
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

MATRIX SKETCHING IN BANDITS:
CURRENT PITFALLS AND NEW FRAMEWORK

Anonymous authors
Paper under double-blind review

ABSTRACT

The utilization of sketching techniques has progressively emerged as a pivotal
method for enhancing the efficiency of online learning. In linear bandit settings,
current sketch-based approaches leverage matrix sketching to reduce the per-round
time complexity from Ω

(
d2
)

to O(d), where d is the input dimension. Despite this
improved efficiency, these approaches encounter critical pitfalls: if the spectral tail
of the covariance matrix does not decrease rapidly, it can lead to linear regret. In this
paper, we revisit the regret analysis and algorithm design concerning approximating
the covariance matrix using matrix sketching in linear bandits. We illustrate how
inappropriate sketch sizes can result in unbounded spectral loss, thereby causing
linear regret. To prevent this issue, we propose Dyadic Block Sketching, an
innovative streaming matrix sketching approach that adaptively manages sketch
size to constrain global spectral loss. This approach effectively tracks the best
rank-k approximation in an online manner, ensuring efficiency when the geometry
of the covariance matrix is favorable. Then, we apply the proposed Dyadic Block
Sketching to linear bandits and demonstrate that the resulting bandit algorithm
can achieve sublinear regret without prior knowledge of the covariance matrix,
even under the worst case. Our method is a general framework for efficient sketch-
based linear bandits, applicable to all existing sketch-based approaches, and offers
improved regret bounds accordingly. Additionally, we conduct comprehensive
empirical studies using both synthetic and real-world data to validate the accuracy
of our theoretical findings and to highlight the effectiveness of our algorithm.

1 INTRODUCTION

The Multi-Armed Bandits (MAB) model represents a framework for sequential decision-making
under conditions of partial information (Robbins, 1952). In each round, the player selects one of the
K arms to maximize cumulative rewards. The player’s strategy, which guides action choices based
on previous observations, is referred to as a policy. The player’s objective is to develop a policy that
minimizes regret, which is defined as the difference between the total reward of the optimal policy
and that of the chosen policy.

We consider the Stochastic Linear Bandit (SLB) model, a variant of the MAB model under a linear
assumption (Abbasi-Yadkori et al., 2011; Auer, 2002; Chu et al., 2011; Dani et al., 2007). In SLB,
at round t, the player selects a arm xt from an alternate set X , and then observes the reward rt.
The expected reward E[rt|xt] = x⊤

t θ⋆, where θ⋆ represents unknown coefficients. The player’s
objective is to minimize the regret over the total T rounds, defined as:

RegretT =

T∑
t=1

max
x∈X

x⊤θ⋆ −
T∑

t=1

x⊤
t θ⋆. (1)

Utilizing upper confidence bounds and the regularized least squares estimator, Abbasi-Yadkori
et al. (2011) introduced the well-known OFUL algorithm, which achieves a regret of Õ(d

√
T )

and exhibits a computational complexity of Ω(d2), where d represents the dimension of the data.
However, in real-world decision-making problems, the data dimension d often increases rapidly,
making traditional bandit algorithms excessively time-consuming (Calandriello et al., 2019; Xu
et al., 2020; Deshpande & Montanari, 2012; Zhang et al., 2024). To address this issue and eliminate
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the quadratic dependence on d, various approaches have adopted streaming sketching methods to
enhance efficiency. Yu et al. (2017) employ random projection to map high-dimensional arms to
a low-dimensional subspace. Another line of these works is based on a well-known deterministic
sketching algorithm—Frequent Directions (FD), which has been proven to offer better theoretical
guarantees than random projection under the streaming setting (Liberty, 2013; Woodruff et al., 2014;
Ghashami et al., 2016). Kuzborskij et al. (2019) directly use FD to sketch covariance matrices of
linear bandits, successfully reducing time complexity from Ω(d2) to O(dl + l2) while achieving an
upper regret bound of Õ

(
(1 + ∆T )

3
2 (l + d log(1 + ∆T ))

√
T
)

, where l < d is the sketch size and
∆T represents the spectral error caused by the shrinking of FD. Building on this foundation, Chen
et al. (2021) introduce Robust Frequent Directions (RFD) to reduce the order of ∆T and decouple d

and ∆T , achieving an improved regret bound of Õ
(
(
√
l + d log(1 + ∆T ) +

√
∆T )
√
lT
)

.

Despite recent advancements, matrix sketching in linear bandits still faces several pitfalls in practical
applications (Kuzborskij et al., 2019; Chen et al., 2021; Calandriello et al., 2019). Upon careful
examination of the previous regret bounds, the

√
T term is associated with a spectral error ∆T ,

which arises from the discrepancy between the sketched and non-sketched regularized least squares
estimators. The magnitude of the spectral error ∆T relates to the fixed sketch size l and the spectral
tail of the covariance matrix, implying that a slow decrease in this tail can contribute to linear regret.
In practice, this is evident as an inappropriate sketch size can significantly hinder the performance of
online learning algorithms. Since the spectral information of the covariance matrix is unknown prior
to online learning, selecting an optimal pre-set, fixed sketch size is challenging. This raises a natural
question: Can we adaptively adjust the sketch size in an online manner to avoid the pitfall of linear
regret in current methods?

In this paper, we demonstrate that the answer is "yes" by developing a novel framework for efficient
sketch-based linear bandit algorithms. Specifically, this work makes three key contributions:
• We revisit the fundamental problem of approximating the covariance matrix through matrix
sketching. We analyze the critical condition for linear regret in sketch-based methods, which
depends on unpredictable properties of the streaming matrix. From both theoretical and experimental
perspectives, we demonstrate that the inability of previous methods to avoid the pitfall of linear regret
stems from the difficulty of pre-setting an appropriate fixed sketch size.
• We propose Dyadic Block Sketching, a multi-scale matrix sketching method that imposes a
constraint on the global spectral error by managing the error bound within each block. We prove that
the cumulative spectral error upper bound from Dyadic Block Sketching conforms to a specified error
ϵ. This approach allows the sketch size to be dynamically adjusted to accommodate the given error,
even without prior knowledge of the matrix structure. Additionally, we demonstrate that Dyadic
Block Sketching effectively tracks the best rank-k approximation in the streaming setting, aligning
with the performance of a single deterministic sketch.
•We introduce an efficient framework for sketch-based linear bandits using Dyadic Block Sketching,
effectively addressing the pitfall of linear regret in previous works. Our framework is robust, scalable,
and capable of achieving various regret bounds through different sketching techniques. By tracking
the best rank-k approximation, our method can significantly reduce the computational cost of linear
bandits when the covariance matrix has favorable properties.

Related Work. Two classes of prior work are particularly relevant to our study: matrix sketching
algorithms in the unbounded streaming model and sketch-based online learning algorithms. Stream-
ing matrix sketching methods can be broadly categorized into three groups: The first approach is
sampling a small subset of matrix rows or columns that approximates the entire matrix (Deshpande
& Rademacher, 2010; Frieze et al., 2004). The second approach is randomly combining matrix
rows via random projection. Several results are available in the literature, including random pro-
jections and hashing (Sarlos, 2006; Achlioptas, 2001). The third approach employs a deterministic
matrix sketching technique proposed by Liberty (2013), which adapts the well-known MG algo-
rithm from Misra & Gries (1982) (originally used for approximating item frequencies) to sketch
a streaming matrix by tracking its frequent directions. For further details, we refer readers to the
survey by Woodruff et al. (2014). In sketch-based online learning algorithms, most existing work
aims to enhance efficiency through sketching. Beyond linear bandits setting, matrix sketching is
also employed to accelerate second-order online gradient descent (Luo et al., 2016), online kernel
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learning (Calandriello et al., 2017; Luo et al., 2019), stochastic optimization (Gonen et al., 2016), and
contextual batched bandits (Zhang et al., 2024).

Organization. The remainder of this paper is structured as follows: Section 2 revisits matrix
sketching methods in linear bandits and highlights the current pitfalls. Section 3 presents a novel
multi-scale sketching method for achieving a constrained global error bound. Section 4 introduces a
new framework for efficient sketch-based linear bandits. Section 5 provides a detailed report of the
experimental results. Finally, Section 6 concludes the paper and offers a discussion. All proofs and
additional algorithmic details are provided in the appendices.

2 REVISITING MATRIX SKETCHING IN LINEAR BANDITS

Notations. Let [n] = {1, 2, . . . , n}, upper-case bold letters (e.g., A) represent matrix and lower-
case bold letters (e.g., a) represent vectors. We denote by ∥A∥2 and ∥A∥F the spectral and Frobenius
norms of A. We define |A| and Tr(A) as the determinant and trace of matrix A. For a positive
semi-definite matrix A, the matrix norm of vector x is defined by ∥x∥A =

√
x⊤Ax. For two

positive semi-definite matrices A and B, we use A ⪰ B to represent the fact that A−B is positive
semi-definite. We use A = UΣV ⊤ to represent the SVD of A, where U ,V denote the left and right
matrices of singular vectors and Σ = diag[σ1, ..., σn] is the diagonal matrix of singular values in the
descending order. We define A[k] = UkΣkV

⊤
k for k ≤ rank(A) as the best rank-k approximation

to A, where Uk ∈ Rn×k and Vk ∈ Rd×k are the first k columns of U and V .

2.1 LINEAR BANDITS THROUGH MATRIX SKETCHING

Within the linear bandit setting, the reward for choosing action xt is defined as rt = x⊤
t θ⋆ + zt,

where θ⋆ is a fixed, unknown vector of real coefficients, and zt denotes a zero-mean random variable.
Traditional linear bandit algorithms utilize regularized least squares (RLS) to estimate the unknown
weight θ⋆ as

A(t) = λId +
(
X(t)

)⊤
X(t) and θ̂t =

(
A(t)

)−1 t∑
s=1

rsxs, (2)

where
(
X(t)

)⊤
=
[
x⊤
1 , ...,x

⊤
t

]
is the d× t matrix containing all the arms selected up to round t and

λ is the regularization parameter.

Sketch-based linear bandit methods create a smaller matrix (termed sketch matrix) S(t) ∈ Rl×d as an
approximation to X(t), where l is the sketch size. Take FD as an example, and we can formulate this
sketching operation as

S(t) =

√(
Σ

(t−1)
l

)2
−
(
σ
(t−1)
l

)2
Il ·
(
V

(t−1)
l

)⊤
, M (t) =

(
S(t)

(
S(t)

)⊤
+ λIl

)−1

, (3)

where Σ
(t−1)
l , V (t−1)

l are the result of rank-l SVD on round t − 1 and M (t) is a diagonal matrix
which can be stored efficiently. According to Woodbury’s identity, we can rewrite the inverse of the
sketched covariance matrix as(

Â(t)
)−1

=

(
λId +

(
S(t)

)⊤
S(t)

)−1

=
1

λ

(
Id −

(
S(t)

)⊤
M (t)S(t)

)
. (4)

The computation in equation 2 requires Ω
(
d2
)

time. To improve efficiency, sketch-based methods

replace
(
A(t)

)−1
with

(
Â(t)

)−1

. Notably,
(
Â(t)

)−1

can be updated implicitly using the sketch

matrix S(t) and M (t) in equation 4. Since matrix-vector multiplications with S(t) take O(ld) time
and matrix-matrix multiplications with M (t) take O

(
l2
)

time, the computation involving the inverse
of the sketched covariance matrix is accelerated from Ω

(
d2
)

to O
(
ld+ l2

)
.
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2.2 THE MOTIVATION OF REVISITING

Without loss of generality, our analysis below is based on the original FD. To better illustrate our
motivation, we first present the complete regret bound for the linear bandit using FD (Kuzborskij
et al., 2019).

Let σ =
∑T

t=1

(
σ
(t)
l

)2
denote the sum of singular values reduced by FD up to the T -th round, where

l is the sketch size and
(
σ
(t)
l

)2
is the shrinking value at round t. According to Liberty (2013), it can

be bounded by the spectral error ∆T , i.e., σ ≤ ∆T , where

∆T := min
k<l

∥∥∥X(T ) −X
(T )
[k]

∥∥∥2
F

l − k
. (5)

Consequently, the regret of the sketch-based linear bandit can be formulated as

RegretT = Õ
(
(1 + ∆T )

3
2 (l + d log(1 + ∆T ))

√
T
)
. (6)

Denote k⋆ as the minimizer of equation 5. Ignoring logarithmic terms, we assume ∆T = T γ . When

γ > 1
3 , the regret will exceed O(T ). More precisely, when the spectral tail

∥∥∥X(T ) −X
(T )
[k⋆]

∥∥∥2
F

=

Ω
(
(l − k⋆)

2
3T

1
3

)
, the invalid linear regret will emerge.

The above analysis highlights a key pitfall of sketch-based linear bandits: the pre-set sketch size is
crucial. Next, we will explain, from both theoretical and experimental perspectives, why this pitfall is
widespread and difficult to avoid in current methods. We present the following theorem to show that
the spectral tail of the covariance matrix does not decrease rapidly, even in a non-adversarial setting.

Theorem 1. Suppose the chosen arm xt ∈ Rd at round t is a random vector drawn iid from any
distribution over r ≤ d orthonormal vectors A. For any sketch size l ≤ r, the bound on the expected
regret of linear bandits using FD is Ω

(
T 2
)
.
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Figure 1: Regret of SOFUL, OFUL, and our method
on synthetic data (details in section 5.2) The regret
of SOFUL is nearly linear when sketch size l = 300.

The detailed proof is provided in Appendix A. The-
orem 1 shows that when the sketch size is insuffi-
cient to capture most of the spectral information,
sketch-based linear bandit methods will suffer from
linear regret. Furthermore, as illustrated in Figure 1,
we observe that an incorrect selection of the pre-set
sketch size can significantly degrade performance.

Current methods use the single-scale sketching
technique to approximate the covariance matrix.
However, since the covariance matrix is determined
in an online manner, its spectral information is un-
known beforehand. Even if poor performance is
detected during learning, adjusting the sketch size
is not possible because the shrinking process in
single-scale sketching is irreversible. Consequently,
the pitfall of linear regret is difficult to avoid in pre-
vious works.

3 DYADIC BLOCK SKETCHING FOR CONSTRAINED GLOBAL ERROR BOUND

In this section, we propose a multi-scale sketching method called Dyadic Block Sketching, which
provides a constrained global error bound for matrix sketching. This scalable method converts any
streaming sketch into a matrix sketch with a constrained global error bound. It can adaptively adjust
the sketch size in a streaming environment, tracking the best rank-k approximation of the target
matrix at a minimal cost. We employ the Frequent Directions sketch to illustrate this method.
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3.1 DECOMPOSABILITY

Dyadic Block Sketching leverages the decomposability of streaming matrix sketches. Intuitively,
decomposability means that if the rows of a matrix are divided into submatrices, sketches can be
constructed for each submatrix, and these sketches can then be combined to form a sketch of the
original matrix. In this process, the error of approximating the original matrix is the sum of the
errors of approximating each submatrix. The following lemma demonstrates that all matrix sketches
offering a covariance error guarantee exhibit decomposability.

Lemma 1 (Decomposability). Given a matrix X ∈ Rn×d, we decompose X into p submatrices,
i.e., X⊤ =

[
X⊤

1 ,X⊤
2 , ...,X⊤

p

]
. For any i ∈ [p], if we construct a matrix sketch with covariance

error guarantee ϵi for each sub-matrix Xi, denoted as Si, such that
∥∥X⊤

i Xi − S⊤
i Si

∥∥
2
≤ ϵi ·∥∥Xi −Xi[k]

∥∥2
F

. Then S⊤ =
[
S⊤
1 ,S⊤

2 , ...,S⊤
p

]
is an approximation of X⊤ and the error bound is

∥∥X⊤X − S⊤S
∥∥
2
≤

p∑
i=1

ϵi ·
∥∥Xi −Xi[k]

∥∥2
F
.

Proof. Since we have X⊤X =
∑p

i=1 X
⊤
i Xi and S⊤S =

∑p
i=1 S

⊤
i Si. Therefore

∥∥X⊤X − S⊤S
∥∥
2
≤

p∑
i=1

∥∥X⊤
i Xi − S⊤

i Si

∥∥
2
≤

p∑
i=1

ϵi ·
∥∥Xi −Xi[k]

∥∥2
F
,

and the Lemma follows.

3.2 ALGORITHM DESCRIPTIONS

High-Level Ideas. The high-level idea is illustrated in Figure 2. We establish a logarithmic number
of sketch sizes, each partitioning the stream into blocks. The sketch size of each subsequent block
is double that of the previous one, thereby halving the maximum error caused by sketching. By
maintaining a streaming sketch for each block, we can concatenate all the sketches to approximate
the streaming matrix, with the error bounded by the decomposability property.

Sketch Row

0 "! "" "# #

Error Management

Inactive Block Active Block

≤ % ≤ %/2 ≤ %/4 ≤ %/2&

…

…

…

Data Row

Matrix 
Sketching

…

Muti-Scale Sketching Approximate

"&%!

Block 1 Block 2 Block 3 Block $

Update
…

New 
Rows

Figure 2: An illustration for Dyadic Block Sketching. For inactive Block i ∈ [B − 1], the matrix
sketch covers the data from ti−1 to ti. For the active Block B, matrix sketching updates are performed
on the new rows. We then merge the multi-scale matrix sketches to approximate the entire stream.

Algorithm. We start by defining the data structure for our algorithm. The matrix rows in the stream
are divided into blocks, each covering a segment of consecutive, non-overlapping rows. The list of
blocks is denoted as B. For i = 1, 2, . . ., each block B[i] is associated with a streaming sketch of size
l (length) and block size (size). The size of block B[i] is defined as the sum of the squared norms of
the rows covered by B[i], specifically, B[i].size =

∑
x∈B[i] ∥x∥22.
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We further define two states for the blocks: active and inactive. An active block receives updates,
while an inactive block remains entirely fixed. As illustrated in Figure 2, there is always exactly one
active block in the stream. Additionally, three key invariants must be maintained:

1. For each inactive block, the length must be greater than the rank of the rows it contains.

2. The sum of sketch rows stored in blocks should be less than d.

3. The size of block B[i] should less than l0ϵ, where l0 represents the initial sketch size and ϵ
is the error parameter.

Algorithm 1 presents the pseudo-code of Dyadic Block Sketching. When a new row xt is received,
we first verify the maintenance of Invariant 2 (see Line 5). If the block count reaches its upper limit,
the error from the streaming sketch becomes intolerable, necessitating the full preservation of the
streaming rows’ information. Therefore, we execute a complete rank-1 update on the sketch matrix.

Algorithm 1: Dyadic Block Sketching
Input: Data stream {xt}Tt=1, sketch size l0, error parameter ϵ, regularization parameters λ,

method Sk ∈ {FD,RFD}
Output: Sketch matrix S(t), M (t)

1 Initialize B[0].size = 0, B[0].length = l0, B = 0
2 Initialize B[0].sketch by method Sk
3 for t← 1, . . . , T do
4 Receive xt

5 if B ≥ ⌊log (d/l0 + 1)⌋ − 1 then
6 Update

(
S(t)

)⊤
S(t) =

(
S(t−1)

)⊤
S(t−1) + x⊤

t xt and M (t) using rank-1
modifications

7 else
8 if B[B].size+ ∥xt∥2 > ϵ ·B[0].length and B[B].length < rank then
9 Initialize B[B + 1].size = 0, B[B + 1].length = 2×B[B].length

10 Initialize B[B + 1].sketch by method Sk
11 Set B = B + 1

12 Update B[B].sketch with xt

13 Set SB ,MB , rank ← B[B].sketch
14 Update B[B].size += ∥xt∥2
15 Initialize empty matrix S(t),M (t)

16 for i← 0, . . . , B do
17 Set Si,Mi ← B[i].sketch

18 Combine S(t) with Si, M (t) with Mi as equation 7

In Lines 8 – 11, we control the errors to ensure the maintenance of Invariant 3. If the size of the active
block exceeds the specified limit, we store the current block’s information and create a new block
with double the previous length to prevent further errors.

In Lines 12 – 14, we update the active block’s information with xt. During this process, we can
query the sketch matrices SB and MB in the active block (details in Appendix D). Additionally,
the shrinkage of the deterministic sketch provides us with the block’s current rank if the sketch size
exceeds the block’s rank. We use the variable rank to track this value. If the shrinking value is
non-zero, we set rank to B[B].length; otherwise, we assign rank to the block’s rank.

In Lines 15 – 18, we query the sketch of the entire stream. To retrieve the sketch matrix S(t) and
M (t), we combine them with the previous matrices as follows

S(t) =

(
S(t)

Si

)
, M (t) =

((
M (t) S(t)(Si)

⊤

Si(S
(t))⊤ Mi

)
+ λI

)−1

. (7)

6
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Since the inactive blocks remain fixed, we can store the combined result of the sketch matrix in
the inactive blocks. In practice, we can avoid the looped calculation of equation 7 and perform the
combination only with the active block.

3.3 ANALYSIS

We explore the error guarantees along with the space and time complexities of the Dyadic Block
Sketching method. Initially, we prove a general theorem that establishes the relationship between
the complexities of the Dyadic Block Sketching algorithm and the streaming sketch utilized in each
block. Subsequently, we examine how a specific deterministic streaming sketch can be integrated
into the Dyadic Block Sketching framework. We present a theorem detailing the space usage and
update costs associated with Dyadic Block Sketching. The detailed proof is provided in Appendix B.
Theorem 2. Suppose a streaming matrix sketch, denoted as κ, achieves a covariance error∥∥X⊤X − S⊤S

∥∥
2
≤ η · ∥X∥2F with ℓη rows and µη update time. Applying κ as the sketching

method for each block in the Dyadic Block Sketching and l0 is the initial sketch size, we generate a
matrix sketch S for the entire streaming matrix X with an error guarantee

∥∥X⊤X − S⊤S
∥∥
2
≤ 2ϵ.

Assuming rank(X) = k and that the rows are normalized, the space cost for Dyadic Block Sketching

is O
(
d ·
∑B

i=0 ℓ 1

2il0

)
, and the update cost is O

(
µ 1

2Bl0

)
, where B =

⌈
min

{
log k

l0
, T
ϵl0

}⌉
+ 1.

Note that different streaming sketches will result in varying costs. To illustrate this, we provide a
corollary using the well-known deterministic sketching method Frequent Directions (FD).

Dyadic Block Sketching for FD. This algorithm employs the FD sketch for each block in the
Dyadic Block Sketching framework. Recall that with a given error parameter η, the FD sketch
requires a space of ℓη = O(1/η) and processes updates at an amortized cost of µη = O(d/η). As
outlined in Theorem 2, we derive the following corollary:
Corollary 1. The Dyadic Block Sketching algorithm for FD uses O (2dk − dl0) space and processes
an update with O(dk) amortized cost.

Remark 1 (Efficient Implementation). The primary computational costs of the algorithm include
calculating the SVD to obtain S(t) and performing matrix multiplication to compute M (t), both of
which cost O(dl2), where l is the current sketch size. However, the amortized update cost can be
effectively reduced from O(dl2) to O(dl) either by doubling the space, as detailed in Algorithm 3 in
Appendix C, or by employing the Gu-Eisenstat procedure (Gu & Eisenstat, 1993).

Remark 2 (Worst-Case Analysis). Compared to the single streaming sketch algorithm, our method
effectively controls the global error of matrix approximation by limiting error sizes within each block,
thus enabling dynamic adjustment of the sketch size. Particularly when dealing with a full-rank
matrix with a heavy spectral tail, sketching methods should be avoided to prevent the pitfall of linear
regret. However, this control is impossible with a single sketch due to the irreversible nature of the
shrinking process in sketching. In the worst-case scenario, our method ensures that the streaming
matrix problem can be dynamically adjusted to revert to a non-sketch situation.

4 LINEAR BANDITS THROUGH DYADIC BLOCK SKETCHING

In this section, we introduce a novel framework for efficient sketch-based linear bandits, termed
DBSLinUCB, which leverages Dyadic Block Sketching. As outlined in Section 2.2, a key limitation
of previous methods stems from their reliance on single-scale matrix sketching, resulting in a space-
bounded linear bandit approach. The use of a fixed sketch size leads to uncontrollable spectral loss,
∆T , ultimately causing linear regret.

In contrast, Dyadic Block Sketching employs a multi-scale matrix sketching strategy, where the
sketch size is adaptively adjusted based on the pre-set parameter ϵ. Consequently, DBSLinUCB is an
error-bounded linear bandit method that effectively addresses and overcomes the pitfalls of linear
regret present in existing approaches.

The procedure, detailed in Algorithm 2, builds on prior sketch-based algorithms but incorporates the
Dyadic Block Sketching method to effectively manage the error in approximating the covariance

7
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Algorithm 2: DBSLinUCB
Input: Data stream {xt}Tt=1, sketch size l0, error parameter ϵ, regularization parameters λ,

method Sk ∈ {FD,RFD}, confidence δ
1 Initialize a Dyadic Block Sketching instance sketch

(
S(0),M (0)

)
with l0, λ,method Sk

2 for t← 1, . . . , T do
3 Get arm set Xt

4 Compute the confidence ellipsoid β̂t−1(δ) using equation 9

5 Select xt = argmax
x∈Xt

{
x⊤θ̂t−1 + β̂t−1(δ) · ∥x∥(Â(t−1))

−1

}
6 Receive the reward rt
7 Update sketch

(
S(t),M (t)

)
with xt and compute Â(t) and θ̂t using equation 8

matrix. At each round t, we employ the sketch matrix S(t) to approximate the covariance matrix,
from which we derive the sketched regularized least squares estimator as follows

Â(t) = S(t)⊤S(t) + λI , θ̂t =
(
Â(t)

)−1 t∑
s=1

rsxs. (8)

Denote Xt as the set of arms available at round t and β̂t−1(δ) as the confidence ellipsoid, lBt
as the

sketch size in the active block. The arms selected by DBSLinUCB are determined by solving the
following constrained optimization problem:

xt = argmax
x∈Xt

max
θ∈Rd

x⊤θ such that
∥∥∥θ − θ̂

∥∥∥
Â(t−1)

≤ β̂t−1(δ). (9)

The updates to the sketched regularized least squares estimator and the calculations for the confidence
ellipsoid can be efficiently completed in O

(
dlBt + l2Bt

)
time using the Woodbury identity as stated

in equation 4. This makes DBSLinUCB significantly more efficient than traditional linear bandit
algorithms, which require Ω

(
d2
)

in both time and space.

DBSLinUCB represents a scalable framework for efficient sketch-based linear bandits that are capable
of incorporating various streaming sketching techniques. We now explore two deterministic sketching
techniques that provide different regret bounds of linear bandits.

DBSLinUCB using FD. We explore the Frequent Directions (FD) (see Algorithm 4), a deterministic
sketching method (Liberty, 2013; Ghashami et al., 2016). FD uniquely maintains the invariant that
the last row of the sketch matrix, S, is always zero. In each round, a new row at is inserted into this
last row of S, and the matrix undergoes singular value decomposition into UΣV ⊤. Subsequently, S
is updated to

√
Σ2

l − σI · V ⊤
l , where σ represents the square of the l-th singular value. Given that

the rows of S are orthogonal, M = (SS⊤ + λI)−1 remains a diagonal matrix, facilitating efficient
maintenance. We integrate FD into DBSLinUCB and established the following regret bound:

Theorem 3. Assume that ∥θ⋆∥2 ≤ H , ∥x∥2 ≤ L, and L ≥
√
λ. Suppose that the noise is

conditionally R-subgaussian, where R is a fixed constant. The sketch size in the active block at round
t is denoted as lBt

. Given the error parameter ϵ, then with a probability of 1 − 1
T , the regret of

Algorithm 2 utilizing Sk = FD is

RegretT
Õ
=

L(R+H
√
λ)√

λ
·
(
d ln

(
1 +

ϵ

λ

)
+ 2lBT

· ln
(
1 +

TL2

2lBT
λ

))
·
(
1 +

ϵ

λ

) 3
2 √

T .

Remark 3. Compared to linear bandits that use a single FD sketch, our approach relies on a
predetermined error parameter ϵ rather than fixed sketch size l. This ensures a sublinear regret
bound of order Õ(

√
T ) without requiring prior knowledge of the streaming matrix. The sketch size

in DBSLinUCB can be dynamically adjusted to match the desired order of regret. In practice, if the
goal is to significantly enhance efficiency at the expense of a higher order of regret, ϵ can be set as a
function of T . Another advantage of DBSLinUCB is that the initial sketch size is independent of the
error term ϵ; it only affects the total computational and space cost.

8
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DBSLinUCB using RFD. We employ the Robust Frequent Directions (RFD) sketch (see Algo-
rithm 5), a sketching strategy designed to address the rank deficiency issue inherent in FD (Luo et al.,
2019). RFD reduces the approximation error of FD by maintaining a counter α, which quantifies the
spectral error. More precisely, RFD employs S⊤S + αI to approximate A⊤A. We integrate RFD
into DBSLinUCB and established the following regret bound:

Theorem 4. Assume that ∥θ⋆∥2 ≤ H , ∥x∥2 ≤ L, and L ≥
√
λ. Suppose that the noise is

conditionally R-subgaussian, where R is a fixed constant. The sketch size in the active block at round
t is denoted as lBt

. Given the error parameter ϵ, then with a probability of 1 − 1
T , the regret of

Algorithm 2 utilizing Sk = RFD is

RegretT
Õ
=

L√
λ
·

√
ln

(
1 +

TL2

2lBT
λ
+

(
1− 2−BT

2BT+1

)
· ϵ
λ

)
·

(
H ·
√
λ+ ϵ+

R ·

√
d ln

(
1 +

ϵ

λ

)
+ 2lBT

· ln
(
1 +

TL2

2lBT
λ
+

(
1− 2−BT

2BT+1

)
· ϵ
λ

))
.

Remark 4. Compared to DBSLinUCB using FD, the order of the error term ϵ is reduced from
3/2 to 1/2. Apart from logarithmic terms, decoupling the dimensions d and ϵ further reduces the
impact of the error. These properties indicate that Dyadic Block Sketching maintains the excellent
characteristics of RFD. In fact, despite having the same error bound as DBSLinUCB using FD,
DBSLinUCB using RFD satisfies both positive definite monotonicity and well-conditioned properties.
We present details and proof in Appendix G.

5 EXPERIMENTS

In this section, we empirically verify the efficiency and effectiveness of our algorithms. We conduct
experiments on both synthetic and real-world datasets. Each experiment is performed over 20 different
random permutations of the datasets. All experiments are performed on a machine with 24-core
Intel(R) Xeon(R) Gold 6240R 2.40GHz CPU and 256 GB memory.

5.1 MATRIX APPROXIMATION
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Figure 3: Comparison among FD and our DBS-FD
w.r.t. the error and its upper bound

We evaluate the performance of the proposed
Dyadic Block Sketching in terms of matrix approx-
imation. We compare it with FD (Liberty, 2013).
We generated a synthetic dataset with n = 1250
rows and d = 100 columns. Specifically, each row
at ∈ R100 is independently drawn from a multi-
variate Gaussian distribution at ∼ N (0, Id). We
set the sketch size l0 = 50 for FD. We set the ini-
tial sketch size l0 = 16 and the error parameter
ϵ = 2000 for Dyadic Block Sketching.

Figure 3 shows the spectral norm error ∥A⊤
t At −

S⊤
t St∥2 and its upper bound for matrix sketching,

where At is the steaming matrix at round t and St

is the skech matrix at round t. We observe that
Dyadic Block Sketching provides a constrained
global error bound for matrix sketching. Compared
with FD, the rate of error growth in Dyadic Block
Sketching decreases over time, effectively limiting the linear growth of the spectral tail.

5.2 ONLINE REGRESSION IN SYNTHETIC DATA

In this section, we evaluate our DBSLinUCB on synthetic datasets. The baselines include the
non-sketched method OFUL (Abbasi-Yadkori et al., 2011) and the sketch-based methods SO-
FUL (Kuzborskij et al., 2019), CBSCFD (Chen et al., 2021). Inspired by the experimental settings
in Chen et al. (2021), we build synthetic datasets using multivariate Gaussian distributions N (0, Id)

9
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with 100 arms and d = 500 features per context. The true parameter θ⋆ is drawn from N (0, Id) and
is normalized. The confidence ellipsoid β of all algorithms is searched in {10−4, 10−3, . . . , 1} and λ
is searched in {2× 10−4, 2× 10−3, . . . , 2× 104}. We set the sketch size l = 300, 450 for SOFUL
and CBSCFD and the initial sketch size l0 = 64 for DBSLinUCB. Additionally, we set the error
parameter ϵ = 2000 for DBSLinUCB.

Experimental results in Figure 1 (in Section 2.2), 4a show that DBSLinUCB using FD and RFD
consistently outperforms the other sketch-based algorithms in terms of the regret of online learning.
We observe that when l = 300, SOFUL and CBSCFD perform significantly worse than DBSLinUCB,
with SOFUL exhibiting nearly linear regret. Moreover, DBSLinUCB achieves sublinear regret
similar to OFUL by providing a constrained global error bound. Our experimental results confirm
our analysis in Section 2.2, indicating that for all existing sketch-based linear bandit algorithms,
inappropriate sketch size selection can lead to the pitfall of linear regret.
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Figure 4: (a): Cumulative regret of the compared algorithms, the proposed DBSLinUCB using RFD
on a synthetic dataset; (b), (c): Cumulative regret and total running time of the compared algorithms,
the proposed DBSLinUCB using FD on MNIST

5.3 ONLINE CLASSIFICATION IN REAL-WORLD DATA

We perform online classification on the real-world dataset MNIST to evaluate the performance of
our methods. The dataset contains 60, 000 samples, each with d = 784 features, and there are
M = 10 possible labels for each sample. We follow the experimental setup in Kuzborskij et al.
(2019). Specifically, we construct the online classification problem within the contextual bandit
setting as follows: given a dataset with data in M labels, we first choose one cluster as the target label.
In each round, we randomly draw one sample from each label and compose an arm set of M samples
in M contexts. The algorithms choose one sample from the arm set and observe the reward based on
whether the selected sample belongs to the target label. The reward is 1 if the selected sample comes
from the target label and 0 otherwise. We set sketch size l = 20, 100, 200 for SOFUL and l0 = 2
for DBSLinUCB. We set the error parameter ϵ = 1000 for DBSLinUCB. The choice of confidence
ellipsoid and regularization parameter follows the previous section.

Figures 4b and 4c compare the online mistakes and running times of different algorithms. Our
findings indicate that, for a given dataset, there exists an optimal sketch size (e.g., l = 200) that
captures most of the spectral information of the original matrix, thereby accelerating the algorithm
without significantly compromising performance. However, selecting this optimal sketch size for
SOFUL is challenging due to the lack of prior knowledge about the data. When l = 20 or l = 100,
the regret of SOFUL is significantly worse than that of the non-sketched method, OFUL. In contrast,
DBSLinUCB matches the performance of OFUL by adaptively adjusting the sketch size to the
near-optimal value of l = 200 while being significantly faster than OFUL.

6 CONCLUSION

This paper addresses the current pitfall of linear regret in sketch-based linear bandits for the first
time. We propose Dyadic Block Sketching with a constrained global error bound and provide formal
theoretical guarantees. By leveraging Dyadic Block Sketching, we present a framework for efficient
sketch-based linear bandits. Even in the worst-case scenario, our method can achieve sublinear regret
without prior knowledge of the covariance matrix. Extensive experimental evaluations on real and
synthetic datasets demonstrate the excellent performance and efficiency of our methods.
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A PROOF OF THEOREM 1

For linear bandits using FD, at round t, the sketch matrix S(t−1) ∈ Rl×d is utilized, and a new row
xt is received, where l denotes the sketch size. Let Σ = E[xtx

⊤
t ] be the covariance matrix of the

arms, and let λi be the i-th eigenvalue of Σ. By definition, xt follows the distribution xt = ai with
probability λi, where ai is the i-th vector of A.

We first consider the expected value of the shrinking factor when the sketch is full-rank. If
rank

(
S(t−1)

)
= l − 1. Let S(t−1) = UΣV be the SVD of S(t−1), and vi be the i-th row of

V . Denote the set of basis vectors not in the row space of S(t−1) as Wt−1 = A\{v1, ...,vl−1}, we

have |Wt−1| = r − l + 1. If xt ∈ span(v1, ...,vl−1), we have the shrinking value
(
σ
(t)
l

)2
= 0; oth-

erwise
(
σ
(t)
l

)2
= 1, with probability

∑
ai∈Wt−1

λi ≥
∑r

i=l λi. Therefore, If rank(S(t−1)) = l − 1,
we have

E
[(

σ
(t)
l

)2
| S(t−1)

]
≥

r∑
i=l

λi.

If rank
(
S(t−1)

)
< l − 1, this means that S(t−1) contains fewer than l − 1 distinct vectors drawn

from A. Let Ii be the indicator variable for drawing ai in the first t− 1 rounds. Then we have the
expected number of distinct vectors at round t− 1

E

[
r∑

i=1

Ii

]
=

r∑
i=1

(
1− (1− λi)

t−1
)
.

Using Markov’s inequality, we have

Prob

[
r −

r∑
i=1

Ii ≥ r − l + 2

]
≤
∑r

i=1 1− (1− λi)
t−1

r − l + 2
≤ r(1− λr)

t−1

2
.

Note that this is precisely the probability of having fewer than l − 1 distinct vectors in the first t− 1

rounds. We conclude that for t ≥ log
(

r
λr

)
+ 1, Prob [rank(St−1) = l − 1] ≥ 1

2 . This implies that

E[ρt] ≥ 1
2

∑r
i=l λi after an initial logarithmic number of rounds.

Therefore, assuming T ≥ 2 log
(

r
λr

)
, the expected accumulated shrinking value is at least:

E

[
T∑

t=1

(
σ
(t)
l

)2]
≥ T

4

r∑
i=l

λi.

Note that the accumulated shrinking value is upper-bounded by the spectral loss. According to the
regret in equation 6, we conclude that the regret upper bound is Ω

(
T 2
)

in expectation.

B PROOF OF THEOREM 2

We begin our proof by considering the number of blocks. Let the entire data stream be denoted as
X⊤ =

[
X⊤

0 ,X⊤
1 , . . . ,X⊤

B

]
. Block i covers the submatrix Xi and stores the corresponding matrix

sketch Si.

According to Invariant 3, each submatrix Xi in block i contains at least ⌊ϵl0⌋ rows. Since there are T
rows available for allocation in the entire matrix, the maximum number of blocks is

⌈
T
ϵl0

⌉
.

When ϵ is small, the block length grows exponentially. By Invariant 1, the length of the last active
block will be exactly greater than k, i.e., 2B−1l0 ≤ k ≤ 2Bl0.
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Thus, we take the minimum of the two scenarios to determine the number of blocks, resulting in
B =

⌈
min

{
log k

l0
, T
ϵl0

}⌉
+ 1.

For the error guarantee, recall that the error comprises two components: the error from the active
block and the error from merging B inactive blocks. Given that the streaming sketch can detect the
best rank-k approximation as long as the sketch size exceeds k, the approximation error in the B-th
active block is effectively zero.

By maintaining Invariant 3, the size of the i-th inactive block is bounded by l0ϵ. Additionally, the
i-th block employs a streaming matrix sketch with an error parameter of 1

2il0
, thereby ensuring that

the maximum error introduced by a sketch at the i-th block is at most ϵ
2i .

Combining all B + 1 sketches, we use S⊤ =
[
S⊤
0 ,S⊤

1 , . . . ,S⊤
B

]
to approximate X . By Lemma 1,

this provides the following error guarantee for the entire streaming matrix:

∥∥X⊤X − S⊤S
∥∥
2
≤

B∑
i=0

∥∥X⊤
i Xi − S⊤

i Si

∥∥
2

=

B−1∑
i=0

∥∥X⊤
i Xi − S⊤

i Si

∥∥
2
+
∥∥X⊤

BXB − S⊤
BSB

∥∥
2

≤
B−1∑
i=0

ϵ

2i
+ 0

≤ 2ϵ.

For space usage, the i-th block employs a streaming matrix sketch with an error parameter of 1
2il0

,

resulting in a sketch of size ℓ 1

2il0

. Therefore, the total number of sketched rows is
∑B

i=0 ℓ 1

2il0

.

Consequently, the total space requirement is O
(
d ·
∑B

i=0 ℓ 1

2il0

)
.

For the update cost, since only the active sketch requires updating, the cost is O
(
µ 1

2Bl0

)
.

C FAST ALGORITHM OF DYADIC BLOCK SKETCHING

The computational cost of FD and RFD, as detailed in Algorithm 4 and 5, is primarily driven by the
singular value decomposition (SVD) operations. At round t, with Bt + 1 blocks, we denote li as the
sketch size for the i-th block. It incurs an amortized time of O

(
dl2Bt

)
due to standard SVD processes

in the active block. Additionally, the operation to compute M (t) via matrix multiplication and matrix

inversion also requires O

(∑Bt−1
i=0 li · lBt

· d+
(∑Bt

i=0 li

)3)
= O

(
dl2Bt

)
. We can enhance the

efficiency of our Dyadic Block Sketching by doubling the sketch size, as detailed in Algorithm 3.

Notice that within each epoch, the update of M (t) can be formulate as

M (t) =

(
M (t−1) + ϕϕ⊤

ξ
−ϕ
ξ

−ϕ⊤

ξ
1
ξ

)
, (10)

where ϕ = M (t−1)S(t−1)x⊤
t and ξ = xtx

⊤
t − xt

(
S(t−1)

)⊤
ϕ+ α+ λ.

When the method Sk = FD, α is set to 0; conversely, when the method Sk = RFD, α serves as the
counter maintained in the RFD sketch.

Given that the length of M (t) is at most twice the length of B[B].length, the amortized computation
time required for M (t) is limited to O (dlBt

). Additionally, we perform the SVD only after every
addition of B[B].length rows, reducing the amortized update time complexity to O (dlBt).
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Algorithm 3: Fast Dyadic Block Sketching
Input: Data stream {xt}Tt=1, sketch size l0, error parameter ϵ, regularization parameters λ,

method Sk ∈ FD,RFD
Output: Sketch matrix S(t), M (t)

1 Initialize B[0].size = 0, B[0].length = l0, B = 0
2 Initialize B[0].sketch by method Sk
3 for t← 1, . . . , T do
4 Receive xt

5 if B ≥ ⌊log (d/l0 + 1)⌋ − 1 then
6 Update

(
S(t)

)⊤
S(t) =

(
S(t−1)

)⊤
S(t−1) + x⊤

t xt

7 Update M (t) using rank-1 modifications
8 else
9 if B[B].size+ ∥xt∥2 > ϵ

2 ·B[0].length and B[B].length < rank then
10 Initialize B[B + 1].size = 0, B[B + 1].length = 2×B[B].length
11 Initialize B[B + 1].sketch by method Sk
12 Set B ← B + 1

13 Append xt below B[B].sketch
14 Update B[B].size += ∥xt∥2
15 Initialize empty matrix S,M
16 for i← 0, . . . , B − 1 do
17 Set Si,Mi ← B[i].sketch
18 Combine S with Si

19 Combine M with Mi

20 if B[B].sketch have 2 ·B[B].length rows then
21 Update B[B].sketch by method Sk
22 Set SB ,MB , rank ← B[B].sketch

23 Update S(t) =

(
S
SB

)
, M (t) =

((
M S(SB)

⊤

SBS
⊤ MB

)
+ λI

)−1

24 else

25 Update S(t) =

(
S
SB

)
26 Update M (t) by equation 10

D PSEUDO-CODE OF DETERMINISTIC MATRIX SKETCHING

Algorithm 4: FD sketch
Input: Data X ∈ RT×d, sketch size l,

regularization λ
Output: Sketch S, M

1 Initialize S ← 0l×d,M ← 1
λIl

2 for t← 1, . . . , T do
3 Append xt to the last row of S
4 Compute [U ,Σ,V ]← svd(S)
5 Set σ ← σ2

l

6 Update S ←
√

Σ2
l − σI · V ⊤

l
7 Update

M ← diag
{

1
λ+σ2

1−σ
, ..., 1

λ

}

Algorithm 5: RFD sketch
Input: Data X ∈ RT×d, sketch size l,

regularization λ
Output: Sketch S, M and counter α

1 Initialize S ← 0l×d,M ← 1
λIl, α← 0

2 for t← 1, . . . , T do
3 Append xt to the last row of S
4 Compute [U ,Σ,V ]← svd(S)
5 Set σ ← σ2

l , α← α+ σ

6 Update S ←
√
Σ2

l − σI · V ⊤
l

7 Set

M ← diag
{

1
λ+σ2

1−σ+α
, ..., 1

λ+α

}

15
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The pseudo-code for deterministic matrix sketching methods is displayed in Algorithm 4 and Algo-
rithm 5. Note that these deterministic matrix sketching methods can be accelerated by doubling the
sketch size. More details can be found in Appendix C.

E PROOF OF THEOREM 3

Following Abbasi-Yadkori et al. (2011), we structure the proof in two parts: first, we establish bounds
for the approximate confidence ellipsoid, and second, we delineate the bounds for regret. Denote
Bt as the number of blocks at round t, and σi as the sum of shrinking singular values in the sketch
of block i. Let lBt

be the sketch size in the active block at round t. We start by establishing an
intermediate result concerning the confidence ellipsoid.

Theorem 5. Let θ̂t be the RLS estimate constructed by an arbitrary policy for linear bandits
after t rounds of play. For any δ ∈ (0, 1), the optimal unknown weight θ⋆ belongs to the set

Θt ≡
{
θ ∈ Rd :

∥∥∥θ − θ̂t

∥∥∥
Â(t)
≤ β̂t(δ)

}
with probability at least 1− δ, where

β̂t(δ) = R ·

√
1 +

∑Bt

i=1 σi

λ
·

√√√√2 ln

(
1

δ

)
+ d ln

(
1 +

∑Bt

i=1 σi

λ

)
+ 2lBt · ln

(
1 +

tL2

2lBtλ

)

+H ·
λ+

∑Bt

i=1 σi√
λ

.

Proof. According to Algorithm 2, the approximate covariance matrix is

Â(t) = λI +

Bt∑
i=1

(
S

(t)
i

)⊤
S

(t)
i ,

where S
(t)
i is the sketch matrix in block i at round t. Define z⊤

1 , ...,z⊤
t ∈ Rd is the noise sequence

conditionally R-subgaussian for a fixed constant R and r⊤t = (r1, r2, ...rt) ∈ Rd is the reward vector.
We begin by noticing that

θ̂t =
(
Â(t)

)−1

X⊤
t rt =

(
Â(t)

)−1

X⊤
t (Xtθ⋆ + zt) .

Therefore, we can decompose
∥∥∥θ̂t − θ⋆

∥∥∥2
Â(t)

into two parts as follows∥∥∥θ̂t − θ⋆

∥∥∥2
Â(t)

=
(
θ̂t − θ⋆

)⊤
Â(t)

(
θ̂t − θ⋆

)
=
(
θ̂t − θ⋆

)⊤
Â(t)

((
Â(t)

)−1

X⊤
t (Xtθ⋆ + zt)− θ⋆

)
=
(
θ̂t − θ⋆

)⊤
Â(t)

((
Â(t)

)−1

X⊤
t Xtθ⋆ − θ⋆

)
︸ ︷︷ ︸

Term 1: Bias Error

+
(
θ̂t − θ⋆

)⊤
X⊤

t zt︸ ︷︷ ︸
Term 2: Variance Error

.

(11)

Bounding the bias error. We first focus on bounding the first term. We have that(
θ̂t − θ⋆

)⊤
Â(t)

((
Â(t)

)−1

X⊤
t Xtθ⋆ − θ⋆

)
=
(
θ̂t − θ⋆

)⊤ (
Â(t)

) 1
2
(
Â(t)

)− 1
2
(
X⊤

t Xtθ⋆ − Â(t)θ⋆

)
=
(
θ̂t − θ⋆

)⊤ (
Â(t)

) 1
2
(
Â(t)

)− 1
2
[(

A(t) − Â(t)
)
θ⋆ − λθ⋆

]
.

(12)
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In accordance with the decomposability of matrix sketches, as detailed in Lemma 1, we have∥∥∥∥∥X⊤
t Xt −

Bt∑
i=1

(
S

(t)
i

)⊤
S

(t)
i

∥∥∥∥∥
2

≤
Bt∑
i=1

σi (13)

By Cauchy-Schwartz inequality and the triangle inequality, we have(
θ̂t − θ⋆

)⊤ (
Â(t)

) 1
2
(
Â(t)

)− 1
2
[(

A(t) − Â(t)
)
θ⋆ − λθ⋆

]
≤

∣∣∣∣∣λ+

Bt∑
i=1

σi

∣∣∣∣∣ · ∥∥∥θ̂t − θ⋆

∥∥∥
Â(t)
· ∥θ⋆∥(Â(t))

−1

≤ H ·
λ+

∑Bt

i=1 σi√
λ

·
∥∥∥θ̂t − θ⋆

∥∥∥
Â(t)

,

(14)

where the last inequality holds beacause Â(t) ⪰ λI and ∥θ⋆∥2 ≤ H .

Bounding the variance error. Then, we aim to bound the second term. We use the following
self-normalized martingale concentration inequality by Abbasi-Yadkori et al. (2011).

Proposition 1. Assume that z1, ...,zt is a conditionally R-subgaussian real-valued stochastic process
and X⊤

t =
[
x⊤
1 , ...,x

⊤
t

]
is any stochastic process such that xi is measurable with respect to the

σ-algebra generated by z1, ...,zt. Then, for any δ > 0, with probability at least 1− δ, for all t ≥ 0,∥∥X⊤
t zt

∥∥2
(A(t))

−1 ≤ 2R2 ln

(
1

δ

∣∣∣A(t)
∣∣∣ 12 |λI|− 1

2

)
.

Notice that the variance error can be reformulated as(
θ̂t − θ⋆

)⊤
X⊤

t zt =
(
θ̂t − θ⋆

)⊤ (
A(t)

)− 1
2
(
A(t)

) 1
2

X⊤
t zt

≤
∥∥∥θ̂t − θ⋆

∥∥∥
Â(t)
·

∥∥∥θ̂t − θ⋆

∥∥∥
A(t)∥∥∥θ̂t − θ⋆

∥∥∥
Â(t)

·
∥∥X⊤

t zt
∥∥
(A(t))

−1 ,

(15)

where the last inequality uses Cauchy-Schwartz inequality.

For any vector a, we have

∥a∥2A(t) − ∥a∥2Â(t) = a⊤
(
A(t) − Â(t)

)
a

= a⊤

(
X⊤X −

Bt∑
i=1

(
S

(t)
i

)⊤
S

(t)
i

)
a

≤
Bt∑
i=1

σi · ∥a∥22.

(16)

Therefore, the ratios of norms on the right-hand side of equation 15 can be bounded as∥∥∥θ̂t − θ⋆

∥∥∥
A(t)∥∥∥θ̂t − θ⋆

∥∥∥
Â(t)

=

√√√√√√
∥∥∥θ̂t − θ⋆

∥∥∥2
A(t)∥∥∥θ̂t − θ⋆

∥∥∥2
Â(t)

≤

√√√√√√
∥∥∥θ̂t − θ⋆

∥∥∥2
Â(t)

+
∑Bt

i=1 σi

∥∥∥θ̂t − θ⋆

∥∥∥2∥∥∥θ̂t − θ⋆

∥∥∥2
Â(t)

≤

√
1 +

∑Bt

i=1 σi

λ
.

(17)
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Substituting equation 17 and Proposition 1 into equation 15 gives

∥∥∥θ̂t − θ⋆

∥∥∥
Â(t)
·

∥∥∥θ̂t − θ⋆

∥∥∥
A(t)∥∥∥θ̂t − θ⋆

∥∥∥
Â(t)

·
∥∥X⊤

t zt
∥∥
(A(t))

−1

≤

√
1 +

∑Bt

i=1 σi

λ
·

√
2R2 ln

(
1

δ

∣∣A(t)
∣∣ 12 |λI|− 1

2

)
·
∥∥∥θ̂t − θ⋆

∥∥∥
Â(t)

.

(18)

Motivated by Abbasi-Yadkori et al. (2011); Kuzborskij et al. (2019), we apply the multi-scale sketch-
based determinant-trace inequality. Compared to the non-sketched version, this inequality depends
on the approximate covariance matrix Â, reflecting the costs associated with the shrinkage due to
multi-scale sketching.

Lemma 2. For any t ≥ 1, define A(t) = λI +X⊤
t Xt, and assume ∥xt∥2 ≤ L, we have

ln

(∣∣A(t)
∣∣

|λI|

)
≤ d ln

(
1 +

∑Bt

i=1 σi

λ

)
+ 2lBt

· ln
(
1 +

tL2

2lBtλ

)
.

Proof.
∑Bt

i=1

(
S

(t)
i

)⊤
S

(t)
i has rank at most 2lBt

due to the Dyadic Block Sketching. Since Â(t) =

λI +
∑Bt

i=1

(
S

(t)
i

)⊤
S

(t)
i and A(t) ⪯ Â(t) +

∑Bt

i=1 σi · I , we have

∣∣∣A(t)
∣∣∣ ≤ ∣∣∣∣∣Â(t) +

Bt∑
i=1

σi · I

∣∣∣∣∣
≤

(
λ+

Bt∑
i=1

σi

)d−2lBt

·

∑2lBt
i=1

(
λi

(
Â(t)

)
+
∑Bt

i=1 σi

)
2lBt

2lBt

≤

(
λ+

Bt∑
i=1

σi

)d−2lBt

·

λ+

Bt∑
i=1

σi +

Tr
(∑Bt

i=1

(
S

(t)
i

)⊤
S

(t)
i

)
2lBt


2lBt

≤

(
λ+

Bt∑
i=1

σi

)d−2lBt

·

(
λ+

Bt∑
i=1

σi +
tL2

2lBt

)2lBt

,

where the last inequality holds because

Tr

(
Bt∑
i=1

(
S

(t)
i

)⊤
S

(t)
i

)
≤ Tr

(
X⊤

t Xt

)
=

t∑
s=1

x⊤
s xs

≤ tL2
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Therefore, we have

ln

(∣∣A(t)
∣∣

|λI|

)
≤ ln


(
λ+

∑Bt

i=1 σi

λ

)d−2lBt

·

λ+
∑Bt

i=1 σi +
tL2

2lBt

λ

2lBt


= (d− 2lBt

) ln

(
1 +

∑Bt

i=1 σi

λ

)
+ 2lBt

ln

(
1 +

∑Bt

i=1 σi

λ
+

tL2

2lBt
λ

)

≤ d ln

(
1 +

∑Bt

i=1 σi

λ

)
+ 2lBt

· ln
(
1 +

tL2

2lBt
λ

)
.

According to Lemma 2, we finally bound the variance error term as follows

∥∥∥θ̂t − θ⋆

∥∥∥
Â(t)
·

∥∥∥θ̂t − θ⋆

∥∥∥
A(t)∥∥∥θ̂t − θ⋆

∥∥∥
Â(t)

·
∥∥X⊤

t zt
∥∥
(A(t))

−1

≤

√
1 +

∑Bt

i=1 σi

λ
·

√
2R2 ln

(
1

δ

∣∣A(t)
∣∣ 12 |λI|− 1

2

)
·
∥∥∥θ̂t − θ⋆

∥∥∥
Â(t)

≤ R ·

√
1 +

∑Bt

i=1 σi

λ
·

√√√√2 ln

(
1

δ

)
+ d ln

(
1 +

∑Bt

i=1 σi

λ

)
+ 2lBt · ln

(
1 +

tL2

2lBtλ

)
·
∥∥∥θ̂t − θ⋆

∥∥∥
Â(t)

.

Sum up the bias error and the variance error and divide both sides of equation 11 by
∥∥∥θ̂t − θ⋆

∥∥∥
Â(t)

simultaneously, we have

∥∥∥θ̂t − θ⋆

∥∥∥
Â(t)
≤ R ·

√
1 +

∑Bt

i=1 σi

λ
·

√√√√2 ln

(
1

δ

)
+ d ln

(
1 +

∑Bt

i=1 σi

λ

)
+ 2lBt

· ln
(
1 +

tL2

2lBtλ

)

+H ·
λ+

∑Bt

i=1 σi√
λ

,

which concludes the proof.

Having established the confidence ellipsoid, we now focus on analyzing the regret. We begin with an
analysis of the instantaneous regret.

Recall that the optimal arm at round t is defined as x⋆
t = argmax

x∈Xt

(x⊤θ⋆). On the other hand, the

principle of optimism in the face of uncertainty ensures that
(
xt, θ̂t−1

)
= argmax

(x,θ)∈Xt×Θt−1

x⊤θ. By

denoting θ̃t as the RLS estimator, we utilize these facts to establish the bound on the instantaneous
regret as follows

(x⋆
t − xt)

⊤
θ⋆

≤ x⊤
t θ̂t−1 − x⊤

t θ⋆

= x⊤
t

(
θ̂t−1 − θ̃t−1

)
+ x⊤

t

(
θ̃t−1 − θ⋆

)
≤ ∥xt∥(Â(t−1))

−1 ·
(∥∥∥θ̂t−1 − θ̃t−1

∥∥∥
Â(t−1)

+
∥∥∥θ̃t−1 − θ⋆

∥∥∥
Â(t−1)

)
≤ 2β̂t−1(δ) · ∥xt∥(Â(t−1))

−1 .

(19)
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Now, we are prepared to establish the upper bound of regret. Utilizing equation 19 and Cauchy-
Schwartz inequality, we derive the following bound

RegretT =

T∑
t=1

max
x∈X

x⊤θ⋆ −
T∑

t=1

x⊤
t θ⋆

≤ 2

T∑
t=1

min
{
HL, β̂t−1(δ) · ∥xt∥(Â(t−1))

−1

}
≤ 2

T∑
t=1

β̂t−1(δ)min

{
L√
λ
, ∥xt∥(Â(t−1))

−1

}

≤ 2 ·max

{
1,

L√
λ

}
· β̂T (δ) ·

T∑
t=1

min
{
1, ∥xt∥(Â(t−1))

−1

}

≤ 2 ·max

{
1,

L√
λ

}
· β̂T (δ) ·

√√√√T

T∑
t=1

min

{
1, ∥xt∥2

(Â(t−1))
−1

}
.

(20)

We further bound the terms in the above. In particular, we formulate β̂T (δ) by Theorem 5 as follows

β̂T (δ) = R

√
1 +

∑BT

i=1 σi

λ
·

√√√√2 ln
1

δ
+ d ln

(
1 +

∑BT

i=1 σi

λ

)
+ 2lBT

· ln
(
1 +

TL2

2lBT
λ

)

+H
√
λ

(
1 +

∑BT

i=1 σi

λ

)
.

(21)

Besides, we adopt the Sketched leverage scores established by Kuzborskij et al. (2019) as follows

Proposition 2 (Lemma 6 of Kuzborskij et al. (2019)). The sketched leverage scores through sketching
at round T can be upper bounded as

T∑
t=1

min

{
1, ∥xt∥2(Â(t))

−1

}

≤ 2

(
1 +

∑BT

i=1 σi

λ

)
· ln

(∣∣A(T )
∣∣

|λI|

)

≤ 2

(
1 +

∑BT

i=1 σi

λ

)
·

(
d ln

(
1 +

∑BT

i=1 σi

λ

)
+ 2lBt

· ln
(
1 +

TL2

2lBT
λ

))
.

Combining equation 21, equation 20 and Proposition 2, assume L ≥
√
λ, we have
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RegretT ≤ 2 ·max

{
1,

L√
λ

}
· β̂T (δ) ·

√√√√T

T∑
t=1

min

{
1, ∥xt∥2

(Â(t−1))
−1

}
Õ
=

L√
λ
·
√
T ·

(
1 +

∑BT

i=1 σi

λ

)
·

(
d ln

(
1 +

∑BT

i=1 σi

λ

)
+ 2lBt

· ln
(
1 +

TL2

2lBT
λ

))

·

(
R

√
1 +

∑BT

i=1 σi

λ
·

√√√√2 ln
1

δ
+ d ln

(
1 +

∑BT

i=1 σi

λ

)
+ 2lBT

· ln
(
1 +

TL2

2lBT
λ

)

+H
√
λ

(
1 +

∑BT

i=1 σi

λ

))
Õ
=

L(R+H
√
λ)√

λ
·

(
d ln

(
1 +

∑BT

i=1 σi

λ

)
+ 2lBT

· ln
(
1 +

TL2

2lBT
λ

))

·

(
1 +

∑BT

i=1 σi

λ

) 3
2 √

T .

According to Theorem 2, we can bound the spectral error by error ϵ, which is

RegretT
Õ
=

L(R+H
√
λ)√

λ
·
(
d ln

(
1 +

ϵ

λ

)
+ 2lBT

· ln
(
1 +

TL2

2lBT
λ

))
·
(
1 +

ϵ

λ

) 3
2 √

T .

F PROOF OF THEOREM 4

We denote Bt as the number of blocks at round t, and σi as the cumulative shrinking singular values
in the sketch of block i. Let lBt be the sketch size in the active block at round t. Similarly, our
analysis establishes an intermediate result regarding the confidence ellipsoid.

Theorem 6. Let θ̂t be the RLS estimate constructed by an arbitrary policy for linear bandits
after t rounds of play. For any δ ∈ (0, 1), the optimal unknown weight θ⋆ belongs to the set

Θt ≡
{
θ ∈ Rd :

∥∥∥θ − θ̂t

∥∥∥
Â(t)
≤ β̂t(δ)

}
with probability at least 1− δ, where

β̂t(δ) = R ·

√√√√2 ln

(
1

δ

)
+ d ln

(
1 +

∑Bt

i=1 σi

λ

)
+ 2lBt

· ln
(
1 +

tL2

2lBt
λ
+

ht

λ

)

+H ·

√√√√λ+

Bt∑
i=1

σi

and

ht =

Bt∑
i=1

σi −
∑Bt

i=1 li · σi

2lBt

.

Proof. Notice that RFD uses the adaptive regularization term to approximate the covariance matrix,

i.e., Â(t) = λI +
∑Bt

i=1 α
(t)
i I +

∑Bt

i=1

(
S

(t)
i

)⊤
S

(t)
i , where S(t)

i is the sketch matrix in block i and

α
(t)
i is the adaptive regularization term of RFD at round t.
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Similarily, we decompose
∥∥∥θ̂t − θ⋆

∥∥∥2
Â(t)

into two parts as follows∥∥∥θ̂t − θ⋆

∥∥∥2
Â(t)

=
(
θ̂t − θ⋆

)⊤
Â(t)

(
θ̂t − θ⋆

)
=
(
θ̂t − θ⋆

)⊤
Â(t)

((
Â(t)

)−1

X⊤
t (Xtθ⋆ + zt)− θ⋆

)
=
(
θ̂t − θ⋆

)⊤
Â(t)

((
Â(t)

)−1

X⊤
t Xtθ⋆ − θ⋆

)
︸ ︷︷ ︸

Term 1: Bias Error

+
(
θ̂t − θ⋆

)⊤
X⊤

t zt︸ ︷︷ ︸
Term 2: Variance Error

.

Bounding the bias error. For the bias error term, we have(
θ̂t − θ⋆

)⊤
Â(t)

((
Â(t)

)−1

X⊤
t Xtθ⋆ − θ⋆

)
=
(
θ̂t − θ⋆

)⊤ (
Â(t)

) 1
2
(
Â(t)

)− 1
2
(
X⊤

t Xtθ⋆ − Â(t)θ⋆

)
=
(
θ̂t − θ⋆

)⊤ (
Â(t)

) 1
2
(
Â(t)

)− 1
2

(
X⊤

t Xt − λI −
Bt∑
i=1

α
(t)
i I −

Bt∑
i=1

(
S

(t)
i

)⊤
S

(t)
i

)
θ⋆

≜
(
θ̂t − θ⋆

)⊤ (
Â(t)

) 1
2
(
Â(t)

)− 1
2

Dt · θ⋆

(22)

Since Dt = X⊤
t Xt − λI −

∑Bt

i=1 α
(t)
i I −

∑Bt

i=1

(
S

(t)
i

)⊤
S

(t)
i , for any unit vector a, we have

∣∣a⊤Dta
∣∣ = ∣∣∣∣∣a⊤

(
X⊤

t Xt − λI −
Bt∑
i=1

α
(t)
i I −

Bt∑
i=1

(
S

(t)
i

)⊤
S

(t)
i

)
a

∣∣∣∣∣
=

∣∣∣∣∣a⊤

(
X⊤

t Xt −
Bt∑
i=1

(
S

(t)
i

)⊤
S

(t)
i

)
a− λI −

Bt∑
i=1

α
(t)
i I

∣∣∣∣∣ .
(23)

According to Theroem 2, we can get

0 ≤ a⊤

(
X⊤

t Xt −
Bt∑
i=1

(
S

(t)
i

)⊤
S

(t)
i

)
a ≤

Bt∑
i=1

σi.

Bring the above equation into equation 23, since
∑Bt

i=1 α
(t)
i =

∑Bt

i=1 σi, we can bound the spectral
norm of Dt as follows

∥Dt∥2 ≤ λ+

Bt∑
i=1

σi. (24)

By Cauchy-Schwartz inequality and the triangle inequality, we can bound equation 22 by(
θ̂t − θ⋆

)⊤ (
Â(t)

) 1
2
(
Â(t)

)− 1
2

Dt · θ⋆

≤
∥∥∥θ̂t − θ⋆

∥∥∥
Â(t)
· ∥Dt∥2 · ∥θ⋆∥(Â(t))

−1

≤ H ·

√√√√λ+

Bt∑
i=1

σi ·
∥∥∥θ̂t − θ⋆

∥∥∥
Â(t)

,

(25)

where the last inequality holds because

∥θ⋆∥2(Â(t))
−1 ≤ ∥θ⋆∥22

λmin

(
Â(t)

) ≤ H2

λ+
∑Bt

i=1 σi

.
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Bounding the variance error. For the variance error, we have

(
θ̂t − θ⋆

)⊤
X⊤

t zt =
(
θ̂t − θ⋆

)⊤ (
A(t)

)− 1
2
(
A(t)

) 1
2

X⊤
t zt

≤
∥∥∥θ̂t − θ⋆

∥∥∥
Â(t)
·

∥∥∥θ̂t − θ⋆

∥∥∥
A(t)∥∥∥θ̂t − θ⋆

∥∥∥
Â(t)

·
∥∥X⊤

t zt
∥∥
(A(t))

−1

≤
∥∥∥θ̂t − θ⋆

∥∥∥
Â(t)
·
∥∥X⊤

t zt
∥∥
(A(t))

−1 .

(26)

where the last inequality holds because for any vector a

∥a∥2A(t) − ∥a∥2Â(t) = a⊤

(
X⊤X −

Bt∑
i=1

(
S

(t)
i

)⊤
S

(t)
i −

Bt∑
i=1

σiI

)
a

= a⊤

(
X⊤X −

Bt∑
i=1

(
S

(t)
i

)⊤
S

(t)
i

)
a−

Bt∑
i=1

σi∥a∥22

≤
Bt∑
i=1

σi∥a∥22 −
Bt∑
i=1

σi∥a∥22

= 0

(27)

By Proposition 1, we can bound the variance error term as follows

(
θ̂t − θ⋆

)⊤
X⊤

t zt

=
(
θ̂t − θ⋆

)⊤ (
A(t)

)− 1
2
(
A(t)

) 1
2

X⊤
t zt

≤
∥∥∥θ̂t − θ⋆

∥∥∥
Â(t)
·
∥∥X⊤

t zt
∥∥
(A(t))

−1

≤

√
2R2 ln

(
1

δ

∣∣A(t)
∣∣ 12 |λI|− 1

2

)
·
∥∥∥θ̂t − θ⋆

∥∥∥
Â(t)

.

(28)

According to equation 27, we have
∣∣∣Â(t)

∣∣∣ ≥ ∣∣A(t)
∣∣. For any t ∈ [T ], since the rank of Â(t) is at

most 2lBt
, we can bound the determinant of Â(t) as follows

∣∣∣Â(t)
∣∣∣ ≤ ( Bt∑

i=1

α
(t)
i + λ

)d−2lBt

·
2lBt∏
i=1

λi

(
Â(t)

)

≤

(
Bt∑
i=1

α
(t)
i + λ

)d−2lBt

∑2lBt
i=1 λi

(
Â(t)

)
2lBt

2lBt

=

(
Bt∑
i=1

σi + λ

)d−2lBt

 Bt∑
i=1

σi + λ+

Tr
(∑Bt

i=1

(
S

(t)
i

)⊤
S

(t)
i

)
2lBt


2lBt

≤

(
Bt∑
i=1

σi + λ

)d−2lBt
((

Bt∑
i=1

σi −
∑Bt

i=1 li · σi

2lBt

)
+ λ+

TL2

2lBt

)2lBt

,

(29)
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where the last inequality satisfies due to

Tr

(
Bt∑
i=1

(
S

(t)
i

)⊤
S

(t)
i

)
=

Bt∑
i=1

Tr
((

S
(t)
i

)⊤
S

(t)
i

)

=

t∑
s=1

Tr(x⊤
s xs)−

Bt∑
i=1

li · σi

≤ TL2 −
Bt∑
i=1

li · σi.

Therefore, the variance error term can be bounded as

(
θ̂t − θ⋆

)⊤
X⊤

t zt

≤

√
2R2 ln

(
1

δ

∣∣A(t)
∣∣ 12 |λI|− 1

2

)
·
∥∥∥θ̂t − θ⋆

∥∥∥
Â(t)

≤

√
2R2 ln

(
1

δ

∣∣∣Â(t)
∣∣∣ 12 |λI|− 1

2

)
·
∥∥∥θ̂t − θ⋆

∥∥∥
Â(t)

≤ R ·

√√√√2 ln

(
1

δ

)
+ (d− 2lBt) ln

(
1 +

∑Bt

i=1 σi

λ

)
+ 2lBt

· ln
(
1 +

tL2

2lBtλ
+

ht

λ

)
·
∥∥∥θ̂t − θ⋆

∥∥∥
Â(t)

≤ R ·

√√√√2 ln

(
1

δ

)
+ d ln

(
1 +

∑Bt

i=1 σi

λ

)
+ 2lBt

· ln
(
1 +

tL2

2lBt
λ
+

ht

λ

)
·
∥∥∥θ̂t − θ⋆

∥∥∥
Â(t)

,

where ht =
∑Bt

i=1 σi −
∑Bt

i=1 li·σi

2lBt
.

Sum up the bias error term and the variance error term and divide both sides by
∥∥∥θ̂t − θ⋆

∥∥∥
Â(t)

simultaneously, we have

∥∥∥θ̂t − θ⋆

∥∥∥
Â(t)
≤ R ·

√√√√2 ln

(
1

δ

)
+ d ln

(
1 +

∑Bt

i=1 σi

λ

)
+ 2lBt · ln

(
1 +

tL2

2lBtλ
+

ht

λ

)

+H ·

√√√√λ+

Bt∑
i=1

σi,

which concludes the proof.

Next, we start to prove the regret. Similar to the case using FD, since the algorithm uses the principle
of optimism in the face of uncertainty to select the arm, we can bound instantaneous regret by
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equation 19. Utilizing equation 19 and Cauchy-Schwartz inequality, we derive the following bound

RegretT =

T∑
t=1

max
x∈X

x⊤θ⋆ −
T∑

t=1

x⊤
t θ⋆

≤ 2

T∑
t=1

min
{
HL, β̂t−1(δ) · ∥xt∥(Â(t−1))

−1

}
≤ 2

T∑
t=1

β̂t−1(δ)min

{
L√
λ
, ∥xt∥(Â(t−1))

−1

}

≤ 2 ·max

{
1,

L√
λ

}
· β̂T (δ) ·

T∑
t=1

min
{
1, ∥xt∥(Â(t−1))

−1

}

≤ 2 ·max

{
1,

L√
λ

}
· β̂T (δ) ·

√√√√T

T∑
t=1

min

{
1, ∥xt∥2

(Â(t−1))
−1

}
.

(30)

We present a lemma of RFD-sketched leverage scores to conclude the proof.
Lemma 3.

T∑
t=1

min

{
1, ∥xt∥2(Â(t−1))

−1

}
≤ 2lBT

· ln
(
1 +

TL2

2lBT
λ
+

hT

λ

)
.

Proof. Denote Ct = Â(t−1) + x⊤
t xt. Notice that the first 2lBt

eigenvalues of Ct are the same

as Â(t) while the other eigenvalues of Ct are
∑Bt

i=1 α
(t−1)
i + λ. Thus we can obtain |Â

(t)|
|Ct| =( ∑Bt

i=1 α
(t)
i +λ∑Bt−1

i=1 α
(t−1)
i +λ

)d−2lBt

.

For the determinant of Â(t), we have∣∣∣Â(t)
∣∣∣ = ( ∑Bt

i=1 α
(t)
i + λ∑Bt−1

i=1 α
(t−1)
i + λ

)d−2lBt

· |Ct|

=

( ∑Bt

i=1 α
(t)
i + λ∑Bt−1

i=1 α
(t−1)
i + λ

)d−2lBt

·
∣∣∣Â(t−1)

∣∣∣ · ∣∣∣∣I +
(
Â(t−1)

)−1

x⊤
t xt

∣∣∣∣
=

( ∑Bt

i=1 α
(t)
i + λ∑Bt−1

i=1 α
(t−1)
i + λ

)d−2lBt

·
∣∣∣Â(t−1)

∣∣∣ · (1 + ∥xt∥2(Â(t−1))
−1

)

=

(∑Bt

i=1 σi + λ

λ

)d−2lBt

· |λI| ·
t∏

s=1

(
1 + ∥xs∥2(Â(s−1))

−1

)
.

(31)

Since min (1, x) ≤ 2 ln (1 + x) for all x ≥ 0, using equation 31, we can derive the following bound
T∑

t=1

min

{
1, ∥xt∥2(Â(t−1))

−1

}

≤ 2

T∑
t=1

ln

(
1 + ∥xt∥2(Â(t−1))

−1

)

= 2 · ln

( λ∑BT

i=1 σi + λ

)d−2lBT

·

∣∣∣Â(T )
∣∣∣

|λI|


≤ 2lBT

· ln
(
1 +

TL2

2lBT
λ
+

hT

λ

)
,
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where the last step holds by equation 29 and hT =
∑BT

i=1 σi −
∑BT

i=1 li·σi

2lBT
.

We combine equation 30, Theorem 6 and Lemma 3. Assume L ≥
√
λ, we have

RegretT =

T∑
t=1

max
x∈X

x⊤θ⋆ −
T∑

t=1

x⊤
t θ⋆

≤ 2 ·max

{
1,

L√
λ

}
· β̂T (δ) ·

√√√√T

T∑
t=1

min

{
1, ∥xt∥2

(Â(t−1))
−1

}

Õ
=

L√
λ
·
√
T ·

√
2lBT

· ln
(
1 +

TL2

2lBT
λ
+

hT

λ

)
·

(
H ·

√√√√λ+

BT∑
i=1

σi+

R ·

√√√√d ln

(
1 +

∑BT

i=1 σi

λ

)
+ 2lBT

· ln
(
1 +

TL2

2lBT
λ
+

hT

λ

))
.

According to Theorem 2, we can bound the spectral error by error ϵ, which is

RegretT
Õ
=

L√
λ
·

√
ln

(
1 +

TL2

2lBT
λ
+

hT

λ

)
·

(
H ·
√
λ+ ϵ+

R ·

√
d ln

(
1 +

ϵ

λ

)
+ 2lBT

· ln
(
1 +

TL2

2lBT
λ
+

hT

λ

))

Õ
=

L√
λ
·

√
ln

(
1 +

TL2

2lBT
λ
+

(
1− 2−BT

2BT+1

)
· ϵ
λ

)
·

(
H ·
√
λ+ ϵ+

R ·

√
d ln

(
1 +

ϵ

λ

)
+ 2lBT

· ln
(
1 +

TL2

2lBT
λ
+

(
1− 2−BT

2BT+1

)
· ϵ
λ

))
,

where the last inequality holds because

hT =

BT∑
i=1

σi −
∑BT

i=1 li · σi

2lBT

=

BT∑
i=1

(
1− 2i−1

2BT

)
· σi

≤ ϵ ·
BT∑
i=1

(
1− 2i−1

2BT

)
· 1
2i

=

(
1− 2−BT

2BT+1

)
· ϵ

G PROPERTIES OF DYADIC BLOCK SKETCHING FOR RFD

In this section, we highlight two significant properties of Dyadic Block Sketching for RFD that
elucidate why the regret bound of DBSLinUCB using RFD is improved. Although Robust Frequent
Directions for ridge regression have been studied by Luo et al. (2019), their theory is limited to single
deterministic streaming sketches. We demonstrate that the decomposability of multi-scale sketching
does not alter the properties of RFD.

We begin with the positive definite monotonicity of Dyadic Block Sketching for RFD, which ensures
that the sequence of approximation matrices is per-step optimal.
Theorem 7 (Positive Definite Monotonicity). At round t, denote that the Dyadic Block Sketching for
RFD provides a sketch S(t), we have the following equation(

S(t)
)⊤

S(t) + α(t)I ⪰
(
S(t−1)

)⊤
S(t−1) + α(t−1)I.
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Proof. Notice that α(t)I +
(
S(t)

)⊤
S(t) =

∑Bt

i=1 α
(t)
i I +

∑Bt

i=1

(
S

(t)
i

)⊤
S

(t)
i , where S

(t)
i is the

sketch matrix in block i and α
(t)
i is the adaptive regularization term of RFD at round t.

Let Q =

[(
S

(t−1)
Bt

)⊤
,x⊤

t

]⊤
, σt is the shrinking singular values of active block at round t, the

shrinking step of RFD provides

Bt∑
i=1

(
S

(t)
i

)⊤
S

(t)
i + σtI ⪰

Bt−1∑
i=1

(
S

(t)
i

)⊤
S

(t)
i +Q⊤Q ⪰

Bt−1∑
i=1

(
S

(t−1)
i

)⊤
S

(t−1)
i . (32)

Therefore, for any unit vector a, we have

a⊤
((

S(t)
)⊤

S(t) + α(t)I −
(
S(t−1)

)⊤
S(t−1) + α(t−1)I

)
a

= a⊤

 Bt∑
i=1

α
(t)
i I +

Bt∑
i=1

(
S

(t)
i

)⊤
S

(t)
i −

Bt−1∑
i=1

α
(t−1)
i I −

Bt−1∑
i=1

(
S

(t−1)
i

)⊤
S

(t−1)
i

a

= a⊤

 Bt∑
i=1

(
S

(t)
i

)⊤
S

(t)
i + σtI −

Bt−1∑
i=1

(
S

(t−1)
i

)⊤
S

(t−1)
i

a

≥ 0,

which concludes the proof.

Next, we prove that the sketch matrix produced by Dyadic Block Sketching for RFD is better
conditioned than those produced by Dyadic Block Sketching for FD and the covariance matrix. In
this context, the α selected by RFD is optimal, as choosing a smaller α would result in a worse
condition number for the approximation matrices.

Theorem 8 (Well-Conditioned Property). Let cond(X) = σmax(X)
σmin(X) be the condition number of

matrix X . At round t, denote that the Dyadic Block Sketching for RFD provides a sketch S(t), we
have

cond
((

S(t)
)⊤

S(t) + α(t)I + λI

)
≤ cond

((
S(t)

)⊤
S(t) + λI

)
,

cond
((

S(t)
)⊤

S(t) + α(t)I + λI

)
≤ cond

(
X⊤

t Xt + λI
)
.

Proof. Notice that α(t)I +
(
S(t)

)⊤
S(t) =

∑Bt

i=1 α
(t)
i I +

∑Bt

i=1

(
S

(t)
i

)⊤
S

(t)
i , where S

(t)
i is the

sketch matrix in block i and α
(t)
i is the adaptive regularization term of RFD at round t. We have

cond
((

S(t)
)⊤

S(t) + α(t)I + λI

)
=

σmax

(∑Bt

i=1

(
S

(t)
i

)⊤
S

(t)
i

)
+ λ+

∑Bt

i=1 α
(t)
i

λ+
∑Bt

i=1 α
(t)
i

≤
σmax

(∑Bt

i=1

(
S

(t)
i

)⊤
S

(t)
i

)
+ λ

λ

= cond
((

S(t)
)⊤

S(t) + λI

)
.
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Similarly, we have

cond
((

S(t)
)⊤

S(t) + α(t)I + λI

)
=

σmax

(∑Bt

i=1

(
S

(t)
i

)⊤
S

(t)
i

)
+ λ+

∑Bt

i=1 α
(t)
i

λ+
∑Bt

i=1 α
(t)
i

≤
σmax

(
X⊤

t Xt

)
+ λ+

∑Bt

i=1 α
(t)
i

λ+
∑Bt

i=1 α
(t)
i

≤
σmax

(
X⊤

t Xt

)
+ λ

λ

≤ cond
(
X⊤

t Xt + λI
)
,

which concludes the proof.

H OPEN ACCESS TO DATA
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I EXPERIMENT OF ERROR PARAMETER

We evaluate the performance of the proposed method by varying the error parameter ϵ on the real-
world dataset MNIST. The experimental setup is consistent with Section 5.3. Specifically, we set
ϵ = 200, 1000, and 8000, and record the spectral norm error ∥A⊤

t At −S⊤
t St∥2, regret, and running

time.
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Figure 5: (a), (b), (c): The spectral norm error, cumulative regret and total running time w.r.t the error
parameter ϵ on MNIST

From Figure 5, we observe that increasing the error parameter ϵ results in higher spectral error
and regret but reduces computational time, which aligns with the theoretical results. Furthermore,
in practical applications, it is unnecessary to set ϵ too small. As shown in Figures 5a and 5b, the
performance with ϵ = 200 is comparable to that with ϵ = 1000. This is because ϵ serves as an upper
bound on the spectral error, and appropriate sketching operations have minimal impact on overall
performance.
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