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ABSTRACT

The objective of machine unlearning (MU) is to eliminate previously learned data
from a model. However, it can be challenging to strike a balance between com-
putation cost and performance when using existing MU techniques. Taking inspi-
ration from the influence of label smoothing on model confidence and differential
privacy, we propose a simple gradient-based MU approach that uses an inverse
process of label smoothing. This work introduces UGradSL, a simple, plug-and-
play MU approach that uses smoothed labels. We provide theoretical analyses
demonstrating why properly introducing label smoothing improves MU perfor-
mance. We conducted extensive experiments on several datasets of various sizes
and different modalities, demonstrating the effectiveness and robustness of our
proposed method. UGradSL also shows close connection to improve the local
differential privacy. The consistent improvement in MU performance is only at a
marginal cost of additional computations. For instance, UGradSL improves over
the gradient ascent MU baseline constantly on different unlearning tasks with-
out sacrificing unlearning efficiency. A self-adaptive UGradSL is also given for
simple parameter selection.

1 INTRODUCTION

Building a reliable ML model has become an important topic in this community. Machine unlearning
(MU) is a task requiring to remove the learned data points from the model. The concept and the
technology of MU enable researchers to delete sensitive or improper data in the training set to
improve fairness, robustness, and privacy and get a better ML model for product usage (Chen et al.,
2021; Sekhari et al., 2021). Retraining from scratch (Retrain) is a straightforward method when we
want to remove the data from the model; yet it incurs prohibitive computation costs for large models
due to computing resource constraints. Therefore, an efficient and effective MU method is desired.

The most straightforward MU approach should be retraining-based method (Bourtoule et al., 2021),
meaning that we retrain the model from scratch without using the data to be forgotten. The method
can guarantee privacy protection but the computational cost is intensive. Most existing works (Koh
& Liang, 2017; Golatkar et al., 2020; Warnecke et al., 2021; Graves et al., 2021; Thudi et al., 2021;
Izzo et al., 2021; Becker & Liebig, 2022; Jia et al., 2023) focus on approximate MU to achieve
a balance between unlearning efficacy and computational complexity, making them more suitable
for real-world applications, meaning that make the model unlearn the forgetting dataset without
retraining the model.

We desire an approach that enjoys both high performance and fast speed. Since MU can be viewed
as the inverse process of ML, we are motivated to think it would be a natural and efficient way to
develop an unlearning process that imitates the reverse of gradient descent. Indeed, gradient ascent
(GA) (Thudi et al., 2021) is one of the MU methods but unfortunately, it does not fully achieve the
potential of this idea. One of the primary reasons is that once the model completes training, the
gradient of well-memorized data that was learned during the process is diminishing (close to 0 loss)
and therefore the effect of GA is rather limited.

Our approach is inspired by the celebrated idea of label smoothing (Szegedy et al., 2016). In the
forward problem (gradient descent), the smoothed label proves to be able to improve the model’s
generalization power. In our setting, we treat the smoothed label term as the regularization in the
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(a) Performance of classwise forgetting on ImageNet.
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(b) Performance of random forgetting on CIFAR-100.

Figure 1: The performance comparison of our proposed methods and baseline methods using aver-
age gap and runtime (RTE), where lower values indicate better performance. Bars represent average
gap while red dotted lines show RTE. Since retraining does not have gap by definition, only RTE
is reported for this baseline and the bar is empty. For classwise forgetting on ImageNet, UGradSL
achieves the lowest average gap (2.23%) with acceptable RTE increase. For random forgetting on
CIFAR-100, UGradSL+ attains the best average gap (3.75%), while UGradSL demonstrates an op-
timal gap-runtime trade-off.

loss function, making the unlearning more controllable. Specifically, we show that GA with a “neg-
ative” label smoothing process (which effectively results in a standard label smoothing term in a
descending fashion) can quickly improve the model’s deniability in the forgetting dataset, making
the model behave close to the retrained model, which is exactly the goal of MU. We name our
approach UGradSL, Unlearning using Gradient-based Smoothed Labels.

Our approach is a plug-and-play method that can improve the gradient-based MU performance con-
sistently and does not hurt the performance of the remaining dataset and the testing dataset in a
gradient-mixed way. At the same time, we provide a theoretical analysis of the benefits of our
approach for the MU task. The core contributions of this paper are summarized as follows:

● We propose a lightweight tool to improve MU by joining the label smoothing and gradient ascent.
● We theoretically analyze the role of gradient ascent in MU and how negative label smoothing is

able to boost MU performance.
● Extensive experiments in six datasets in different modalities and several unlearning paradigms

regarding different MU metrics show the robustness and generalization of our method.
● We investigate the relationship between label smoothing and label differential privacy (LDP),

showing that label smoothing can aid LDP.

2 RELATED WORK

Machine Unlearning (MU) was developed to address information leakage concerns related to pri-
vate data after the completion of model training (Cao & Yang, 2015; Bourtoule et al., 2021; Nguyen
et al., 2022), gained prominence with the advent of privacy-focused legislation (Hoofnagle et al.,
2019; Pardau, 2018). One direct unlearning method involves retraining the model from scratch
after removing the forgetting data from the original training set. It is computationally inefficient,
prompting researchers to focus on developing approximate but much faster unlearning techniques
(Becker & Liebig, 2022; Golatkar et al., 2020; Warnecke et al., 2021; Graves et al., 2021; Thudi
et al., 2021; Izzo et al., 2021; Jia et al., 2023). Beyond unlearning methods, other research efforts
aim to create probabilistic unlearning concepts (Ginart et al., 2019; Guo et al., 2019; Neel et al.,
2021; Ullah et al., 2021; Sekhari et al., 2021) and facilitate unlearning with provable error guar-
antees, particularly in the context of differential privacy (DP) (Dwork et al., 2006; Ji et al., 2014;
Hall et al., 2012). However, it typically necessitates stringent model and algorithmic assumptions,
potentially compromising effectiveness against practical adversaries, such as membership inference
attacks (Graves et al., 2021; Thudi et al., 2021). Additionally, the interest in MU has expanded to
encompass various learning tasks and paradigms (Wang et al., 2022b; Liu et al., 2022b; Chen et al.,
2022; Chien et al., 2022; Marchant et al., 2022; Di et al., 2022). These applications demonstrate the
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growing importance of MU techniques in safeguarding privacy. The rest of the related work about
influence function label smoothing and differential privacy are given in Appendix.

3 LABEL SMOOTHING ENABLES FAST AND EFFECTIVE UNLEARNING

This section sets up the analysis and shows that properly performing label smoothing enables fast
and effective unlearning. The key ingredients of our approach are gradient ascent (GA) and label
smoothing (LS). We start with understanding how GA helps with unlearning and then move on to
show the power of LS. At the end of the section, we formally present our algorithm.

3.1 PRELIMINARY

Machine Unlearning Consider a K-class classification problem on the training data distribution
Dtr = (X × Y), where X and Y are feature and label space, respectively. Due to some privacy
regulations, there exists a forgetting data distributionDf that the model needs to unlearn. We denote
by θtr the original model trained on Dtr and θu the model without the influence of Df . The goal of
machine unlearning (MU) is how to generate θu from θtr.

Label Smoothing In a K-class classification task, let yi denote the one-hot encoded vector form
of yi ∈ Y . Similar to Wei et al. (2021), we unify positive label smoothing (PLS) and negative
label smoothing (NLS) into generalized label smoothing (GLS). The random variable of smoothed
label yGLS,α

i with smooth rate α ∈ (−∞,1] is yGLS,α
i = (1 − α) ⋅ yi +

α
K
⋅ 1 = [ α

K
,⋯, α

K
, (1 +

1−K
K

α), α
K
,⋯, α

K
], where (1+ 1−K

K
α) is the yi-th element in the encoded label vector. When α < 0,

GLS becomes NLS.

3.2 GRADIENT ASCENT CAN HELP GRADIENT-BASED MACHINE UNLEARNING

We discuss three sets of model parameters in the MU problem: 1) θ∗tr, the optimal parameters trained
from Dtr ∼ Dtr , 2) θ∗r , the optimal parameters trained from Dr ∼ Dr, such that Dr = Dtr/Df and
3) θ∗f , the optimal parameters unlearned using gradient ascent (GA) on Df ∼ Df . Note θ∗r can be
viewed as the exact MU model. The definitions of θ∗tr and θ∗r follow the standard empirical risk
minimization as

θ∗ = argmin
θ

1

n
∑
z∈D

ℓ (hθ, z) . (1)

and by using the influence function, θ∗f is

θ∗f = argmin
θ
{Rtr(θ) + ε ∑

zf ∈Df

ℓ(hθ, z
f
)}

where Rtr(θ) = ∑ztr∈Dtr
ℓ(hθ, z

tr) and Rf(θ) = ∑zf ∈Df
ℓ(hθ, z

f) are the empirical risk on Dtr

and Df , respectively. We use notations ℓ(hθ, z) to specify the loss of an example z = (x, y) in the
dataset. hθ is a function h parameterized by θ. ε is the weight of Df compared with Dtr. The
optimal parameter can be found when the gradient is 0:

∇θRtr(θ
∗
f) + ε ∑

zf ∈Df

∇θℓ(hθ∗
f
, zf) = 0. (2)

Expanding Eq. (2) at θ = θ∗tr using the Taylor series, we have

θ∗f − θ
∗
tr ≈ −[ ∑

ztr∈Dtr

∇
2
θℓ(hθ∗tr

, ztr) + ε ∑
zf ∈Df

∇
2
θℓ(hθ∗tr

, zf)]

−1
⎛

⎝
ε ∑
zf ∈Df

∇θℓ(hθ∗tr
, zf)
⎞

⎠
. (3)

Here, we ignore the Lagrange Remainder. Similarly, we can expand ∇θRtr(θ
∗
tr) at θ = θ∗r and

derive θ∗r − θ
∗
tr as

θ∗r − θ
∗
tr ≈

⎡
⎢
⎢
⎢
⎢
⎣

∑
ztr∈Dtr

∇
2
θℓ(hθ∗r , z

tr
)

⎤
⎥
⎥
⎥
⎥
⎦

−1
⎛

⎝
∑

ztr∈Dtr

∇θℓ(hθ∗r , z
tr
)
⎞

⎠
. (4)
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We ignore the average operation in the original definition of the influence function for computation
convenience because the size of Dtr or Df are fixed. For GA, let ε = −1 in Eq. (3) and we have

θ∗r − θ
∗
f = θ

∗
r − θ

∗
tr − (θ

∗
f − θ

∗
tr) =∆θr −∆θf , (5)

where (−∆θr) represents the learning gap from θ∗r to θ∗tr while vector ∆θf represents how much
the model unlearns (backtracked progress) between θ∗f and θ∗tr. The details of ∆θr and ∆θf are
given in Eq. (17) in Appendix. Ideally, when ∆θr and ∆θf are exactly the same vectors, GA can
lead the model to the optimal retrained model since we have θ∗r = θ∗f . However, this condition is
hard to satisfy in practice. Thus, GA cannot always help MU. We summarize it in Theorem 1. The
proof and the error analysis is given in Appendix C.1 and C.2.
Theorem 1. Given the approximation in Eq. (5), GA achieve exact MU if and only if

∑
zf ∈Df

∇θℓ(hθ∗r , z
f
) ≈ −H(θ∗r ,θ

∗
tr) ⋅ ∑

zf ∈Df

∇θℓ(hθ∗tr
, zf),

H(θ∗r ,θ∗tr) = [∑ztr∈Dtr
∇2

θℓ(hθ∗r
, ztr)] [∑zr∈Dr

∇2
θℓ(hθ∗tr

, zr)]
−1

. Otherwise, there exist θ∗r ,θ
∗
tr such

that GA can not help MU, i.e., ∥θ∗r − θ
∗
f∥ > ∥θ

∗
r − θ

∗
tr∥.

3.3 LABEL SMOOTHING IMPROVES MU

Practically, we cannot guarantee that GA always helps MU as shown in Theorem 1. To alleviate the
possible undesired effect of GA, we propose to use label smoothing as a plug-in module. Consider
the cross-entropy loss as an example. For GLS, the loss is calculated as

ℓ(hθ, z
GLS,α

) = (1 +
1 −K

K
α) ⋅ ℓ(hθ, (x, y)) +

α

K
∑

y′∈Y/y
ℓ(hθ, (x, y

′
)), (6)

where ℓ(hθ, (x, y)) ∶= ℓ(hθ, z) and ℓ(hθ, (x, y
′)) to denote the loss of an example when its label is

replaced with y′. Intuitively, Term∑y′∈Y/y ℓ(hθ, (x, y
′)) in Eq. (6) leads to a state where the model

makes wrong predictions on data in the forgetting dataset with equally low confidence (Wei et al.,
2021; Lukasik et al., 2020).

With smoothed label given in Eq. (6), we show that there exists a vector ∆θn such that Eq. (5) can
be written as

θ∗r − θ
∗
f,LS ≈∆θr −∆θf +

1 −K

K
α ⋅ (∆θn −∆θf), (7)

We leave the detailed form of ∆θn to Eq. (34). But intuitively, ∆θn captures the gradient influence
of the smoothed non-target label on the weight. We show the effect of NLS (α < 0) in Theorem 2
below and its proof is given in Appendix C.3.
Theorem 2. Given the approximation in Eq. (5) and ⟨∆θr −∆θf ,∆θn −∆θf ⟩ ≤ 0, there exists an
α < 0 such that NLS improves GA in unlearning, i.e., ∥θ∗r − θ

∗
f,NLS∥ < ∥θ

∗
r − θ

∗
f∥, where θ∗f,NLS is the

optimal parameters unlearned using GA and NLS, and ⟨⋅, ⋅⟩ the inner product of two vectors.

Now we explain the above theorem intuitively. Vector ∆θf − ∆θr is the resultant of Newton’s
direction of learning and unlearning. Vector ∆θf−∆θn is resultant of Newton’s direction of learning
non-target labels and unlearning the target label. When the condition ⟨∆θr −∆θf ,∆θn −∆θf ⟩ ≤ 0
holds, ∆θn−∆θf captures the effects of the smoothing term in the unlearning process. If we assume
that the exact MU model is able to fully unlearn an example, vector ∆θn contributes a direction that
pushes the model closer to the exact MU state by leading the model to give the wrong prediction.
The illustration of ⟨∆θr −∆θf ,∆θn −∆θf ⟩ is shown in Figure 6 in the Appendix.

The effect of the smoothed term in gradient ascent (GA) with NLS is equivalent to performing a
gradient descent optimization with traditional defined (positive) LS. The gradient of the smoothed
term is exactly the same as α/K ⋅ ∑y′∈Y/y∇ℓ(hθ, (x, y

′)) in both cases.

3.4 LABEL SMOOTHING HELPS LOCAL DIFFERENTIAL PRIVACY

When α < 0, the smoothing term will incur a positive effect in the gradient ascent (GA) step. Label
smoothing can also be viewed through the lens of privacy protection. This interpretation stems from
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the fact that label smoothing reduces the likelihood of a specific label, thereby allowing it to better
blend in with other candidate labels. Particularly, we consider a local differential privacy (LDP)
guarantee for labels as follows.

Definition 1 (Label-LDP). A privacy protection mechanism M satisfies ϵ-Label-LDP, if for any

labels y, y′, ypred ∈ Y , P(M(y)=ypred)
P(M(y′)=ypred) ≤ e

ϵ.

The operational meaning of M is to guarantee any two labels y and y′ in the label space, after
privatization, have a similar likelihood to become any ypred in the label space. That is, the prediction
on the forgetting dataset should be similar no matter what the ground-truth label is. The similarity is
measured by the privacy budget ϵ ∈ [0,+∞). Smaller ϵ implies stronger indistinguishability between
y and y′, and hence, stricter privacy.

Recall Rtr(θ) = ∑ztr∈Dtr
ℓ(hθ, z

tr). Denote by RNLS
f (θ;α) = ∑zLS,α∈Df

ℓ(hθ, z
LS,α), α < 0 the

empirical risk of forgetting data with NLS. After MU with label smoothing on Df by GA, the
resulting model can be seen as minimizing the risk γ1 ⋅Rtr(θ)−γ2 ⋅R

NLS
f (θ;α), which is a weighted

combination of the risk from two phases: 1) machine learning on Dtr with weight γ1 > 0 and 2)
machine unlearning on Df with weight γ2 > 0. By analyzing the risk, we have the following theorem
to show NLS in MU induces ϵ-Label-LDP for the forgetting data.

Theorem 3. Suppose γ1 − γ2(1 +
1−K
K

α) > 0. MU using GA+NLS achieves ϵ-Label-LDP on Df

where

ϵ = ∣log (
K

α
(1 −

γ1
γ2
) + 1 −K)∣ , α < 0.

Intuitively, when α is more negative, the privacy of the labels in the forgetting dataset is better.
When α → (1 − γ1/γ2), we have ϵ → 0, indicating the best label-LDP result, which is the goal of
MU. The theorem also warns that α cannot be arbitrarily negative.

4 UGRADSL: A PLUG-AND-PLAY AND GRADIENT-MIXED MU METHOD

Request: Forget the cat class

Cat

LS on𝐷!

𝐷!

𝐷"

∇ℓ(ℎ! , 𝑧"#)) − ∇ℓ(ℎ! , 𝑧"
$,	'(,)!))

Gradient

Descent

Gradient

Ascent

Cat 1 1

0

ℎ#
𝑥 𝑦 𝑦$%,𝜶𝑥

Dog Horse
1 1

𝑥 𝑦 𝑥 𝑦

Figure 2: The framework of UGradSL. When there is an unlearning request, we can split the Dtr

into Df and Dr. We first apply label smoothing on zfi = {x, y} ∈ Df to get zLS,αi

i = {x, yLS,αi},
where the smooth rate can be pre-defined or self-adaptive. In back-propagation process, we apply
gradient descent on the data zri ∈ Dr and gradient ascent on the data smoothed Df , which is the
mix-gradient way.

Given the effect of label smoothing on MU and LDP, we propose our method here. Compared
with retraining, Fine-Tune (FT) and GA are much more efficient as illustrated in Section 5 with
comparable or better MU performance. FT and GA focus on different perspectives of MU. FT is to
transfer the knowledge of the model from Dtr to Dr using gradient descent (GD) while GA is to
remove the knowledge of Df from the model.

Due to the flexibility of label smoothing, our method is suitable for the gradient-based methods
including FT and GA, making our method a plug-and-play algorithm. UGradSL is based on GA
while UGradSL+ is on FT. Compared with UGradSL, UGradSL+ will lead to a more compre-
hensive result but with a larger computation cost.
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Algorithm 1 UGradSL+: A plug-and-play, efficient, gradient-based MU method using LS.
UGradSL can be specified by imposing the dataset replacement in the bracket. If α is not given, the
algorithm turns to the self-adaptive version.

Require: A almost-converged model hθ̂tr
trained with Dtr. The retained dataset Dr. The forgetting

dataset Df . Unlearning epochs E. GA ratio p. Distance threshold β. The optional smoothing
ratio α.

Ensure: The unlearned model hθf
.

1: Set the current epoch index as tc ← 1
2: while tc < E do
3: while Dr(Df) is not fully iterated do
4: Sample a batch Br in Dr

5: Sample a batch Bf from Df where ∣Bf ∣ = ∣Br ∣

6: if α is not given then ▷ The improved and self-adaptive version
7: Extract the feature of zri and zfj using hθf

.
8: Calculate the distance d(hθf

(zri ), hθf
(zfj )) for each (zri , z

f
j ) pair where zri ∈ Br

and zfj ∈ Bf .
9: For each zfj , count the number cfj of zri whose d(hθf

(zri ), hθf
(zfj )) < β

10: Calculate the smooth rate αj = c
f
j /∣Bf ∣ for each zfj ∈ Bf

11: end if
12: Update the model using Br, Bf , p and αi according to Eq. (8)
13: end while
14: tc ← tc + 1
15: end while

How to choose the smooth rate α is worth discussion. Normally, the αi ∈ α for every data point
zfi ∈ Df can be the same. To gain better performance, we improve UGradSL and UGradSL+
by taking every data point into consideration and assigning αi individually and adaptively based
on the distance d(hθf

(zri ), hθf
(zfj )) ∈ [0,1] for each (zri , z

f
i ) pair. The intuition is that if an

instance zfi resides in a dense neighborhood of Dr, its inherent deniability is higher and therefore
the requirement for “forgetting” is lesser and should be reflected through a smaller αi. The algorithm
is presented in Algorithm 1 and the framework is illustrated in Figure 2. We leave the details of the
implementation, complexity analysis and the additional classification results in Appendix D.

Assuming the amount of retained data is significantly larger than the amount of data to be forgotten
(∣Dr ∣ > ∣Df ∣), Df will be iterated several times when Dr is fully iterated once. We calculate the loss
using a gradient-mixed method as:

L(hθ,B
NLS,α
f ,Br, p) = p ⋅ ∑

zr∈Br

ℓ(hθ, z
r
) − (1 − p) ⋅ ∑

z
f,NLS,αi
i ∈BNLS,α

f

ℓ(hθ, z
f,NLS,αi

i )
(8)

where p ∈ [0,1] is used to balance GD and GA and the minus sign between two elements on
the RHS stands for the GA. α is the vector for the smoothing rate of every data point zfi . hθ is
updated according to L in Eq. (8). UGradSL is similar to UGradSL+ and the dataset used is given
in bracket in Algorithm 1. The difference between UGradSL and UGradSL+ is the convergence
standard. UGradSL is based on the convergence of Df while UGradSL+ is based on Dr. It should
be noted that the Hessian matrix in Theorem 1 is only used in the theoretical proof. In the practical
calculation, there is no need to calculate the Hessian matrix. Thus, our method does not incur
substantially more computation but improves the MU performance on a large scale. We present
empirical evidence in Section 5. Compared with applying the label smoothing evenly, the improved
version takes the similarity of the data points between Dr and Df into consideration and provides
self-adaptive smoothed labels for individual zfi as well as protects the LDP.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

5 EXPERIMENTS AND RESULTS

5.1 EXPERIMENT SETUP

Dataset and Model Selection We validate our method using various datasets in different scales and
modality, including CIFAR-10, CIFAR-100 (Krizhevsky et al., 2009), SVHN (Netzer et al., 2011),
CelebA (Liu et al., 2015), Tiny-ImageNet, ImageNet (Deng et al., 2009) and 20 Newsgroups (Lang,
1995) datasets. For the vision and language dataset, we use ResNet-18 (He et al., 2016) and Bert
(Devlin et al., 2018) as the backbone model, respectively. Due to the page limit, the details of
the training parameter and the additional results of different models including VGG-16 (Simonyan
& Zisserman, 2014) and vision transformer (ViT) (Dosovitskiy et al., 2020) are given in the Ap-
pendix E.5.

Baseline Methods We compare the proposed methods with a series of baselines, including retrain,
fine-tuning (FT) (Warnecke et al., 2021; Golatkar et al., 2020), gradient ascent (GA) (Graves et al.,
2021; Thudi et al., 2021), unlearning based on the influence function (IU) (Izzo et al., 2021; Koh
& Liang, 2017), boundary unlearning (BU) (Chen et al., 2023), ℓ1-sparse (Jia et al., 2023), random
label (RL) (Hayase et al., 2020), SCRUB (Kurmanji et al., 2023), SalUN (Fan et al., 2023), EU-k,
CF-k (Goel et al., 2022), GLI and PABI. The implementation details of these baselines are given in
Appendix E.1.

Evaluation Metrics The evaluation metrics we use follows Jia et al. (2023), where we jointly con-
sider unlearning accuracy (UA), membership inference attack (MIA), remaining accuracy (RA),
testing accuracy (TA), and run-time efficiency (RTE). UA is the ratio of incorrect prediction on Df ,
showing the MU performance. TA is the accuracy used to evaluate the performance on the whole
testing set Dte, except for the class-wise forgetting because the task is to forget the specific class.
RA is the accuracy on Dr. To evaluate the effectiveness of ”forgetting”, we resort to the MIA met-
rics described in Jia et al. (2023); Fan et al. (2023), i.e. accuracy of an attack model against target
model θu, such that the score is reported as true negative rate (TNR) on the forget set. Formally,
this is a global MIA score Yeom et al. (2018), which we rewrite as MIAScore = 1 − Pr (xf ∣θ⋆),
where xf ∈ Df are the forget samples and θ⋆ is the model under test. Overall, we use Avg. Gap
to quantifies the mean performance gap between each unlearning method and the retrained model
across all individual metrics above. A lower value indicates better performance.

Unlearning Paradigm We mainly consider three unlearning paradigms, including class-wise forget-
ting, random forgetting, and group forgetting. Class-wise forgetting is to unlearn the whole specific
class where we remove one class in Dr and the corresponding class in Dte completely. Random
forgetting across all classes is to unlearn data points belonging to all classes. As a special case of
random forgetting, group forgetting means that the model is trained to unlearn the group or sub-class
of the corresponding super-classes. A more detailed description is given in Appendix E.2.

5.2 EXPERIMENT RESULTS

5.2.1 CLASS-WISE FORGETTING

We select the class randomly and run class-wise forgetting on five datasets. We report the results of
CIFAR-100 / ImageNet and CIFAR-10 in Table 1 and 3, respectively. The results of 20 NewsGroup
and SVHN is given in Appendix E.3. As we can see, UGradSL and UGradSL+ can boost the
performance of GA and FT, respectively without an increment in RTE or drop in TA and RA, leading
to comprehensive satisfaction in the main metrics, even in the randomness on Df , showing the
robustness and flexibility of our methods in MU regardless of the size of the dataset and the data
modality. Moreover, in terms of Avg. Gap, the proposed method shows its similarity to the retrained
model.

5.2.2 RANDOM FORGETTING

We select data randomly from every class as Df , making sure all the classes are selected and the
size of Df is 10% of the Dtr. We report the results of CIFAR-100 and TinyImageNet in Table 2.
Compared with class-wise forgetting, it is harder to improve the MU performance and still keep the
RA and TA close to the retrained model. Benefit from the mix-gradient design, the proposed method
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Table 1: Results of class-wise forgetting in CIFAR-100 and ImageNet. The best comprehensive
metrics are bold.

CIFAR-100 ImageNet
Method UA MIAScore RA TA Avg. Gap (↓) RTE (↓, min) UA MIAScore RA TA Avg. Gap (↓) RTE (↓, hr)

Retrain 100.00±0.00 100.00±0.00 99.96±0.01 71.10±0.12 - 26.95 100.00±0.00 100.00±0.00 71.62±0.12 69.57±0.07 - 26.18

FT 0.67±0.38 27.20±1.34 99.96±0.01 71.46±0.09 43.12 1.74 52.42±15.81 55.86±18.02 70.66±2.54 69.25±0.78 23.25 2.87
GA 99.00±0.57 99.07±0.50 77.83±2.07 53.73±0.96 10.36 0.06 81.23±0.69 83.52±2.08 66.00±0.03 64.72±0.02 11.43 0.01
IU 2.07±1.65 33.20±8.83 99.96±0.01 71.39±0.19 41.26 1.24 33.54±19.46 49.83±21.57 66.25±1.99 66.28±1.19 31.32 1.51
BE 99.07±0.34 99.00±0.49 70.81±2.69 49.85±1.32 13.08 0.55 98.62±0.58 0.15±0.11 53.13±0.27 56.72±0.31 33.14 0.24
BS 98.87±0.57 98.73±0.68 71.16±2.60 50.03±1.36 13.06 0.77 98.85±0.50 0.13±0.12 53.35±0.16 56.93±0.03 32.98 0.37

ℓ1-sparse 98.97±1.03 100.00±0.00 86.99±0.76 79.08±0.75 4.56 0.15 100.00±0.00 100.00±0.00 39.01±1.03 44.62±0.91 14.39 0.16
RL 99.80±0.35 100.00±0.00 99.97±0.62 77.31±0.35 0.67 1.10 100.00±0.00 100.00±0.00 62.06±4.19 62.93±0.45 4.05 1.17

EU-k 100.00±0.00 0.00±0.00 63.79±1.10 43.90±0.73 40.84 4.50 100.00±0.00 0.00±0.00 32.99±0.07 37.19±0.15 42.75 0.62
CF-k 100.00±0.00 0.00±0.00 94.88±0.46 61.32±1.17 28.72 3.01 99.79±0.36 0.00±0.00 66.84±0.03 68.35±0.28 26.55 1.25

SCRUB 30.07±49.48 66.60±29.19 99.98±0.01 77.97±0.56 26.62 1.07 56.59±2.17 75.59±1.19 66.98±0.11 68.24±0.07 18.45 0.21
SalUN 99.90±0.01 99.96±0.00 99.98±0.01 75.02±0.10 1.02 2.15 100.00±0.00 100.00±0.00 63.00±5.03 62.72±0.31 3.87 1.95

GLI 39.78±6.74 69.63±7.44 95.57±2.11 69.63±0.60 24.11 1.03 53.38±2.96 73.31±3.22 73.01±0.11 63.23±0.06 20.26 3.79
PABI 100±0.00 100.00±0.00 98.94±0.16 73.41±0.09 0.83 20.09 - - - - - -

UGradSL 66.59±0.90 90.96±5.05 95.45±1.42 70.34±1.78 12.87 0.07 100.00±0.00 100.00±0.00 76.91±1.82 65.94±1.35 2.23 0.01
UGradSL+ 100.00±0.00 100.00±0.00 98.44±0.62 74.12±0.70 0.57 3.37 100.00±0.00 100.00±0.00 78.16±0.07 66.84±0.06 2.32 4.19

Table 2: Results of random forgetting in CIFAR-100 and Tiny-ImageNet. The best comprehensive
metrics are bold.

CIFAR-100 Tiny-ImageNet
Method UA MIAScore RA TA Avg. Gap (↓) RTE (↓, min) UA MIAScore RA TA Avg. Gap (↓) RTE (↓, min)

Retrain 29.47±1.59 53.50±1.19 99.98±0.01 70.51±1.17 - 25.01 49.35±0.38 58.44±0.89 83.80±0.29 59.66±0.44 - 235.68

FT 2.55±0.03 10.59±0.27 99.95±0.01 75.95±0.05 18.83 1.95 29.23±0.29 37.02±0.33 82.51±0.20 60.96±0.23 11.03 18.61
GA 2.58±0.06 5.95±0.17 97.45±0.02 76.09±0.01 20.64 0.29 19.34±1.67 25.19±0.68 81.51±1.56 59.66±0.61 16.39 8.65
IU 15.71±5.19 18.69±4.12 84.65±5.29 62.20±4.17 18.05 1.20 60.61±0.01 83.67±0.15 16.36±0.37 23.44±0.29 35.04 7.30
BE 0.01±0.00 1.45±0.02 99.97±0.18 78.26±0.00 22.32 0.24 17.65±0.31 24.48±0.42 82.85±0.20 58.16±0.08 17.03 3.53
BS 2.20±1.21 10.73±9.37 98.22±1.26 70.23±1.67 18.02 0.34 19.47±0.69 25.45±0.15 81.23±0.74 56.75±0.80 17.09 5.63

ℓ1-sparse 8.19±0.38 19.11±0.52 88.39±0.31 80.26±0.16 23.75 1.00 35.73±0.35 41.98±0.73 78.19±0.05 61.44±0.12 9.37 23.40
RL 4.06±0.37 50.12±3.48 99.92±0.01 71.30±0.12 7.41 1.20 40.52±0.15 59.01±0.76 77.58±0.06 60.18±0.19 4.04 27.08

EU-k 1.73±0.06 3.33±0.07 98.44±0.05 59.92±0.43 22.51 1.96 33.55±0.35 22.19±1.75 81.41±0.27 58.08±0.21 14.01 20.02
CF-k 0.07±0.02 0.47±0.16 99.98±0.01 67.86±0.12 21.27 0.88 19.31±0.38 23.22±2.28 81.59±0.37 58.15±0.19 17.25 13.18

SCRUB 0.09±0.59 4.01±1.25 99.97±0.34 77.45±0.26 21.46 1.06 20.11±1.15 25.35±7.53 80.91±0.77 60.11±0.99 16.42 25.79
SalUN 35.23±0.32 89.39±0.46 99.53±0.04 64.26±0.58 12.10 3.33 40.39±0.15 52.32±10.67 77.60±0.11 60.30±0.31 5.48 34.42

GLI 2.88±1.51 9.33±2.36 97.16±1.48 72.04±0.30 18.78 0.63 38.40±1.74 67.87±2.20 98.37±0.27 61.53±0.30 9.21 22.92
PABI 28.33±0.74 39.31±0.88 99.14±0.01 72.00±0.20 4.42 19.10 99.90±0.03 66.46±56.83 0.50±0.01 0.00±0.00 50.38 54.58

UGradSL 18.36±0.17 40.71±0.13 98.38±0.03 68.23±0.16 6.95 0.55 40.73±0.71 37.58±0.21 67.30±0.04 50.38±0.77 13.82 9.47
UGradSL+ 21.69±0.59 49.47±1.25 99.87±0.34 73.60±0.26 3.75 3.52 53.06±1.27 59.46±1.01 81.38±0.75 52.52±0.84 3.57 25.93

can make a good balance between forgetting Df and retaining the knowledge in Dr. The rest of the
experiments are given in Appendix E.4.

5.2.3 GROUP FORGETTING

Although group forgetting can be seen as part of random forgetting, we want to highlight its use
case here due to its practical impacts on e.g., facial attributes classification. The identities can be
regarded as the subgroup in the attributes.

CIFAR-10 and CIFAR-100 share the same image dataset while CIFAR-100 is labeled with 100
fine-grained classes and 20 coarse (super) classes (Krizhevsky et al., 2009; Chundawat et al., 2023).
We train a model to classify 20 super classes using CIFAR-100 training set. The setting of the

Table 3: Results of Group Forgetting on CIFAR-20 and CelebA. For CIFAR-20, the model is trained
to classify 20 super-classes, with Df representing one of five subclasses within a single super-class.
In the CelebA dataset, the model performs binary classification to determine whether a person is
smiling, with Df selected based on specific identities. The best comprehensive metrics are bold.

CIFAR-20 CelebA
UA MIAScore RA TA Avg. Gap (↓) RTE (↓, min) UA MIAScore RA TA Avg. Gap (↓) RTE (↓, min)

Retrain 13.33±1.64 28.47±0.75 99.94±0.01 81.23±0.13 - 27.35 6.74±0.26 9.77±1.49 94.38±0.49 91.78±0.33 - 258.69

FT 1.00±0.43 2.73±0.52 99.37±0.08 79.02±0.03 10.21 7.47 5.36±0.17 5.87±0.11 93.91±0.04 93.18±0.03 1.79 25.94
GA 87.93±2.92 88.93±2.33 81.46±0.77 64.07±0.95 42.68 0.11 6.00±0.16 5.76±0.14 92.86±0.13 92.52±0.08 1.70 1.20
IU 0.00±0.00 2.07±1.29 99.95±0.01 80.92±0.34 10.01 1.10 5.90±0.11 4.91±0.30 93.05±0.01 92.62±0.01 1.97 219.77
BE 89.07±1.39 91.73±1.75 76.36±0.92 60.17±0.92 45.91 0.33 11.50±0.80 48.41±8.86 88.37±0.81 88.07±0.81 13.28 48.91
BS 88.60±1.13 90.67±1.18 76.70±1.08 60.41±1.17 45.38 0.29 8.95±5.11 27.35±30.20 91.00±5.22 90.63±5.65 6.08 50.99

ℓ1-sparse 0.13±0.09 2.27±0.57 99.57±0.04 80.44±0.08 10.14 0.38 9.46±1.82 36.91±30.96 90.52±1.75 90.35±1.77 8.79 37.49
RL 56.93±3.24 98.60±0.29 99.92±0.01 80.28±0.05 28.67 0.37 8.31±0.43 28.55±16.74 91.85±0.51 91.62±0.42 5.76 40.09

EU-k 8.00±4.57 16.33±7.18 97.07±0.18 69.67±0.35 7.98 0.87 7.20±0.19 18.77±3.69 92.55±0.30 91.04±0.67 3.01 1.98
CF-k 0.00±0.00 0.80±0.40 99.98±0.01 77.46±0.03 11.20 1.21 5.46±0.32 17.26±0.08 94.45±0.04 92.72±0.04 2.45 1.60

SCRUB 0.00±0.00 1.13±0.34 99.93±0.01 81.05±0.20 10.21 0.30 8.78±0.77 13.37±5.22 91.21±0.86 90.65±0.86 2.49 70.13
SalUN 52.93±2.21 99.80±0.35 99.55±0.00 76.48±0.26 29.02 2.88 6.53±0.28 25.57±8.22 92.97±0.03 92.27±0.07 4.48 83.43

GLI 22.22±2.47 34.26±4.88 91.12±0.66 75.13±0.73 7.40 1.01 6.43±0.43 5.70±0.74 92.59±0.08 92.36±0.11 1.69 0.52
PABI 82.96±9.83 90.83±3.98 99.29±0.47 81.47±0.02 33.22 19.96 3.71±0.19 45.16±1.97 99.83±0.01 99.57±0.00 12.92 38.87

UGradSL 22.87±0.90 38.93±1.57 97.20±0.19 75.84±0.16 7.03 0.13 6.29±1.41 5.73±3.50 93.44±0.14 92.80±0.27 1.61 2.17
UGradSL+ 78.44±1.19 88.67±0.35 97.93±0.71 79.77±0.58 32.20 8.12 6.88±0.63 8.88±0.52 93.39±0.41 92.99±0.12 0.84 16.78
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group forgetting within one coarse class is to remove one fine-grained class from one super class in
CIFAR-100 datasets. For example, there are five fine-grained fishes in the Fish coarse class and we
want to remove one fine-grained fish from the model. Different from class-wise forgetting, we do
not modify the testing set. We report the group forgetting in Table 3.

CelebA We select CelebA dataset as another real-world case and show the results in Table 3. We
train a binary classification model to classify whether the person is smile or not. There are 8192
identities in the training set and we select 1% of the identities (82 identities) as Df . Both smiling
and non-smiling images are in Df . This experiment has significant practical meaning, since the
bio-metric, such as identity and fingerprint, needs more privacy protection (Minaee et al., 2023).
Compared with baseline methods, our method can forget the identity information better without
forgetting too much remaining information in the dataset. This paradigm provides a practical usage
of MU and our methods provide a faster and more reliable way to improve the MU performance.

5.3 ABLATION STUDIES

To evaluate the robustness of our method, we conduct ablation studies on the forgetting set size, the
GA ratio p, and the smoothing rate α. For the forgetting set size, we do the experiments on CIFAR-
10 and CIFAR-100. The results in Tables 17 and 18 show that our method is consistently robust to
the size of Df and always outperforms the other baselines. For the trade-off parameter p, Table 19
indicates that pure GA is unstable, and its performance becomes more stable as more GA steps
are combined with our method. In practice, we therefore choose p > 0.9 to stabilize performance
while still leveraging the effect of GA for unlearning. We further study random forgetting (10%)
on CIFAR-10, fixing α = −0.4 for both UGradSL and UGradSL+, and sweep p in [0.8,1.0] with
a step size of 0.01. The resulting UA, MIA, RA, TA, and Avg. Gap curves in Figure 3 show that
our methods are relatively stable with respect to p. For the smoothing rate α, we fix p = 0.9 and
vary α from −0.9 to −0.1 with a step size of 0.1. The results in Figure 4 demonstrate that both
UGradSL and UGradSL+ remain stable. Overall, these ablations show that our methods are robust
to the choice of hyperparameters.

Figure 3: Ablation study on the GA ratio p for random forgetting (10%) on CIFAR-10. Our methods
(left: UGradSL, right: UGradSL+) remain relatively stable across a wide range of p under multiple
evaluation metrics.

Table 4: Results of class-wise forgetting and random forgetting on CIFAR-10 with additional (add.)
MIA. The best comprehensive metrics are bold. Avg. Gap is calculated with additional MIA.

Class-wise Random
UA MIAScore RA TA Add. MIA Avg. Gap (↓) RTE (↓, min) UA MIAScore RA TA Add. MIA Avg. Gap (↓) RTE (↓, min)

Retrain 100.00±0.00 100.00±0.00 98.19±3.14 94.50±0.34 99.23±0.08 - 24.62 8.07±0.47 17.41±0.69 100.00±0.01 91.61±0.24 50.69±0.73 - 24.66

FT 22.71±5.31 79.21±8.60 99.82±0.09 94.13±0.14 99.09±0.07 20.04 2.02 1.10±0.19 4.06±0.41 99.83±0.03 93.70±0.10 54.05±0.31 5.19 1.58
GA 25.19±11.38 73.48±9.68 96.84±0.58 73.10±1.62 99.43±0.09 24.86 0.08 0.56±0.01 1.19±0.05 99.48±0.02 94.55±0.05 55.04±0.66 6.31 0.31
IU 83.92±1.16 92.59±1.41 98.77±0.12 92.64±0.23 99.71±0.07 5.28 1.18 17.51±2.19 21.39±1.70 83.28±2.44 78.13±2.85 53.98±0.55 9.37 1.18
BE 64.93±0.01 98.19±0.00 99.47±0.00 94.00±0.11 99.60±0.02 7.81 0.20 0.00±0.00 0.26±0.02 100.00±0.00 95.35±0.18 55.41±0.49 6.74 3.17
BS 93.69±4.32 99.82±0.04 97.69±1.29 92.89±1.26 99.56±0.10 1.79 0.29 0.48±0.07 1.16±0.04 99.47±0.01 94.58±0.03 55.88±0.72 6.51 1.41

ℓ1-sparse 100.00±0.00 100.00±0.00 97.86±1.29 96.11±1.26 99.02±0.15 0.43 1.00 2.80±0.37 18.59±3.48 99.97±0.01 94.08±0.12 52.17±0.87 2.09 1.98
RL 99.99±0.01 100.00±0.00 100.00±0.00 95.50±0.11 99.08±0.07 0.59 1.04 2.80±0.37 18.59±3.48 99.97±0.01 94.08±0.12 52.17±0.87 2.09 1.98

EU-k 100.00±0.00 100.00±0.00 100.00±0.00 75.04±1.10 99.89±0.18 4.39 1.45 0.00±0.00 0.50±0.30 99.99±0.01 77.21±1.21 61.88±1.33 10.12 1.58
CF-k 100.00±0.00 100.00±0.00 100.00±0.00 78.95±0.53 100.00±0.00 3.63 1.32 0.00±0.00 0.00±0.00 100.00±0.00 80.98±0.27 69.91±1.33 11.07 1.47

SCRUB 100.00±0.00 100.00±0.00 99.93±0.01 95.22±0.07 100.00±0.00 0.65 1.09 0.70±0.59 3.88±1.25 99.59±0.34 94.22±0.26 55.33±0.59 5.71 4.05
SalUN 90.74±13.91 100.00±0.00 98.20±0.34 80.49±1.21 98.63±0.59 4.78 2.22 46.95±0.15 86.33±1.29 97.75±0.42 77.22±0.77 69.95±0.12 28.74 2.42

UGradSL 94.99±4.35 97.95±1.78 95.47±4.08 86.78±5.68 99.94±0.01 3.64 0.22 5.87±0.51 13.33±0.70 98.82±0.28 92.17±0.23 53.54±0.97 1.78 0.45
UGradSL+ 100.00±0.00 100.00±0.00 99.26±0.01 94.29±0.07 100.00±0.00 0.41 3.07 6.03±0.17 10.65±0.13 99.79±0.03 93.64±0.16 52.29±0.85 2.53 3.07
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Figure 4: Ablation study on the smoothing rate α for random forgetting (10%) on CIFAR-10. Our
methods (left: UGradSL, right: UGradSL+) remain relatively stable across a wide range of α under
multiple evaluation metrics.

5.4 DISCUSSION

Influence Function in Deep Learning Influence function is proposed for the convex function. As
given in Section 3.2, we apply the influence function to the converged model, which can be regarded
as a local convex model. A plot of loss landscape of the retrained model θr on CIFAR-10 dataset is
given in Figure 7 in Appendix.

MIA as a Proxy for ”Forgetfulness”. Given a model θ⋆, we can evaluate the degree of its general-
ization by running a membership inference attack on the model. In the context of the current work,
generalization is equivalent to the degree of ”forgetfulness” that the forgetting algorithm achieves.
Given the distribution of model response observations Af = A(θ⋆,Df) and Ate = A(θ⋆,Dte),
where A is an adversary and A = Af ∪Ate is the observation visible to A, one can get the degree of
generalization by analyzing the observations. In the context of MU, the most straightforward way is
to get the accuracy of A on the seen and unseen samples (Dte and Df respectively. This could be
done by computing the (TP + TN)/(∣Df ∣ + ∣Dte∣), where the true positive (TP) predictions corre-
spond to ”seen” samples, and true negative (TN) predictions are ”unseen” samples. We conducted
the experiments on CIFAR-10 both for class-wise and random forgetting. The results are given in
Table 4, where Avg. Gap is calculated with additional MIA. We assume that the distribution of Dtr

and Dte should be the same. For class-wise forgetting, the additional MIA is almost 1 because Df

is a separate single class and the distribution of Df and Dte without the corresponding class are
totally different. For random forgetting, the additional MIA is almost 0.5 because Df is randomly
selected from Dtr and the distribution of Df and Dte should the same. The plots of loss distribu-
tion for random and class-wise forgetting are given in Figure 8 in the Appendix. In Table 4, the
proposed methods still outperform the other baseline methods, showing the robustness to the other
MIA auditing methods and the generalization capability in privacy preservation.

Difference between UGradSL and UGradSL+ Although two methods are similar in the math-
ematical formulation, there exists fundamental difference in their design and behavior. Compared
with UGradSL, UGradSL+ can be more stable and less sensitive due to its origin from FT. As shown
in the experiment results in the tables, UGradSL+ can always perform as top-tier methods. However,
the RTE of UGradSL+ would be higher. We present more analysis in Appendix E.11.

The study of the Streisand effect Jansen & Martin (2015) and gradient analysis are given in Ap-
pendix E.6 and E.10, respectively.

6 CONCLUSIONS AND LIMITATIONS

We have proposed UGradSL, a plug-and-play, efficient, gradient-based MU method using smoothed
labels. Theoretical proofs and extensive numerical experiments have demonstrated the effectiveness
of the proposed method. Our work has limitations. For example, we desire an efficient way to find
the exact MU state in experiments and further explore the applications of MU to promote privacy
and fairness. Our method can be further validated and tested in other tasks, such as unlearning
recommendation systems, etc.
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Roadmap The appendix is composed as follows. Section A presents all the notations and their
meaning we use in this paper. Section B presents the rest of the Related Work. Section C gives
the proof of our theoretical analysis. Section D gives a more detailed explaination of the proposed
algorithm. Section E shows the additional experiment results with more details that are not given in
the main paper due to the page limit.

A NOTATION TABLE

The notations we use in the paper is summaried in the Table 5.

Table 5: Notation used in this paper

Notations Description

K The number of class in the dataset
D,X ,Y The general dataset distribution, the feature space and the label space
D The dataset D ∈ D
Dtr,Dr,Df The training set, remaining set and forgetting set
ΘM The distribution of models learned using mechanismM
θ The model weight
θ∗ The optimal model weight
θ∗f,LS The optimal model weight trained with Df whose label is smoothed
∣∣θ∣∣ The 2-norm of the model weight
n The size of dataset
ε The up-weighted weight of datapoint z in influence function
I(z) Influence function of data point z
hθ A function h parameterized by θ
ℓ(hθ, zi) Loss of hθ(xi) and yi
Rtr(θ) The empirical risk of training set when the model weight is θ
Rf(θ) The empirical risk of forgetting set when the model weight is θ
Rr(θ) The empirical risk of remaining set when the model weight is θ
Hθ The Hessian matrix w.r.t. θ
∇θ The gradient w.r.t. θ
B Data batch
BLS,α The smoothed batch using α
zi = (xi, yi) A data point zi whose feature is xi and label is yi
yi The one-hot encoded vector form of yi
yGLS,α
i The smoothed one-hot encoded vector form of yi where the smooth rate is α

α Smooth rate in general label smoothing
hθ(x) The extracted feature of x from the model parameterized by θ
γ1, γ2 The weight of machine learning and machine unlearning on ERM

B RELATED WORK

Label Smoothing (LS) or positive label smoothing (PLS) (Szegedy et al., 2016) is a commonly used
regularization method to improve the model performance. Standard training with one-hot labels
will lead to overfitting easily. Empirical studies have shown the effectiveness of LS in noisy label
(Szegedy et al., 2016; Pereyra et al., 2017; Vaswani et al., 2017; Chorowski & Jaitly, 2016). In
addition, LS shows its capability to reduce overfitting, improve generalization, etc. LS can also
improve the model calibration (Müller et al., 2019). However, most of the work about LS is PLS.
(Wei et al., 2021) first proposes the concept of negative label smoothing and shows there is a wider
feasible domain for the smoothing rate when the rate is negative, expanding the usage of LS.

Influence Function is a classic statistical method to track the impact of one training sample. Koh
& Liang (2017) uses a second-order optimization approximation to evaluate the impact of a training
sample. Additionally, it can also be used to identify the importance of the training groups (Basu
et al., 2020; Koh et al., 2019). The influence function is widely used in many machine-learning
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tasks. such as data bias solution (Brunet et al., 2019; Kong et al., 2021), fairness (Sattigeri et al.,
2022; Wang et al., 2022a), security (Liu et al., 2022a), transfer learning (Jain et al., 2022), out-of-
distribution generalization (Ye et al., 2021), etc. The approach also plays an important role as the
algorithm backbone in the MU tasks (Jia et al., 2023; Warnecke et al., 2021; Izzo et al., 2021).

Differential Privacy (DP) is a mathematical framework designed to quantify and mitigate privacy
risks in machine learning models. It ensures that the inclusion or exclusion of a single data point
in a dataset does not significantly affect the model’s output, thus protecting individual data points
from being inferred by adversaries Dwork et al. (2006). In machine learning, DP mechanisms
such as noise addition and gradient clipping are employed during the training process to provide
formal privacy guarantees while maintaining model utility Abadi et al. (2016). These techniques
help balance the trade-off between data privacy and model performance, making DP a cornerstone
of privacy-preserving machine learning Shokri et al. (2015); McMahan et al. (2018).

A multitude of privacy risk assessment tools have been proposed to gauge the degree of leakage
associated with the training data. Specifically targeted at the training data, model attacks are often
used as a proxy metric for privacy leakage in pretrained models. For example, model inversion at-
tacks are designed to extract aggregate information about specific sub-classes rather than individual
samples Fredrikson et al. (2015). Data extraction attacks aim to reverse engineer individual sam-
ples used during training Carlini et al. (2020), while property inference attacks focus on inferring
properties of the training data Ganju et al. (2018).

More relevant to the current work are Membership Inference Attacks (MIA), which predict
whether a particular sample was used to train the model. First introduced by Homer et al. Homer
et al. (2008), membership attack algorithms were later formalized in the context of DP, enabling
privacy attacks and defenses for machine learning models Rahman et al. (2018). Shokri et al. Shokri
et al. (2017) introduced MIA based on the assumption of adversarial queries to the target model. By
training a reference attack model (shadow model) based on the model inference response, this type
of MIA has proven to be powerful in scenarios such as white-box Leino et al. (2019); Nasr et al.
(2019); Sablayrolles et al. (2019), black-box Chen et al. (2020); Hisamoto et al. (2019); Song et al.
(2020), and label-only Choquette-Choo et al. (2020); Li et al. (2021) access. However, most MIA
mechanisms often require training a large number of shadow models with diverse subsets of queries,
making them prohibitively expensive. As a result, some recent works have focused on developing
cheaper MIA mechanisms Steinke et al. (2023).

Basics of Influence Function Given a dataset D = {zi ∶ (xi, yi)}
n
i=1 and a function h parameterized

by θ which maps from the input feature spaceX to the output space Y . Recall the standard empirical
risk minimization writes as:

θ∗ = argmin
θ

1

n
∑
z∈D

ℓ (hθ, z) . (9)

To find the impact of a training point ẑ, we up-weight its weight by an infinitesimal amount ε1. The
new model parameter θε

{ẑ} can be obtained from

θϵI
{z} = argmin

θ

1

n
∑
z∈D

ℓ (hθ, z) + ε ⋅ ℓ (hθ, ẑ) (10)

When ε = − 1
n

, it is indicating removing ẑ. According to Koh & Liang (2017), θε
{ẑ} can be approxi-

mated by using the first-order Taylor series expansion as

θε
{ẑ} ≈ θ

∗
− ε ⋅H−1θ∗ ⋅ ∇θℓ (hθ∗ , ẑ) , (11)

where Hθ∗ is the Hessian with respect to (w.r.t.) θ∗. The change of θ due to changing the weight
can be given using the influence function I(ẑ) as

∆θ = θε
{ẑ} − θ

∗
= I(ẑ) =

dθε
{ẑ}
dε
∣
ε=0
= −H−1θ∗ ⋅ ∇θℓ (hθ∗ , ẑ) .

1To distinguish from the ϵ in differential privacy, we use ε here.
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C PROOFS

C.1 PROOF FOR THEOREM 1

Proof. For p(x), the Taylor expansion at x = a is

p(x) = p(a) +
p′(a)
1
(x − a) + o (12)

Here, p(θ) = ∇Rtr(θ) + ε∑Df
∇ℓ(hθ, z

f
i ) so we have

p(θ) = ∇Rtr(a) + ε ∑
zf ∈Df

∇ℓ(ha, z
f
) +

⎡
⎢
⎢
⎢
⎢
⎣

∇
2Rtr(a) + ε ∑

zf ∈Df

∇
2ℓ(ha, z

f
)

⎤
⎥
⎥
⎥
⎥
⎦

(θ − a) + o (13)

For Eq. (2), we expand p(θ∗f) at θ = θ∗tr as

p(θ∗f) = ∇Rtr(θ
∗
tr) + ε ∑

zf ∈Df

∇ℓ(hθ∗tr
, zf)

+

⎡
⎢
⎢
⎢
⎢
⎣

∇
2Rtr(θ

∗
tr) + ε ∑

zf ∈Df

∇
2ℓ(hθ∗tr

, zf)

⎤
⎥
⎥
⎥
⎥
⎦

(θ∗f − θ
∗
tr) + o = 0

(14)

Since we have ∇Rtr(θ
∗
tr) = 0 and ignore o, we can get the approximation as

θ∗f − θ
∗
tr ≈ −

⎡
⎢
⎢
⎢
⎢
⎣

∑
ztr∈Dtr

∇
2ℓ(hθ∗tr

, ztr) + ε ∑
zf ∈Df

∇
2ℓ(hθ∗tr

, zf)

⎤
⎥
⎥
⎥
⎥
⎦

−1 ⎡
⎢
⎢
⎢
⎢
⎣

ε ∑
zf ∈Df

∇ℓ(hθ∗tr
, zf)

⎤
⎥
⎥
⎥
⎥
⎦

(15)

Similarly, we can expand q(θ∗tr) = ∇Rtr(θ
∗
tr) at θ = θ∗r as

q(θ∗tr) = ∑
ztr∈Dtr

∇ℓ(hθ∗r , z
tr
) + ∑

ztr∈Dtr

∇
2ℓ(hθ∗r , z

tr
)(θ∗tr − θ

∗
r ) ≈ 0

θ∗r − θ
∗
tr ≈

⎡
⎢
⎢
⎢
⎢
⎣

∑
ztr∈Dtr

∇
2ℓ(hθ∗r , z

tr
)

⎤
⎥
⎥
⎥
⎥
⎦

−1

∑
ztr∈Dtr

∇ℓ(hθ∗r , z
tr
)

(16)

Because of gradient ascent, ε = −1 and we have

θ∗r − θ
∗
f = θ

∗
r − θ

∗
tr − (θ

∗
tr − θ

∗
f) =

⎛

⎝
∑

ztr∈Dtr

∇
2ℓ(hθ∗r

, ztr)
⎞

⎠

−1

∑
ztr∈Dtr

∇ℓ(hθ∗r , z
tr
)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
∆θr

−
⎛

⎝
∑

zr∈Dr

∇
2ℓ(hθ∗tr

, zr)
⎞

⎠

−1

∑
zf ∈Df

∇ℓ(hθ∗tr
, zf)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
∆θf

(17)

Thus, ∣∣θ∗r − θ
∗
f ∣∣ = 0 if and only if ∆θf =∆θr, where

∑
ztr∈Dtr

∇ℓ(hθ∗r , z
tr
) =

⎡
⎢
⎢
⎢
⎢
⎣

∑
ztr∈Dtr

∇
2ℓ(hθ∗r , z

tr
)

⎤
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎣
∑

zr∈Dr

∇
2ℓ(hθ∗tr

, zr)
⎤
⎥
⎥
⎥
⎦

−1

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
H(θ∗r ,θ∗tr)

∑
zf ∈Df

∇ℓ(hθ∗tr
, zf)

(18)
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C.2 ERROR ANALYSIS IN THEOREM 1

If we do not ignore the Lagrange remainder in Eq. 14 and 16 and denote them as er and ef , Eq. 14
and 16 become

p(θ∗f) = ∇Rtr(θ
∗
tr) + ε ∑

zf ∈Df

∇ℓ(hθ∗tr
, zf)

+

⎡
⎢
⎢
⎢
⎢
⎣

∇
2Rtr(θ

∗
tr) + ε ∑

zf ∈Df

∇
2ℓ(hθ∗tr

, zf)

⎤
⎥
⎥
⎥
⎥
⎦

(θ∗f − θ
∗
tr) + er = 0

(19)

q(θ∗tr) = ∑
ztr∈Dtr

∇ℓ(hθ∗r , z
tr
) + ∑

ztr∈Dtr

∇
2ℓ(hθ∗r , z

tr
)(θ∗tr − θ

∗
r ) + ef = 0 (20)

, respectively. Thus,

θ∗r − θ
∗
f = (θ

∗
r − θ

∗
tr) − (θ

∗
f − θ

∗
tr) (21)

= (∆θr + er) − (∆θf + ef) = (∆θr −∆θf) + (er − ef). (22)

We now bound the error of using the linearized difference ∆θr −∆θf to approximate θ∗r − θ
∗
f .

θ∗r − θ
∗
f − (∆θr −∆θf) = er − ef , (23)

and hence
∥θ∗r − θ

∗
f − (∆θr −∆θf)∥ = ∥er − ef∥ ≤ ∥er∥ + ∥ef∥. (24)

Assume that q(θ) = ∇Rtr(θ) and p(θ) = ∇Rtr(θ) − ∇Rf(θ) have Lipschitz-continuous Hessians
with constants Lq and Lp, respectively, i.e.,

∥∇
2q(θ1) − ∇

2q(θ2)∥ ≤ Lq∥θ1 − θ2∥, (25)

∥∇
2p(θ1) − ∇

2p(θ2)∥ ≤ Lp∥θ1 − θ2∥. (26)

Then standard Taylor bounds imply

∥rq∥ ≤
Lq

2
∥θ∗tr − θ

∗
r ∥

2, (27)

∥rp∥ ≤
Lp

2
∥θ∗f − θ

∗
tr∥

2. (28)

Using er = −H
−1
r rq and ef = −H

−1
f rp, we obtain

∥er∥ ≤ ∥H
−1
r ∥ ∥rq∥ ≤

Lq

2
∥H−1r ∥ ∥θ

∗
r − θ

∗
tr∥

2, (29)

∥ef∥ ≤ ∥H
−1
f ∥ ∥rp∥ ≤

Lp

2
∥H−1f ∥ ∥θ

∗
f − θ

∗
tr∥

2. (30)

Therefore, the approximation error satisfies

∥θ∗r − θ
∗
f − (∆θr −∆θf)∥ ≤

Lq

2
∥H−1r ∥ ∥θ

∗
r − θ

∗
tr∥

2
+
Lp

2
∥H−1f ∥ ∥θ

∗
f − θ

∗
tr∥

2. (31)

C.3 PROOF FOR THEOREM 2

Proof. Recall the loss calculation in label smoothing and we have

ℓ(hθ, z
GLS,α

) = (1 +
1 −K

K
α)ℓ(hθ, (x, y)) +

α

K
∑

y′∈Y/y
ℓ(hθ, (x, y

′
))), (32)

where we use notations ℓ(hθ, (x, y)) ∶= ℓ(hθ, z) to specify the loss of an example z = {x, y}
existing in the dataset and ℓ(hθ, (x, y

′)) to denote the loss of an example when its label is replaced
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with y′. ∇θℓ(hθ, (x, y)) is the gradient of the target label and ∑y′∈Y/y∇θℓ(hθ, (x, y
′)) is the sum

of the gradient of non-target labels.

With label smoothing in Eq. (32), Eq. (17) becomes

θ∗r − θ
∗
f,LS ≈∆θr + (1 +

1 −K

K
α) ⋅ (−∆θf) +

1 −K

K
α ⋅∆θn

=∆θr −∆θf +
1 −K

K
α ⋅ (∆θn −∆θf)

(33)

where

∆θr ∶=

⎡
⎢
⎢
⎢
⎢
⎣

∑
ztr∈Dtr

∇
2
θℓ(hθ∗r , z

tr
)

⎤
⎥
⎥
⎥
⎥
⎦

−1

∑
ztr∈Dtr

∇θℓ(hθ∗r , z
tr
)

∆θf ∶=
⎡
⎢
⎢
⎢
⎣
∑

zr∈Dr

∇
2
θℓ(hθ∗tr

, zr)
⎤
⎥
⎥
⎥
⎦

−1
∑

zf ∈Df

∇θℓ(hθ∗tr
, zf)

as given in Eq. ( 17). So we have

θ∗r − θ
∗
f,LS ≈∆θr −∆θf +

1 −K

K
α ⋅ (∆θn −∆θf) (34)

where

∆θn ∶=
1

K − 1

⎡
⎢
⎢
⎢
⎣
∑

zr∈Dr

∇
2
θℓ(hθ∗tr

, zr)
⎤
⎥
⎥
⎥
⎦

−1
∑

zf ∈Df

∇θ ∑
y′∈Y/yf

ℓ(hθ∗tr
, (xf , y′))

When we have
⟨∆θr −∆θf ,∆θn −∆θf ⟩ ≤ 0, (35)

α < 0 can help with MU, making

∣∣θ∗r − θ
∗
f,NLS∣∣ ≤ ∣∣θ

∗
r − θ

∗
f ∣∣ (36)

C.4 PROOF FOR THEOREM 3

Proof. When the optimization is gradient ascent (GA) with negative label smoothing (NLS), Eq. (6)
can be written as

ℓ(hθ, z
NLS,α

) = −(1 +
1 −K

K
α) ⋅ ℓ(hθ, (x, y)) −

α

K
∑

y′∈Y/y
ℓ(hθ, (x, y

′
)), α < 0, (37)

Recall Rtr(θ) = ∑ztr∈Dtr
ℓ(hθ, z

tr). Denote by RNLS
f (θ;α) = ∑zLS,α∈Df

ℓ(hθ, z
NLS,α), α < 0

the empirical risk of forgetting data with NLS. After MU with label smoothing on Df by gradient
ascent, the resulting model can be seen as minimizing the risk γ1 ⋅Rtr(θ)−γ2 ⋅R

NLS
f (θ;α), which is

a weighted combination of the risk from two phases: 1) machine learning on Dtr with weight γ1 > 0
and 2) machine unlearning on Df with weight γ2 > 0. Consider an example (x, y) in the forgetting
dataset. The loss of this example is:

γ1ℓ(hθ, (x, y)) − γ2ℓ(hθ, z
GLS,α

) = [γ1 − γ2 (1 +
1 −K

K
α)] ⋅ ℓ(hθ, (x, y))

−
α

K
γ2 ∑

y′∈Y/y
ℓ(hθ, (x, y

′
)).
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When [γ1 − γ2 (1 + 1−K
K

α)] > 0, the optimal solution by minimizing this loss is

P(M(y) = ypred) =
⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

γ1−γ2(1+ 1−K
K α)

(γ1−γ2(1+ 1−K
K α))−K−1

K αγ2
, if ypred = y,

− α
K ⋅γ2

(γ1−γ2(1+ 1−K
K α))−K−1

K αγ2
, if ypred ≠ y.

Accordingly, for another label y′, we have

P(M(y′) = ypred) =
⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

γ1−γ2(1+ 1−K
K α)

(γ1−γ2(1+ 1−K
K α))−K−1

K αγ2
, if ypred = y′,

− α
K ⋅γ2

(γ1−γ2(1+ 1−K
K α))−K−1

K αγ2
, if ypred ≠ y′.

Then the quotient of two probabilities can be upper bounded by:

log(
P(M(y) = ypred)
P(M(y′) = ypred)

) ≤

RRRRRRRRRRR

log
⎛

⎝

γ1 − γ2 (1 +
1−K
K

α)

− α
K
⋅ γ2

⎞

⎠

RRRRRRRRRRR

= ∣log (
K

α
(1 −

γ1
γ2
) + 1 −K)∣ = ϵ.

D THE DETAILS OF ALGORITHM

D.1 ALGORITHM DETAILS

We provide a more detailed explanation of UGradSL and UGradSL+ in Algorithm 1 here. For
UGradSL+, we first sample a batch Br = {z

r
i ∶ (x

r
i , y

r
i )}

nBr

i=1 from Dr (Line 3-4). Additionally, we
sample a batch Bf = {z

f
i ∶ (x

f
i , y

f
i )}

nBf

i=1 from Df where nBr = nBf
(Line 5). We compute the

distance d(zri , z
f
i ) ∈ [0,1] for each (zri , z

f
i ) pair where zri ∈ Br and zfi ∈ Bf (Line 6). For each zfi ,

we count the number of zri whose d(zri , z
f
i ) < β, where β is the distance threshold. This count is

denoted by cfi (Line 7). Then we get the smooth rate by normalizing the count as αi = c
f
i /∣Bf ∣, where

αi ∈ [0,1] (Line 8). GA with NLS is to decrease the model confidence of Df . The larger the absolute
value of αi, the lower confidence will be given. Our intuition is that a smaller d(zri , z

f
i ) means zri

is more similar to Dr and the confidence of zfi should not be decreased too much. The distances
we use is the cosine distance. UGradSL is similar and the difference is the dataset replacement.
For each epoch, UGradSL+ is terminated after completing the iterations on Dr, while UGradSL is
terminated after completing the iterations on Df .

D.2 ALGORITHM EXPLANATION

In the self-adaptive version of UGradSL+, the label smoothing rate for each forgetting sample is
computed dynamically from its proximity to the retained data in feature space. For each iteration,
the algorithm samples a batch of retained examples Br and a batch of forgetting examples Bf with
equal size, extracts their features {zri } and {zfj }, and computes the feature distance d(zri , z

f
j ) for

every retainedforgetting pair. Then, for each forgetting feature zfj , it counts how many retained
features fall within a distance threshold β, denoted as cfj . This count is normalized by the batch
size ∣Bf ∣ to obtain the adaptive smoothing rate αj = cfj /∣Bf ∣. As a result, forgetting samples that
are close to many retained samples (i.e., highly entangled in representation space) receive a higher
smoothing rate and are updated more conservatively, while those that are far from retained data get a
lower smoothing rate (possibly zero) and can be pushed away more aggressively during unlearning.

D.3 ADDITIONAL RESULTS

As mentioned in Section 4, to avoid the smooth rate selection, we propose a self-adaptive smooth
rate version. We compare the performance with and without self-adaptive smooth on CIFAR-10 and
SVHN. The forgetting scenario is random forgetting. The results are given in Table 10.
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D.4 COMPLEXITY ANALYSIS

Compared with the fixed α, the additional computation from adaptive version is the distance cal-
culation. The code we compute the distance is given below. All computations are implemented as
batched GPU tensor operations without any explicit Python loops. We assume the feature from
Dr and Df are both in Rn×d, where n is the batch size and d is the feature dimension.

For FLOP count,

• The two normalization operations cost approximately 6nd FLOPs in total, since normaliz-
ing a single n × d tensor requires about 3nd FLOPs (square, sum, and division).

• Computing the cosine similarity matrix costs about 2n2d FLOPs, as each of the n2 entries
is a dot product between two d-dimensional vectors.

• Converting similarity to distance and applying the threshold require about 2n2 and n2

FLOPs, respectively.

• The density computation costs about n2 FLOPs for forming the mask and n FLOPs for the
length normalization.

Overall, the total FLOP count is 6nd + 2n2d + 4n2 + n, which is dominated by the O(n2d) cosine-
similarity term. For our typical setting n = 64 and d = 512, this corresponds to roughly 4.4 ×
106 FLOPs. Compared with the FP32 peak throughput of an A6000 GPU (38.71 TFLOPS), this
overhead is negligible relative to the usual forward/backward passes.

For memory usage, the additional GPU tensors have the following shapes:

• Each features: n × d

• Each normalized features: n × d

• The cosine similarity, cosine distance and the filtered mask: n × n

• The density: n

Assuming FP32 (4 bytes) for all tensors, the peak extra memory is at most 4(4nd + 3n2 + n) bytes,
which is 561,408 bytes (≈ 0.5 MiB) for n = 64 and d = 512. This is negligible compared with the
model parameters, so the memory overhead can also be safely ignored.

1 forget_norm = F.normalize(forget_feature, p=2, dim=1)
2 retain_norm = F.normalize(retain_feature, p=2, dim=1)
3 # cosine similarity (batch x batch)
4 cos_sim = forget_norm @ retain_norm.T
5 # convert to distance in [0,1]
6 cos_dist = (1 - cos_sim) / 2 # shape: [batch, batch]
7 # --- threshold and count ---
8 threshold = 0.2 # example threshold in [0,1]
9 # boolean matrix: True = close

10 close_mask = cos_dist < threshold # [batch, batch]
11 density = close_mask.sum(dim=0) / len(forget_feature)

D.5 ABLATION STUDY

By default, we adopt cosine distance because it naturally lies in [0,1], and we set the threshold β to
the median of all pairwise distances. We conduct an ablation study on different distance metrics and
thresholds for random forgetting on CIFAR-10, where the forgetting set size is 10% of the training
data. For comparison, we also evaluate Euclidean distance. The results for cosine and Euclidean

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Table 6: The ablation studies of threshold β and different distance functions of UGradSL for the
random forgetting on CIFAR-10 and the size of forgetting set is 10% of the training set. The first
row is the results for retraining for reference.

β Distance UA MIA RA TA Avg. Gap (↓)

- - 8.07 17.41 100.00 91.61 -

Median Cosine 6.04±0.11 13.75±0.32 99.11±0.01 92.07±0.02 1.76
Euclidean 8.59±1.85 17.30±0.98 94.39±1.15 88.97±1.12 2.59

0.1 Cosine 6.50±0.14 14.76±1.52 95.64±0.23 89.91±0.17 2.57
Euclidean 6.68±0.88 14.69±1.66 95.34±0.79 89.90±0.69 2.62

0.2 Cosine 7.01±0.67 15.86±0.86 95.18±0.44 89.69±0.19 2.34
Euclidean 6.82±0.44 15.81±0.70 95.58±0.73 90.02±0.57 2.21

0.3 Cosine 7.01±0.98 15.13±1.26 95.24±0.99 89.76±0.41 2.49
Euclidean 7.32±1.06 16.45±2.08 94.68±0.89 89.16±0.33 2.53

0.4 Cosine 7.91±0.26 15.69±1.11 94.69±0.51 89.07±0.29 2.45
Euclidean 6.24±0.21 14.16±0.12 95.75±0.40 90.13±0.13 2.70

0.5 Cosine 7.61±0.66 16.50±1.68 95.03±0.36 89.69±0.72 2.26
Euclidean 8.27±1.33 16.44±1.83 94.67±1.33 89.03±1.28 2.68

0.6 Cosine 8.76±0.28 16.53±1.88 94.31±0.61 88.54±0.50 2.75
Euclidean 8.67±0.28 17.01±2.43 94.34±0.16 88.93±0.30 2.66

0.7 Cosine 9.88±1.05 18.33±2.82 93.55±0.92 88.08±0.42 3.44
Euclidean 9.61±0.86 17.93±2.33 94.11±0.49 88.69±0.19 2.99

0.8 Cosine 9.61±1.12 16.91±1.51 93.68±1.20 88.48±0.76 3.08
Euclidean 9.75±0.17 16.79±0.52 93.87±0.02 88.34±0.39 2.93

0.9 Cosine 9.19±0.66 17.84±0.72 94.19±0.50 88.51±0.84 2.63
Euclidean 9.76±0.49 18.61±0.65 93.90±0.39 88.47±0.35 3.03

1.0 Cosine 9.39±0.07 16.94±0.26 94.26±0.33 88.74±0.22 2.60
Euclidean 10.41±0.24 19.16±1.08 93.50±0.63 88.21±0.34 3.50

Table 7: The ablation studies of threshold β and different distance functions of UGradSL+ for the
random forgetting on CIFAR-10 and the size of forgetting set is 10% of the training set. The first
row is the results for retraining for reference.

β Distance UA MIA RA TA Avg. Gap (↓)

- - 8.07 17.41 100.00 91.61 -

Median Cosine 7.54±0.43 13.57±0.12 99.67±0.00 92.97±0.17 1.52
Euclidean 11.21±0.21 21.02±2.23 94.35±0.22 88.58±0.26 3.86

0.1 Cosine 7.79±0.52 17.04±0.61 95.84±0.27 90.10±0.47 1.67
Euclidean 7.30±0.62 16.42±0.66 96.16±0.94 90.46±0.91 1.69

0.2 Cosine 8.38±0.19 17.46±1.09 95.38±0.34 89.56±0.53 1.94
Euclidean 7.80±0.76 16.55±1.91 95.75±1.04 89.80±0.50 1.93

0.3 Cosine 8.27±0.65 18.19±0.29 95.94±0.84 90.18±0.62 1.71
Euclidean 7.68±0.65 17.28±0.52 95.85±0.75 90.25±0.55 1.62

0.4 Cosine 8.49±0.28 17.92±0.52 95.85±0.20 90.09±0.03 1.66
Euclidean 8.38±0.60 17.86±0.89 95.60±0.78 90.06±0.57 1.80

0.5 Cosine 9.23±0.89 16.81±1.66 95.46±0.62 89.79±0.86 2.15
Euclidean 8.98±0.69 16.77±1.62 95.39±1.01 89.34±1.17 2.31

0.6 Cosine 9.95±0.64 19.90±0.95 95.47±0.12 89.82±0.30 2.67
Euclidean 10.00±0.10 19.00±1.92 95.15±0.26 89.53±0.28 2.66

0.7 Cosine 11.81±0.74 20.67±2.62 94.25±0.76 88.78±1.02 3.90
Euclidean 11.25±0.59 21.54±1.12 94.69±0.71 89.05±0.71 3.79

0.8 Cosine 13.06±0.53 18.81±0.81 92.89±0.69 87.29±0.75 4.45
Euclidean 12.07±0.45 19.23±2.00 93.81±0.95 88.34±1.00 3.82

0.9 Cosine 11.75±0.09 21.02±1.43 94.34±0.38 88.81±0.31 3.94
Euclidean 12.01±1.12 21.49±1.17 94.26±1.08 88.74±0.88 4.16

1.0 Cosine 11.48±0.06 20.59±2.63 94.19±0.56 88.82±0.38 3.80
Euclidean 11.79±0.37 17.35±0.85 94.37±0.34 88.67±0.56 3.23
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distance under different β values for UGradSL and UGradSL+ are reported in Table 6 and Table 7,
respectively.

E EXPERIMENTS

E.1 ADDITIONAL EXPERIMENTAL SETTINGS

The datasets and model configurations for the original model training and retraining are given in
Table 8. We run all the experiments using PyTorch 1.12 on NVIDIA A5000 GPUs and AMD EPYC
7513 32-Core Processor.

Table 8: The hyperparameters used in the original training and retraining for different models and
datasets.

Settings CIFAR-10 SVHN CIFAR-100 ImageNet 20 NewsGroup
ResNet-18 VGG-16 ViT ResNet-18 ResNet-18 ResNet-18 Bert

Batch Size 256 256 256 256 256 1024 128
Learning rate 1e−2 1e−4 1e−6 1e−2 1e−2 1e−2 1e−4

Epochs 160 160 160 160 160 90 60

The settings of the baseline methods are:

• Fine-tuning (FT): FT is to fine-tune the original model θo trained from Dtr using Dr.
We fix the epoch of FT for 10 epochs for all the datasets except ImageNet. We fine-tune
ImageNet for 5 epochs. The learning rate is the same as the original training.

• Fisher forgetting (FF): FF is to perturb the θo by adding the Gaussian noise, which with a
zero mean and a covariance corresponds to the 4th root of the Fisher Information Matrix
with respect to (w.r.t.) θo on Dr (Golatkar et al., 2020). We perform a greedy search for
hyperparameter tuning between 1e−9 and 1e−6.

• Influence unlearning (IU): IU uses influence function (Koh & Liang, 2017) to estimate the
change from θo to θu when one training sample is removed.

• Boundary unlearning2 (BU): BU unlearns the data by assigning pseudo label and manip-
ulating the decision boundary. It contains boundary shrink and boundary expansion, two
types of unlearning methods. The hyper-parameters are the default value in the paper.

• ℓ1-sparse3: ℓ1-sparse improves machine unlearning by integrating the ℓ1 norm-based sparse
penalty to the loss function. The learning rate is 1e−3 and we search γ in [1e−5,1e−1] as
given in (Jia et al., 2023).

• SCRUB: SCRUB casts the unlearning problem into a teacher-student framework. We fol-
low the settings exact the same in the original repo4 where γ = 0.99 and α = 0.001.

• Random Labeling (RL): Unlike FT, RL is to train the model with the random label rather
than the fixed label. The settings are the same as for FT.

• SalUN5: SalUN takes the weight saliency into consideration. We search γ from [0.5,0.9].

E.2 DATASET SPLIT OF DIFFERENT FORGETTING PARADIGMS

We also provide the details of dataset split for different forgetting paradigms. For classwise forget-
ting, we remove the whole class from Dtr and Dte. In CIFAR-10 and CIFAR-100, the size of Df

is 500 and 5000, respectively. For the other datasets, the size of Df ranges from the smallest class
size to the largest class size because we remove the whole class completely. The selected class to be
forgotten is totally random. For random forgetting, we randomly select 10% data from Dtr as Df .
We make sure the distribution of Df is the same as Dtr. For CIFAR-20 in group forgetting, each
fine-grained class is in the same size which is 500. The coarse class is 2500.

2https://github.com/TY-LEE-KR/Boundary-Unlearning-Code
3https://github.com/OPTML-Group/Unlearn-Sparse
4https://github.com/meghdadk/SCRUB/tree/main
5https://github.com/OPTML-Group/Unlearn-Saliency
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Table 9: The experiment results of class-wise forgetting in 20 Newsgroup and SVHN datasets.

20 Newsgroup UA MIAScore RA TA Avg. Gap (↓) RTE (↓, min)

Retrain 100.00±0.00 100.00±0.00 98.31±2.56 81.95±1.69 - 26.25

FT 4.14±2.11 9.23±3.40 98.83±0.86 82.63±0.73 46.96 1.77
GA 17.12±9.48 62.03±5.84 99.99±0.01 85.41±0.37 30.80 0.37
IU 0.00±0.00 0.25±0.12 100.00±0.00 85.58±0.20 51.27 1.52
BS 78.33±3.47 92.63±2.19 97.28±0.99 90.93±0.81 9.76 1.42

UGradSL 100.00±0.00 100.00±0.00 96.31±4.02 78.54±5.10 1.35 0.39
UGradSL+ 100.00±0.00 100.00±0.00 99.76±0.23 84.21±0.41 0.93 2.13

SVHN UA MIAScore RA TA Avg. Gap (↓) RTE (↓, min)

Retrain 100.00±0.00 100.00±0.00 100.00±0.01 95.94±0.11 - 37.05

FT 6.49±1.49 99.98±0.04 100.00±0.01 96.08±0.01 23.42 2.42
GA 87.49±1.94 99.85±0.09 99.52±0.03 95.27±0.21 3.45 0.15
IU 93.55±2.78 100.00±0.00 99.54±0.03 95.64±0.31 1.80 0.23
BE 85.56±3.07 99.98±0.02 99.55±0.01 95.53±0.07 3.83 3.17
BS 96.62±1.14 99.95±0.09 99.99±0.00 95.39±0.18 1.00 3.91

ℓ1-sparse 99.78±0.31 100.00±0.00 98.63±0.01 97.36±0.18 0.75 2.91
RL 99.99±0.01 100.00±0.00 100.00±0.00 95.44±0.13 0.13 3.53

EU-k 100.00±0.00 100.00±0.00 99.61±0.08 65.56±2.38 7.59 4.93
CF-k 0.09±0.03 2.18±2.21 99.34±0.02 69.87±4.13 55.88 5.02

SCRUB 99.99±0.02 100.00±0.00 100.00±0.00 95.79±0.26 0.04 4.97
RL 99.99±0.01 100.00±0.00 100.00±0.00 95.44±0.13 0.13 3.53

SalUN 99.74±0.39 100.00±0.00 99.53±0.02 95.00±1.50 0.53 4.77

UGradSL 90.71±4.08 99.90±0.16 99.54±0.04 95.64±0.25 2.54 0.23
UGradSL+ 100.00±0.00 100.00±0.00 99.82±0.62 94.35±0.70 0.44 4.56

E.3 ADDITIONAL CLASS-WISE FORGETTING RESULTS

We present the performance of class-wise forgetting in 20 Newsgroup and SVHN datasets in Table 9.
The observation is similar in CIFAR-100 and ImageNet given in Table 1. UGradSL and UGradSL+
can improve the MU performance with acceptable time increment, showing the generalization of the
proposed method in different modalities and different dataset size.

E.4 ADDITIONAL RANDOM FORGETTING RESULTS

We present the performance of random forgetting in CIFAR-10 and SVHN dataset in Table 10. The
observation is similar in CIFAR-100 and Tiny ImageNet given in Table 2.

E.5 MU WITH THE OTHER CLASSIFIER

To validate the generalization of the proposed method, we also try the other classification model. We
test vision transformer (ViT) and VGG-16 on the task of class-wise forgetting and random forgetting
using CIFAR-10, respectively. The results are given in Table 11 and 12. The observation is similar
in Table 1 and 2, respectively.

Table 11: The experiment results of class-wise forgetting in CIFAR-10 using ViT.

CIFAR-10 UA MIAScore RA TA Avg. Gap (↓) RTE (↓, min)

Retrain 100.00±0.00 100.00±0.00 61.41±0.81 58.94±1.09 - 189.08

FT 3.97±0.87 7.60±1.76 98.29±0.05 80.44±0.22 61.70 2.99
GA 33.77±6.36 40.47±6.63 89.47±4.21 71.65±2.79 41.63 0.32
IU 1.74±0.09 2.16±0.61 73.96±0.01 68.88±0.00 54.65 0.24
BE 85.56±3.07 99.98±0.02 99.55±0.01 95.53±0.07 22.30 3.17

UGradSL 68.11±11.03 73.84±9.58 84.11±2.70 68.33±1.69 22.54 0.22
UGradSL+ 99.99±0.01 99.99±0.02 94.46±1.06 77.26±1.19 12.85 5.86
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Table 10: The experiment results of random forgetting in CIFAR-10 and SVHN.

CIFAR-10 UA MIAScore RA TA Avg. Gap (↓) RTE (↓, min)

Retrain 8.07±0.47 17.41±0.69 100.00±0.01 91.61±0.24 - 24.66

FT 1.10±0.19 4.06±0.41 99.83±0.03 93.70±0.10 5.65 1.58
GA 0.56±0.01 1.19±0.05 99.48±0.02 94.55±0.05 6.80 0.31
IU 17.51±2.19 21.39±1.70 83.28±2.44 78.13±2.85 10.91 1.18
BE 0.00±0.00 0.26±0.02 100.00±0.00 95.35±0.18 7.24 3.17
BS 0.48±0.07 1.16±0.04 99.47±0.01 94.58±0.03 6.84 1.41

ℓ1-sparse 1.21±0.38 4.33±0.52 97.39±0.31 95.49±0.18 6.61 1.82
SCRUB 0.70±0.59 3.88±1.25 99.59±0.34 94.22±0.26 5.98 4.05

Random Label 2.80±0.37 18.59±3.48 99.97±0.01 94.08±0.12 2.24 1.98

UGradSL 5.87±0.51 13.33±0.70 98.82±0.28 92.17±0.23 2.01 0.45
UGradSL+ 6.03±0.17 10.65±0.13 99.79±0.03 93.64±0.16 2.76 3.07

UGradSL (Adp) 6.04±0.11 13.75±0.32 99.11±0.01 92.07±0.02 1.76 1.35
UGradSL+ (Adp) 7.54±0.43 13.57±0.12 99.67±0.00 92.97±0.17 1.52 9.23

SVHN UA MIAScore RA TA Avg. Gap (↓) RTE (↓, min)

Retrain 4.95±0.03 15.59±0.93 99.99±0.01 95.61±0.22 - 35.65

FT 0.45±0.14 2.30±0.04 99.99±0.00 95.78±0.01 4.49 2.76
GA 0.58±0.04 1.13±0.02 99.56±0.01 95.62±0.01 4.86 0.31
FF 0.45±0.09 1.30±0.12 99.55±0.01 95.49±0.03 4.84 6.02
BE 0.00±0.02 0.02±0.17 100.00±0.01 96.14±0.02 5.27 1.03
BS 0.45±0.14 1.13±0.05 99.57±0.03 95.66±0.01 4.86 4.24

ℓ1-sparse 3.73±0.78 8.44±0.34 97.84±0.28 96.18±0.33 2.77 0.07
SCRUB 0.35±0.20 4.96±0.93 99.94±0.02 95.36±0.23 3.88 3.24

RL 8.00±0.64 29.40±11.92 98.72±0.45 94.04±1.10 4.93 1.79

UGradSL 3.29±2.53 14.32±4.56 99.89±0.02 94.38±0.28 1.07 0.57
UGradSL+ 5.77±2.93 15.95±2.26 100.00±0.00 95.12±0.50 0.42 4.44

UGradSL (Adp) 3.97±0.29 14.63±2.15 99.89±0.01 94.40±0.12 0.81 2.20
UGradSL+ (Adp) 5.07±0.34 15.89±1.03 100.00±0.00 95.21±0.44 0.21 14.33

Table 12: The experiment results of random forgetting across all the classes in CIFAR-10 using
VGG-16

CIFAR-10 UA MIAScore RA TA Avg. Gap (↓) RTE (↓, min)

Retrain 11.41±0.41 11.97±0.50 74.65±0.23 66.13±0.16 - 9.48

FT 1.32±0.13 3.48±0.13 74.24±0.04 67.04±0.10 4.96 0.60
GA 1.35±0.08 2.18±0.66 73.95±0.01 66.88±0.01 5.33 0.14
IU 1.74±0.09 2.16±0.61 73.96±0.01 68.88±0.00 5.73 0.24
FF 1.35±0.09 2.21±0.58 73.95±0.02 66.87±0.04 5.63 1.02
BE 0.01±0.01 0.23±0.05 99.98±0.00 94.04±0.21 19.10 1.09
BS 0.01±0.01 0.22±0.03 99.98±0.01 94.00±0.14 19.09 3.17

ℓ1-sparse 1.27±1.13 3.60±2.41 98.97±1.13 92.18±1.46 17.22 0.08
SCRUB 61.16±50.89 44.65±43.31 39.26±50.57 36.95±46.68 36.75 0.91

UGradSL 13.45±0.63 11.77±0.54 65.05±0.48 58.52±0.38 4.86 0.19
UGradSL+ 12.41±0.32 14.96±0.52 65.90±0.52 58.58±0.35 5.13 1.08

E.6 STREISAND EFFECT

From the perspective of security, it is important to make the predicted distributions are almost the
same from the forgetting set Df and the testing set Dte, which is called Streisand effect. We inves-
tigate this effect in the random forgetting on CIFAR-10 by plotting confusion matrix as shown in
Figure 5. It can be found that our method will not lead to the extra hint of Df .
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Table 13: Ablation studies of GA ratio p for random forgetting on CIFAR-10. The forgetting set
size is 10% training set. Thew method is UGradSL. We fix α as -0.4. The first row is the retraining
results for reference.

p UA MIA RA TA Avg. Gap (↓)

- 8.07 17.41 100.00 91.61 -
0.80 12.47±1.01 20.24±2.12 94.11±0.71 88.21±0.57 4.13
0.81 11.57±1.69 19.68±3.31 94.39±1.41 88.56±1.04 3.79
0.82 10.61±0.08 17.85±0.97 94.92±0.18 88.94±0.37 2.73
0.83 9.64±0.52 16.49±0.96 95.54±0.71 89.63±0.71 2.26
0.84 9.33±1.04 15.84±1.17 95.43±0.95 89.48±0.71 2.38
0.85 8.27±0.82 14.74±1.36 96.05±0.41 90.08±0.40 2.21
0.86 7.96±0.42 15.45±2.00 96.10±0.44 90.22±0.18 1.94
0.87 7.51±0.26 15.26±3.47 96.05±0.18 90.20±0.51 2.33
0.88 6.87±0.37 13.18±1.26 96.43±0.35 90.29±0.64 2.58
0.89 6.91±0.56 14.44±2.46 96.38±0.73 90.47±0.36 2.22
0.90 6.92±1.08 13.60±3.42 96.00±0.50 90.26±0.14 2.58
0.91 6.44±1.30 14.16±2.27 95.93±1.18 90.17±0.72 2.60
0.92 6.50±0.69 14.35±0.72 95.64±0.50 90.06±0.12 2.64
0.93 5.88±0.82 14.84±1.26 96.03±0.84 90.31±0.54 2.51
0.94 5.65±0.30 13.55±0.78 96.25±0.44 90.54±0.10 2.77
0.95 6.13±1.29 13.14±2.43 95.73±1.03 89.88±0.75 3.05
0.96 6.07±0.91 14.28±2.15 95.64±0.79 90.15±0.36 2.74
0.97 5.83±1.25 14.07±1.98 95.20±0.98 89.67±0.59 3.08
0.98 5.73±0.84 13.19±1.99 95.43±0.98 89.82±0.38 3.23
0.99 5.83±1.05 12.98±1.37 94.99±0.79 89.46±0.59 3.46

Figure 5: The confusion matrix of testing set and forgetting set Df using our method on CIFAR-10
with random forgetting across all the classes. There is no big difference between the prediction
distribution. Our method will not make Df more distinguishable.

E.7 ABLATION STUDY: FORGETTING SET SIZE

Since the size of the forgetting set can affect unlearning performance, we further evaluate the robust-
ness of our method under varying forgetting ratios. In addition to the 10% random forgetting results
reported in Table 2 and Table 4, we consider forgetting set sizes of 20%, 30%, 40%, and 50% of the
training data on CIFAR-10 and CIFAR-100. The results are summarized in Table 17 and 18.

E.8 ABLATION STUDY: GA RATIO p

In addition to an overview of the performance fluctuation in Figure 3. We provide the specific value
of the ablation study regarding GA ratio p. We test the performance on random forgetting on CIFAR-
10. The forgetting set size is 10% of the training set. The results of UGradSL and UGradSL+ are
given in 13 and 14.

27



1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

Table 14: Ablation studies of GA ratio p for random forgetting on CIFAR-10. The forgetting set
size is 10% training set. Thew method is UGradSL+. We fix α as -0.4. The first row is the retraining
results for reference.

p UA MIA RA TA Avg. Gap (↓)

- 8.07 17.41 100.00 91.61 -

0.80 18.84±0.71 26.78±1.78 91.95±0.86 86.05±1.21 8.44
0.81 17.00±0.47 24.55±0.76 93.21±0.21 87.50±0.49 6.74
0.82 16.45±0.33 24.22±0.46 93.60±0.49 87.64±0.25 6.39
0.83 14.45±0.73 21.73±0.82 94.66±0.38 88.59±0.19 4.76
0.84 13.44±0.77 20.92±1.15 94.67±0.71 88.67±0.44 4.29
0.85 12.57±0.65 19.18±0.64 95.25±1.02 89.33±1.09 3.32
0.86 11.42±0.14 18.34±0.61 95.56±0.46 89.49±0.27 2.71
0.87 10.90±0.72 17.22±0.51 95.79±0.39 89.77±0.81 2.33
0.88 10.13±0.42 17.85±2.11 95.97±0.17 90.03±0.60 2.28
0.89 8.98±0.29 14.94±0.09 96.20±0.27 90.23±0.33 2.14
0.90 8.41±0.33 16.87±1.17 96.53±0.03 90.64±0.09 1.43
0.91 8.01±0.30 17.33±1.17 96.50±0.36 90.68±0.40 1.40
0.92 7.74±0.33 15.62±1.80 96.28±0.26 90.48±0.46 1.75
0.93 6.67±0.12 15.93±0.22 96.86±0.10 90.96±0.34 1.67
0.94 6.79±0.71 16.47±0.52 96.42±0.83 90.74±0.45 1.67
0.95 6.03±0.26 14.82±1.39 96.76±0.41 90.94±0.35 2.14
0.96 5.78±0.24 14.79±1.14 96.90±0.19 91.30±0.16 2.08
0.97 5.98±0.49 14.96±0.34 96.56±0.45 90.81±0.53 2.20
0.98 6.46±0.74 15.15±1.76 95.52±0.67 90.15±0.89 2.45
0.99 5.67±0.27 14.40±1.18 96.17±0.46 90.61±0.24 2.56

Table 15: The ablation study of smoothing rate α for random forgetting on CIFAR-10. The forgetting
set size is 10% training set. The method we use is UGradSL. We fix p as 0.9.

α UA MIA RA TA Avg. Gap (↓)

- 8.07 17.41 100.00 91.61 -

−0.9 8.17±1.74 14.96±2.47 95.81±1.97 89.97±1.46 2.44
−0.8 6.98±0.47 13.41±0.99 96.67±0.88 90.75±0.22 2.32
−0.7 7.23±0.56 14.33±1.23 96.28±0.11 90.47±0.26 2.20
−0.6 6.69±0.22 12.93±0.67 96.46±0.39 90.64±0.04 2.59
−0.5 6.56±0.29 13.00±0.50 96.58±0.23 90.66±0.20 2.57
−0.4 6.92±1.08 13.60±3.42 96.00±0.50 90.26±0.14 2.58
−0.3 6.32±0.43 13.63±0.67 96.18±0.41 90.52±0.27 2.61
−0.2 6.95±0.54 13.98±1.99 95.41±0.68 89.65±0.56 2.77
−0.1 7.13±1.44 14.47±1.91 95.08±1.55 89.57±1.04 2.82

E.9 SMOOTHING RATIO α

Similar to p, we report the detailed results regarding the smoothing rate α. The results of UGradSL
and UGradSL+ are given in 15 and 16.

E.10 GRADIENT ANALYSIS

As mentioned in Section 3.3, ⟨∆θr −∆θf ,∆θn −∆θf ⟩ ≤ 0 is always practically valid. We practi-
cally check the results on CelebA dataset (ResNet-18), ImageNet (ViT), CIFAR-100 (VGG-16) and
CIFAR-10 (ResNet-18). The distribution of ⟨∆θr −∆θf ,∆θn −∆θf ⟩ is shown in Figure 6, which
aligns with our assumption.

E.11 THE DIFFERENCE BETWEEN UGRADSL AND UGRADSL+

Although UGradSL and UGradSL+ look similar, the intuition of these two method is totally different
because of the difference between FT and GA. We conducted experiments to illustrate the difference
between GA and FT as well as UGradSL and UGradSL+. The results are given in Table 19. The
dataset and forgetting paradigm is CIFAR-10 random forgetting. It can be found that the difference
becomes much larger when the number of epochs is over 8. When the number of epochs is 10, the
model is useless because TA is less than 10%. We also report the performance of UGradSL and
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Table 16: The ablation study of smoothing rate α for random forgetting on CIFAR-10. The forgetting
set size is 10% training set. The method we use is UGradSL+. We fix p as 0.9.

α UA MIA RA TA Avg. Gap (↓)

- 8.07 17.41 100.00 91.61 -

−0.9 11.59±0.40 19.41±0.59 95.77±0.58 89.47±0.56 2.97
−0.8 10.68±0.27 18.41±0.48 95.94±0.24 89.91±0.36 2.35
−0.7 10.12±1.01 16.88±0.69 96.07±0.89 90.08±0.78 2.01
−0.6 8.98±0.15 16.29±0.87 96.64±0.19 90.75±0.05 1.56
−0.5 9.07±0.21 15.83±0.25 96.65±0.34 90.43±0.50 1.78
−0.4 8.41±0.33 16.87±1.17 96.53±0.03 90.64±0.09 1.43
−0.3 8.59±0.07 16.86±2.15 96.24±0.38 90.20±0.15 1.87
−0.2 7.55±0.18 16.68±1.60 96.43±0.14 90.86±0.33 1.47
−0.1 7.57±0.18 17.32±0.23 96.15±0.38 90.34±0.27 1.45
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(a) The group forgetting on CelebA using ResNet-18
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(b) The class-wise forgetting on ImageNet using ViT
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Figure 6: The distribution of ⟨∆θr −∆θf ,∆θn −∆θf ⟩ using multiple models on multiple datasets.

UGradSL+ in different epochs. For UGradSL, when the epochs are over 14, the model cannot be
used at all. For UGradSL+, the algorithm is much more stable, showing the very good adaptive
capability.
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Figure 7: The loss land scape of θr on CIFAR-10 and the model is ResNet-18.

29



1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

0
20

40

10
1

10
2

10
3

R
et

ra
in

0
20

40

10
0

10
1

10
2

10
3

FT

0
20

40

10
0

10
1

10
2

10
3

G
A

0
20

40

10
0

10
1

10
2

10
3

IU

0
20

40

10
0

10
1

10
2

10
3

L
1

0
20

40

10
0

10
1

10
2

10
3

R
L

0
20

40

10
0

10
1

10
2

10
3

B
S

0
20

40

10
0

10
1

10
2

10
3

SC
R

U
B

0
20

40

10
0

10
1

10
2

10
3

G
A

N
L

S

0
20

40
60

80

10
0

10
1

10
2

10
3

G
A

N
L

SP
lu

s Te
st

L
os

s
Fo

rg
et

L
os

s

0
20

40

10
0

10
1

10
2

10
3

R
et

ra
in

0
20

40

10
0

10
1

10
2

10
3

FT

0
20

40

10
0

10
1

10
2

10
3

G
A

0
20

40

10
0

10
1

10
2

10
3

IU

0
20

40

10
0

10
1

10
2

10
3

L
1

0
20

40

10
0

10
1

10
2

10
3

R
L

0
20

40

10
0

10
1

10
2

10
3

B
S

0
20

40

10
0

10
1

10
2

10
3

SC
R

U
B

0
20

40

10
0

10
1

10
2

10
3

G
A

N
L

S

0
20

40

10
0

10
1

10
2

10
3

G
A

N
L

SP
lu

s Te
st

L
os

s
Fo

rg
et

L
os

s

0
20

40

10
1

10
2

10
3

10
4

R
et

ra
in

0
20

40

10
0

10
1

10
2

10
3

10
4

FT

0
20

40

10
0

10
1

10
2

10
3

10
4

G
A

0
20

40

10
0

10
1

10
2

10
3

10
4

IU

0
20

40

10
0

10
1

10
2

10
3

10
4

L
1

0
20

40

10
0

10
1

10
2

10
3

10
4

R
L

0
20

40

10
0

10
1

10
2

10
3

10
4

B
S

0
50

10
0

10
0

10
1

10
2

10
3

10
4

SC
R

U
B

0
20

40

10
0

10
1

10
2

10
3

10
4

G
A

N
L

S

0
50

10
0

15
0

20
0

10
0

10
1

10
2

10
3

10
4

G
A

N
L

SP
lu

s Te
st

L
os

s
Fo

rg
et

L
os

s

0
20

40

10
0

10
1

10
2

10
3

R
et

ra
in

0
20

40

10
0

10
1

10
2

10
3

FT

0
20

40

10
0

10
1

10
2

10
3

G
A

0
20

40

10
0

10
1

10
2

10
3

IU

0
20

40

10
0

10
1

10
2

10
3

L
1

0
20

40

10
0

10
1

10
2

10
3

R
L

0
20

40

10
0

10
1

10
2

10
3

B
S

0
20

40

10
0

10
1

10
2

10
3

SC
R

U
B

0
20

40

10
0

10
1

10
2

10
3

G
A

N
L

S

0
20

40

10
0

10
1

10
2

10
3

G
A

N
L

SP
lu

s Te
st

L
os

s
Fo

rg
et

L
os

s

0
20

40

10
0

10
1

10
2

10
3

R
et

ra
in

0
20

40

10
0

10
1

10
2

10
3

FT

0
20

40

10
0

10
1

10
2

10
3

G
A

0
20

40

10
0

10
1

10
2

10
3

IU

0
20

40

10
0

10
1

10
2

10
3

L
1

0
20

40

10
0

10
1

10
2

10
3

R
L

0
20

40

10
0

10
1

10
2

10
3

B
S

0
20

40

10
0

10
1

10
2

10
3

SC
R

U
B

0
20

40

10
0

10
1

10
2

10
3

G
A

N
L

S

0
20

40

10
0

10
1

10
2

10
3

G
A

N
L

SP
lu

s Te
st

L
os

s
Fo

rg
et

L
os

s

0
20

40

10
0

10
1

10
2

10
3

10
4

R
et

ra
in

0
20

40

10
0

10
1

10
2

10
3

10
4

FT

0
20

40

10
0

10
1

10
2

10
3

10
4

G
A

0
20

40

10
0

10
1

10
2

10
3

10
4

IU

0
20

40

10
0

10
1

10
2

10
3

10
4

L
1

0
20

40

10
1

10
2

10
3

10
4

R
L

0
20

40

10
0

10
1

10
2

10
3

10
4

B
S

0
20

40

10
0

10
1

10
2

10
3

10
4

SC
R

U
B

0
20

40

10
0

10
1

10
2

10
3

10
4

G
A

N
L

S

0
20

40

10
0

10
1

10
2

10
3

10
4

G
A

N
L

SP
lu

s Te
st

L
os

s
Fo

rg
et

L
os

s

Fi
gu

re
8:

T
he

di
st

ri
bu

tio
ns

of
th

e
cr

os
s-

en
tr

op
y

lo
ss

es
fo

rt
he

fo
rg

et
an

d
te

st
in

st
an

ce
s

fr
om

th
e

un
le

ar
ne

d
m

od
el

s.
T

he
y-

ax
is

is
in

lo
g

sc
al

e
fo

rb
et

te
rv

is
ua

liz
at

io
n.

Fr
om

th
e

fir
st

to
th

e
la

st
fig

ur
e,

th
ey

ar
e

ra
nd

om
fo

rg
et

tin
g

on
C

IF
A

R
-1

0,
C

IF
A

R
-1

00
,S

V
H

N
an

d
cl

as
s-

w
is

e
fo

rg
et

tin
g

on
C

IF
A

R
-1

0,
C

IF
A

R
-1

00
,S

V
H

N
.

30



1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

Table 17: MU Performance across different forgetting dataamounts on ResNet-18, pre-trained on
CIFAR-10 dataset, for random data forgetting.

Method Random Set Size (10%)
UA MIAScore RA TA Avg. Gap (↓) RTE (↓, min)

Retrain 8.07 17.41 100.00 91.61 - 24.66

FT 1.10±0.19 4.06±0.40 98.83±0.03 93.70±0.10 5.90 1.58
RL 6.39±1.09 0.00±0.00 99.50±0.10 99.04±0.08 6.76 1.92
GA 0.56±0.01 1.19±0.05 99.48±0.02 94.55±0.05 6.80 0.31
IU 17.51±2.19 21.39±1.70 98.00±0.38 98.11±0.38 5.48 1.18
BE 0.00±0.00 0.26±0.02 100.00±0.00 95.35±0.18 7.24 1.37
BS 0.37±0.10 1.10±0.43 99.93±0.01 98.97±0.02 7.86 1.21

ℓ1-sparse 2.80±0.37 19.59±3.48 99.07±0.04 98.00±0.12 3.69 1.98
SalUn 46.95±0.15 86.33±2.58 97.75±0.42 97.22±0.77 28.92 2.42

UGradSL 5.87±0.50 13.33±0.20 98.82±0.28 92.17±0.20 2.01 0.45
UGradSL+ 6.03±0.17 10.65±0.13 99.79±0.03 93.64±0.16 2.76 3.07

Method Random Set Size (20%)
UA MIAScore RA TA Avg. Gap (↓) RTE (↓, min)

Retrain 5.31 13.30 100.00 94.10 - 38.74

FT 0.76±4.55 2.69±10.61 99.89±0.11 93.97±0.13 3.85 2.17
RL 6.47±1.16 28.62±15.32 99.60±0.40 92.39±1.71 4.65 2.65
GA 0.67±4.64 1.44±11.86 99.48±0.52 94.42±0.32 4.33 0.26
IU 2.91±2.40 5.53±7.77 97.30±2.70 90.64±3.46 4.08 3.29
BE 0.57±4.74 1.64±11.66 99.44±0.56 94.32±0.22 4.29 0.53
BS 0.62±4.69 1.62±11.68 99.46±0.54 94.20±0.10 4.25 0.86

ℓ1-sparse 3.92±1.39 8.94±4.36 98.09±1.91 91.92±2.18 2.46 2.20
SalUn 3.73±1.58 13.18±0.12 98.61±1.39 92.75±1.35 1.11 2.66

UGradSL 6.07±0.70 13.82±1.03 95.71±0.17 90.19±0.23 2.37 0.24
UGradSL+ 6.39±0.19 12.34±1.79 97.08±0.44 90.91±0.95 2.04 0.31

Method Random Set Size (30%)
UA MIAScore RA TA Avg. Gap (↓) RTE (↓, min)

Retrain 6.64 14.60 100.00 92.78 - 33.65

FT 0.56±6.08 1.66±12.94 99.83±0.17 94.22±1.44 5.16 1.98
RL 6.89±0.25 31.09±16.49 99.36±0.64 91.35±1.43 4.70 2.63
GA 0.65±5.99 1.50±13.10 99.46±0.54 94.44±1.66 5.32 2.40
IU 3.95±2.69 7.26±7.34 96.22±3.78 89.61±3.17 4.24 3.32
BE 0.63±6.01 3.35±11.25 99.39±0.61 94.19±1.41 4.82 0.81
BS 0.63±6.01 2.88±11.72 99.39±0.61 94.15±1.37 4.93 1.28

ℓ1-sparse 4.70±1.94 9.97±4.63 97.63±2.37 91.19±1.59 2.63 1.99
SalUn 6.22±0.42 14.11±0.49 95.91±4.09 90.72±2.06 1.76 2.64

UGradSL 6.78±0.66 15.96±0.12 96.94±0.56 90.72±0.80 1.66 0.70
UGradSL+ 6.36±0.65 14.99±0.82 97.35±0.79 91.10±1.10 1.25 0.53

Method Random Set Size (40%)
UA MIAScore RA TA Avg. Gap (↓) RTE (↓, min)

Retrain 7.01 18.37 100.00 92.52 - 28.47

FT 0.77±6.24 2.88±15.49 99.96±0.04 94.27±1.75 5.88 1.62
RL 5.02±1.99 37.76±19.39 99.61±0.39 92.14±0.38 5.54 2.68
GA 0.67±6.34 1.57±16.80 99.47±0.53 94.38±1.86 6.38 0.53
IU 7.89±0.88 10.99±7.38 92.21±7.79 86.15±6.37 5.60 3.27
BE 0.86±6.15 15.72±2.65 99.27±0.73 93.46±0.94 2.62 1.04
BS 1.18±5.83 13.97±4.40 98.94±1.06 93.01±0.49 2.95 1.72

ℓ1-sparse 2.84±4.17 7.09±11.28 98.75±1.25 92.20±0.32 4.26 1.63
SalUn 6.86±0.15 15.15±3.22 95.01±4.99 89.76±2.76 2.78 2.67

UGradSL 5.81±0.11 14.98±2.65 97.31±1.06 90.73±0.48 2.27 0.62
UGradSL+ 5.82±0.37 14.53±1.83 97.11±0.40 90.74±0.38 2.42 0.63

Method Random Set Size (50%)
UA MIAScore RA TA Avg. Gap (↓) RTE (↓, min)

Retrain 7.91 19.29 100.00 91.72 - 23.90

FT 0.44±7.47 2.15±17.14 99.96±0.04 94.23±2.51 6.79 1.31
RL 7.61±0.30 37.36±18.07 99.67±0.33 92.83±1.11 4.95 2.65
GA 0.40±7.51 1.22±18.07 99.61±0.39 94.34±2.62 7.15 0.66
IU 3.97±3.94 7.29±12.00 96.21±3.79 90.00±1.72 5.36 3.25
BE 3.08±4.83 24.87±5.58 96.84±3.16 90.41±1.31 3.72 1.31
BS 9.76±1.85 32.15±12.86 90.19±9.81 83.71±8.01 8.13 2.12

ℓ1-sparse 1.44±6.47 4.76±14.53 99.52±0.48 93.13±1.41 5.72 1.31
SalUn 7.75±0.16 16.99±2.30 94.28±5.72 89.29±2.43 2.65 2.68

UGradSL 6.83±0.23 12.73±1.66 97.62±0.71 90.27±0.55 2.87 0.77
UGradSL+ 6.13±1.35 16.49±2.73 97.84±0.34 90.84±0.69 1.91 0.77
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Table 18: MU Performance across different forgetting dataamounts on ResNet-18, pre-trained on
CIFAR-100 dataset, for random data forgetting.

Method Random Set Size (10%)
UA MIAScore RA TA Avg. Gap (↓) RTE (↓, min)

Retrain 29.47 53.50 99.98 70.51 - 25.01

FT 2.55±0.03 10.59±0.27 99.95±0.01 75.95±0.05 18.83 1.95
RL 4.06±0.37 50.12±3.48 99.92±0.02 71.30±0.36 7.41 1.20
GA 2.58±0.06 5.95±0.17 97.45±0.02 76.09±0.01 20.64 0.29
IU 15.71±5.19 18.69±4.12 84.65±5.19 62.20±4.17 18.05 1.20
BE 0.01±0.00 1.45±0.02 98.22±1.26 78.26±0.00 22.32 0.24
BS 2.20±2.11 10.73±9.37 98.22±1.26 70.23±1.67 18.02 0.34

ℓ1-sparse 8.19±0.38 19.11±0.52 88.39±0.31 80.26±0.16 23.75 1.00
SalUn 35.23±0.32 89.39±0.46 99.53±0.04 64.26±0.58 12.10 3.33

UGradSL 18.36±0.17 40.71±0.13 98.38±0.03 68.23±0.16 6.95 0.55
UGradSL+ 21.69±0.59 49.47±1.25 99.87±0.34 73.60±0.26 3.75 3.52

Method Random Set Size (20%)
UA MIAScore RA TA Avg. Gap (↓) RTE (↓, min)

Retrain 26.84 52.41 99.99 73.88 - 36.88

FT 2.70±24.14 11.63±40.78 99.95±0.04 75.51±1.63 16.65 2.05
RL 54.74±27.90 97.32±44.91 99.47±0.52 65.59±8.29 20.41 2.11
GA 6.79±20.05 13.22±39.19 94.11±5.88 71.39±2.49 16.90 0.26
IU 5.34±21.50 11.79±40.62 95.54±4.45 70.89±2.99 17.39 3.77
BE 2.51±24.33 6.70±45.71 97.38±2.61 75.07±1.19 18.46 0.49
BS 2.53±24.31 6.57±45.84 97.38±2.61 75.05±1.17 18.48 0.82

ℓ1-sparse 37.83±10.99 38.90±13.51 76.63±23.36 58.79±15.09 15.74 2.05
SalUn 25.83±1.01 64.69±12.28 96.01±3.98 65.87±8.01 6.32 2.12

UGradSL 30.10±1.03 47.39±1.17 93.49±0.24 64.99±0.04 4.71 0.83
UGradSL+ 27.29±0.99 35.92±0.94 93.36±0.03 66.59±0.37 5.45 0.59

Method Random Set Size (30%)
UA MIAScore RA TA Avg. Gap (↓) RTE (↓, min)

Retrain 28.52 52.24 99.98 70.91 - 32.92

FT 2.65±25.87 11.18±41.06 99.94±0.04 75.17±4.26 17.81 1.44
RL 51.46±22.94 96.34±44.10 99.32±0.66 62.77±8.14 18.96 2.14
GA 2.40±26.12 5.70±46.54 97.39±2.59 75.33±4.42 19.92 0.40
IU 5.96±22.56 12.63±39.61 94.59±5.39 69.74±1.17 17.18 3.76
BE 2.44±26.08 6.53±45.71 97.37±2.61 74.77±3.86 19.56 0.76
BS 2.49±26.03 6.40±45.84 97.33±2.65 74.65±3.74 19.56 1.24

ℓ1-sparse 38.45±9.93 38.52±13.72 76.36±23.62 58.09±12.82 15.02 1.47
SalUn 27.34±1.18 62.99±10.75 94.50±5.48 63.10±7.81 6.31 2.16

UGradSL 30.10±0.12 47.39±2.08 93.49±0.74 64.99±1.53 4.71 0.83
UGradSL+ 24.89±0.24 44.60±0.94 94.90±0.88 66.16±0.78 5.28 0.79

Method Random Set Size (40%)
UA MIAScore RA TA Avg. Gap (↓) RTE (↓, min)

Retrain 30.07 58.06 99.99 69.87 - 28.29

FT 2.66±27.41 11.05±47.01 99.95±0.04 75.35±5.48 19.99 1.51
RL 51.75±21.68 95.78±37.72 99.27±0.72 59.41±10.46 17.64 2.12
GA 2.46±27.61 5.91±52.15 97.39±2.60 75.40±5.53 21.97 0.51
IU 4.58±25.49 10.32±47.74 96.29±3.70 70.92±1.05 19.49 3.78
BE 2.54±27.53 7.44±50.62 97.35±2.64 74.56±4.69 21.37 1.00
BS 2.70±27.37 7.63±50.43 97.26±2.73 74.10±4.23 21.19 1.66

ℓ1-sparse 38.49±8.42 40.21±17.85 78.43±21.56 57.66±12.21 15.01 1.52
SalUn 25.54±4.53 60.08±2.02 94.64±5.35 62.52±7.35 4.81 2.14

UGradSL 30.07±1.58 49.23±1.07 95.30±0.34 64.52±0.28 4.72 1.08
UGradSL+ 30.42±0.77 45.94±1.41 93.98±0.50 63.21±0.35 5.47 0.77

Method Random Set Size (50%)
UA MIAScore TA RA Avg. Gap (↓) RTE (↓, min)

Retrain 32.69 61.15 99.99 67.22 - 25.01

FT 2.71±29.98 10.71±50.44 99.96±0.03 75.11±7.89 22.08 1.25
RL 50.52±17.83 95.91±34.76 99.47±0.52 56.75±10.47 15.90 2.13
GA 2.61±30.08 5.92±55.23 97.49±2.50 75.27±8.05 23.97 0.66
IU 12.64±20.05 17.54±43.61 87.96±12.03 62.76±4.46 20.04 3.80
BE 2.76±29.93 8.85±52.30 97.39±2.60 74.05±6.83 22.92 1.26
BS 2.99±29.70 8.76±52.39 97.24±2.75 73.38±6.16 22.75 2.08

ℓ1-sparse 39.86±7.17 40.43±20.72 78.17±21.82 55.65±11.57 15.32 1.26
SalUn 26.17±6.52 59.47±1.68 94.04±5.95 61.39±5.83 5.00 2.13

UGradSL 33.80±1.61 53.38±2.31 95.29±0.11 56.88±0.80 4.86 0.95
UGradSL+ 32.20±0.49 45.20±1.44 94.47±0.69 61.53±0.97 4.89 0.75
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Table 19: The difference between GA and FT as well as UGradSL and UGradSL+ on CIFAR-10
regarding the number of epochs. The forgetting paradigm is random forgetting.

Gradient Ascent Fine-tuning

Epoch UA MIAScore RA TA Avg. Gap (↓) UA MIAScore RA TA Avg. Gap (↓)

5 0 0.32 95.31 100 3.98 0.04 0.34 95.13 99.99 3.96
6 0 0.40 95.34 100 3.96 - - - - -
7 0.82 2.22 93.24 99.26 3.95 - - - - -
8 3.44 4.78 90.80 96.18 4.03 - - - - -
9 10.34 12.76 83.42 89.00 7.44 - - - - -
10 76.26 72.22 6.49 24.24 74.21 0.04 0.24 94.97 99.99 4.02
15 - - - - - 0.02 0.80 94.68 99.96 3.97

UGradSL UGradSL+

Epoch UA MIAScore RA TA Avg. Gap (↓) UA MIAScore RA TA Avg. Gap (↓)

10 14.98 33.22 77.18 84.07 16.51 6.26 14.10 93.39 99.62 1.33
11 24.26 34.38 68.22 75.06 23.61 6.52 11.66 93.04 99.37 1.21
12 28.70 24.62 68.17 74.39 22.46 21.46 27.38 89.41 97.07 10.36
13 38.46 72.90 61.78 64.72 40.99 29.48 31.92 87.74 94.93 14.46
14 99.86 86.74 0.45 0.20 91.26 31.62 32.68 86.53 93.36 15.88

Retrain 4.5 11.62 95.21 100 - 4.5 11.62 95.21 100 -
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