843     B$                                     | Data batch                                                                          |
| $844     B^{LS,\alpha}$                         | The smoothed batch using $\alpha$                                                   |
| $845     z_i = (x_i, y_i)$                      | A data point $z_i$ whose feature is $x_i$ and label is $y_i$                        |
| $846     \mathbf{y}_i$                          | The one-hot encoded vector form of $y_i$                                            |
| $847     \mathbf{y}_i^{GLS,\alpha}$             | The smoothed one-hot encoded vector form of $y_i$ where the smooth rate is $\alpha$ |
| $848     \alpha$                                | Smooth rate in general label smoothing                                              |
| $849     h_{\theta}(x)$                         | The extracted feature of $x$ from the model parameterized by $\theta$               |
| $850     \gamma_1, \gamma_2$                    | The weight of machine learning and machine unlearning on ERM                        |

## 851     B RELATED WORK

853     **Label Smoothing** (LS) or positive label smoothing (PLS) (Szegedy et al., 2016) is a commonly used  
 854 regularization method to improve the model performance. Standard training with one-hot labels  
 855 will lead to overfitting easily. Empirical studies have shown the effectiveness of LS in noisy label  
 856 (Szegedy et al., 2016; Pereyra et al., 2017; Vaswani et al., 2017; Chorowski & Jaitly, 2016). In  
 857 addition, LS shows its capability to reduce overfitting, improve generalization, etc. LS can also  
 858 improve the model calibration (Müller et al., 2019). However, most of the work about LS is PLS.  
 859 (Wei et al., 2021) first proposes the concept of negative label smoothing and shows there is a wider  
 860 feasible domain for the smoothing rate when the rate is negative, expanding the usage of LS.

861     **Influence Function** is a classic statistical method to track the impact of one training sample. Koh  
 862 & Liang (2017) uses a second-order optimization approximation to evaluate the impact of a training  
 863 sample. Additionally, it can also be used to identify the importance of the training groups (Basu  
 et al., 2020; Koh et al., 2019). The influence function is widely used in many machine-learning

864 tasks. such as data bias solution (Brunet et al., 2019; Kong et al., 2021), fairness (Sattigeri et al.,  
 865 2022; Wang et al., 2022a), security (Liu et al., 2022a), transfer learning (Jain et al., 2022), out-of-  
 866 distribution generalization (Ye et al., 2021), etc. The approach also plays an important role as the  
 867 algorithm backbone in the MU tasks (Jia et al., 2023; Warnecke et al., 2021; Izzo et al., 2021).

868 **Differential Privacy (DP)** is a mathematical framework designed to quantify and mitigate privacy  
 869 risks in machine learning models. It ensures that the inclusion or exclusion of a single data point  
 870 in a dataset does not significantly affect the model’s output, thus protecting individual data points  
 871 from being inferred by adversaries Dwork et al. (2006). In machine learning, DP mechanisms  
 872 such as noise addition and gradient clipping are employed during the training process to provide  
 873 formal privacy guarantees while maintaining model utility Abadi et al. (2016). These techniques  
 874 help balance the trade-off between data privacy and model performance, making DP a cornerstone  
 875 of privacy-preserving machine learning Shokri et al. (2015); McMahan et al. (2018).

876 A multitude of **privacy risk assessment** tools have been proposed to gauge the degree of leakage  
 877 associated with the training data. Specifically targeted at the training data, model attacks are often  
 878 used as a proxy metric for privacy leakage in pretrained models. For example, model inversion at-  
 879 tacks are designed to extract aggregate information about specific sub-classes rather than individual  
 880 samples Fredrikson et al. (2015). Data extraction attacks aim to reverse engineer individual sam-  
 881 ples used during training Carlini et al. (2020), while property inference attacks focus on inferring  
 882 properties of the training data Ganju et al. (2018).

883 More relevant to the current work are **Membership Inference Attacks (MIA)**, which predict  
 884 whether a particular sample was used to train the model. First introduced by Homer et al. Homer  
 885 et al. (2008), membership attack algorithms were later formalized in the context of DP, enabling  
 886 privacy attacks and defenses for machine learning models Rahman et al. (2018). Shokri et al. Shokri  
 887 et al. (2017) introduced MIA based on the assumption of adversarial queries to the target model. By  
 888 training a reference attack model (shadow model) based on the model inference response, this type  
 889 of MIA has proven to be powerful in scenarios such as white-box Leino et al. (2019); Nasr et al.  
 890 (2019); Sablayrolles et al. (2019), black-box Chen et al. (2020); Hisamoto et al. (2019); Song et al.  
 891 (2020), and label-only Choquette-Choo et al. (2020); Li et al. (2021) access. However, most MIA  
 892 mechanisms often require training a large number of shadow models with diverse subsets of queries,  
 893 making them prohibitively expensive. As a result, some recent works have focused on developing  
 894 cheaper MIA mechanisms Steinke et al. (2023).

895 **Basics of Influence Function** Given a dataset  $D = \{z_i : (x_i, y_i)\}_{i=1}^n$  and a function  $h$  parameterized  
 896 by  $\theta$  which maps from the input feature space  $\mathcal{X}$  to the output space  $\mathcal{Y}$ . Recall the standard empirical  
 897 risk minimization writes as:

$$\theta^* = \arg \min_{\theta} \frac{1}{n} \sum_{z \in D} \ell(h_{\theta}, z). \quad (9)$$

900 To find the impact of a training point  $\hat{z}$ , we up-weight its weight by an infinitesimal amount  $\varepsilon^1$ . The  
 901 new model parameter  $\theta_{\{\hat{z}\}}^{\varepsilon}$  can be obtained from  
 902

$$\theta_{\{z\}}^{\varepsilon_I} = \arg \min_{\theta} \frac{1}{n} \sum_{z \in D} \ell(h_{\theta}, z) + \varepsilon \cdot \ell(h_{\theta}, \hat{z}) \quad (10)$$

903 When  $\varepsilon = -\frac{1}{n}$ , it is indicating removing  $\hat{z}$ . According to Koh & Liang (2017),  $\theta_{\{\hat{z}\}}^{\varepsilon}$  can be approxi-  
 904 mated by using the first-order Taylor series expansion as  
 905

$$\theta_{\{\hat{z}\}}^{\varepsilon} \approx \theta^* - \varepsilon \cdot H_{\theta^*}^{-1} \cdot \nabla_{\theta} \ell(h_{\theta^*}, \hat{z}), \quad (11)$$

911 where  $H_{\theta^*}$  is the Hessian with respect to (w.r.t.)  $\theta^*$ . The change of  $\theta$  due to changing the weight  
 912 can be given using the influence function  $\mathcal{I}(\hat{z})$  as  
 913

$$\Delta \theta = \theta_{\{\hat{z}\}}^{\varepsilon} - \theta^* = \mathcal{I}(\hat{z}) = \frac{d \theta_{\{\hat{z}\}}^{\varepsilon}}{d \varepsilon} \Big|_{\varepsilon=0} = -H_{\theta^*}^{-1} \cdot \nabla_{\theta} \ell(h_{\theta^*}, \hat{z}).$$

<sup>1</sup>To distinguish from the  $\epsilon$  in differential privacy, we use  $\varepsilon$  here.

918 **C PROOFS**  
 919

920 **C.1 PROOF FOR THEOREM 1**  
 921

922 *Proof.* For  $p(x)$ , the Taylor expansion at  $x = a$  is  
 923

$$p(x) = p(a) + \frac{p'(a)}{1}(x - a) + o \quad (12)$$

924

925 Here,  $p(\boldsymbol{\theta}) = \nabla R_{tr}(\boldsymbol{\theta}) + \varepsilon \sum_{D_f} \nabla \ell(h_{\boldsymbol{\theta}}, z_i^f)$  so we have  
 926

$$p(\boldsymbol{\theta}) = \nabla R_{tr}(a) + \varepsilon \sum_{z^f \in D_f} \nabla \ell(h_a, z^f) + \left[ \nabla^2 R_{tr}(a) + \varepsilon \sum_{z^f \in D_f} \nabla^2 \ell(h_a, z^f) \right] (\boldsymbol{\theta} - a) + o \quad (13)$$

927

928 For Eq. (2), we expand  $p(\boldsymbol{\theta}_f^*)$  at  $\boldsymbol{\theta} = \boldsymbol{\theta}_{tr}^*$  as  
 929

$$\begin{aligned} p(\boldsymbol{\theta}_f^*) &= \nabla R_{tr}(\boldsymbol{\theta}_{tr}^*) + \varepsilon \sum_{z^f \in D_f} \nabla \ell(h_{\boldsymbol{\theta}_{tr}^*}, z^f) \\ &\quad + \left[ \nabla^2 R_{tr}(\boldsymbol{\theta}_{tr}^*) + \varepsilon \sum_{z^f \in D_f} \nabla^2 \ell(h_{\boldsymbol{\theta}_{tr}^*}, z^f) \right] (\boldsymbol{\theta}_f^* - \boldsymbol{\theta}_{tr}^*) + o = 0 \end{aligned} \quad (14)$$

930

931 Since we have  $\nabla R_{tr}(\boldsymbol{\theta}_{tr}^*) = 0$  and ignore  $o$ , we can get the approximation as  
 932

$$\boldsymbol{\theta}_f^* - \boldsymbol{\theta}_{tr}^* \approx - \left[ \sum_{z^{tr} \in D_{tr}} \nabla^2 \ell(h_{\boldsymbol{\theta}_{tr}^*}, z^{tr}) + \varepsilon \sum_{z^f \in D_f} \nabla^2 \ell(h_{\boldsymbol{\theta}_{tr}^*}, z^f) \right]^{-1} \left[ \varepsilon \sum_{z^f \in D_f} \nabla \ell(h_{\boldsymbol{\theta}_{tr}^*}, z^f) \right] \quad (15)$$

933

934 Similarly, we can expand  $q(\boldsymbol{\theta}_{tr}^*) = \nabla R_{tr}(\boldsymbol{\theta}_{tr}^*)$  at  $\boldsymbol{\theta} = \boldsymbol{\theta}_r^*$  as  
 935

$$\begin{aligned} q(\boldsymbol{\theta}_{tr}^*) &= \sum_{z^{tr} \in D_{tr}} \nabla \ell(h_{\boldsymbol{\theta}_r^*}, z^{tr}) + \sum_{z^{tr} \in D_{tr}} \nabla^2 \ell(h_{\boldsymbol{\theta}_r^*}, z^{tr}) (\boldsymbol{\theta}_{tr}^* - \boldsymbol{\theta}_r^*) \approx 0 \\ \boldsymbol{\theta}_r^* - \boldsymbol{\theta}_{tr}^* &\approx \left[ \sum_{z^{tr} \in D_{tr}} \nabla^2 \ell(h_{\boldsymbol{\theta}_r^*}, z^{tr}) \right]^{-1} \sum_{z^{tr} \in D_{tr}} \nabla \ell(h_{\boldsymbol{\theta}_r^*}, z^{tr}) \end{aligned} \quad (16)$$

936

937 Because of gradient ascent,  $\varepsilon = -1$  and we have  
 938

$$\begin{aligned} \boldsymbol{\theta}_r^* - \boldsymbol{\theta}_f^* &= \boldsymbol{\theta}_r^* - \boldsymbol{\theta}_{tr}^* - (\boldsymbol{\theta}_{tr}^* - \boldsymbol{\theta}_f^*) = \underbrace{\left( \sum_{z^{tr} \in D_{tr}} \nabla^2 \ell(h_{\boldsymbol{\theta}_r^*}, z^{tr}) \right)^{-1} \sum_{z^{tr} \in D_{tr}} \nabla \ell(h_{\boldsymbol{\theta}_r^*}, z^{tr})}_{\Delta \boldsymbol{\theta}_r} \\ &\quad - \underbrace{\left( \sum_{z^r \in D_r} \nabla^2 \ell(h_{\boldsymbol{\theta}_{tr}^*}, z^r) \right)^{-1} \sum_{z^f \in D_f} \nabla \ell(h_{\boldsymbol{\theta}_{tr}^*}, z^f)}_{\Delta \boldsymbol{\theta}_f} \end{aligned} \quad (17)$$

939

940 Thus,  $\|\boldsymbol{\theta}_r^* - \boldsymbol{\theta}_f^*\| = 0$  if and only if  $\Delta \boldsymbol{\theta}_f = \Delta \boldsymbol{\theta}_r$ , where  
 941

$$\sum_{z^{tr} \in D_{tr}} \nabla \ell(h_{\boldsymbol{\theta}_r^*}, z^{tr}) = \underbrace{\left[ \sum_{z^{tr} \in D_{tr}} \nabla^2 \ell(h_{\boldsymbol{\theta}_r^*}, z^{tr}) \right] \left[ \sum_{z^r \in D_r} \nabla^2 \ell(h_{\boldsymbol{\theta}_{tr}^*}, z^r) \right]^{-1} \sum_{z^f \in D_f} \nabla \ell(h_{\boldsymbol{\theta}_{tr}^*}, z^f)}_{H(\boldsymbol{\theta}_r^*, \boldsymbol{\theta}_{tr}^*)} \quad (18)$$

942

943

□

972 C.2 ERROR ANALYSIS IN THEOREM 1  
973974 If we do not ignore the Lagrange remainder in Eq. 14 and 16 and denote them as  $e_r$  and  $e_f$ , Eq. 14  
975 and 16 become

976 
$$p(\boldsymbol{\theta}_f^*) = \nabla R_{tr}(\boldsymbol{\theta}_{tr}^*) + \varepsilon \sum_{z^f \in D_f} \nabla \ell(h_{\boldsymbol{\theta}_{tr}^*}, z^f)$$
  
977 
$$+ \left[ \nabla^2 R_{tr}(\boldsymbol{\theta}_{tr}^*) + \varepsilon \sum_{z^f \in D_f} \nabla^2 \ell(h_{\boldsymbol{\theta}_{tr}^*}, z^f) \right] (\boldsymbol{\theta}_f^* - \boldsymbol{\theta}_{tr}^*) + e_r = 0 \quad (19)$$
  
978

982 
$$q(\boldsymbol{\theta}_{tr}^*) = \sum_{z^{tr} \in D_{tr}} \nabla \ell(h_{\boldsymbol{\theta}_{tr}^*}, z^{tr}) + \sum_{z^{tr} \in D_{tr}} \nabla^2 \ell(h_{\boldsymbol{\theta}_{tr}^*}, z^{tr}) (\boldsymbol{\theta}_{tr}^* - \boldsymbol{\theta}_r^*) + e_f = 0 \quad (20)$$
  
983

984 , respectively. Thus,

985 
$$\boldsymbol{\theta}_r^* - \boldsymbol{\theta}_f^* = (\boldsymbol{\theta}_r^* - \boldsymbol{\theta}_{tr}^*) - (\boldsymbol{\theta}_f^* - \boldsymbol{\theta}_{tr}^*) \quad (21)$$

986 
$$= (\Delta \boldsymbol{\theta}_r + e_r) - (\Delta \boldsymbol{\theta}_f + e_f) = (\Delta \boldsymbol{\theta}_r - \Delta \boldsymbol{\theta}_f) + (e_r - e_f). \quad (22)$$
  
987

988 We now bound the error of using the linearized difference  $\Delta \boldsymbol{\theta}_r - \Delta \boldsymbol{\theta}_f$  to approximate  $\boldsymbol{\theta}_r^* - \boldsymbol{\theta}_f^*$ .  
989

990 
$$\boldsymbol{\theta}_r^* - \boldsymbol{\theta}_f^* - (\Delta \boldsymbol{\theta}_r - \Delta \boldsymbol{\theta}_f) = e_r - e_f, \quad (23)$$

991 and hence

992 
$$\|\boldsymbol{\theta}_r^* - \boldsymbol{\theta}_f^* - (\Delta \boldsymbol{\theta}_r - \Delta \boldsymbol{\theta}_f)\| = \|e_r - e_f\| \leq \|e_r\| + \|e_f\|. \quad (24)$$

993 Assume that  $q(\boldsymbol{\theta}) = \nabla R_{tr}(\boldsymbol{\theta})$  and  $p(\boldsymbol{\theta}) = \nabla R_{tr}(\boldsymbol{\theta}) - \nabla R_f(\boldsymbol{\theta})$  have Lipschitz-continuous Hessians  
994 with constants  $L_q$  and  $L_p$ , respectively, i.e.,

995 
$$\|\nabla^2 q(\boldsymbol{\theta}_1) - \nabla^2 q(\boldsymbol{\theta}_2)\| \leq L_q \|\boldsymbol{\theta}_1 - \boldsymbol{\theta}_2\|, \quad (25)$$

996 
$$\|\nabla^2 p(\boldsymbol{\theta}_1) - \nabla^2 p(\boldsymbol{\theta}_2)\| \leq L_p \|\boldsymbol{\theta}_1 - \boldsymbol{\theta}_2\|. \quad (26)$$
  
997

1000 Then standard Taylor bounds imply

1001 
$$\|r_q\| \leq \frac{L_q}{2} \|\boldsymbol{\theta}_{tr}^* - \boldsymbol{\theta}_r^*\|^2, \quad (27)$$

1002 
$$\|r_p\| \leq \frac{L_p}{2} \|\boldsymbol{\theta}_f^* - \boldsymbol{\theta}_{tr}^*\|^2. \quad (28)$$

1003 Using  $e_r = -H_r^{-1}r_q$  and  $e_f = -H_f^{-1}r_p$ , we obtain

1004 
$$\|e_r\| \leq \|H_r^{-1}\| \|r_q\| \leq \frac{L_q}{2} \|H_r^{-1}\| \|\boldsymbol{\theta}_r^* - \boldsymbol{\theta}_{tr}^*\|^2, \quad (29)$$

1005 
$$\|e_f\| \leq \|H_f^{-1}\| \|r_p\| \leq \frac{L_p}{2} \|H_f^{-1}\| \|\boldsymbol{\theta}_f^* - \boldsymbol{\theta}_{tr}^*\|^2. \quad (30)$$
  
1006

1007 Therefore, the approximation error satisfies

1008 
$$\|\boldsymbol{\theta}_r^* - \boldsymbol{\theta}_f^* - (\Delta \boldsymbol{\theta}_r - \Delta \boldsymbol{\theta}_f)\| \leq \frac{L_q}{2} \|H_r^{-1}\| \|\boldsymbol{\theta}_r^* - \boldsymbol{\theta}_{tr}^*\|^2 + \frac{L_p}{2} \|H_f^{-1}\| \|\boldsymbol{\theta}_f^* - \boldsymbol{\theta}_{tr}^*\|^2. \quad (31)$$

1017 C.3 PROOF FOR THEOREM 2  
10181019 *Proof.* Recall the loss calculation in label smoothing and we have

1020 
$$\ell(h_{\boldsymbol{\theta}}, z^{\text{GLS}, \alpha}) = (1 + \frac{1-K}{K}\alpha) \ell(h_{\boldsymbol{\theta}}, (x, y)) + \frac{\alpha}{K} \sum_{y' \in \mathcal{Y} \setminus y} \ell(h_{\boldsymbol{\theta}}, (x, y')), \quad (32)$$
  
1021

1022 where we use notations  $\ell(h_{\boldsymbol{\theta}}, (x, y)) := \ell(h_{\boldsymbol{\theta}}, z)$  to specify the loss of an example  $z = \{x, y\}$   
1023 existing in the dataset and  $\ell(h_{\boldsymbol{\theta}}, (x, y'))$  to denote the loss of an example when its label is replaced  
1024

1026 with  $y'$ .  $\nabla_{\theta} \ell(h_{\theta}, (x, y))$  is the gradient of the target label and  $\sum_{y' \in \mathcal{Y} \setminus y} \nabla_{\theta} \ell(h_{\theta}, (x, y'))$  is the sum  
 1027 of the gradient of non-target labels.

1028 With label smoothing in Eq. (32), Eq. (17) becomes  
 1029

$$\begin{aligned} \theta_r^* - \theta_{f, \text{LS}}^* &\approx \Delta \theta_r + \left(1 + \frac{1-K}{K}\alpha\right) \cdot (-\Delta \theta_f) + \frac{1-K}{K}\alpha \cdot \Delta \theta_n \\ &= \Delta \theta_r - \Delta \theta_f + \frac{1-K}{K}\alpha \cdot (\Delta \theta_n - \Delta \theta_f) \end{aligned} \quad (33)$$

1036 where  
 1037

$$\begin{aligned} \Delta \theta_r &:= \left[ \sum_{z^{tr} \in D_{tr}} \nabla_{\theta}^2 \ell(h_{\theta_r^*}, z^{tr}) \right]^{-1} \sum_{z^{tr} \in D_{tr}} \nabla_{\theta} \ell(h_{\theta_r^*}, z^{tr}) \\ \Delta \theta_f &:= \left[ \sum_{z^r \in D_r} \nabla_{\theta}^2 \ell(h_{\theta_{tr}^*}, z^r) \right]^{-1} \sum_{z^f \in D_f} \nabla_{\theta} \ell(h_{\theta_{tr}^*}, z^f) \end{aligned}$$

1044 as given in Eq. (17). So we have  
 1045

$$\theta_r^* - \theta_{f, \text{LS}}^* \approx \Delta \theta_r - \Delta \theta_f + \frac{1-K}{K}\alpha \cdot (\Delta \theta_n - \Delta \theta_f) \quad (34)$$

1050 where  
 1051

$$\Delta \theta_n := \frac{1}{K-1} \left[ \sum_{z^r \in D_r} \nabla_{\theta}^2 \ell(h_{\theta_{tr}^*}, z^r) \right]^{-1} \sum_{z^f \in D_f} \nabla_{\theta} \sum_{y' \in \mathcal{Y} \setminus y^f} \ell(h_{\theta_{tr}^*}, (x^f, y'))$$

1054 When we have  
 1055

$$\langle \Delta \theta_r - \Delta \theta_f, \Delta \theta_n - \Delta \theta_f \rangle \leq 0, \quad (35)$$

1057  $\alpha < 0$  can help with MU, making  
 1058

$$\|\theta_r^* - \theta_{f, \text{NLS}}^*\| \leq \|\theta_r^* - \theta_f^*\| \quad (36)$$

1060  $\square$   
 1061

#### 1062 C.4 PROOF FOR THEOREM 3 1063

1064 *Proof.* When the optimization is gradient ascent (GA) with negative label smoothing (NLS), Eq. (6)  
 1065 can be written as

$$\ell(h_{\theta}, z^{\text{NLS}, \alpha}) = - \left(1 + \frac{1-K}{K}\alpha\right) \cdot \ell(h_{\theta}, (x, y)) - \frac{\alpha}{K} \sum_{y' \in \mathcal{Y} \setminus y} \ell(h_{\theta}, (x, y')), \alpha < 0, \quad (37)$$

1066 Recall  $R_{tr}(\theta) = \sum_{z^{tr} \in D_{tr}} \ell(h_{\theta}, z^{tr})$ . Denote by  $R_f^{\text{NLS}}(\theta; \alpha) = \sum_{z^{\text{LS}, \alpha} \in D_f} \ell(h_{\theta}, z^{\text{NLS}, \alpha})$ ,  $\alpha < 0$   
 1067 the empirical risk of forgetting data with NLS. After MU with label smoothing on  $D_f$  by gradient  
 1068 ascent, the resulting model can be seen as minimizing the risk  $\gamma_1 \cdot R_{tr}(\theta) - \gamma_2 \cdot R_f^{\text{NLS}}(\theta; \alpha)$ , which is  
 1069 a weighted combination of the risk from two phases: 1) machine learning on  $D_{tr}$  with weight  $\gamma_1 > 0$   
 1070 and 2) machine unlearning on  $D_f$  with weight  $\gamma_2 > 0$ . Consider an example  $(x, y)$  in the forgetting  
 1071 dataset. The loss of this example is:

$$\begin{aligned} \gamma_1 \ell(h_{\theta}, (x, y)) - \gamma_2 \ell(h_{\theta}, z^{\text{GLS}, \alpha}) &= \left[ \gamma_1 - \gamma_2 \left(1 + \frac{1-K}{K}\alpha\right) \right] \cdot \ell(h_{\theta}, (x, y)) \\ &\quad - \frac{\alpha}{K} \gamma_2 \sum_{y' \in \mathcal{Y} \setminus y} \ell(h_{\theta}, (x, y')). \end{aligned}$$

1080 When  $[\gamma_1 - \gamma_2 (1 + \frac{1-K}{K} \alpha)] > 0$ , the optimal solution by minimizing this loss is  
 1081

$$1082 \mathbb{P}(\mathcal{M}(y) = y^{\text{pred}}) = \begin{cases} \frac{\gamma_1 - \gamma_2 (1 + \frac{1-K}{K} \alpha)}{(\gamma_1 - \gamma_2 (1 + \frac{1-K}{K} \alpha)) - \frac{K-1}{K} \alpha \gamma_2}, & \text{if } y^{\text{pred}} = y, \\ \frac{-\frac{\alpha}{K} \cdot \gamma_2}{(\gamma_1 - \gamma_2 (1 + \frac{1-K}{K} \alpha)) - \frac{K-1}{K} \alpha \gamma_2}, & \text{if } y^{\text{pred}} \neq y. \end{cases}$$
 1083  
 1084  
 1085

1086 Accordingly, for another label  $y'$ , we have  
 1087

$$1088 \mathbb{P}(\mathcal{M}(y') = y^{\text{pred}}) = \begin{cases} \frac{\gamma_1 - \gamma_2 (1 + \frac{1-K}{K} \alpha)}{(\gamma_1 - \gamma_2 (1 + \frac{1-K}{K} \alpha)) - \frac{K-1}{K} \alpha \gamma_2}, & \text{if } y^{\text{pred}} = y', \\ \frac{-\frac{\alpha}{K} \cdot \gamma_2}{(\gamma_1 - \gamma_2 (1 + \frac{1-K}{K} \alpha)) - \frac{K-1}{K} \alpha \gamma_2}, & \text{if } y^{\text{pred}} \neq y'. \end{cases}$$
 1089  
 1090  
 1091

1092 Then the quotient of two probabilities can be upper bounded by:  
 1093

$$1093 \log \left( \frac{\mathbb{P}(\mathcal{M}(y) = y^{\text{pred}})}{\mathbb{P}(\mathcal{M}(y') = y^{\text{pred}})} \right) \leq \left| \log \left( \frac{\gamma_1 - \gamma_2 (1 + \frac{1-K}{K} \alpha)}{-\frac{\alpha}{K} \cdot \gamma_2} \right) \right| = \left| \log \left( \frac{K}{\alpha} (1 - \frac{\gamma_1}{\gamma_2}) + 1 - K \right) \right| = \epsilon.$$
 1094  
 1095

□

## D THE DETAILS OF ALGORITHM

### D.1 ALGORITHM DETAILS

We provide a more detailed explanation of UGradSL and UGradSL+ in Algorithm 1 here. For UGradSL+, we first sample a batch  $B_r = \{z_i^r : (x_i^r, y_i^r)\}_{i=1}^{n_{B_r}}$  from  $D_r$  (Line 3-4). Additionally, we sample a batch  $B_f = \{z_i^f : (x_i^f, y_i^f)\}_{i=1}^{n_{B_f}}$  from  $D_f$  where  $n_{B_r} = n_{B_f}$  (Line 5). We compute the distance  $d(z_i^r, z_i^f) \in [0, 1]$  for each  $(z_i^r, z_i^f)$  pair where  $z_i^r \in B_r$  and  $z_i^f \in B_f$  (Line 6). For each  $z_i^f$ , we count the number of  $z_i^r$  whose  $d(z_i^r, z_i^f) < \beta$ , where  $\beta$  is the distance threshold. This count is denoted by  $c_i^f$  (Line 7). Then we get the smooth rate by normalizing the count as  $\alpha_i = c_i^f / |B_f|$ , where  $\alpha_i \in [0, 1]$  (Line 8). GA with NLS is to decrease the model confidence of  $D_f$ . The larger the absolute value of  $\alpha_i$ , the lower confidence will be given. Our intuition is that a smaller  $d(z_i^r, z_i^f)$  means  $z_i^r$  is more similar to  $D_r$  and the confidence of  $z_i^f$  should not be decreased too much. The distances we use is the cosine distance. UGradSL is similar and the difference is the dataset replacement. For each epoch, UGradSL+ is terminated after completing the iterations on  $D_r$ , while UGradSL is terminated after completing the iterations on  $D_f$ .

### D.2 ALGORITHM EXPLANATION

In the self-adaptive version of UGradSL+, the label smoothing rate for each forgetting sample is computed dynamically from its proximity to the retained data in feature space. For each iteration, the algorithm samples a batch of retained examples  $B_r$  and a batch of forgetting examples  $B_f$  with equal size, extracts their features  $\{z_i^r\}$  and  $\{z_j^f\}$ , and computes the **feature distance**  $d(z_i^r, z_j^f)$  for every retained-forgetting pair. Then, for each forgetting feature  $z_j^f$ , it counts how many retained features fall within a distance threshold  $\beta$ , denoted as  $c_j^f$ . This count is normalized by the batch size  $|B_f|$  to obtain the adaptive smoothing rate  $\alpha_j = c_j^f / |B_f|$ . As a result, forgetting samples that are close to many retained samples (i.e., highly entangled in representation space) receive a higher smoothing rate and are updated more conservatively, while those that are far from retained data get a lower smoothing rate (possibly zero) and can be pushed away more aggressively during unlearning.

### D.3 ADDITIONAL RESULTS

As mentioned in Section 4, to avoid the smooth rate selection, we propose a self-adaptive smooth rate version. We compare the performance with and without self-adaptive smooth on CIFAR-10 and SVHN. The forgetting scenario is random forgetting. The results are given in Table 10.

1134 D.4 COMPLEXITY ANALYSIS  
11351136 Compared with the fixed  $\alpha$ , the additional computation from adaptive version is the distance  
1137 calculation. The code we compute the distance is given below. All computations are implemented as  
1138 **batched GPU tensor operations without any explicit Python loops**. We assume the feature from  
1139  $D_r$  and  $D_f$  are both in  $\mathbb{R}^{n \times d}$ , where  $n$  is the batch size and  $d$  is the feature dimension.1140 For FLOP count,  
11411142 

- 1143 • The two normalization operations cost approximately  $6nd$  FLOPs in total, since normalizing  
1144 a single  $n \times d$  tensor requires about  $3nd$  FLOPs (square, sum, and division).
- 1145 • Computing the cosine similarity matrix costs about  $2n^2d$  FLOPs, as each of the  $n^2$  entries  
1146 is a dot product between two  $d$ -dimensional vectors.
- 1147 • Converting similarity to distance and applying the threshold require about  $2n^2$  and  $n^2$   
1148 FLOPs, respectively.
- 1149 • The density computation costs about  $n^2$  FLOPs for forming the mask and  $n$  FLOPs for the  
1150 length normalization.

1151 Overall, the total FLOP count is  $6nd + 2n^2d + 4n^2 + n$ , which is dominated by the  $O(n^2d)$  cosine-  
1152 similarity term. For our typical setting  $n = 64$  and  $d = 512$ , this corresponds to roughly  $4.4 \times$   
1153  $10^6$  FLOPs. Compared with the FP32 peak throughput of an A6000 GPU (38.71 TFLOPS), this  
1154 overhead is negligible relative to the usual forward/backward passes.1155 For memory usage, the additional GPU tensors have the following shapes:  
11561157 

- 1158 • Each features:  $n \times d$
- 1159 • Each normalized features:  $n \times d$
- 1160 • The cosine similarity, cosine distance and the filtered mask:  $n \times n$
- 1161 • The density:  $n$

1162 Assuming FP32 (4 bytes) for all tensors, the peak extra memory is at most  $4(4nd + 3n^2 + n)$  bytes,  
1163 which is 561,408 bytes ( $\approx 0.5$  MiB) for  $n = 64$  and  $d = 512$ . This is negligible compared with the  
1164 model parameters, so the memory overhead can also be safely ignored.1165  
1166  
1167  
1168  
1169  
1170 forget\_norm = F.normalize(forget\_feature, p=2, dim=1)  
1171 retain\_norm = F.normalize(retain\_feature, p=2, dim=1)  
1172 # cosine similarity (batch x batch)  
1173 cos\_sim = forget\_norm @ retain\_norm.T  
1174 # convert to distance in [0,1]  
1175 cos\_dist = (1 - cos\_sim) / 2 # shape: [batch, batch]  
1176 # --- threshold and count ---  
1177 threshold = 0.2 # example threshold in [0,1]  
1178 # boolean matrix: True = close  
1179 close\_mask = cos\_dist < threshold # [batch, batch]  
1180 density = close\_mask.sum(dim=0) / len(forget\_feature)1181 D.5 ABLATION STUDY  
11821183 By default, we adopt cosine distance because it naturally lies in  $[0, 1]$ , and we set the threshold  $\beta$  to  
1184 the median of all pairwise distances. We conduct an ablation study on different distance metrics and  
1185 thresholds for random forgetting on CIFAR-10, where the forgetting set size is 10% of the training  
1186 data. For comparison, we also evaluate Euclidean distance. The results for cosine and Euclidean

1188  
 1189 **Table 6: The ablation studies of threshold  $\beta$  and different distance functions of UGradSL for the**  
 1190 **random forgetting on CIFAR-10 and the size of forgetting set is 10% of the training set. The first**  
 1191 **row is the results for retraining for reference.**

| $\beta$ | Distance  | UA               | MIA              | RA               | TA               | Avg. Gap ( $\downarrow$ ) |
|---------|-----------|------------------|------------------|------------------|------------------|---------------------------|
| -       | -         | 8.07             | 17.41            | 100.00           | 91.61            | -                         |
| Median  | Cosine    | 6.04 $\pm$ 0.11  | 13.75 $\pm$ 0.32 | 99.11 $\pm$ 0.01 | 92.07 $\pm$ 0.02 | 1.76                      |
|         | Euclidean | 8.59 $\pm$ 1.85  | 17.30 $\pm$ 0.98 | 94.39 $\pm$ 1.15 | 88.97 $\pm$ 1.12 | 2.59                      |
| 0.1     | Cosine    | 6.50 $\pm$ 0.14  | 14.76 $\pm$ 1.52 | 95.64 $\pm$ 0.23 | 89.91 $\pm$ 0.17 | 2.57                      |
|         | Euclidean | 6.68 $\pm$ 0.88  | 14.69 $\pm$ 1.66 | 95.34 $\pm$ 0.79 | 89.90 $\pm$ 0.69 | 2.62                      |
| 0.2     | Cosine    | 7.01 $\pm$ 0.67  | 15.86 $\pm$ 0.86 | 95.18 $\pm$ 0.44 | 89.69 $\pm$ 0.19 | 2.34                      |
|         | Euclidean | 6.82 $\pm$ 0.44  | 15.81 $\pm$ 0.70 | 95.58 $\pm$ 0.73 | 90.02 $\pm$ 0.57 | 2.21                      |
| 0.3     | Cosine    | 7.01 $\pm$ 0.98  | 15.13 $\pm$ 1.26 | 95.24 $\pm$ 0.99 | 89.76 $\pm$ 0.41 | 2.49                      |
|         | Euclidean | 7.32 $\pm$ 1.06  | 16.45 $\pm$ 2.08 | 94.68 $\pm$ 0.89 | 89.16 $\pm$ 0.33 | 2.53                      |
| 0.4     | Cosine    | 7.91 $\pm$ 0.26  | 15.69 $\pm$ 1.11 | 94.69 $\pm$ 0.51 | 89.07 $\pm$ 0.29 | 2.45                      |
|         | Euclidean | 6.24 $\pm$ 0.21  | 14.16 $\pm$ 0.12 | 95.75 $\pm$ 0.40 | 90.13 $\pm$ 0.13 | 2.70                      |
| 0.5     | Cosine    | 7.61 $\pm$ 0.66  | 16.50 $\pm$ 1.68 | 95.03 $\pm$ 0.36 | 89.69 $\pm$ 0.72 | 2.26                      |
|         | Euclidean | 8.27 $\pm$ 1.33  | 16.44 $\pm$ 1.83 | 94.67 $\pm$ 1.33 | 89.03 $\pm$ 1.28 | 2.68                      |
| 0.6     | Cosine    | 8.76 $\pm$ 0.28  | 16.53 $\pm$ 1.88 | 94.31 $\pm$ 0.61 | 88.54 $\pm$ 0.50 | 2.75                      |
|         | Euclidean | 8.67 $\pm$ 0.28  | 17.01 $\pm$ 2.43 | 94.34 $\pm$ 0.16 | 88.93 $\pm$ 0.30 | 2.66                      |
| 0.7     | Cosine    | 9.88 $\pm$ 1.05  | 18.33 $\pm$ 2.82 | 93.55 $\pm$ 0.92 | 88.08 $\pm$ 0.42 | 3.44                      |
|         | Euclidean | 9.61 $\pm$ 0.86  | 17.93 $\pm$ 2.33 | 94.11 $\pm$ 0.49 | 88.69 $\pm$ 0.19 | 2.99                      |
| 0.8     | Cosine    | 9.61 $\pm$ 1.12  | 16.91 $\pm$ 1.51 | 93.68 $\pm$ 1.20 | 88.48 $\pm$ 0.76 | 3.08                      |
|         | Euclidean | 9.75 $\pm$ 0.17  | 16.79 $\pm$ 0.52 | 93.87 $\pm$ 0.02 | 88.34 $\pm$ 0.39 | 2.93                      |
| 0.9     | Cosine    | 9.19 $\pm$ 0.66  | 17.84 $\pm$ 0.72 | 94.19 $\pm$ 0.50 | 88.51 $\pm$ 0.84 | 2.63                      |
|         | Euclidean | 9.76 $\pm$ 0.49  | 18.61 $\pm$ 0.65 | 93.90 $\pm$ 0.39 | 88.47 $\pm$ 0.35 | 3.03                      |
| 1.0     | Cosine    | 9.39 $\pm$ 0.07  | 16.94 $\pm$ 0.26 | 94.26 $\pm$ 0.33 | 88.74 $\pm$ 0.22 | 2.60                      |
|         | Euclidean | 10.41 $\pm$ 0.24 | 19.16 $\pm$ 1.08 | 93.50 $\pm$ 0.63 | 88.21 $\pm$ 0.34 | 3.50                      |

1216 **Table 7: The ablation studies of threshold  $\beta$  and different distance functions of UGradSL+ for the**  
 1217 **random forgetting on CIFAR-10 and the size of forgetting set is 10% of the training set. The first**  
 1218 **row is the results for retraining for reference.**

| $\beta$ | Distance  | UA               | MIA              | RA               | TA               | Avg. Gap ( $\downarrow$ ) |
|---------|-----------|------------------|------------------|------------------|------------------|---------------------------|
| -       | -         | 8.07             | 17.41            | 100.00           | 91.61            | -                         |
| Median  | Cosine    | 7.54 $\pm$ 0.43  | 13.57 $\pm$ 0.12 | 99.67 $\pm$ 0.00 | 92.97 $\pm$ 0.17 | 1.52                      |
|         | Euclidean | 11.21 $\pm$ 0.21 | 21.02 $\pm$ 2.23 | 94.35 $\pm$ 0.22 | 88.58 $\pm$ 0.26 | 3.86                      |
| 0.1     | Cosine    | 7.79 $\pm$ 0.52  | 17.04 $\pm$ 0.61 | 95.84 $\pm$ 0.27 | 90.10 $\pm$ 0.47 | 1.67                      |
|         | Euclidean | 7.30 $\pm$ 0.62  | 16.42 $\pm$ 0.66 | 96.16 $\pm$ 0.94 | 90.46 $\pm$ 0.91 | 1.69                      |
| 0.2     | Cosine    | 8.38 $\pm$ 0.19  | 17.46 $\pm$ 1.09 | 95.38 $\pm$ 0.34 | 89.56 $\pm$ 0.53 | 1.94                      |
|         | Euclidean | 7.80 $\pm$ 0.76  | 16.55 $\pm$ 1.91 | 95.75 $\pm$ 1.04 | 89.80 $\pm$ 0.50 | 1.93                      |
| 0.3     | Cosine    | 8.27 $\pm$ 0.65  | 18.19 $\pm$ 0.29 | 95.94 $\pm$ 0.84 | 90.18 $\pm$ 0.62 | 1.71                      |
|         | Euclidean | 7.68 $\pm$ 0.65  | 17.28 $\pm$ 0.52 | 95.85 $\pm$ 0.75 | 90.25 $\pm$ 0.55 | 1.62                      |
| 0.4     | Cosine    | 8.49 $\pm$ 0.28  | 17.92 $\pm$ 0.52 | 95.85 $\pm$ 0.20 | 90.09 $\pm$ 0.03 | 1.66                      |
|         | Euclidean | 8.38 $\pm$ 0.60  | 17.86 $\pm$ 0.89 | 95.60 $\pm$ 0.78 | 90.06 $\pm$ 0.57 | 1.80                      |
| 0.5     | Cosine    | 9.23 $\pm$ 0.89  | 16.81 $\pm$ 1.66 | 95.46 $\pm$ 0.62 | 89.79 $\pm$ 0.86 | 2.15                      |
|         | Euclidean | 8.98 $\pm$ 0.69  | 16.77 $\pm$ 1.62 | 95.39 $\pm$ 1.01 | 89.34 $\pm$ 1.17 | 2.31                      |
| 0.6     | Cosine    | 9.95 $\pm$ 0.64  | 19.90 $\pm$ 0.95 | 95.47 $\pm$ 0.12 | 89.82 $\pm$ 0.30 | 2.67                      |
|         | Euclidean | 10.00 $\pm$ 0.10 | 19.00 $\pm$ 1.92 | 95.15 $\pm$ 0.26 | 89.53 $\pm$ 0.28 | 2.66                      |
| 0.7     | Cosine    | 11.81 $\pm$ 0.74 | 20.67 $\pm$ 2.62 | 94.25 $\pm$ 0.76 | 88.78 $\pm$ 1.02 | 3.90                      |
|         | Euclidean | 11.25 $\pm$ 0.59 | 21.54 $\pm$ 1.12 | 94.69 $\pm$ 0.71 | 89.05 $\pm$ 0.71 | 3.79                      |
| 0.8     | Cosine    | 13.06 $\pm$ 0.53 | 18.81 $\pm$ 0.81 | 92.89 $\pm$ 0.69 | 87.29 $\pm$ 0.75 | 4.45                      |
|         | Euclidean | 12.07 $\pm$ 0.45 | 19.23 $\pm$ 2.00 | 93.81 $\pm$ 0.95 | 88.34 $\pm$ 1.00 | 3.82                      |
| 0.9     | Cosine    | 11.75 $\pm$ 0.09 | 21.02 $\pm$ 1.43 | 94.34 $\pm$ 0.38 | 88.81 $\pm$ 0.31 | 3.94                      |
|         | Euclidean | 12.01 $\pm$ 1.12 | 21.49 $\pm$ 1.17 | 94.26 $\pm$ 1.08 | 88.74 $\pm$ 0.88 | 4.16                      |
| 1.0     | Cosine    | 11.48 $\pm$ 0.06 | 20.59 $\pm$ 2.63 | 94.19 $\pm$ 0.56 | 88.82 $\pm$ 0.38 | 3.80                      |
|         | Euclidean | 11.79 $\pm$ 0.37 | 17.35 $\pm$ 0.85 | 94.37 $\pm$ 0.34 | 88.67 $\pm$ 0.56 | 3.23                      |

1242 distance under different  $\beta$  values for UGradSL and UGradSL+ are reported in Table 6 and Table 7,  
 1243 respectively.

## 1244 E EXPERIMENTS

### 1245 E.1 ADDITIONAL EXPERIMENTAL SETTINGS

1246 The datasets and model configurations for the original model training and retraining are given in  
 1247 Table 8. We run all the experiments using PyTorch 1.12 on NVIDIA A5000 GPUs and AMD EPYC  
 1248 7513 32-Core Processor.

1249 Table 8: The hyperparameters used in the original training and retraining for different models and  
 1250 datasets.

| 1251 Settings      | 1252 CIFAR-10  |             |           | 1253 SVHN      |                | 1254 CIFAR-100 | 1255 ImageNet  | 1256 20 NewsGroup |
|--------------------|----------------|-------------|-----------|----------------|----------------|----------------|----------------|-------------------|
| 1257               | 1258 ResNet-18 | 1259 VGG-16 | 1260 ViT  | 1261 ResNet-18 | 1262 ResNet-18 | 1263 ResNet-18 | 1264 ResNet-18 | 1265 Bert         |
| 1266 Batch Size    | 256            | 256         | 256       | 256            | 256            | 1024           | 128            |                   |
| 1267 Learning rate | $1e^{-2}$      | $1e^{-4}$   | $1e^{-6}$ | $1e^{-2}$      | $1e^{-2}$      | $1e^{-2}$      | $1e^{-4}$      |                   |
| 1268 Epochs        | 160            | 160         | 160       | 160            | 160            | 90             | 60             |                   |

1269 The settings of the baseline methods are:

- 1270 • Fine-tuning (FT): FT is to fine-tune the original model  $\theta_o$  trained from  $D_{tr}$  using  $D_r$ .  
 1271 We fix the epoch of FT for 10 epochs for all the datasets except ImageNet. We fine-tune  
 1272 ImageNet for 5 epochs. The learning rate is the same as the original training.
- 1273 • Fisher forgetting (FF): FF is to perturb the  $\theta_o$  by adding the Gaussian noise, which with a  
 1274 zero mean and a covariance corresponds to the 4th root of the Fisher Information Matrix  
 1275 with respect to (w.r.t.)  $\theta_o$  on  $D_r$  (Golatkar et al., 2020). We perform a greedy search for  
 1276 hyperparameter tuning between  $1e^{-9}$  and  $1e^{-6}$ .
- 1277 • Influence unlearning (IU): IU uses influence function (Koh & Liang, 2017) to estimate the  
 1278 change from  $\theta_o$  to  $\theta_u$  when one training sample is removed.
- 1279 • Boundary unlearning<sup>2</sup> (BU): BU unlearns the data by assigning pseudo label and manip-  
 1280 ulating the decision boundary. It contains boundary shrink and boundary expansion, two  
 1281 types of unlearning methods. The hyper-parameters are the default value in the paper.
- 1282 •  $\ell_1$ -sparse<sup>3</sup>:  $\ell_1$ -sparse improves machine unlearning by integrating the  $\ell_1$  norm-based sparse  
 1283 penalty to the loss function. The learning rate is  $1e^{-3}$  and we search  $\gamma$  in  $[1e^{-5}, 1e^{-1}]$  as  
 1284 given in (Jia et al., 2023).
- 1285 • SCRUB: SCRUB casts the unlearning problem into a teacher-student framework. We fol-  
 1286 low the settings exact the same in the original repo<sup>4</sup> where  $\gamma = 0.99$  and  $\alpha = 0.001$ .
- 1287 • Random Labeling (RL): Unlike FT, RL is to train the model with the random label rather  
 1288 than the fixed label. The settings are the same as for FT.
- 1289 • SalUN<sup>5</sup>: SalUN takes the weight saliency into consideration. We search  $\gamma$  from  $[0.5, 0.9]$ .

### 1290 E.2 DATASET SPLIT OF DIFFERENT FORGETTING PARADIGMS

1291 We also provide the details of dataset split for different forgetting paradigms. For classwise forget-  
 1292 ting, we remove the whole class from  $D_{tr}$  and  $D_{te}$ . In CIFAR-10 and CIFAR-100, the size of  $D_f$   
 1293 is 500 and 5000, respectively. For the other datasets, the size of  $D_f$  ranges from the smallest class  
 1294 size to the largest class size because we remove the whole class completely. The selected class to be  
 1295 forgotten is totally random. For random forgetting, we randomly select 10% data from  $D_{tr}$  as  $D_f$ .  
 1296 We make sure the distribution of  $D_f$  is the same as  $D_{tr}$ . For CIFAR-20 in group forgetting, each  
 1297 fine-grained class is in the same size which is 500. The coarse class is 2500.

<sup>2</sup><https://github.com/TY-LEE-KR/Boundary-Unlearning-Code>

<sup>3</sup><https://github.com/OPTML-Group/Unlearn-Sparse>

<sup>4</sup><https://github.com/meghdadk/SCRUB/tree/main>

<sup>5</sup><https://github.com/OPTML-Group/Unlearn-Saliency>

1296 Table 9: The experiment results of class-wise forgetting in 20 Newsgroup and SVHN datasets.  
1297

| 20 Newsgroup     | UA                      | MIA <sub>Score</sub>    | RA                      | TA                     | Avg. Gap (↓) | RTE (↓, min) |
|------------------|-------------------------|-------------------------|-------------------------|------------------------|--------------|--------------|
| Retrain          | 100.00 <sub>±0.00</sub> | 100.00 <sub>±0.00</sub> | 98.31 <sub>±2.56</sub>  | 81.95 <sub>±1.69</sub> | -            | 26.25        |
| FT               | 4.14 <sub>±2.11</sub>   | 9.23 <sub>±3.40</sub>   | 98.83 <sub>±0.86</sub>  | 82.63 <sub>±0.73</sub> | 46.96        | 1.77         |
| GA               | 17.12 <sub>±9.48</sub>  | 62.03 <sub>±5.84</sub>  | 99.99 <sub>±0.01</sub>  | 85.41 <sub>±0.37</sub> | 30.80        | <b>0.37</b>  |
| IU               | 0.00 <sub>±0.00</sub>   | 0.25 <sub>±0.12</sub>   | 100.00 <sub>±0.00</sub> | 85.58 <sub>±0.20</sub> | 51.27        | 1.52         |
| BS               | 78.33 <sub>±3.47</sub>  | 92.63 <sub>±2.19</sub>  | 97.28 <sub>±0.99</sub>  | 90.93 <sub>±0.81</sub> | 9.76         | 1.42         |
| UGradSL          | 100.00 <sub>±0.00</sub> | 100.00 <sub>±0.00</sub> | 96.31 <sub>±4.02</sub>  | 78.54 <sub>±5.10</sub> | 1.35         | 0.39         |
| UGradSL+         | 100.00 <sub>±0.00</sub> | 100.00 <sub>±0.00</sub> | 99.76 <sub>±0.23</sub>  | 84.21 <sub>±0.41</sub> | <b>0.93</b>  | 2.13         |
| SVHN             | UA                      | MIA <sub>Score</sub>    | RA                      | TA                     | Avg. Gap (↓) | RTE (↓, min) |
| Retrain          | 100.00 <sub>±0.00</sub> | 100.00 <sub>±0.00</sub> | 100.00 <sub>±0.01</sub> | 95.94 <sub>±0.11</sub> | -            | 37.05        |
| FT               | 6.49 <sub>±1.49</sub>   | 99.98 <sub>±0.04</sub>  | 100.00 <sub>±0.01</sub> | 96.08 <sub>±0.01</sub> | 23.42        | 2.42         |
| GA               | 87.49 <sub>±1.94</sub>  | 99.85 <sub>±0.09</sub>  | 99.52 <sub>±0.03</sub>  | 95.27 <sub>±0.21</sub> | 3.45         | <b>0.15</b>  |
| IU               | 93.55 <sub>±2.78</sub>  | 100.00 <sub>±0.00</sub> | 99.54 <sub>±0.03</sub>  | 95.64 <sub>±0.31</sub> | 1.80         | 0.23         |
| BE               | 85.56 <sub>±3.07</sub>  | 99.98 <sub>±0.02</sub>  | 99.55 <sub>±0.01</sub>  | 95.53 <sub>±0.07</sub> | 3.83         | 3.17         |
| BS               | 96.62 <sub>±1.14</sub>  | 99.95 <sub>±0.09</sub>  | 99.99 <sub>±0.00</sub>  | 95.39 <sub>±0.18</sub> | 1.00         | 3.91         |
| $\ell_1$ -sparse | 99.78 <sub>±0.31</sub>  | 100.00 <sub>±0.00</sub> | 98.63 <sub>±0.01</sub>  | 97.30 <sub>±0.18</sub> | 0.75         | 2.91         |
| RL               | 99.99 <sub>±0.01</sub>  | 100.00 <sub>±0.00</sub> | 100.00 <sub>±0.00</sub> | 95.44 <sub>±0.13</sub> | 0.13         | 3.53         |
| EU- <i>k</i>     | 100.00 <sub>±0.00</sub> | 100.00 <sub>±0.00</sub> | 99.61 <sub>±0.08</sub>  | 65.56 <sub>±2.38</sub> | 7.59         | 4.93         |
| CF- <i>k</i>     | 0.09 <sub>±0.03</sub>   | 2.18 <sub>±2.21</sub>   | 99.34 <sub>±0.02</sub>  | 69.87 <sub>±4.13</sub> | 55.88        | 5.02         |
| SCRUB            | 99.99 <sub>±0.02</sub>  | 100.00 <sub>±0.00</sub> | 100.00 <sub>±0.00</sub> | 95.79 <sub>±0.26</sub> | <b>0.04</b>  | 4.97         |
| RL               | 99.99 <sub>±0.01</sub>  | 100.00 <sub>±0.00</sub> | 100.00 <sub>±0.00</sub> | 95.44 <sub>±0.13</sub> | 0.13         | 3.53         |
| SalUN            | 99.74 <sub>±0.39</sub>  | 100.00 <sub>±0.00</sub> | 99.53 <sub>±0.02</sub>  | 95.00 <sub>±1.50</sub> | 0.53         | 4.77         |
| UGradSL          | 90.71 <sub>±4.08</sub>  | 99.90 <sub>±0.16</sub>  | 99.54 <sub>±0.04</sub>  | 95.64 <sub>±0.25</sub> | 2.54         | 0.23         |
| UGradSL+         | 100.00 <sub>±0.00</sub> | 100.00 <sub>±0.00</sub> | 99.82 <sub>±0.62</sub>  | 94.35 <sub>±0.70</sub> | 0.44         | 4.56         |

## 1320 E.3 ADDITIONAL CLASS-WISE FORGETTING RESULTS

1321  
1322 We present the performance of class-wise forgetting in 20 Newsgroup and SVHN datasets in Table 9.  
1323 The observation is similar in CIFAR-100 and ImageNet given in Table 1. UGradSL and UGradSL+  
1324 can improve the MU performance with acceptable time increment, showing the generalization of the  
1325 proposed method in different modalities and different dataset size.

## 1326 E.4 ADDITIONAL RANDOM FORGETTING RESULTS

1327  
1328 We present the performance of random forgetting in CIFAR-10 and SVHN dataset in Table 10. The  
1329 observation is similar in CIFAR-100 and Tiny ImageNet given in Table 2.

## 1330 E.5 MU WITH THE OTHER CLASSIFIER

1331  
1332 To validate the generalization of the proposed method, we also try the other classification model. We  
1333 test vision transformer (ViT) and VGG-16 on the task of class-wise forgetting and random forgetting  
1334 using CIFAR-10, respectively. The results are given in Table 11 and 12. The observation is similar  
1335 in Table 1 and 2, respectively.

1336 Table 11: The experiment results of class-wise forgetting in CIFAR-10 using ViT.  
1337

| CIFAR-10 | UA                      | MIA <sub>Score</sub>    | RA                     | TA                     | Avg. Gap (↓) | RTE (↓, min) |
|----------|-------------------------|-------------------------|------------------------|------------------------|--------------|--------------|
| Retrain  | 100.00 <sub>±0.00</sub> | 100.00 <sub>±0.00</sub> | 61.41 <sub>±0.81</sub> | 58.94 <sub>±1.09</sub> | -            | 189.08       |
| FT       | 3.97 <sub>±0.87</sub>   | 7.60 <sub>±1.76</sub>   | 98.29 <sub>±0.05</sub> | 80.44 <sub>±0.22</sub> | 61.70        | 2.99         |
| GA       | 33.77 <sub>±6.36</sub>  | 40.47 <sub>±6.63</sub>  | 89.47 <sub>±4.21</sub> | 71.65 <sub>±2.79</sub> | 41.63        | 0.32         |
| IU       | 1.74 <sub>±0.09</sub>   | 2.16 <sub>±0.61</sub>   | 73.96 <sub>±0.01</sub> | 68.88 <sub>±0.00</sub> | 54.65        | 0.24         |
| BE       | 85.56 <sub>±3.07</sub>  | 99.98 <sub>±0.02</sub>  | 99.55 <sub>±0.01</sub> | 95.53 <sub>±0.07</sub> | 22.30        | 3.17         |
| UGradSL  | 68.11 <sub>±11.03</sub> | 73.84 <sub>±9.58</sub>  | 84.11 <sub>±2.70</sub> | 68.33 <sub>±1.69</sub> | 22.54        | <b>0.22</b>  |
| UGradSL+ | 99.99 <sub>±0.01</sub>  | 99.99 <sub>±0.02</sub>  | 94.46 <sub>±1.06</sub> | 77.26 <sub>±1.19</sub> | <b>12.85</b> | 5.86         |

1350  
1351

Table 10: The experiment results of random forgetting in CIFAR-10 and SVHN.

1352  
1353  
1354  
1355  
1356  
1357  
1358  
1359

| CIFAR-10         | UA               | MIA <sub>Score</sub> | RA                | TA               | Avg. Gap (↓) | RTE (↓, min) |
|------------------|------------------|----------------------|-------------------|------------------|--------------|--------------|
| Retrain          | $8.07 \pm 0.47$  | $17.41 \pm 0.69$     | $100.00 \pm 0.01$ | $91.61 \pm 0.24$ | -            | 24.66        |
| FT               | $1.10 \pm 0.19$  | $4.06 \pm 0.41$      | $99.83 \pm 0.03$  | $93.70 \pm 0.10$ | 5.65         | 1.58         |
| GA               | $0.56 \pm 0.01$  | $1.19 \pm 0.05$      | $99.48 \pm 0.02$  | $94.55 \pm 0.05$ | 6.80         | <b>0.31</b>  |
| IU               | $17.51 \pm 2.19$ | $21.39 \pm 1.70$     | $83.28 \pm 2.44$  | $78.13 \pm 2.85$ | 10.91        | 1.18         |
| BE               | $0.00 \pm 0.00$  | $0.26 \pm 0.02$      | $100.00 \pm 0.00$ | $95.35 \pm 0.18$ | 7.24         | 3.17         |
| BS               | $0.48 \pm 0.07$  | $1.16 \pm 0.04$      | $99.47 \pm 0.01$  | $94.58 \pm 0.03$ | 6.84         | 1.41         |
| $\ell_1$ -sparse | $1.21 \pm 0.38$  | $4.33 \pm 0.52$      | $97.39 \pm 0.31$  | $95.49 \pm 0.18$ | 6.61         | 1.82         |
| SCRUB            | $0.70 \pm 0.59$  | $3.88 \pm 1.25$      | $99.59 \pm 0.34$  | $94.22 \pm 0.26$ | 5.98         | 4.05         |
| Random Label     | $2.80 \pm 0.37$  | $18.59 \pm 3.48$     | $99.97 \pm 0.01$  | $94.08 \pm 0.12$ | 2.24         | 1.98         |
| UGradSL          | $5.87 \pm 0.51$  | $13.33 \pm 0.70$     | $98.82 \pm 0.28$  | $92.17 \pm 0.23$ | 2.01         | 0.45         |
| UGradSL+         | $6.03 \pm 0.17$  | $10.65 \pm 0.13$     | $99.79 \pm 0.03$  | $93.64 \pm 0.16$ | 2.76         | 3.07         |
| UGradSL (Adp)    | $6.04 \pm 0.11$  | $13.75 \pm 0.32$     | $99.11 \pm 0.01$  | $92.07 \pm 0.02$ | 1.76         | 1.35         |
| UGradSL+ (Adp)   | $7.54 \pm 0.43$  | $13.57 \pm 0.12$     | $99.67 \pm 0.00$  | $92.97 \pm 0.17$ | <b>1.52</b>  | 9.23         |
| SVHN             | UA               | MIA <sub>Score</sub> | RA                | TA               | Avg. Gap (↓) | RTE (↓, min) |
| Retrain          | $4.95 \pm 0.03$  | $15.59 \pm 0.93$     | $99.99 \pm 0.01$  | $95.61 \pm 0.22$ | -            | 35.65        |
| FT               | $0.45 \pm 0.14$  | $2.30 \pm 0.04$      | $99.99 \pm 0.00$  | $95.78 \pm 0.01$ | 4.49         | 2.76         |
| GA               | $0.58 \pm 0.04$  | $1.13 \pm 0.02$      | $99.56 \pm 0.01$  | $95.62 \pm 0.01$ | 4.86         | <b>0.31</b>  |
| FF               | $0.45 \pm 0.09$  | $1.30 \pm 0.12$      | $99.55 \pm 0.01$  | $95.49 \pm 0.03$ | 4.84         | 6.02         |
| BE               | $0.00 \pm 0.02$  | $0.02 \pm 0.17$      | $100.00 \pm 0.01$ | $96.14 \pm 0.02$ | 5.27         | 1.03         |
| BS               | $0.45 \pm 0.14$  | $1.13 \pm 0.05$      | $99.57 \pm 0.03$  | $95.66 \pm 0.01$ | 4.86         | 4.24         |
| $\ell_1$ -sparse | $3.73 \pm 0.78$  | $8.44 \pm 0.34$      | $97.84 \pm 0.28$  | $96.18 \pm 0.33$ | 2.77         | 0.07         |
| SCRUB            | $0.35 \pm 0.20$  | $4.96 \pm 0.93$      | $99.94 \pm 0.02$  | $95.36 \pm 0.23$ | 3.88         | 3.24         |
| RL               | $8.00 \pm 0.64$  | $29.40 \pm 11.92$    | $98.72 \pm 0.45$  | $94.04 \pm 1.10$ | 4.93         | 1.79         |
| UGradSL          | $3.29 \pm 2.53$  | $14.32 \pm 4.56$     | $99.89 \pm 0.02$  | $94.38 \pm 0.28$ | 1.07         | 0.57         |
| UGradSL+         | $5.77 \pm 2.93$  | $15.95 \pm 2.26$     | $100.00 \pm 0.00$ | $95.12 \pm 0.50$ | 0.42         | 4.44         |
| UGradSL (Adp)    | $3.97 \pm 0.29$  | $14.63 \pm 2.15$     | $99.89 \pm 0.01$  | $94.40 \pm 0.12$ | 0.81         | 2.20         |
| UGradSL+ (Adp)   | $5.07 \pm 0.34$  | $15.89 \pm 1.03$     | $100.00 \pm 0.00$ | $95.21 \pm 0.44$ | <b>0.21</b>  | 14.33        |

1374  
1375  
1376  
1377  
1378  
1379

Table 12: The experiment results of random forgetting across all the classes in CIFAR-10 using VGG-16

1382  
1383  
1384  
1385  
1386  
1387  
1388  
1389  
1390  
1391  
1392  
1393  
1394  
1395  
1396  
1397

| CIFAR-10         | UA                | MIA <sub>Score</sub> | RA                | TA                | Avg. Gap (↓) | RTE (↓, min) |
|------------------|-------------------|----------------------|-------------------|-------------------|--------------|--------------|
| Retrain          | $11.41 \pm 0.41$  | $11.97 \pm 0.50$     | $74.65 \pm 0.23$  | $66.13 \pm 0.16$  | -            | 9.48         |
| FT               | $1.32 \pm 0.13$   | $3.48 \pm 0.13$      | $74.24 \pm 0.04$  | $67.04 \pm 0.10$  | 4.96         | 0.60         |
| GA               | $1.35 \pm 0.08$   | $2.18 \pm 0.66$      | $73.95 \pm 0.01$  | $66.88 \pm 0.01$  | 5.33         | <b>0.14</b>  |
| IU               | $1.74 \pm 0.09$   | $2.16 \pm 0.61$      | $73.96 \pm 0.01$  | $68.88 \pm 0.00$  | 5.73         | 0.24         |
| FF               | $1.35 \pm 0.09$   | $2.21 \pm 0.58$      | $73.95 \pm 0.02$  | $66.87 \pm 0.04$  | 5.63         | 1.02         |
| BE               | $0.01 \pm 0.01$   | $0.23 \pm 0.05$      | $99.98 \pm 0.00$  | $94.04 \pm 0.21$  | 19.10        | 1.09         |
| BS               | $0.01 \pm 0.01$   | $0.22 \pm 0.03$      | $99.98 \pm 0.01$  | $94.00 \pm 0.14$  | 19.09        | 3.17         |
| $\ell_1$ -sparse | $1.27 \pm 1.13$   | $3.60 \pm 2.41$      | $98.97 \pm 1.13$  | $92.18 \pm 1.46$  | 17.22        | 0.08         |
| SCRUB            | $61.16 \pm 50.89$ | $44.65 \pm 43.31$    | $39.26 \pm 50.57$ | $36.95 \pm 46.68$ | 36.75        | 0.91         |
| UGradSL          | $13.45 \pm 0.63$  | $11.77 \pm 0.54$     | $65.05 \pm 0.48$  | $58.52 \pm 0.38$  | <b>4.86</b>  | 0.19         |
| UGradSL+         | $12.41 \pm 0.32$  | $14.96 \pm 0.52$     | $65.90 \pm 0.52$  | $58.58 \pm 0.35$  | 5.13         | 1.08         |

1393  
1394  
1395  
1396  
1397

## E.6 STREISAND EFFECT

1398  
1399  
1400

From the perspective of security, it is important to make the predicted distributions are almost the same from the forgetting set  $D_f$  and the testing set  $D_{te}$ , which is called Streisand effect. We investigate this effect in the *random forgetting* on CIFAR-10 by plotting confusion matrix as shown in Figure 5. It can be found that our method will not lead to the extra hint of  $D_f$ .

Table 13: Ablation studies of GA ratio  $p$  for random forgetting on CIFAR-10. The forgetting set size is 10% training set. The method is UGradSL. We fix  $\alpha$  as -0.4. The first row is the retraining results for reference.

| $p$  | UA               | MIA              | RA               | TA               | Avg. Gap ( $\downarrow$ ) |
|------|------------------|------------------|------------------|------------------|---------------------------|
| -    | 8.07             | 17.41            | 100.00           | 91.61            | -                         |
| 0.80 | 12.47 $\pm$ 1.01 | 20.24 $\pm$ 2.12 | 94.11 $\pm$ 0.71 | 88.21 $\pm$ 0.57 | 4.13                      |
| 0.81 | 11.57 $\pm$ 1.69 | 19.68 $\pm$ 3.31 | 94.39 $\pm$ 1.41 | 88.56 $\pm$ 1.04 | 3.79                      |
| 0.82 | 10.61 $\pm$ 0.08 | 17.85 $\pm$ 0.97 | 94.92 $\pm$ 0.18 | 88.94 $\pm$ 0.37 | 2.73                      |
| 0.83 | 9.64 $\pm$ 0.52  | 16.49 $\pm$ 0.96 | 95.54 $\pm$ 0.71 | 89.63 $\pm$ 0.71 | 2.26                      |
| 0.84 | 9.33 $\pm$ 1.04  | 15.84 $\pm$ 1.17 | 95.43 $\pm$ 0.95 | 89.48 $\pm$ 0.71 | 2.38                      |
| 0.85 | 8.27 $\pm$ 0.82  | 14.74 $\pm$ 1.36 | 96.05 $\pm$ 0.41 | 90.08 $\pm$ 0.40 | 2.21                      |
| 0.86 | 7.96 $\pm$ 0.42  | 15.45 $\pm$ 2.00 | 96.10 $\pm$ 0.44 | 90.22 $\pm$ 0.18 | <b>1.94</b>               |
| 0.87 | 7.51 $\pm$ 0.26  | 15.26 $\pm$ 3.47 | 96.05 $\pm$ 0.18 | 90.20 $\pm$ 0.51 | 2.33                      |
| 0.88 | 6.87 $\pm$ 0.37  | 13.18 $\pm$ 1.26 | 96.43 $\pm$ 0.35 | 90.29 $\pm$ 0.64 | 2.58                      |
| 0.89 | 6.91 $\pm$ 0.56  | 14.44 $\pm$ 2.46 | 96.38 $\pm$ 0.73 | 90.47 $\pm$ 0.36 | 2.22                      |
| 0.90 | 6.92 $\pm$ 1.08  | 13.60 $\pm$ 3.42 | 96.00 $\pm$ 0.50 | 90.26 $\pm$ 0.14 | 2.58                      |
| 0.91 | 6.44 $\pm$ 1.30  | 14.16 $\pm$ 2.27 | 95.93 $\pm$ 1.18 | 90.17 $\pm$ 0.72 | 2.60                      |
| 0.92 | 6.50 $\pm$ 0.69  | 14.35 $\pm$ 0.72 | 95.64 $\pm$ 0.50 | 90.06 $\pm$ 0.12 | 2.64                      |
| 0.93 | 5.88 $\pm$ 0.82  | 14.84 $\pm$ 1.26 | 96.03 $\pm$ 0.84 | 90.31 $\pm$ 0.54 | 2.51                      |
| 0.94 | 5.65 $\pm$ 0.30  | 13.55 $\pm$ 0.78 | 96.25 $\pm$ 0.44 | 90.54 $\pm$ 0.10 | 2.77                      |
| 0.95 | 6.13 $\pm$ 1.29  | 13.14 $\pm$ 2.43 | 95.73 $\pm$ 1.03 | 89.88 $\pm$ 0.75 | 3.05                      |
| 0.96 | 6.07 $\pm$ 0.91  | 14.28 $\pm$ 2.15 | 95.64 $\pm$ 0.79 | 90.15 $\pm$ 0.36 | 2.74                      |
| 0.97 | 5.83 $\pm$ 1.25  | 14.07 $\pm$ 1.98 | 95.20 $\pm$ 0.98 | 89.67 $\pm$ 0.59 | 3.08                      |
| 0.98 | 5.73 $\pm$ 0.84  | 13.19 $\pm$ 1.99 | 95.43 $\pm$ 0.98 | 89.82 $\pm$ 0.38 | 3.23                      |
| 0.99 | 5.83 $\pm$ 1.05  | 12.98 $\pm$ 1.37 | 94.99 $\pm$ 0.79 | 89.46 $\pm$ 0.59 | 3.46                      |

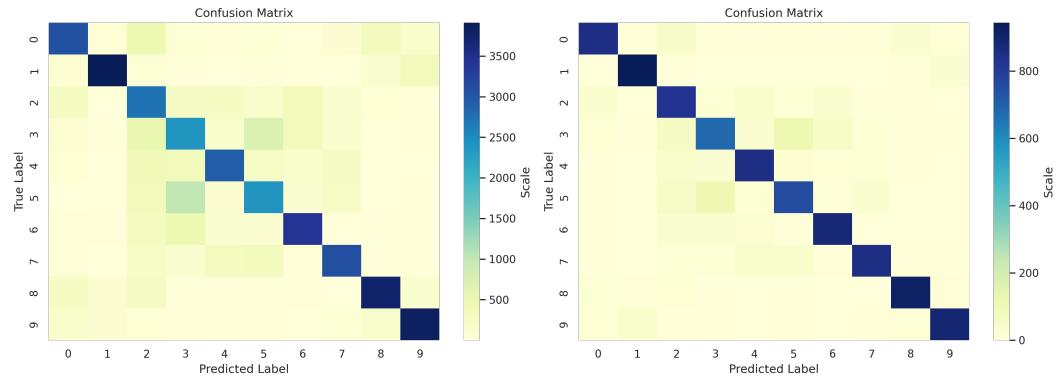


Figure 5: The confusion matrix of testing set and forgetting set  $D_f$  using our method on CIFAR-10 with random forgetting across all the classes. There is no big difference between the prediction distribution. Our method will not make  $D_f$  more distinguishable.

### E.7 ABLATION STUDY: FORGETTING SET SIZE

Since the size of the forgetting set can affect unlearning performance, we further evaluate the robustness of our method under varying forgetting ratios. In addition to the 10% random forgetting results reported in Table 2 and Table 4, we consider forgetting set sizes of 20%, 30%, 40%, and 50% of the training data on CIFAR-10 and CIFAR-100. The results are summarized in Table 17 and 18.

### E.8 ABLATION STUDY: GA RATIO $p$

In addition to an overview of the performance fluctuation in Figure 3. We provide the specific value of the ablation study regarding GA ratio  $p$ . We test the performance on random forgetting on CIFAR-10. The forgetting set size is 10% of the training set. The results of UGradSL and UGradSL+ are given in 13 and 14.

1458  
 1459 Table 14: Ablation studies of GA ratio  $p$  for random forgetting on CIFAR-10. The forgetting set  
 1460 size is 10% training set. The method is UGradSL+. We fix  $\alpha$  as -0.4. The first row is the retraining  
 1461 results for reference.

| $p$  | UA               | MIA              | RA               | TA               | Avg. Gap ( $\downarrow$ ) |
|------|------------------|------------------|------------------|------------------|---------------------------|
| -    | 8.07             | 17.41            | 100.00           | 91.61            | -                         |
| 0.80 | 18.84 $\pm$ 0.71 | 26.78 $\pm$ 1.78 | 91.95 $\pm$ 0.86 | 86.05 $\pm$ 1.21 | 8.44                      |
| 0.81 | 17.00 $\pm$ 0.47 | 24.55 $\pm$ 0.76 | 93.21 $\pm$ 0.21 | 87.50 $\pm$ 0.49 | 6.74                      |
| 0.82 | 16.45 $\pm$ 0.33 | 24.22 $\pm$ 0.46 | 93.60 $\pm$ 0.49 | 87.64 $\pm$ 0.25 | 6.39                      |
| 0.83 | 14.45 $\pm$ 0.73 | 21.73 $\pm$ 0.82 | 94.66 $\pm$ 0.38 | 88.59 $\pm$ 0.19 | 4.76                      |
| 0.84 | 13.44 $\pm$ 0.77 | 20.92 $\pm$ 1.15 | 94.67 $\pm$ 0.71 | 88.67 $\pm$ 0.44 | 4.29                      |
| 0.85 | 12.57 $\pm$ 0.65 | 19.18 $\pm$ 0.64 | 95.25 $\pm$ 1.02 | 89.33 $\pm$ 1.09 | 3.32                      |
| 0.86 | 11.42 $\pm$ 0.14 | 18.34 $\pm$ 0.61 | 95.56 $\pm$ 0.46 | 89.49 $\pm$ 0.27 | 2.71                      |
| 0.87 | 10.90 $\pm$ 0.72 | 17.22 $\pm$ 0.51 | 95.79 $\pm$ 0.39 | 89.77 $\pm$ 0.81 | 2.33                      |
| 0.88 | 10.13 $\pm$ 0.42 | 17.85 $\pm$ 2.11 | 95.97 $\pm$ 0.17 | 90.03 $\pm$ 0.60 | 2.28                      |
| 0.89 | 8.98 $\pm$ 0.29  | 14.94 $\pm$ 0.09 | 96.20 $\pm$ 0.27 | 90.23 $\pm$ 0.33 | 2.14                      |
| 0.90 | 8.41 $\pm$ 0.33  | 16.87 $\pm$ 1.17 | 96.53 $\pm$ 0.03 | 90.64 $\pm$ 0.09 | 1.43                      |
| 0.91 | 8.01 $\pm$ 0.30  | 17.33 $\pm$ 1.17 | 96.50 $\pm$ 0.36 | 90.68 $\pm$ 0.40 | <b>1.40</b>               |
| 0.92 | 7.74 $\pm$ 0.33  | 15.62 $\pm$ 1.80 | 96.28 $\pm$ 0.26 | 90.48 $\pm$ 0.46 | 1.75                      |
| 0.93 | 6.67 $\pm$ 0.12  | 15.93 $\pm$ 0.22 | 96.86 $\pm$ 0.10 | 90.96 $\pm$ 0.34 | 1.67                      |
| 0.94 | 6.79 $\pm$ 0.71  | 16.47 $\pm$ 0.52 | 96.42 $\pm$ 0.83 | 90.74 $\pm$ 0.45 | 1.67                      |
| 0.95 | 6.03 $\pm$ 0.26  | 14.82 $\pm$ 1.39 | 96.76 $\pm$ 0.41 | 90.94 $\pm$ 0.35 | 2.14                      |
| 0.96 | 5.78 $\pm$ 0.24  | 14.79 $\pm$ 1.14 | 96.90 $\pm$ 0.19 | 91.30 $\pm$ 0.16 | 2.08                      |
| 0.97 | 5.98 $\pm$ 0.49  | 14.96 $\pm$ 0.34 | 96.56 $\pm$ 0.45 | 90.81 $\pm$ 0.53 | 2.20                      |
| 0.98 | 6.46 $\pm$ 0.74  | 15.15 $\pm$ 1.76 | 95.52 $\pm$ 0.67 | 90.15 $\pm$ 0.89 | 2.45                      |
| 0.99 | 5.67 $\pm$ 0.27  | 14.40 $\pm$ 1.18 | 96.17 $\pm$ 0.46 | 90.61 $\pm$ 0.24 | 2.56                      |

1479  
 1480 Table 15: The ablation study of smoothing rate  $\alpha$  for random forgetting on CIFAR-10. The forgetting  
 1481 set size is 10% training set. The method we use is UGradSL. We fix  $p$  as 0.9.

| $\alpha$ | UA              | MIA              | RA               | TA               | Avg. Gap ( $\downarrow$ ) |
|----------|-----------------|------------------|------------------|------------------|---------------------------|
| -        | 8.07            | 17.41            | 100.00           | 91.61            | -                         |
| -0.9     | 8.17 $\pm$ 1.74 | 14.96 $\pm$ 2.47 | 95.81 $\pm$ 1.97 | 89.97 $\pm$ 1.46 | 2.44                      |
| -0.8     | 6.98 $\pm$ 0.47 | 13.41 $\pm$ 0.99 | 96.67 $\pm$ 0.88 | 90.75 $\pm$ 0.22 | 2.32                      |
| -0.7     | 7.23 $\pm$ 0.56 | 14.33 $\pm$ 1.23 | 96.28 $\pm$ 0.11 | 90.47 $\pm$ 0.26 | <b>2.20</b>               |
| -0.6     | 6.69 $\pm$ 0.22 | 12.93 $\pm$ 0.67 | 96.46 $\pm$ 0.39 | 90.64 $\pm$ 0.04 | 2.59                      |
| -0.5     | 6.56 $\pm$ 0.29 | 13.00 $\pm$ 0.50 | 96.58 $\pm$ 0.23 | 90.66 $\pm$ 0.20 | 2.57                      |
| -0.4     | 6.92 $\pm$ 1.08 | 13.60 $\pm$ 3.42 | 96.00 $\pm$ 0.50 | 90.26 $\pm$ 0.14 | 2.58                      |
| -0.3     | 6.32 $\pm$ 0.43 | 13.63 $\pm$ 0.67 | 96.18 $\pm$ 0.41 | 90.52 $\pm$ 0.27 | 2.61                      |
| -0.2     | 6.95 $\pm$ 0.54 | 13.98 $\pm$ 1.99 | 95.41 $\pm$ 0.68 | 89.65 $\pm$ 0.56 | 2.77                      |
| -0.1     | 7.13 $\pm$ 1.44 | 14.47 $\pm$ 1.91 | 95.08 $\pm$ 1.55 | 89.57 $\pm$ 1.04 | 2.82                      |

### E.9 SMOOTHING RATIO $\alpha$

1495 Similar to  $p$ , we report the detailed results regarding the smoothing rate  $\alpha$ . The results of UGradSL  
 1496 and UGradSL+ are given in 15 and 16.

### E.10 GRADIENT ANALYSIS

1500 As mentioned in Section 3.3,  $\langle \Delta\theta_r - \Delta\theta_f, \Delta\theta_n - \Delta\theta_f \rangle \leq 0$  is always practically valid. We practi-  
 1501 cally check the results on CelebA dataset (ResNet-18), ImageNet (ViT), CIFAR-100 (VGG-16) and  
 1502 CIFAR-10 (ResNet-18). The distribution of  $\langle \Delta\theta_r - \Delta\theta_f, \Delta\theta_n - \Delta\theta_f \rangle$  is shown in Figure 6, which  
 1503 aligns with our assumption.

### E.11 THE DIFFERENCE BETWEEN UGRADSL AND UGRADSL+

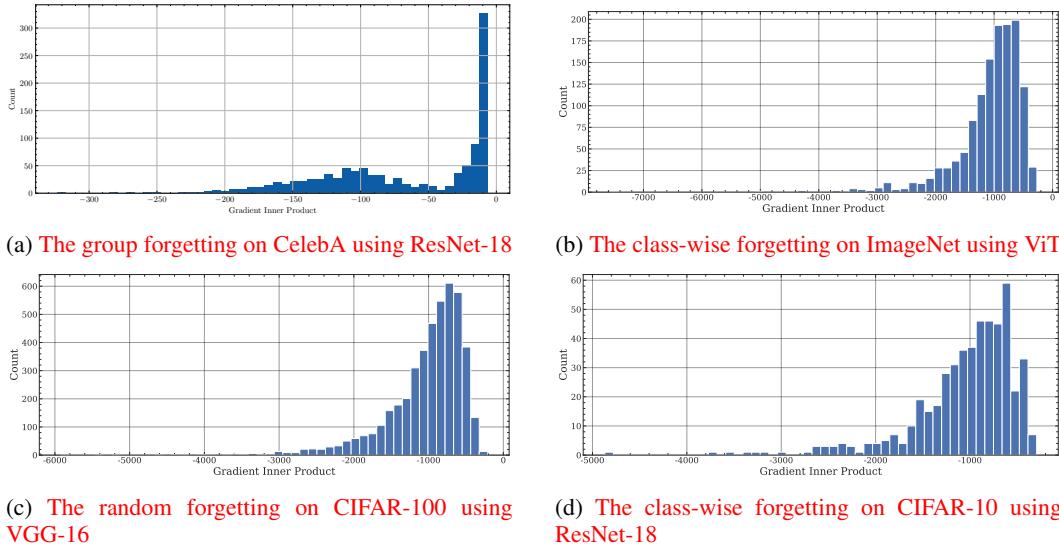
1504 Although UGradSL and UGradSL+ look similar, the intuition of these two method is totally different  
 1505 because of the difference between FT and GA. We conducted experiments to illustrate the difference  
 1506 between GA and FT as well as UGradSL and UGradSL+. The results are given in Table 19. The  
 1507 dataset and forgetting paradigm is CIFAR-10 random forgetting. It can be found that the difference  
 1508 becomes much larger when the number of epochs is over 8. When the number of epochs is 10, the  
 1509 model is useless because TA is less than 10%. We also report the performance of UGradSL and  
 1510 1511

1512 Table 16: The ablation study of smoothing rate  $\alpha$  for random forgetting on CIFAR-10. The forgetting  
 1513 set size is 10% training set. The method we use is UGradSL+. We fix  $p$  as 0.9.

1514

| $\alpha$ | UA               | MIA              | RA               | TA               | Avg. Gap ( $\downarrow$ ) |
|----------|------------------|------------------|------------------|------------------|---------------------------|
| -        | 8.07             | 17.41            | 100.00           | 91.61            | -                         |
| -0.9     | $11.59 \pm 0.40$ | $19.41 \pm 0.59$ | $95.77 \pm 0.58$ | $89.47 \pm 0.56$ | 2.97                      |
| -0.8     | $10.68 \pm 0.27$ | $18.41 \pm 0.48$ | $95.94 \pm 0.24$ | $89.91 \pm 0.36$ | 2.35                      |
| -0.7     | $10.12 \pm 1.01$ | $16.88 \pm 0.69$ | $96.07 \pm 0.89$ | $90.08 \pm 0.78$ | 2.01                      |
| -0.6     | $8.98 \pm 0.15$  | $16.29 \pm 0.87$ | $96.64 \pm 0.19$ | $90.75 \pm 0.05$ | 1.56                      |
| -0.5     | $9.07 \pm 0.21$  | $15.83 \pm 0.25$ | $96.65 \pm 0.34$ | $90.43 \pm 0.50$ | 1.78                      |
| -0.4     | $8.41 \pm 0.33$  | $16.87 \pm 1.17$ | $96.53 \pm 0.03$ | $90.64 \pm 0.09$ | <b>1.43</b>               |
| -0.3     | $8.59 \pm 0.07$  | $16.86 \pm 2.15$ | $96.24 \pm 0.38$ | $90.20 \pm 0.15$ | 1.87                      |
| -0.2     | $7.55 \pm 0.18$  | $16.68 \pm 1.60$ | $96.43 \pm 0.14$ | $90.86 \pm 0.33$ | 1.47                      |
| -0.1     | $7.57 \pm 0.18$  | $17.32 \pm 0.23$ | $96.15 \pm 0.38$ | $90.34 \pm 0.27$ | 1.45                      |

1524



1543

Figure 6: The distribution of  $\langle \Delta\theta_r - \Delta\theta_f, \Delta\theta_n - \Delta\theta_f \rangle$  using multiple models on multiple datasets.

1544

1545

1546

UGradSL+ in different epochs. For UGradSL, when the epochs are over 14, the model cannot be used at all. For UGradSL+, the algorithm is much more stable, showing the very good adaptive capability.

1547

1548

1549

1550

1551

1552

1553

1554

1555

1556

1557

1558

1559

1560

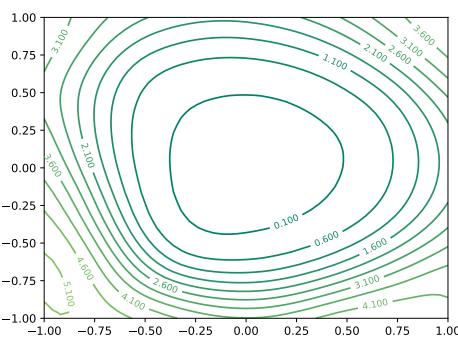
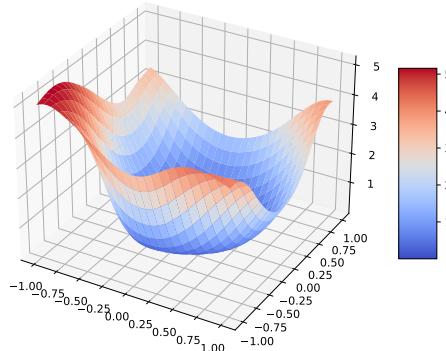
1561

1562

1563

1564

1565

Figure 7: The loss landscape of  $\theta_r$  on CIFAR-10 and the model is ResNet-18.

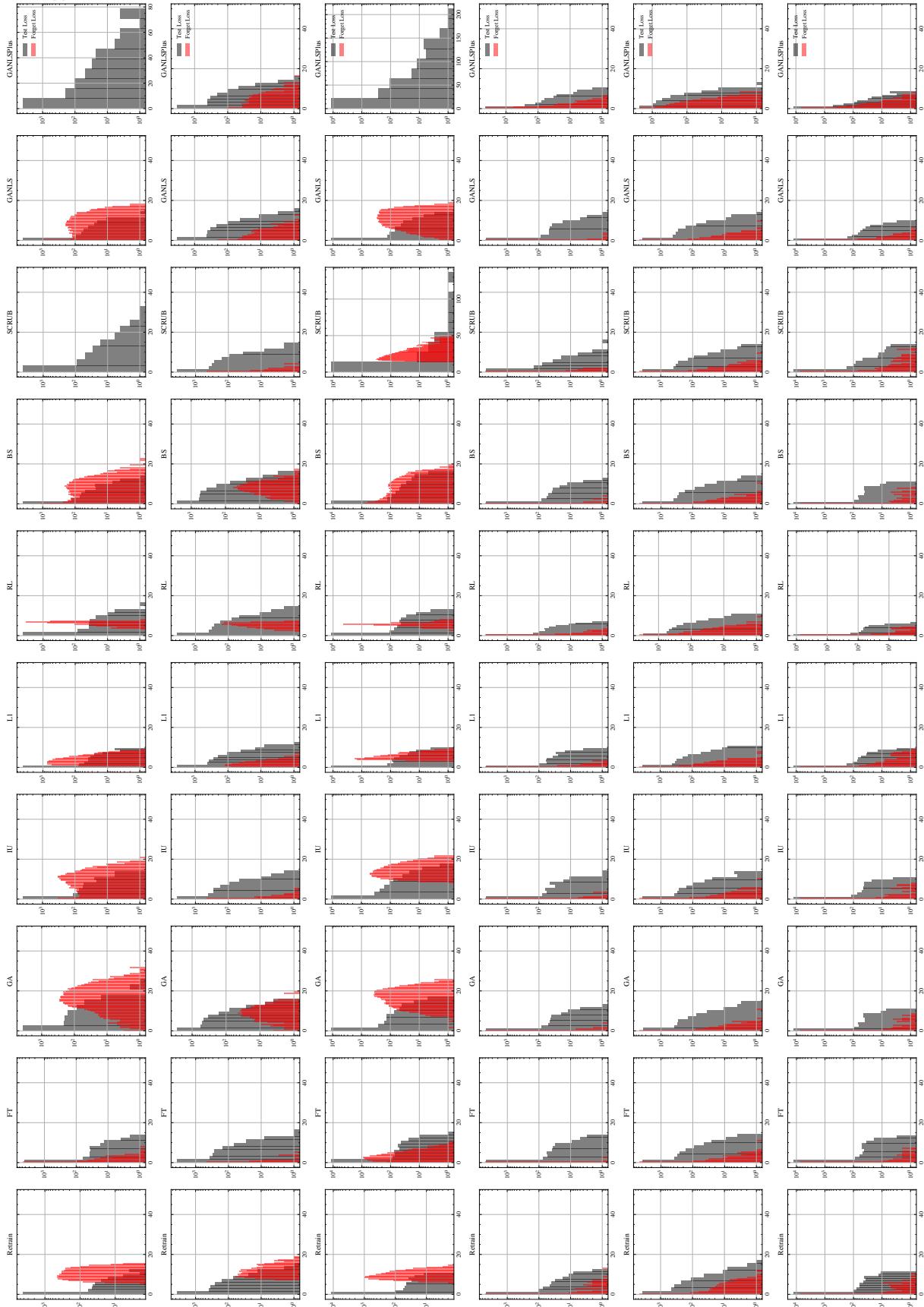


Figure 8: The distributions of the cross-entropy losses for the forgot and test instances from the unlearned models. The y-axis is in log scale for better visualization. From the first to the last figure, they are random forgetting on CIFAR-10, CIFAR-100, SVHN and class-wise forgetting on CIFAR-10, CIFAR-100, SVHN.

1620

1621 Table 17: MU Performance across different forgetting dataamounts on ResNet-18, pre-trained on  
1622 CIFAR-10 dataset, for random data forgetting.

1623

| Method           | Random Set Size (10%) |                   |                   |                  |  | Avg. Gap (↓) | RTE (↓, min) |
|------------------|-----------------------|-------------------|-------------------|------------------|--|--------------|--------------|
|                  | UA                    | MIA Score         | RA                | TA               |  |              |              |
| Retrain          | 8.07                  | 17.41             | 100.00            | 91.61            |  | -            | 24.66        |
| FT               | 1.10 $\pm$ 0.19       | 4.06 $\pm$ 0.40   | 98.83 $\pm$ 0.03  | 93.70 $\pm$ 0.10 |  | 5.90         | 1.58         |
| RL               | 6.39 $\pm$ 1.09       | 0.00 $\pm$ 0.00   | 99.50 $\pm$ 0.10  | 99.04 $\pm$ 0.08 |  | 6.76         | 1.92         |
| GA               | 0.56 $\pm$ 0.01       | 1.19 $\pm$ 0.05   | 99.48 $\pm$ 0.02  | 94.55 $\pm$ 0.05 |  | 6.80         | 0.31         |
| IU               | 17.51 $\pm$ 2.19      | 21.39 $\pm$ 1.70  | 98.00 $\pm$ 0.38  | 98.11 $\pm$ 0.38 |  | 5.48         | 1.18         |
| BE               | 0.00 $\pm$ 0.00       | 0.26 $\pm$ 0.02   | 100.00 $\pm$ 0.00 | 95.35 $\pm$ 0.18 |  | 7.24         | 1.37         |
| BS               | 0.37 $\pm$ 0.10       | 1.10 $\pm$ 0.43   | 99.93 $\pm$ 0.01  | 98.97 $\pm$ 0.02 |  | 7.86         | 1.21         |
| $\ell_1$ -sparse | 2.80 $\pm$ 0.37       | 19.59 $\pm$ 3.48  | 99.07 $\pm$ 0.04  | 98.00 $\pm$ 0.12 |  | 3.69         | 1.98         |
| SalUn            | 46.93 $\pm$ 0.15      | 86.33 $\pm$ 2.58  | 97.75 $\pm$ 0.42  | 97.22 $\pm$ 0.77 |  | 28.92        | 2.42         |
| UGradSL          | 5.87 $\pm$ 0.50       | 13.33 $\pm$ 0.20  | 98.82 $\pm$ 0.28  | 92.17 $\pm$ 0.20 |  | <b>2.01</b>  | 0.45         |
| UGradSL+         | 6.03 $\pm$ 0.17       | 10.65 $\pm$ 0.13  | 99.79 $\pm$ 0.03  | 93.64 $\pm$ 0.16 |  | 2.76         | 3.07         |
| Method           | Random Set Size (20%) |                   |                   |                  |  | Avg. Gap (↓) | RTE (↓, min) |
|                  | UA                    | MIA Score         | RA                | TA               |  |              |              |
| Retrain          | 5.31                  | 13.30             | 100.00            | 94.10            |  | -            | 38.74        |
| FT               | 0.76 $\pm$ 4.55       | 2.69 $\pm$ 10.61  | 99.89 $\pm$ 0.11  | 93.97 $\pm$ 0.13 |  | 3.85         | 2.17         |
| RL               | 6.47 $\pm$ 1.16       | 28.62 $\pm$ 15.32 | 99.60 $\pm$ 0.40  | 92.39 $\pm$ 1.71 |  | 4.65         | 2.65         |
| GA               | 0.67 $\pm$ 4.64       | 1.44 $\pm$ 11.86  | 99.48 $\pm$ 0.52  | 94.42 $\pm$ 0.32 |  | 4.33         | 0.26         |
| IU               | 2.91 $\pm$ 2.40       | 5.53 $\pm$ 7.77   | 97.30 $\pm$ 2.70  | 90.64 $\pm$ 3.46 |  | 4.08         | 3.29         |
| BE               | 0.57 $\pm$ 4.74       | 1.64 $\pm$ 11.66  | 99.44 $\pm$ 0.56  | 94.32 $\pm$ 0.22 |  | 4.29         | 0.53         |
| BS               | 0.62 $\pm$ 4.69       | 1.62 $\pm$ 11.68  | 99.46 $\pm$ 0.54  | 94.20 $\pm$ 0.10 |  | 4.25         | 0.86         |
| $\ell_1$ -sparse | 3.92 $\pm$ 1.39       | 8.94 $\pm$ 4.36   | 98.09 $\pm$ 1.91  | 91.92 $\pm$ 2.18 |  | 2.46         | 2.20         |
| SalUn            | 3.73 $\pm$ 1.58       | 13.18 $\pm$ 0.12  | 98.61 $\pm$ 1.39  | 92.75 $\pm$ 1.35 |  | 1.11         | 2.66         |
| UGradSL          | 6.07 $\pm$ 0.70       | 13.82 $\pm$ 1.03  | 95.71 $\pm$ 0.17  | 90.19 $\pm$ 0.23 |  | 2.37         | 0.24         |
| UGradSL+         | 6.39 $\pm$ 0.19       | 12.34 $\pm$ 1.79  | 97.08 $\pm$ 0.44  | 90.91 $\pm$ 0.95 |  | <b>2.04</b>  | 0.31         |
| Method           | Random Set Size (30%) |                   |                   |                  |  | Avg. Gap (↓) | RTE (↓, min) |
|                  | UA                    | MIA Score         | RA                | TA               |  |              |              |
| Retrain          | 6.64                  | 14.60             | 100.00            | 92.78            |  | -            | 33.65        |
| FT               | 0.56 $\pm$ 6.08       | 1.66 $\pm$ 12.94  | 99.83 $\pm$ 0.17  | 94.22 $\pm$ 1.44 |  | 5.16         | 1.98         |
| RL               | 6.89 $\pm$ 0.25       | 31.09 $\pm$ 16.49 | 99.36 $\pm$ 0.64  | 91.35 $\pm$ 1.43 |  | 4.70         | 2.63         |
| GA               | 0.65 $\pm$ 5.99       | 1.50 $\pm$ 13.10  | 99.46 $\pm$ 0.54  | 94.44 $\pm$ 1.66 |  | 5.32         | 2.40         |
| IU               | 3.95 $\pm$ 2.69       | 7.26 $\pm$ 7.34   | 96.22 $\pm$ 3.78  | 89.61 $\pm$ 3.17 |  | 4.24         | 3.32         |
| BE               | 0.63 $\pm$ 6.01       | 3.35 $\pm$ 11.25  | 99.39 $\pm$ 0.61  | 94.19 $\pm$ 1.41 |  | 4.82         | 0.81         |
| BS               | 0.63 $\pm$ 6.01       | 2.88 $\pm$ 11.72  | 99.39 $\pm$ 0.61  | 94.15 $\pm$ 1.37 |  | 4.93         | 1.28         |
| $\ell_1$ -sparse | 4.70 $\pm$ 1.94       | 9.97 $\pm$ 4.63   | 97.63 $\pm$ 2.37  | 91.19 $\pm$ 1.59 |  | 2.63         | 1.99         |
| SalUn            | 6.22 $\pm$ 0.42       | 14.11 $\pm$ 0.49  | 95.91 $\pm$ 4.09  | 90.72 $\pm$ 2.06 |  | 1.76         | 2.64         |
| UGradSL          | 6.78 $\pm$ 0.66       | 15.96 $\pm$ 0.12  | 96.94 $\pm$ 0.56  | 90.72 $\pm$ 0.80 |  | 1.66         | 0.70         |
| UGradSL+         | 6.36 $\pm$ 0.65       | 14.99 $\pm$ 0.82  | 97.35 $\pm$ 0.79  | 91.10 $\pm$ 1.10 |  | <b>1.25</b>  | 0.53         |
| Method           | Random Set Size (40%) |                   |                   |                  |  | Avg. Gap (↓) | RTE (↓, min) |
|                  | UA                    | MIA Score         | RA                | TA               |  |              |              |
| Retrain          | 7.01                  | 18.37             | 100.00            | 92.52            |  | -            | 28.47        |
| FT               | 0.77 $\pm$ 6.24       | 2.88 $\pm$ 15.49  | 99.96 $\pm$ 0.04  | 94.27 $\pm$ 1.75 |  | 5.88         | 1.62         |
| RL               | 5.02 $\pm$ 1.99       | 37.76 $\pm$ 19.39 | 99.61 $\pm$ 0.39  | 92.14 $\pm$ 0.38 |  | 5.54         | 2.68         |
| GA               | 0.67 $\pm$ 6.34       | 1.57 $\pm$ 16.80  | 99.47 $\pm$ 0.53  | 94.38 $\pm$ 1.86 |  | 6.38         | 0.53         |
| IU               | 7.89 $\pm$ 0.88       | 10.99 $\pm$ 7.38  | 92.21 $\pm$ 7.79  | 86.15 $\pm$ 6.37 |  | 5.60         | 3.27         |
| BE               | 0.86 $\pm$ 6.15       | 15.72 $\pm$ 2.65  | 99.27 $\pm$ 0.73  | 93.46 $\pm$ 0.94 |  | 2.62         | 1.04         |
| BS               | 1.18 $\pm$ 5.83       | 13.97 $\pm$ 4.40  | 98.94 $\pm$ 1.06  | 93.01 $\pm$ 0.49 |  | 2.95         | 1.72         |
| $\ell_1$ -sparse | 2.84 $\pm$ 4.17       | 7.09 $\pm$ 11.28  | 98.75 $\pm$ 1.25  | 92.20 $\pm$ 0.32 |  | 4.26         | 1.63         |
| SalUn            | 6.86 $\pm$ 0.15       | 15.15 $\pm$ 3.22  | 95.01 $\pm$ 4.99  | 89.76 $\pm$ 2.76 |  | 2.78         | 2.67         |
| UGradSL          | 5.81 $\pm$ 0.11       | 14.98 $\pm$ 2.65  | 97.31 $\pm$ 1.06  | 90.73 $\pm$ 0.48 |  | <b>2.27</b>  | 0.62         |
| UGradSL+         | 5.82 $\pm$ 0.37       | 14.53 $\pm$ 1.83  | 97.11 $\pm$ 0.40  | 90.74 $\pm$ 0.38 |  | 2.42         | 0.63         |
| Method           | Random Set Size (50%) |                   |                   |                  |  | Avg. Gap (↓) | RTE (↓, min) |
|                  | UA                    | MIA Score         | RA                | TA               |  |              |              |
| Retrain          | 7.91                  | 19.29             | 100.00            | 91.72            |  | -            | 23.90        |
| FT               | 0.44 $\pm$ 7.47       | 2.15 $\pm$ 17.14  | 99.96 $\pm$ 0.04  | 94.23 $\pm$ 2.51 |  | 6.79         | 1.31         |
| RL               | 7.61 $\pm$ 0.30       | 37.36 $\pm$ 18.07 | 99.67 $\pm$ 0.33  | 92.83 $\pm$ 1.11 |  | 4.95         | 2.65         |
| GA               | 0.40 $\pm$ 7.51       | 1.22 $\pm$ 18.07  | 99.61 $\pm$ 0.39  | 94.34 $\pm$ 2.62 |  | 7.15         | 0.66         |
| IU               | 3.97 $\pm$ 3.94       | 7.29 $\pm$ 12.00  | 96.21 $\pm$ 3.79  | 90.00 $\pm$ 1.72 |  | 5.36         | 3.25         |
| BE               | 3.08 $\pm$ 4.83       | 24.87 $\pm$ 5.58  | 96.84 $\pm$ 3.16  | 90.41 $\pm$ 1.31 |  | 3.72         | 1.31         |
| BS               | 9.76 $\pm$ 1.85       | 32.15 $\pm$ 12.86 | 90.19 $\pm$ 9.81  | 83.71 $\pm$ 8.01 |  | 8.13         | 2.12         |
| $\ell_1$ -sparse | 1.44 $\pm$ 6.47       | 4.76 $\pm$ 14.53  | 99.52 $\pm$ 0.48  | 93.13 $\pm$ 1.41 |  | 5.72         | 1.31         |
| SalUn            | 7.75 $\pm$ 0.16       | 16.99 $\pm$ 2.30  | 94.28 $\pm$ 5.72  | 89.29 $\pm$ 2.43 |  | 2.65         | 2.68         |
| UGradSL          | 6.83 $\pm$ 0.23       | 12.73 $\pm$ 1.66  | 97.62 $\pm$ 0.71  | 90.27 $\pm$ 0.55 |  | 2.87         | 0.77         |
| UGradSL+         | 6.13 $\pm$ 1.35       | 16.49 $\pm$ 2.73  | 97.84 $\pm$ 0.34  | 90.84 $\pm$ 0.69 |  | <b>1.91</b>  | 0.77         |

1674

1675 Table 18: MU Performance across different forgetting dataamounts on ResNet-18, pre-trained on  
1676 CIFAR-100 dataset, for random data forgetting.

1677

| Method           | Random Set Size (10%) |                   |                   |                   |             | Avg. Gap (↓) | RTE (↓, min) |
|------------------|-----------------------|-------------------|-------------------|-------------------|-------------|--------------|--------------|
|                  | UA                    | MIA Score         | RA                | TA                | -           |              |              |
| Retrain          | 29.47                 | 53.50             | 99.98             | 70.51             | -           | -            | 25.01        |
| FT               | 2.55 $\pm$ 0.03       | 10.59 $\pm$ 0.27  | 99.95 $\pm$ 0.01  | 75.95 $\pm$ 0.05  | 18.83       | 1.95         |              |
| RL               | 4.06 $\pm$ 0.37       | 50.12 $\pm$ 3.48  | 99.92 $\pm$ 0.02  | 71.30 $\pm$ 0.36  | 7.41        | 1.20         |              |
| GA               | 2.58 $\pm$ 0.06       | 5.95 $\pm$ 0.17   | 97.45 $\pm$ 0.02  | 76.09 $\pm$ 0.01  | 20.64       | <b>0.29</b>  |              |
| IU               | 15.71 $\pm$ 5.19      | 18.69 $\pm$ 4.12  | 84.65 $\pm$ 5.19  | 62.20 $\pm$ 4.17  | 18.05       | 1.20         |              |
| BE               | 0.01 $\pm$ 0.00       | 1.45 $\pm$ 0.02   | 98.22 $\pm$ 1.26  | 78.26 $\pm$ 0.00  | 22.32       | 0.24         |              |
| BS               | 2.20 $\pm$ 2.11       | 10.73 $\pm$ 9.37  | 98.22 $\pm$ 1.26  | 70.23 $\pm$ 1.67  | 18.02       | 0.34         |              |
| $\ell_1$ -sparse | 8.19 $\pm$ 0.38       | 19.11 $\pm$ 0.52  | 88.39 $\pm$ 0.31  | 80.26 $\pm$ 0.16  | 23.75       | 1.00         |              |
| SalUn            | 35.23 $\pm$ 0.32      | 89.39 $\pm$ 0.46  | 99.53 $\pm$ 0.04  | 64.26 $\pm$ 0.58  | 12.10       | 3.33         |              |
| UGradSL          | 18.36 $\pm$ 0.17      | 40.71 $\pm$ 0.13  | 98.38 $\pm$ 0.03  | 68.23 $\pm$ 0.16  | 6.95        | 0.55         |              |
| UGradSL+         | 21.69 $\pm$ 0.59      | 49.47 $\pm$ 1.25  | 99.87 $\pm$ 0.34  | 73.60 $\pm$ 0.26  | <b>3.75</b> | 3.52         |              |
| Method           | Random Set Size (20%) |                   |                   |                   |             | Avg. Gap (↓) | RTE (↓, min) |
|                  | UA                    | MIA Score         | RA                | TA                | -           |              |              |
| Retrain          | 26.84                 | 52.41             | 99.99             | 73.88             | -           | -            | 36.88        |
| FT               | 2.70 $\pm$ 24.14      | 11.63 $\pm$ 40.78 | 99.95 $\pm$ 0.04  | 75.51 $\pm$ 1.63  | 16.65       | 2.05         |              |
| RL               | 54.74 $\pm$ 27.90     | 97.32 $\pm$ 44.91 | 99.47 $\pm$ 0.52  | 65.59 $\pm$ 8.29  | 20.41       | 2.11         |              |
| GA               | 6.79 $\pm$ 20.05      | 13.22 $\pm$ 39.19 | 94.11 $\pm$ 5.88  | 71.39 $\pm$ 2.49  | 16.90       | 0.26         |              |
| IU               | 5.34 $\pm$ 21.50      | 11.79 $\pm$ 40.62 | 95.54 $\pm$ 4.45  | 70.89 $\pm$ 2.99  | 17.39       | 3.77         |              |
| BE               | 2.51 $\pm$ 24.33      | 6.70 $\pm$ 45.71  | 97.38 $\pm$ 2.61  | 75.07 $\pm$ 1.19  | 18.46       | 0.49         |              |
| BS               | 2.53 $\pm$ 24.31      | 6.57 $\pm$ 45.84  | 97.38 $\pm$ 2.61  | 75.05 $\pm$ 1.17  | 18.48       | 0.82         |              |
| $\ell_1$ -sparse | 37.83 $\pm$ 10.99     | 38.90 $\pm$ 13.51 | 76.63 $\pm$ 23.36 | 58.79 $\pm$ 15.09 | 15.74       | 2.05         |              |
| SalUn            | 25.83 $\pm$ 1.01      | 64.69 $\pm$ 12.28 | 96.01 $\pm$ 3.98  | 65.87 $\pm$ 8.01  | 6.32        | 2.12         |              |
| UGradSL          | 30.10 $\pm$ 1.03      | 47.39 $\pm$ 1.17  | 93.49 $\pm$ 0.24  | 64.99 $\pm$ 0.04  | <b>4.71</b> | 0.83         |              |
| UGradSL+         | 27.29 $\pm$ 0.99      | 35.92 $\pm$ 0.94  | 93.36 $\pm$ 0.03  | 66.59 $\pm$ 0.37  | 5.45        | 0.59         |              |
| Method           | Random Set Size (30%) |                   |                   |                   |             | Avg. Gap (↓) | RTE (↓, min) |
|                  | UA                    | MIA Score         | RA                | TA                | -           |              |              |
| Retrain          | 28.52                 | 52.24             | 99.98             | 70.91             | -           | -            | 32.92        |
| FT               | 2.65 $\pm$ 25.87      | 11.18 $\pm$ 41.06 | 99.94 $\pm$ 0.04  | 75.17 $\pm$ 4.26  | 17.81       | 1.44         |              |
| RL               | 51.46 $\pm$ 22.94     | 96.34 $\pm$ 44.10 | 99.32 $\pm$ 0.66  | 62.77 $\pm$ 8.14  | 18.96       | 2.14         |              |
| GA               | 2.40 $\pm$ 26.12      | 5.70 $\pm$ 46.54  | 97.39 $\pm$ 2.59  | 75.33 $\pm$ 4.42  | 19.92       | 0.40         |              |
| IU               | 5.96 $\pm$ 22.56      | 12.63 $\pm$ 39.61 | 94.59 $\pm$ 5.39  | 69.74 $\pm$ 1.17  | 17.18       | 3.76         |              |
| BE               | 2.44 $\pm$ 26.08      | 6.53 $\pm$ 45.71  | 97.37 $\pm$ 2.61  | 74.77 $\pm$ 3.86  | 19.56       | 0.76         |              |
| BS               | 2.49 $\pm$ 26.03      | 6.40 $\pm$ 45.84  | 97.33 $\pm$ 2.65  | 74.65 $\pm$ 3.74  | 19.56       | 1.24         |              |
| $\ell_1$ -sparse | 38.45 $\pm$ 9.93      | 38.52 $\pm$ 13.72 | 76.36 $\pm$ 23.62 | 58.09 $\pm$ 12.82 | 15.02       | 1.47         |              |
| SalUn            | 27.34 $\pm$ 1.18      | 62.99 $\pm$ 10.75 | 94.50 $\pm$ 5.48  | 63.10 $\pm$ 7.81  | 6.31        | 2.16         |              |
| UGradSL          | 30.10 $\pm$ 0.12      | 47.39 $\pm$ 2.08  | 93.49 $\pm$ 0.74  | 64.99 $\pm$ 1.53  | <b>4.71</b> | 0.83         |              |
| UGradSL+         | 24.89 $\pm$ 0.24      | 44.60 $\pm$ 0.94  | 94.90 $\pm$ 0.88  | 66.16 $\pm$ 0.78  | 5.28        | 0.79         |              |
| Method           | Random Set Size (40%) |                   |                   |                   |             | Avg. Gap (↓) | RTE (↓, min) |
|                  | UA                    | MIA Score         | RA                | TA                | -           |              |              |
| Retrain          | 30.07                 | 58.06             | 99.99             | 69.87             | -           | -            | 28.29        |
| FT               | 2.66 $\pm$ 27.41      | 11.05 $\pm$ 47.01 | 99.95 $\pm$ 0.04  | 75.35 $\pm$ 5.48  | 19.99       | 1.51         |              |
| RL               | 51.75 $\pm$ 21.68     | 95.78 $\pm$ 37.72 | 99.27 $\pm$ 0.72  | 59.41 $\pm$ 10.46 | 17.64       | 2.12         |              |
| GA               | 2.46 $\pm$ 27.61      | 5.91 $\pm$ 52.15  | 97.39 $\pm$ 2.60  | 75.40 $\pm$ 5.53  | 21.97       | 0.51         |              |
| IU               | 4.58 $\pm$ 25.49      | 10.32 $\pm$ 47.74 | 96.29 $\pm$ 3.70  | 70.92 $\pm$ 1.05  | 19.49       | 3.78         |              |
| BE               | 2.54 $\pm$ 27.53      | 7.44 $\pm$ 50.62  | 97.35 $\pm$ 2.64  | 74.56 $\pm$ 4.69  | 21.37       | 1.00         |              |
| BS               | 2.70 $\pm$ 27.37      | 7.63 $\pm$ 50.43  | 97.26 $\pm$ 2.73  | 74.10 $\pm$ 4.23  | 21.19       | 1.66         |              |
| $\ell_1$ -sparse | 38.49 $\pm$ 8.42      | 40.21 $\pm$ 17.85 | 78.43 $\pm$ 21.56 | 57.66 $\pm$ 12.21 | 15.01       | 1.52         |              |
| SalUn            | 25.54 $\pm$ 4.53      | 60.08 $\pm$ 2.02  | 94.64 $\pm$ 5.35  | 62.52 $\pm$ 7.35  | 4.81        | 2.14         |              |
| UGradSL          | 30.07 $\pm$ 1.58      | 49.23 $\pm$ 1.07  | 95.30 $\pm$ 0.34  | 64.52 $\pm$ 0.28  | <b>4.72</b> | 1.08         |              |
| UGradSL+         | 30.42 $\pm$ 0.77      | 45.94 $\pm$ 1.41  | 93.98 $\pm$ 0.50  | 63.21 $\pm$ 0.35  | 5.47        | 0.77         |              |
| Method           | Random Set Size (50%) |                   |                   |                   |             | Avg. Gap (↓) | RTE (↓, min) |
|                  | UA                    | MIA Score         | TA                | RA                | -           |              |              |
| Retrain          | 32.69                 | 61.15             | 99.99             | 67.22             | -           | -            | 25.01        |
| FT               | 2.71 $\pm$ 29.98      | 10.71 $\pm$ 50.44 | 99.96 $\pm$ 0.03  | 75.11 $\pm$ 7.89  | 22.08       | 1.25         |              |
| RL               | 50.52 $\pm$ 17.83     | 95.91 $\pm$ 34.76 | 99.47 $\pm$ 0.52  | 56.75 $\pm$ 10.47 | 15.90       | 2.13         |              |
| GA               | 2.61 $\pm$ 30.08      | 5.92 $\pm$ 55.23  | 97.49 $\pm$ 2.50  | 75.27 $\pm$ 8.05  | 23.97       | 0.66         |              |
| IU               | 12.64 $\pm$ 20.05     | 17.54 $\pm$ 43.61 | 87.96 $\pm$ 12.03 | 62.76 $\pm$ 4.46  | 20.04       | 3.80         |              |
| BE               | 2.76 $\pm$ 29.93      | 8.85 $\pm$ 52.30  | 97.39 $\pm$ 2.60  | 74.05 $\pm$ 6.83  | 22.92       | 1.26         |              |
| BS               | 2.99 $\pm$ 29.70      | 8.76 $\pm$ 52.39  | 97.24 $\pm$ 2.75  | 73.38 $\pm$ 6.16  | 22.75       | 2.08         |              |
| $\ell_1$ -sparse | 39.86 $\pm$ 7.17      | 40.43 $\pm$ 20.72 | 78.17 $\pm$ 21.82 | 55.65 $\pm$ 11.57 | 15.32       | 1.26         |              |
| SalUn            | 26.17 $\pm$ 6.52      | 59.47 $\pm$ 1.68  | 94.04 $\pm$ 5.95  | 61.39 $\pm$ 5.83  | 5.00        | 2.13         |              |
| UGradSL          | 33.80 $\pm$ 1.61      | 53.38 $\pm$ 2.31  | 95.29 $\pm$ 0.11  | 56.88 $\pm$ 0.80  | <b>4.86</b> | 0.95         |              |
| UGradSL+         | 32.20 $\pm$ 0.49      | 45.20 $\pm$ 1.44  | 94.47 $\pm$ 0.69  | 61.53 $\pm$ 0.97  | 4.89        | 0.75         |              |

1728

1729

1730

1731

1732

1733

1734

1735

1736

1737

1738

1739

1740

1741

1742

1743

1744

1745

1746

1747

1748 Table 19: The difference between GA and FT as well as UGradSL and UGradSL+ on CIFAR-10  
1749 regarding the number of epochs. The forgetting paradigm is random forgetting.

1750

1751

1752

1753

1754

1755

1756

1757

1758

1759

1760

1761

1762

1763

1764

1765

1766

1767

1768

1769

1770

1771

1772

1773

1774

1775

1776

1777

1778

1779

1780

1781

| Epoch | Gradient Ascent |                      |       |       |              | Fine-tuning |                      |       |       |              |
|-------|-----------------|----------------------|-------|-------|--------------|-------------|----------------------|-------|-------|--------------|
|       | UA              | MIA <sub>Score</sub> | RA    | TA    | Avg. Gap (↓) | UA          | MIA <sub>Score</sub> | RA    | TA    | Avg. Gap (↓) |
| 5     | 0               | 0.32                 | 95.31 | 100   | 3.98         | 0.04        | 0.34                 | 95.13 | 99.99 | 3.96         |
| 6     | 0               | 0.40                 | 95.34 | 100   | 3.96         | -           | -                    | -     | -     | -            |
| 7     | 0.82            | 2.22                 | 93.24 | 99.26 | 3.95         | -           | -                    | -     | -     | -            |
| 8     | 3.44            | 4.78                 | 90.80 | 96.18 | 4.03         | -           | -                    | -     | -     | -            |
| 9     | 10.34           | 12.76                | 83.42 | 89.00 | 7.44         | -           | -                    | -     | -     | -            |
| 10    | 76.26           | 72.22                | 6.49  | 24.24 | 74.21        | 0.04        | 0.24                 | 94.97 | 99.99 | 4.02         |
| 15    | -               | -                    | -     | -     | -            | 0.02        | 0.80                 | 94.68 | 99.96 | 3.97         |

| Epoch   | UGradSL |                      |       |       |              | UGradSL+ |                      |       |       |              |
|---------|---------|----------------------|-------|-------|--------------|----------|----------------------|-------|-------|--------------|
|         | UA      | MIA <sub>Score</sub> | RA    | TA    | Avg. Gap (↓) | UA       | MIA <sub>Score</sub> | RA    | TA    | Avg. Gap (↓) |
| 10      | 14.98   | 33.22                | 77.18 | 84.07 | 16.51        | 6.26     | 14.10                | 93.39 | 99.62 | 1.33         |
| 11      | 24.26   | 34.38                | 68.22 | 75.06 | 23.61        | 6.52     | 11.66                | 93.04 | 99.37 | 1.21         |
| 12      | 28.70   | 24.62                | 68.17 | 74.39 | 22.46        | 21.46    | 27.38                | 89.41 | 97.07 | 10.36        |
| 13      | 38.46   | 72.90                | 61.78 | 64.72 | 40.99        | 29.48    | 31.92                | 87.74 | 94.93 | 14.46        |
| 14      | 99.86   | 86.74                | 0.45  | 0.20  | 91.26        | 31.62    | 32.68                | 86.53 | 93.36 | 15.88        |
| Retrain | 4.5     | 11.62                | 95.21 | 100   | -            | 4.5      | 11.62                | 95.21 | 100   | -            |