
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

MATRIX SKETCHING IN BANDITS:
CURRENT PITFALLS AND NEW FRAMEWORK

Anonymous authors
Paper under double-blind review

ABSTRACT

The utilization of sketching techniques has progressively emerged as a pivotal
method for enhancing the efficiency of online learning. In linear bandit settings,
current sketch-based approaches leverage matrix sketching to reduce the per-round
time complexity from Ω

(
d2
)

to O(d), where d is the input dimension. Despite this
improved efficiency, these approaches encounter critical pitfalls: if the spectral tail
of the covariance matrix does not decrease rapidly, it can lead to linear regret. In this
paper, we revisit the regret analysis and algorithm design concerning approximating
the covariance matrix using matrix sketching in linear bandits. We illustrate how
inappropriate sketch sizes can result in unbounded spectral loss, thereby causing
linear regret. To prevent this issue, we propose Dyadic Block Sketching, an
innovative streaming matrix sketching approach that adaptively manages sketch
size to constrain global spectral loss. This approach effectively tracks the best
rank-k approximation in an online manner, ensuring efficiency when the geometry
of the covariance matrix is favorable. Then, we apply the proposed Dyadic Block
Sketching to linear bandits and demonstrate that the resulting bandit algorithm
can achieve sublinear regret without prior knowledge of the covariance matrix,
even under the worst case. Our method is a general framework for efficient sketch-
based linear bandits, applicable to all existing sketch-based approaches, and offers
improved regret bounds accordingly. Additionally, we conduct comprehensive
empirical studies using both synthetic and real-world data to validate the accuracy
of our theoretical findings and to highlight the effectiveness of our algorithm.

1 INTRODUCTION

The Multi-Armed Bandits (MAB) model represents a framework for sequential decision-making
under conditions of partial information (Robbins, 1952). In each round, the player selects one of the
K arms to maximize cumulative rewards. The player’s strategy, which guides action choices based
on previous observations, is referred to as a policy. The player’s objective is to develop a policy that
minimizes regret, which is defined as the difference between the total reward of the optimal policy
and that of the chosen policy.

We consider the Stochastic Linear Bandit (SLB) model, a variant of the MAB model under a linear
assumption (Abbasi-Yadkori et al., 2011; Auer, 2002; Chu et al., 2011; Dani et al., 2007). In SLB,
at round t, the player selects a arm xt from an alternate set X , and then observes the reward rt.
The expected reward E[rt|xt] = x⊤

t θ⋆, where θ⋆ represents unknown coefficients. The player’s
objective is to minimize the regret over the total T rounds, defined as:

RegretT =

T∑
t=1

max
x∈X

x⊤θ⋆ −
T∑

t=1

x⊤
t θ⋆. (1)

Utilizing upper confidence bounds and the regularized least squares estimator, Abbasi-Yadkori
et al. (2011) introduced the well-known OFUL algorithm, which achieves a regret of Õ(d

√
T)

and exhibits a computational complexity of Ω(d2), where d represents the dimension of the data.
However, in real-world decision-making problems, the data dimension d often increases rapidly,
making traditional bandit algorithms excessively time-consuming (Calandriello et al., 2019; Xu
et al., 2020; Deshpande & Montanari, 2012; Zhang et al., 2024). To address this issue and eliminate

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

the quadratic dependence on d, various approaches have adopted streaming sketching methods to
enhance efficiency. Yu et al. (2017) employ random projection to map high-dimensional arms to
a low-dimensional subspace. Another line of these works is based on a well-known deterministic
sketching algorithm—Frequent Directions (FD), which has been proven to offer better theoretical
guarantees than random projection under the streaming setting (Liberty, 2013; Woodruff et al., 2014;
Ghashami et al., 2016). Kuzborskij et al. (2019) directly use FD to sketch covariance matrices of
linear bandits, successfully reducing time complexity from Ω(d2) to O(dl + l2) while achieving an
upper regret bound of Õ

(
(1 + ∆T)

3
2 (l + d log(1 + ∆T))

√
T
)

, where l < d is the sketch size and
∆T represents the spectral error caused by the shrinking of FD. Building on this foundation, Chen
et al. (2021) introduce Robust Frequent Directions (RFD) to reduce the order of ∆T and decouple d

and ∆T , achieving an improved regret bound of Õ
(
(
√
l + d log(1 + ∆T) +

√
∆T)
√
lT
)

.

Despite recent advancements, matrix sketching in linear bandits still faces several pitfalls in practical
applications (Kuzborskij et al., 2019; Chen et al., 2021; Calandriello et al., 2019). Upon careful
examination of the previous regret bounds, the

√
T term is associated with a spectral error ∆T ,

which arises from the discrepancy between the sketched and non-sketched regularized least squares
estimators. The magnitude of the spectral error ∆T relates to the fixed sketch size l and the spectral
tail of the covariance matrix, implying that a slow decrease in this tail can contribute to linear regret.
In practice, this is evident as an inappropriate sketch size can significantly hinder the performance of
online learning algorithms. Since the spectral information of the covariance matrix is unknown prior
to online learning, selecting an optimal pre-set, fixed sketch size is challenging. This raises a natural
question: Can we adaptively adjust the sketch size in an online manner to avoid the pitfall of linear
regret in current methods?

In this paper, we demonstrate that the answer is "yes" by developing a novel framework for efficient
sketch-based linear bandit algorithms. Specifically, this work makes three key contributions:
• We revisit the fundamental problem of approximating the covariance matrix through matrix
sketching. We analyze the critical condition for linear regret in sketch-based methods, which
depends on unpredictable properties of the streaming matrix. From both theoretical and experimental
perspectives, we demonstrate that the inability of previous methods to avoid the pitfall of linear regret
stems from the difficulty of pre-setting an appropriate fixed sketch size.
• We propose Dyadic Block Sketching, a multi-scale matrix sketching method that imposes a
constraint on the global spectral error by managing the error bound within each block. We prove that
the cumulative spectral error upper bound from Dyadic Block Sketching conforms to a specified error
ϵ. This approach allows the sketch size to be dynamically adjusted to accommodate the given error,
even without prior knowledge of the matrix structure. Additionally, we demonstrate that Dyadic
Block Sketching effectively tracks the best rank-k approximation in the streaming setting, aligning
with the performance of a single deterministic sketch.
•We introduce an efficient framework for sketch-based linear bandits using Dyadic Block Sketching,
effectively addressing the pitfall of linear regret in previous works. Our framework is robust, scalable,
and capable of achieving various regret bounds through different sketching techniques. By tracking
the best rank-k approximation, our method can significantly reduce the computational cost of linear
bandits when the covariance matrix has favorable properties.

Related Work. Two classes of prior work are particularly relevant to our study: matrix sketching
algorithms in the unbounded streaming model and sketch-based online learning algorithms. Stream-
ing matrix sketching methods can be broadly categorized into three groups: The first approach is
sampling a small subset of matrix rows or columns that approximates the entire matrix (Deshpande
& Rademacher, 2010; Frieze et al., 2004). The second approach is randomly combining matrix
rows via random projection. Several results are available in the literature, including random pro-
jections and hashing (Sarlos, 2006; Achlioptas, 2001). The third approach employs a deterministic
matrix sketching technique proposed by Liberty (2013), which adapts the well-known MG algo-
rithm from Misra & Gries (1982) (originally used for approximating item frequencies) to sketch
a streaming matrix by tracking its frequent directions. For further details, we refer readers to the
survey by Woodruff et al. (2014). In sketch-based online learning algorithms, most existing work
aims to enhance efficiency through sketching. Beyond linear bandits setting, matrix sketching is
also employed to accelerate second-order online gradient descent (Luo et al., 2016), online kernel

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

learning (Calandriello et al., 2017; Luo et al., 2019), stochastic optimization (Gonen et al., 2016), and
contextual batched bandits (Zhang et al., 2024).

Organization. The remainder of this paper is structured as follows: Section 2 revisits matrix
sketching methods in linear bandits and highlights the current pitfalls. Section 3 presents a novel
multi-scale sketching method for achieving a constrained global error bound. Section 4 introduces a
new framework for efficient sketch-based linear bandits. Section 5 provides a detailed report of the
experimental results. Finally, Section 6 concludes the paper and offers a discussion. All proofs and
additional algorithmic details are provided in the appendices.

2 REVISITING MATRIX SKETCHING IN LINEAR BANDITS

Notations. Let [n] = {1, 2, . . . , n}, upper-case bold letters (e.g., A) represent matrix and lower-
case bold letters (e.g., a) represent vectors. We denote by ∥A∥2 and ∥A∥F the spectral and Frobenius
norms of A. We define |A| and Tr(A) as the determinant and trace of matrix A. For a positive
semi-definite matrix A, the matrix norm of vector x is defined by ∥x∥A =

√
x⊤Ax. For two

positive semi-definite matrices A and B, we use A ⪰ B to represent the fact that A−B is positive
semi-definite. We use A = UΣV ⊤ to represent the SVD of A, where U ,V denote the left and right
matrices of singular vectors and Σ = diag[σ1, ..., σn] is the diagonal matrix of singular values in the
descending order. We define A[k] = UkΣkV

⊤
k for k ≤ rank(A) as the best rank-k approximation

to A, where Uk ∈ Rn×k and Vk ∈ Rd×k are the first k columns of U and V .

2.1 LINEAR BANDITS THROUGH MATRIX SKETCHING

Within the linear bandit setting, the reward for choosing action xt is defined as rt = x⊤
t θ⋆ + zt,

where θ⋆ is a fixed, unknown vector of real coefficients, and zt denotes a zero-mean random variable.
Traditional linear bandit algorithms utilize regularized least squares (RLS) to estimate the unknown
weight θ⋆ as

A(t) = λId +
(
X(t)

)⊤
X(t) and θ̂t =

(
A(t)

)−1 t∑
s=1

rsxs, (2)

where
(
X(t)

)⊤
=
[
x⊤
1 , ...,x

⊤
t

]
is the d× t matrix containing all the arms selected up to round t and

λ is the regularization parameter.

Sketch-based linear bandit methods create a smaller matrix (termed sketch matrix) S(t) ∈ Rl×d as an
approximation to X(t), where l is the sketch size. Take FD as an example, and we can formulate this
sketching operation as

S(t) =

√(
Σ

(t−1)
l

)2
−
(
σ
(t−1)
l

)2
Il ·
(
V

(t−1)
l

)⊤
, M (t) =

(
S(t)

(
S(t)

)⊤
+ λIl

)−1

, (3)

where Σ
(t−1)
l , V (t−1)

l are the result of rank-l SVD on round t − 1 and M (t) is a diagonal matrix
which can be stored efficiently. According to Woodbury’s identity, we can rewrite the inverse of the
sketched covariance matrix as(

Â(t)
)−1

=

(
λId +

(
S(t)

)⊤
S(t)

)−1

=
1

λ

(
Id −

(
S(t)

)⊤
M (t)S(t)

)
. (4)

The computation in equation 2 requires Ω
(
d2
)

time. To improve efficiency, sketch-based methods

replace
(
A(t)

)−1
with

(
Â(t)

)−1

. Notably,
(
Â(t)

)−1

can be updated implicitly using the sketch

matrix S(t) and M (t) in equation 4. Since matrix-vector multiplications with S(t) take O(ld) time
and matrix-matrix multiplications with M (t) take O

(
l2
)

time, the computation involving the inverse
of the sketched covariance matrix is accelerated from Ω

(
d2
)

to O
(
ld+ l2

)
.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

2.2 THE MOTIVATION OF REVISITING

Without loss of generality, our analysis below is based on the original FD. To better illustrate our
motivation, we first present the complete regret bound for the linear bandit using FD (Kuzborskij
et al., 2019).

Let σ =
∑T

t=1

(
σ
(t)
l

)2
denote the sum of singular values reduced by FD up to the T -th round, where

l is the sketch size and
(
σ
(t)
l

)2
is the shrinking value at round t. According to Liberty (2013), it can

be bounded by the spectral error ∆T , i.e., σ ≤ ∆T , where

∆T := min
k<l

∥∥∥X(T) −X
(T)
[k]

∥∥∥2
F

l − k
. (5)

Consequently, the regret of the sketch-based linear bandit can be formulated as

RegretT = Õ
(
(1 + ∆T)

3
2 (l + d log(1 + ∆T))

√
T
)
. (6)

Denote k⋆ as the minimizer of equation 5. Ignoring logarithmic terms, we assume ∆T = T γ . When

γ > 1
3 , the regret will exceed O(T). More precisely, when the spectral tail

∥∥∥X(T) −X
(T)
[k⋆]

∥∥∥2
F

=

Ω
(
(l − k⋆)

2
3T

1
3

)
, the invalid linear regret will emerge.

The above analysis highlights a key pitfall of sketch-based linear bandits: the pre-set sketch size is
crucial. Next, we will explain, from both theoretical and experimental perspectives, why this pitfall is
widespread and difficult to avoid in current methods. We present the following theorem to show that
the spectral tail of the covariance matrix does not decrease rapidly, even in a non-adversarial setting.

Theorem 1. Suppose the chosen arm xt ∈ Rd at round t is a random vector drawn iid from any
distribution over r ≤ d orthonormal vectors A. For any sketch size l ≤ r, the bound on the expected
regret of linear bandits using FD is Ω

(
T 2
)
.

0 500 1000 1500 2000
Number of Rounds

0

2000

4000

6000

8000

10000

12000

14000

16000

Re
gr

et

OFUL
SOFUL (l=300)
SOFUL (l=450)
DBSLinUCB-FD

Figure 1: Regret of SOFUL, OFUL, and our method
on synthetic data (details in section 5.2) The regret
of SOFUL is nearly linear when sketch size l = 300.

The detailed proof is provided in Appendix A. The-
orem 1 shows that when the sketch size is insuffi-
cient to capture most of the spectral information,
sketch-based linear bandit methods will suffer from
linear regret. Furthermore, as illustrated in Figure 1,
we observe that an incorrect selection of the pre-set
sketch size can significantly degrade performance.

Current methods use the single-scale sketching
technique to approximate the covariance matrix.
However, since the covariance matrix is determined
in an online manner, its spectral information is un-
known beforehand. Even if poor performance is
detected during learning, adjusting the sketch size
is not possible because the shrinking process in
single-scale sketching is irreversible. Consequently,
the pitfall of linear regret is difficult to avoid in pre-
vious works.

3 DYADIC BLOCK SKETCHING FOR CONSTRAINED GLOBAL ERROR BOUND

In this section, we propose a multi-scale sketching method called Dyadic Block Sketching, which
provides a constrained global error bound for matrix sketching. This scalable method converts any
streaming sketch into a matrix sketch with a constrained global error bound. It can adaptively adjust
the sketch size in a streaming environment, tracking the best rank-k approximation of the target
matrix at a minimal cost. We employ the Frequent Directions sketch to illustrate this method.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

3.1 DECOMPOSABILITY

Dyadic Block Sketching leverages the decomposability of streaming matrix sketches. Intuitively,
decomposability means that if the rows of a matrix are divided into submatrices, sketches can be
constructed for each submatrix, and these sketches can then be combined to form a sketch of the
original matrix. In this process, the error of approximating the original matrix is the sum of the
errors of approximating each submatrix. The following lemma demonstrates that all matrix sketches
offering a covariance error guarantee exhibit decomposability.

Lemma 1 (Decomposability). Given a matrix X ∈ Rn×d, we decompose X into p submatrices,
i.e., X⊤ =

[
X⊤

1 ,X⊤
2 , ...,X⊤

p

]
. For any i ∈ [p], if we construct a matrix sketch with covariance

error guarantee ϵi for each sub-matrix Xi, denoted as Si, such that
∥∥X⊤

i Xi − S⊤
i Si

∥∥
2
≤ ϵi ·∥∥Xi −Xi[k]

∥∥2
F

. Then S⊤ =
[
S⊤
1 ,S⊤

2 , ...,S⊤
p

]
is an approximation of X⊤ and the error bound is

∥∥X⊤X − S⊤S
∥∥
2
≤

p∑
i=1

ϵi ·
∥∥Xi −Xi[k]

∥∥2
F
.

Proof. Since we have X⊤X =
∑p

i=1 X
⊤
i Xi and S⊤S =

∑p
i=1 S

⊤
i Si. Therefore

∥∥X⊤X − S⊤S
∥∥
2
≤

p∑
i=1

∥∥X⊤
i Xi − S⊤

i Si

∥∥
2
≤

p∑
i=1

ϵi ·
∥∥Xi −Xi[k]

∥∥2
F
,

and the Lemma follows.

3.2 ALGORITHM DESCRIPTIONS

High-Level Ideas. The high-level idea is illustrated in Figure 2. We establish a logarithmic number
of sketch sizes, each partitioning the stream into blocks. The sketch size of each subsequent block
is double that of the previous one, thereby halving the maximum error caused by sketching. By
maintaining a streaming sketch for each block, we can concatenate all the sketches to approximate
the streaming matrix, with the error bounded by the decomposability property.

Sketch Row

0 "! "" "# #

Error Management

Inactive Block Active Block

≤ % ≤ %/2 ≤ %/4 ≤ %/2&

…

…

…

Data Row

Matrix
Sketching

…

Muti-Scale Sketching Approximate

"&%!

Block 1 Block 2 Block 3 Block $

Update
…

New
Rows

Figure 2: An illustration for Dyadic Block Sketching. For inactive Block i ∈ [B − 1], the matrix
sketch covers the data from ti−1 to ti. For the active Block B, matrix sketching updates are performed
on the new rows. We then merge the multi-scale matrix sketches to approximate the entire stream.

Algorithm. We start by defining the data structure for our algorithm. The matrix rows in the stream
are divided into blocks, each covering a segment of consecutive, non-overlapping rows. The list of
blocks is denoted as B. For i = 1, 2, . . ., each block B[i] is associated with a streaming sketch of size
l (length) and block size (size). The size of block B[i] is defined as the sum of the squared norms of
the rows covered by B[i], specifically, B[i].size =

∑
x∈B[i] ∥x∥22.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

We further define two states for the blocks: active and inactive. An active block receives updates,
while an inactive block remains entirely fixed. As illustrated in Figure 2, there is always exactly one
active block in the stream. Additionally, three key invariants must be maintained:

1. For each inactive block, the length must be greater than the rank of the rows it contains.

2. The sum of sketch rows stored in blocks should be less than d.

3. The size of block B[i] should less than l0ϵ, where l0 represents the initial sketch size and ϵ
is the error parameter.

Algorithm 1 presents the pseudo-code of Dyadic Block Sketching. When a new row xt is received,
we first verify the maintenance of Invariant 2 (see Line 5). If the block count reaches its upper limit,
the error from the streaming sketch becomes intolerable, necessitating the full preservation of the
streaming rows’ information. Therefore, we execute a complete rank-1 update on the sketch matrix.

Algorithm 1: Dyadic Block Sketching
Input: Data stream {xt}Tt=1, sketch size l0, error parameter ϵ, regularization parameters λ,

method Sk ∈ {FD,RFD}
Output: Sketch matrix S(t), M (t)

1 Initialize B[0].size = 0, B[0].length = l0, B = 0
2 Initialize B[0].sketch by method Sk
3 for t← 1, . . . , T do
4 Receive xt

5 if B ≥ ⌊log (d/l0 + 1)⌋ − 1 then
6 Update

(
S(t)

)⊤
S(t) =

(
S(t−1)

)⊤
S(t−1) + x⊤

t xt and M (t) using rank-1
modifications

7 else
8 if B[B].size+ ∥xt∥2 > ϵ ·B[0].length and B[B].length < rank then
9 Initialize B[B + 1].size = 0, B[B + 1].length = 2×B[B].length

10 Initialize B[B + 1].sketch by method Sk
11 Set B = B + 1

12 Update B[B].sketch with xt

13 Set SB ,MB , rank ← B[B].sketch
14 Update B[B].size += ∥xt∥2
15 Initialize empty matrix S(t),M (t)

16 for i← 0, . . . , B do
17 Set Si,Mi ← B[i].sketch

18 Combine S(t) with Si, M (t) with Mi as equation 7

In Lines 8 – 11, we control the errors to ensure the maintenance of Invariant 3. If the size of the active
block exceeds the specified limit, we store the current block’s information and create a new block
with double the previous length to prevent further errors.

In Lines 12 – 14, we update the active block’s information with xt. During this process, we can
query the sketch matrices SB and MB in the active block (details in Appendix D). Additionally,
the shrinkage of the deterministic sketch provides us with the block’s current rank if the sketch size
exceeds the block’s rank. We use the variable rank to track this value. If the shrinking value is
non-zero, we set rank to B[B].length; otherwise, we assign rank to the block’s rank.

In Lines 15 – 18, we query the sketch of the entire stream. To retrieve the sketch matrix S(t) and
M (t), we combine them with the previous matrices as follows

S(t) =

(
S(t)

Si

)
, M (t) =

((
M (t) S(t)(Si)

⊤

Si(S
(t))⊤ Mi

)
+ λI

)−1

. (7)

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Since the inactive blocks remain fixed, we can store the combined result of the sketch matrix in
the inactive blocks. In practice, we can avoid the looped calculation of equation 7 and perform the
combination only with the active block.

3.3 ANALYSIS

We explore the error guarantees along with the space and time complexities of the Dyadic Block
Sketching method. Initially, we prove a general theorem that establishes the relationship between
the complexities of the Dyadic Block Sketching algorithm and the streaming sketch utilized in each
block. Subsequently, we examine how a specific deterministic streaming sketch can be integrated
into the Dyadic Block Sketching framework. We present a theorem detailing the space usage and
update costs associated with Dyadic Block Sketching. The detailed proof is provided in Appendix B.
Theorem 2. Suppose a streaming matrix sketch, denoted as κ, achieves a covariance error∥∥X⊤X − S⊤S

∥∥
2
≤ η · ∥X∥2F with ℓη rows and µη update time. Applying κ as the sketching

method for each block in the Dyadic Block Sketching and l0 is the initial sketch size, we generate a
matrix sketch S for the entire streaming matrix X with an error guarantee

∥∥X⊤X − S⊤S
∥∥
2
≤ 2ϵ.

Assuming rank(X) = k and that the rows are normalized, the space cost for Dyadic Block Sketching

is O
(
d ·
∑B

i=0 ℓ 1

2il0

)
, and the update cost is O

(
µ 1

2Bl0

)
, where B =

⌈
min

{
log k

l0
, T
ϵl0

}⌉
+ 1.

Note that different streaming sketches will result in varying costs. To illustrate this, we provide a
corollary using the well-known deterministic sketching method Frequent Directions (FD).

Dyadic Block Sketching for FD. This algorithm employs the FD sketch for each block in the
Dyadic Block Sketching framework. Recall that with a given error parameter η, the FD sketch
requires a space of ℓη = O(1/η) and processes updates at an amortized cost of µη = O(d/η). As
outlined in Theorem 2, we derive the following corollary:
Corollary 1. The Dyadic Block Sketching algorithm for FD uses O (2dk − dl0) space and processes
an update with O(dk) amortized cost.

Remark 1 (Efficient Implementation). The primary computational costs of the algorithm include
calculating the SVD to obtain S(t) and performing matrix multiplication to compute M (t), both of
which cost O(dl2), where l is the current sketch size. However, the amortized update cost can be
effectively reduced from O(dl2) to O(dl) either by doubling the space, as detailed in Algorithm 3 in
Appendix C, or by employing the Gu-Eisenstat procedure (Gu & Eisenstat, 1993).

Remark 2 (Worst-Case Analysis). Compared to the single streaming sketch algorithm, our method
effectively controls the global error of matrix approximation by limiting error sizes within each block,
thus enabling dynamic adjustment of the sketch size. Particularly when dealing with a full-rank
matrix with a heavy spectral tail, sketching methods should be avoided to prevent the pitfall of linear
regret. However, this control is impossible with a single sketch due to the irreversible nature of the
shrinking process in sketching. In the worst-case scenario, our method ensures that the streaming
matrix problem can be dynamically adjusted to revert to a non-sketch situation.

4 LINEAR BANDITS THROUGH DYADIC BLOCK SKETCHING

In this section, we introduce a novel framework for efficient sketch-based linear bandits, termed
DBSLinUCB, which leverages Dyadic Block Sketching. As outlined in Section 2.2, a key limitation
of previous methods stems from their reliance on single-scale matrix sketching, resulting in a space-
bounded linear bandit approach. The use of a fixed sketch size leads to uncontrollable spectral loss,
∆T , ultimately causing linear regret.

In contrast, Dyadic Block Sketching employs a multi-scale matrix sketching strategy, where the
sketch size is adaptively adjusted based on the pre-set parameter ϵ. Consequently, DBSLinUCB is an
error-bounded linear bandit method that effectively addresses and overcomes the pitfalls of linear
regret present in existing approaches.

The procedure, detailed in Algorithm 2, builds on prior sketch-based algorithms but incorporates the
Dyadic Block Sketching method to effectively manage the error in approximating the covariance

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Algorithm 2: DBSLinUCB
Input: Data stream {xt}Tt=1, sketch size l0, error parameter ϵ, regularization parameters λ,

method Sk ∈ {FD,RFD}, confidence δ
1 Initialize a Dyadic Block Sketching instance sketch

(
S(0),M (0)

)
with l0, λ,method Sk

2 for t← 1, . . . , T do
3 Get arm set Xt

4 Compute the confidence ellipsoid β̂t−1(δ) using equation 9

5 Select xt = argmax
x∈Xt

{
x⊤θ̂t−1 + β̂t−1(δ) · ∥x∥(Â(t−1))

−1

}
6 Receive the reward rt
7 Update sketch

(
S(t),M (t)

)
with xt and compute Â(t) and θ̂t using equation 8

matrix. At each round t, we employ the sketch matrix S(t) to approximate the covariance matrix,
from which we derive the sketched regularized least squares estimator as follows

Â(t) = S(t)⊤S(t) + λI , θ̂t =
(
Â(t)

)−1 t∑
s=1

rsxs. (8)

Denote Xt as the set of arms available at round t and β̂t−1(δ) as the confidence ellipsoid, lBt
as the

sketch size in the active block. The arms selected by DBSLinUCB are determined by solving the
following constrained optimization problem:

xt = argmax
x∈Xt

max
θ∈Rd

x⊤θ such that
∥∥∥θ − θ̂

∥∥∥
Â(t−1)

≤ β̂t−1(δ). (9)

The updates to the sketched regularized least squares estimator and the calculations for the confidence
ellipsoid can be efficiently completed in O

(
dlBt + l2Bt

)
time using the Woodbury identity as stated

in equation 4. This makes DBSLinUCB significantly more efficient than traditional linear bandit
algorithms, which require Ω

(
d2
)

in both time and space.

DBSLinUCB represents a scalable framework for efficient sketch-based linear bandits that are capable
of incorporating various streaming sketching techniques. We now explore two deterministic sketching
techniques that provide different regret bounds of linear bandits.

DBSLinUCB using FD. We explore the Frequent Directions (FD) (see Algorithm 4), a deterministic
sketching method (Liberty, 2013; Ghashami et al., 2016). FD uniquely maintains the invariant that
the last row of the sketch matrix, S, is always zero. In each round, a new row at is inserted into this
last row of S, and the matrix undergoes singular value decomposition into UΣV ⊤. Subsequently, S
is updated to

√
Σ2

l − σI · V ⊤
l , where σ represents the square of the l-th singular value. Given that

the rows of S are orthogonal, M = (SS⊤ + λI)−1 remains a diagonal matrix, facilitating efficient
maintenance. We integrate FD into DBSLinUCB and established the following regret bound:

Theorem 3. Assume that ∥θ⋆∥2 ≤ H , ∥x∥2 ≤ L, and L ≥
√
λ. Suppose that the noise is

conditionally R-subgaussian, where R is a fixed constant. The sketch size in the active block at round
t is denoted as lBt

. Given the error parameter ϵ, then with a probability of 1 − 1
T , the regret of

Algorithm 2 utilizing Sk = FD is

RegretT
Õ
=

L(R+H
√
λ)√

λ
·
(
d ln

(
1 +

ϵ

λ

)
+ 2lBT

· ln
(
1 +

TL2

2lBT
λ

))
·
(
1 +

ϵ

λ

) 3
2 √

T .

Remark 3. Compared to linear bandits that use a single FD sketch, our approach relies on a
predetermined error parameter ϵ rather than fixed sketch size l. This ensures a sublinear regret
bound of order Õ(

√
T) without requiring prior knowledge of the streaming matrix. The sketch size

in DBSLinUCB can be dynamically adjusted to match the desired order of regret. In practice, if the
goal is to significantly enhance efficiency at the expense of a higher order of regret, ϵ can be set as a
function of T . Another advantage of DBSLinUCB is that the initial sketch size is independent of the
error term ϵ; it only affects the total computational and space cost.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

DBSLinUCB using RFD. We employ the Robust Frequent Directions (RFD) sketch (see Algo-
rithm 5), a sketching strategy designed to address the rank deficiency issue inherent in FD (Luo et al.,
2019). RFD reduces the approximation error of FD by maintaining a counter α, which quantifies the
spectral error. More precisely, RFD employs S⊤S + αI to approximate A⊤A. We integrate RFD
into DBSLinUCB and established the following regret bound:

Theorem 4. Assume that ∥θ⋆∥2 ≤ H , ∥x∥2 ≤ L, and L ≥
√
λ. Suppose that the noise is

conditionally R-subgaussian, where R is a fixed constant. The sketch size in the active block at round
t is denoted as lBt

. Given the error parameter ϵ, then with a probability of 1 − 1
T , the regret of

Algorithm 2 utilizing Sk = RFD is

RegretT
Õ
=

L√
λ
·

√
ln

(
1 +

TL2

2lBT
λ
+

(
1− 2−BT

2BT+1

)
· ϵ
λ

)
·

(
H ·
√
λ+ ϵ+

R ·

√
d ln

(
1 +

ϵ

λ

)
+ 2lBT

· ln
(
1 +

TL2

2lBT
λ
+

(
1− 2−BT

2BT+1

)
· ϵ
λ

))
.

Remark 4. Compared to DBSLinUCB using FD, the order of the error term ϵ is reduced from
3/2 to 1/2. Apart from logarithmic terms, decoupling the dimensions d and ϵ further reduces the
impact of the error. These properties indicate that Dyadic Block Sketching maintains the excellent
characteristics of RFD. In fact, despite having the same error bound as DBSLinUCB using FD,
DBSLinUCB using RFD satisfies both positive definite monotonicity and well-conditioned properties.
We present details and proof in Appendix G.

5 EXPERIMENTS

In this section, we empirically verify the efficiency and effectiveness of our algorithms. We conduct
experiments on both synthetic and real-world datasets. Each experiment is performed over 20 different
random permutations of the datasets. All experiments are performed on a machine with 24-core
Intel(R) Xeon(R) Gold 6240R 2.40GHz CPU and 256 GB memory.

5.1 MATRIX APPROXIMATION

0 200 400 600 800 1000 1200
Number of Rows

0

500

1000

1500

2000

2500

3000

3500

Sp
ec

tra
l N

or
m

 E
rro

r

FD
FD (Upper bound)
DBS-FD
DBS-FD (Upper bound)

Figure 3: Comparison among FD and our DBS-FD
w.r.t. the error and its upper bound

We evaluate the performance of the proposed
Dyadic Block Sketching in terms of matrix approx-
imation. We compare it with FD (Liberty, 2013).
We generated a synthetic dataset with n = 1250
rows and d = 100 columns. Specifically, each row
at ∈ R100 is independently drawn from a multi-
variate Gaussian distribution at ∼ N (0, Id). We
set the sketch size l0 = 50 for FD. We set the ini-
tial sketch size l0 = 16 and the error parameter
ϵ = 2000 for Dyadic Block Sketching.

Figure 3 shows the spectral norm error ∥A⊤
t At −

S⊤
t St∥2 and its upper bound for matrix sketching,

where At is the steaming matrix at round t and St

is the skech matrix at round t. We observe that
Dyadic Block Sketching provides a constrained
global error bound for matrix sketching. Compared
with FD, the rate of error growth in Dyadic Block
Sketching decreases over time, effectively limiting the linear growth of the spectral tail.

5.2 ONLINE REGRESSION IN SYNTHETIC DATA

In this section, we evaluate our DBSLinUCB on synthetic datasets. The baselines include the
non-sketched method OFUL (Abbasi-Yadkori et al., 2011) and the sketch-based methods SO-
FUL (Kuzborskij et al., 2019), CBSCFD (Chen et al., 2021). Inspired by the experimental settings
in Chen et al. (2021), we build synthetic datasets using multivariate Gaussian distributions N (0, Id)

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

with 100 arms and d = 500 features per context. The true parameter θ⋆ is drawn from N (0, Id) and
is normalized. The confidence ellipsoid β of all algorithms is searched in {10−4, 10−3, . . . , 1} and λ
is searched in {2× 10−4, 2× 10−3, . . . , 2× 104}. We set the sketch size l = 300, 450 for SOFUL
and CBSCFD and the initial sketch size l0 = 64 for DBSLinUCB. Additionally, we set the error
parameter ϵ = 2000 for DBSLinUCB.

Experimental results in Figure 1 (in Section 2.2), 4a show that DBSLinUCB using FD and RFD
consistently outperforms the other sketch-based algorithms in terms of the regret of online learning.
We observe that when l = 300, SOFUL and CBSCFD perform significantly worse than DBSLinUCB,
with SOFUL exhibiting nearly linear regret. Moreover, DBSLinUCB achieves sublinear regret
similar to OFUL by providing a constrained global error bound. Our experimental results confirm
our analysis in Section 2.2, indicating that for all existing sketch-based linear bandit algorithms,
inappropriate sketch size selection can lead to the pitfall of linear regret.

0 500 1000 1500 2000
Number of Rounds

0

1000

2000

3000

4000

5000

6000

7000

8000

Re
gr

et

OFUL
CBSCFD (l=300)
CBSCFD (l=450)
DBSLinUCB-RFD

(a) Regret on synthetic data

0 500 1000 1500 2000
Number of Rounds

0

100

200

300

400

500

Re
gr

et

OFUL
SOFUL (l=20)
SOFUL (l=100)
SOFUL (l=200)
DBSLinUCB

(b) Regret on MNIST

SOFUL
(l=20)

SOFUL
(l=100)

SOFUL
(l=200)

DBSLinUCB OFUL

Methods

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

Ti
m

e(
s)

(c) Running time on MNIST

Figure 4: (a): Cumulative regret of the compared algorithms, the proposed DBSLinUCB using RFD
on a synthetic dataset; (b), (c): Cumulative regret and total running time of the compared algorithms,
the proposed DBSLinUCB using FD on MNIST

5.3 ONLINE CLASSIFICATION IN REAL-WORLD DATA

We perform online classification on the real-world dataset MNIST to evaluate the performance of
our methods. The dataset contains 60, 000 samples, each with d = 784 features, and there are
M = 10 possible labels for each sample. We follow the experimental setup in Kuzborskij et al.
(2019). Specifically, we construct the online classification problem within the contextual bandit
setting as follows: given a dataset with data in M labels, we first choose one cluster as the target label.
In each round, we randomly draw one sample from each label and compose an arm set of M samples
in M contexts. The algorithms choose one sample from the arm set and observe the reward based on
whether the selected sample belongs to the target label. The reward is 1 if the selected sample comes
from the target label and 0 otherwise. We set sketch size l = 20, 100, 200 for SOFUL and l0 = 2
for DBSLinUCB. We set the error parameter ϵ = 1000 for DBSLinUCB. The choice of confidence
ellipsoid and regularization parameter follows the previous section.

Figures 4b and 4c compare the online mistakes and running times of different algorithms. Our
findings indicate that, for a given dataset, there exists an optimal sketch size (e.g., l = 200) that
captures most of the spectral information of the original matrix, thereby accelerating the algorithm
without significantly compromising performance. However, selecting this optimal sketch size for
SOFUL is challenging due to the lack of prior knowledge about the data. When l = 20 or l = 100,
the regret of SOFUL is significantly worse than that of the non-sketched method, OFUL. In contrast,
DBSLinUCB matches the performance of OFUL by adaptively adjusting the sketch size to the
near-optimal value of l = 200 while being significantly faster than OFUL.

6 CONCLUSION

This paper addresses the current pitfall of linear regret in sketch-based linear bandits for the first
time. We propose Dyadic Block Sketching with a constrained global error bound and provide formal
theoretical guarantees. By leveraging Dyadic Block Sketching, we present a framework for efficient
sketch-based linear bandits. Even in the worst-case scenario, our method can achieve sublinear regret
without prior knowledge of the covariance matrix. Extensive experimental evaluations on real and
synthetic datasets demonstrate the excellent performance and efficiency of our methods.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Yasin Abbasi-Yadkori, Dávid Pál, and Csaba Szepesvári. Improved algorithms for linear stochastic
bandits. Advances in neural information processing systems, 24, 2011.

Dimitris Achlioptas. Database-friendly random projections. In Proceedings of the twentieth ACM
SIGMOD-SIGACT-SIGART symposium on Principles of database systems, pp. 274–281, 2001.

Peter Auer. Using confidence bounds for exploitation-exploration trade-offs. Journal of Machine
Learning Research, 3(Nov):397–422, 2002.

Daniele Calandriello, Alessandro Lazaric, and Michal Valko. Efficient second-order online kernel
learning with adaptive embedding. Advances in Neural Information Processing Systems, 30, 2017.

Daniele Calandriello, Luigi Carratino, Alessandro Lazaric, Michal Valko, and Lorenzo Rosasco.
Gaussian process optimization with adaptive sketching: Scalable and no regret. In Conference on
Learning Theory, pp. 533–557. PMLR, 2019.

Cheng Chen, Luo Luo, Weinan Zhang, Yong Yu, and Yijiang Lian. Efficient and robust high-
dimensional linear contextual bandits. In Proceedings of the Twenty-Ninth International Conference
on International Joint Conferences on Artificial Intelligence, pp. 4259–4265, 2021.

Wei Chu, Lihong Li, Lev Reyzin, and Robert Schapire. Contextual bandits with linear payoff
functions. In Proceedings of the Fourteenth International Conference on Artificial Intelligence and
Statistics, pp. 208–214. JMLR Workshop and Conference Proceedings, 2011.

Varsha Dani, Sham M Kakade, and Thomas Hayes. The price of bandit information for online
optimization. Advances in Neural Information Processing Systems, 20, 2007.

Amit Deshpande and Luis Rademacher. Efficient volume sampling for row/column subset selection.
In 2010 ieee 51st annual symposium on foundations of computer science, pp. 329–338. IEEE,
2010.

Yash Deshpande and Andrea Montanari. Linear bandits in high dimension and recommendation
systems. In 2012 50th Annual Allerton Conference on Communication, Control, and Computing
(Allerton), pp. 1750–1754. IEEE, 2012.

Alan Frieze, Ravi Kannan, and Santosh Vempala. Fast monte-carlo algorithms for finding low-rank
approximations. Journal of the ACM (JACM), 51(6):1025–1041, 2004.

Mina Ghashami, Edo Liberty, Jeff M Phillips, and David P Woodruff. Frequent directions: Simple
and deterministic matrix sketching. SIAM Journal on Computing, 45(5):1762–1792, 2016.

Alon Gonen, Francesco Orabona, and Shai Shalev-Shwartz. Solving ridge regression using sketched
preconditioned svrg. In International conference on machine learning, pp. 1397–1405. PMLR,
2016.

Ming Gu and Stanley C Eisenstat. A stable and fast algorithm for updating the singular value
decomposition, 1993.

Ilja Kuzborskij, Leonardo Cella, and Nicolò Cesa-Bianchi. Efficient linear bandits through matrix
sketching. In The 22nd International Conference on Artificial Intelligence and Statistics, pp.
177–185. PMLR, 2019.

Edo Liberty. Simple and deterministic matrix sketching. In Proceedings of the 19th ACM SIGKDD
international conference on Knowledge discovery and data mining, pp. 581–588, 2013.

Haipeng Luo, Alekh Agarwal, Nicolo Cesa-Bianchi, and John Langford. Efficient second order
online learning by sketching. Advances in Neural Information Processing Systems, 29, 2016.

Luo Luo, Cheng Chen, Zhihua Zhang, Wu-Jun Li, and Tong Zhang. Robust frequent directions with
application in online learning. Journal of Machine Learning Research, 20(45):1–41, 2019.

Jayadev Misra and David Gries. Finding repeated elements. Science of computer programming, 2(2):
143–152, 1982.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Herbert Robbins. Some aspects of the sequential design of experiments. 1952.

Tamas Sarlos. Improved approximation algorithms for large matrices via random projections. In
2006 47th annual IEEE symposium on foundations of computer science (FOCS’06), pp. 143–152.
IEEE, 2006.

David P Woodruff et al. Sketching as a tool for numerical linear algebra. Foundations and Trends®
in Theoretical Computer Science, 10(1–2):1–157, 2014.

Xiao Xu, Fang Dong, Yanghua Li, Shaojian He, and Xin Li. Contextual-bandit based personalized
recommendation with time-varying user interests. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 34, pp. 6518–6525, 2020.

Xiaotian Yu, Michael R Lyu, and Irwin King. Cbrap: Contextual bandits with random projection. In
Proceedings of the AAAI Conference on Artificial Intelligence, volume 31, 2017.

Xiao Zhang, Ninglu Shao, Zihua Si, Jun Xu, Wenhan Wang, Hanjing Su, and Ji-Rong Wen. Reward
imputation with sketching for contextual batched bandits. Advances in Neural Information
Processing Systems, 36, 2024.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

A PROOF OF THEOREM 1

For linear bandits using FD, at round t, the sketch matrix S(t−1) ∈ Rl×d is utilized, and a new row
xt is received, where l denotes the sketch size. Let Σ = E[xtx

⊤
t] be the covariance matrix of the

arms, and let λi be the i-th eigenvalue of Σ. By definition, xt follows the distribution xt = ai with
probability λi, where ai is the i-th vector of A.

We first consider the expected value of the shrinking factor when the sketch is full-rank. If
rank

(
S(t−1)

)
= l − 1. Let S(t−1) = UΣV be the SVD of S(t−1), and vi be the i-th row of

V . Denote the set of basis vectors not in the row space of S(t−1) as Wt−1 = A\{v1, ...,vl−1}, we

have |Wt−1| = r − l + 1. If xt ∈ span(v1, ...,vl−1), we have the shrinking value
(
σ
(t)
l

)2
= 0; oth-

erwise
(
σ
(t)
l

)2
= 1, with probability

∑
ai∈Wt−1

λi ≥
∑r

i=l λi. Therefore, If rank(S(t−1)) = l − 1,
we have

E
[(

σ
(t)
l

)2
| S(t−1)

]
≥

r∑
i=l

λi.

If rank
(
S(t−1)

)
< l − 1, this means that S(t−1) contains fewer than l − 1 distinct vectors drawn

from A. Let Ii be the indicator variable for drawing ai in the first t− 1 rounds. Then we have the
expected number of distinct vectors at round t− 1

E

[
r∑

i=1

Ii

]
=

r∑
i=1

(
1− (1− λi)

t−1
)
.

Using Markov’s inequality, we have

Prob

[
r −

r∑
i=1

Ii ≥ r − l + 2

]
≤
∑r

i=1 1− (1− λi)
t−1

r − l + 2
≤ r(1− λr)

t−1

2
.

Note that this is precisely the probability of having fewer than l − 1 distinct vectors in the first t− 1

rounds. We conclude that for t ≥ log
(

r
λr

)
+ 1, Prob [rank(St−1) = l − 1] ≥ 1

2 . This implies that

E[ρt] ≥ 1
2

∑r
i=l λi after an initial logarithmic number of rounds.

Therefore, assuming T ≥ 2 log
(

r
λr

)
, the expected accumulated shrinking value is at least:

E

[
T∑

t=1

(
σ
(t)
l

)2]
≥ T

4

r∑
i=l

λi.

Note that the accumulated shrinking value is upper-bounded by the spectral loss. According to the
regret in equation 6, we conclude that the regret upper bound is Ω

(
T 2
)

in expectation.

B PROOF OF THEOREM 2

We begin our proof by considering the number of blocks. Let the entire data stream be denoted as
X⊤ =

[
X⊤

0 ,X⊤
1 , . . . ,X⊤

B

]
. Block i covers the submatrix Xi and stores the corresponding matrix

sketch Si.

According to Invariant 3, each submatrix Xi in block i contains at least ⌊ϵl0⌋ rows. Since there are T
rows available for allocation in the entire matrix, the maximum number of blocks is

⌈
T
ϵl0

⌉
.

When ϵ is small, the block length grows exponentially. By Invariant 1, the length of the last active
block will be exactly greater than k, i.e., 2B−1l0 ≤ k ≤ 2Bl0.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Thus, we take the minimum of the two scenarios to determine the number of blocks, resulting in
B =

⌈
min

{
log k

l0
, T
ϵl0

}⌉
+ 1.

For the error guarantee, recall that the error comprises two components: the error from the active
block and the error from merging B inactive blocks. Given that the streaming sketch can detect the
best rank-k approximation as long as the sketch size exceeds k, the approximation error in the B-th
active block is effectively zero.

By maintaining Invariant 3, the size of the i-th inactive block is bounded by l0ϵ. Additionally, the
i-th block employs a streaming matrix sketch with an error parameter of 1

2il0
, thereby ensuring that

the maximum error introduced by a sketch at the i-th block is at most ϵ
2i .

Combining all B + 1 sketches, we use S⊤ =
[
S⊤
0 ,S⊤

1 , . . . ,S⊤
B

]
to approximate X . By Lemma 1,

this provides the following error guarantee for the entire streaming matrix:

∥∥X⊤X − S⊤S
∥∥
2
≤

B∑
i=0

∥∥X⊤
i Xi − S⊤

i Si

∥∥
2

=

B−1∑
i=0

∥∥X⊤
i Xi − S⊤

i Si

∥∥
2
+
∥∥X⊤

BXB − S⊤
BSB

∥∥
2

≤
B−1∑
i=0

ϵ

2i
+ 0

≤ 2ϵ.

For space usage, the i-th block employs a streaming matrix sketch with an error parameter of 1
2il0

,

resulting in a sketch of size ℓ 1

2il0

. Therefore, the total number of sketched rows is
∑B

i=0 ℓ 1

2il0

.

Consequently, the total space requirement is O
(
d ·
∑B

i=0 ℓ 1

2il0

)
.

For the update cost, since only the active sketch requires updating, the cost is O
(
µ 1

2Bl0

)
.

C FAST ALGORITHM OF DYADIC BLOCK SKETCHING

The computational cost of FD and RFD, as detailed in Algorithm 4 and 5, is primarily driven by the
singular value decomposition (SVD) operations. At round t, with Bt + 1 blocks, we denote li as the
sketch size for the i-th block. It incurs an amortized time of O

(
dl2Bt

)
due to standard SVD processes

in the active block. Additionally, the operation to compute M (t) via matrix multiplication and matrix

inversion also requires O

(∑Bt−1
i=0 li · lBt

· d+
(∑Bt

i=0 li

)3)
= O

(
dl2Bt

)
. We can enhance the

efficiency of our Dyadic Block Sketching by doubling the sketch size, as detailed in Algorithm 3.

Notice that within each epoch, the update of M (t) can be formulate as

M (t) =

(
M (t−1) + ϕϕ⊤

ξ
−ϕ
ξ

−ϕ⊤

ξ
1
ξ

)
, (10)

where ϕ = M (t−1)S(t−1)x⊤
t and ξ = xtx

⊤
t − xt

(
S(t−1)

)⊤
ϕ+ α+ λ.

When the method Sk = FD, α is set to 0; conversely, when the method Sk = RFD, α serves as the
counter maintained in the RFD sketch.

Given that the length of M (t) is at most twice the length of B[B].length, the amortized computation
time required for M (t) is limited to O (dlBt

). Additionally, we perform the SVD only after every
addition of B[B].length rows, reducing the amortized update time complexity to O (dlBt).

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Algorithm 3: Fast Dyadic Block Sketching
Input: Data stream {xt}Tt=1, sketch size l0, error parameter ϵ, regularization parameters λ,

method Sk ∈ FD,RFD
Output: Sketch matrix S(t), M (t)

1 Initialize B[0].size = 0, B[0].length = l0, B = 0
2 Initialize B[0].sketch by method Sk
3 for t← 1, . . . , T do
4 Receive xt

5 if B ≥ ⌊log (d/l0 + 1)⌋ − 1 then
6 Update

(
S(t)

)⊤
S(t) =

(
S(t−1)

)⊤
S(t−1) + x⊤

t xt

7 Update M (t) using rank-1 modifications
8 else
9 if B[B].size+ ∥xt∥2 > ϵ

2 ·B[0].length and B[B].length < rank then
10 Initialize B[B + 1].size = 0, B[B + 1].length = 2×B[B].length
11 Initialize B[B + 1].sketch by method Sk
12 Set B ← B + 1

13 Append xt below B[B].sketch
14 Update B[B].size += ∥xt∥2
15 Initialize empty matrix S,M
16 for i← 0, . . . , B − 1 do
17 Set Si,Mi ← B[i].sketch
18 Combine S with Si

19 Combine M with Mi

20 if B[B].sketch have 2 ·B[B].length rows then
21 Update B[B].sketch by method Sk
22 Set SB ,MB , rank ← B[B].sketch

23 Update S(t) =

(
S
SB

)
, M (t) =

((
M S(SB)

⊤

SBS
⊤ MB

)
+ λI

)−1

24 else

25 Update S(t) =

(
S
SB

)
26 Update M (t) by equation 10

D PSEUDO-CODE OF DETERMINISTIC MATRIX SKETCHING

Algorithm 4: FD sketch
Input: Data X ∈ RT×d, sketch size l,

regularization λ
Output: Sketch S, M

1 Initialize S ← 0l×d,M ← 1
λIl

2 for t← 1, . . . , T do
3 Append xt to the last row of S
4 Compute [U ,Σ,V]← svd(S)
5 Set σ ← σ2

l

6 Update S ←
√

Σ2
l − σI · V ⊤

l
7 Update

M ← diag
{

1
λ+σ2

1−σ
, ..., 1

λ

}

Algorithm 5: RFD sketch
Input: Data X ∈ RT×d, sketch size l,

regularization λ
Output: Sketch S, M and counter α

1 Initialize S ← 0l×d,M ← 1
λIl, α← 0

2 for t← 1, . . . , T do
3 Append xt to the last row of S
4 Compute [U ,Σ,V]← svd(S)
5 Set σ ← σ2

l , α← α+ σ

6 Update S ←
√
Σ2

l − σI · V ⊤
l

7 Set

M ← diag
{

1
λ+σ2

1−σ+α
, ..., 1

λ+α

}

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

The pseudo-code for deterministic matrix sketching methods is displayed in Algorithm 4 and Algo-
rithm 5. Note that these deterministic matrix sketching methods can be accelerated by doubling the
sketch size. More details can be found in Appendix C.

E PROOF OF THEOREM 3

Following Abbasi-Yadkori et al. (2011), we structure the proof in two parts: first, we establish bounds
for the approximate confidence ellipsoid, and second, we delineate the bounds for regret. Denote
Bt as the number of blocks at round t, and σi as the sum of shrinking singular values in the sketch
of block i. Let lBt

be the sketch size in the active block at round t. We start by establishing an
intermediate result concerning the confidence ellipsoid.

Theorem 5. Let θ̂t be the RLS estimate constructed by an arbitrary policy for linear bandits
after t rounds of play. For any δ ∈ (0, 1), the optimal unknown weight θ⋆ belongs to the set

Θt ≡
{
θ ∈ Rd :

∥∥∥θ − θ̂t

∥∥∥
Â(t)
≤ β̂t(δ)

}
with probability at least 1− δ, where

β̂t(δ) = R ·

√
1 +

∑Bt

i=1 σi

λ
·

√√√√2 ln

(
1

δ

)
+ d ln

(
1 +

∑Bt

i=1 σi

λ

)
+ 2lBt · ln

(
1 +

tL2

2lBtλ

)

+H ·
λ+

∑Bt

i=1 σi√
λ

.

Proof. According to Algorithm 2, the approximate covariance matrix is

Â(t) = λI +

Bt∑
i=1

(
S

(t)
i

)⊤
S

(t)
i ,

where S
(t)
i is the sketch matrix in block i at round t. Define z⊤

1 , ...,z⊤
t ∈ Rd is the noise sequence

conditionally R-subgaussian for a fixed constant R and r⊤t = (r1, r2, ...rt) ∈ Rd is the reward vector.
We begin by noticing that

θ̂t =
(
Â(t)

)−1

X⊤
t rt =

(
Â(t)

)−1

X⊤
t (Xtθ⋆ + zt) .

Therefore, we can decompose
∥∥∥θ̂t − θ⋆

∥∥∥2
Â(t)

into two parts as follows∥∥∥θ̂t − θ⋆

∥∥∥2
Â(t)

=
(
θ̂t − θ⋆

)⊤
Â(t)

(
θ̂t − θ⋆

)
=
(
θ̂t − θ⋆

)⊤
Â(t)

((
Â(t)

)−1

X⊤
t (Xtθ⋆ + zt)− θ⋆

)
=
(
θ̂t − θ⋆

)⊤
Â(t)

((
Â(t)

)−1

X⊤
t Xtθ⋆ − θ⋆

)
︸ ︷︷ ︸

Term 1: Bias Error

+
(
θ̂t − θ⋆

)⊤
X⊤

t zt︸ ︷︷ ︸
Term 2: Variance Error

.

(11)

Bounding the bias error. We first focus on bounding the first term. We have that(
θ̂t − θ⋆

)⊤
Â(t)

((
Â(t)

)−1

X⊤
t Xtθ⋆ − θ⋆

)
=
(
θ̂t − θ⋆

)⊤ (
Â(t)

) 1
2
(
Â(t)

)− 1
2
(
X⊤

t Xtθ⋆ − Â(t)θ⋆

)
=
(
θ̂t − θ⋆

)⊤ (
Â(t)

) 1
2
(
Â(t)

)− 1
2
[(

A(t) − Â(t)
)
θ⋆ − λθ⋆

]
.

(12)

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

In accordance with the decomposability of matrix sketches, as detailed in Lemma 1, we have∥∥∥∥∥X⊤
t Xt −

Bt∑
i=1

(
S

(t)
i

)⊤
S

(t)
i

∥∥∥∥∥
2

≤
Bt∑
i=1

σi (13)

By Cauchy-Schwartz inequality and the triangle inequality, we have(
θ̂t − θ⋆

)⊤ (
Â(t)

) 1
2
(
Â(t)

)− 1
2
[(

A(t) − Â(t)
)
θ⋆ − λθ⋆

]
≤

∣∣∣∣∣λ+

Bt∑
i=1

σi

∣∣∣∣∣ · ∥∥∥θ̂t − θ⋆

∥∥∥
Â(t)
· ∥θ⋆∥(Â(t))

−1

≤ H ·
λ+

∑Bt

i=1 σi√
λ

·
∥∥∥θ̂t − θ⋆

∥∥∥
Â(t)

,

(14)

where the last inequality holds beacause Â(t) ⪰ λI and ∥θ⋆∥2 ≤ H .

Bounding the variance error. Then, we aim to bound the second term. We use the following
self-normalized martingale concentration inequality by Abbasi-Yadkori et al. (2011).

Proposition 1. Assume that z1, ...,zt is a conditionally R-subgaussian real-valued stochastic process
and X⊤

t =
[
x⊤
1 , ...,x

⊤
t

]
is any stochastic process such that xi is measurable with respect to the

σ-algebra generated by z1, ...,zt. Then, for any δ > 0, with probability at least 1− δ, for all t ≥ 0,∥∥X⊤
t zt

∥∥2
(A(t))

−1 ≤ 2R2 ln

(
1

δ

∣∣∣A(t)
∣∣∣ 12 |λI|− 1

2

)
.

Notice that the variance error can be reformulated as(
θ̂t − θ⋆

)⊤
X⊤

t zt =
(
θ̂t − θ⋆

)⊤ (
A(t)

)− 1
2
(
A(t)

) 1
2

X⊤
t zt

≤
∥∥∥θ̂t − θ⋆

∥∥∥
Â(t)
·

∥∥∥θ̂t − θ⋆

∥∥∥
A(t)∥∥∥θ̂t − θ⋆

∥∥∥
Â(t)

·
∥∥X⊤

t zt
∥∥
(A(t))

−1 ,

(15)

where the last inequality uses Cauchy-Schwartz inequality.

For any vector a, we have

∥a∥2A(t) − ∥a∥2Â(t) = a⊤
(
A(t) − Â(t)

)
a

= a⊤

(
X⊤X −

Bt∑
i=1

(
S

(t)
i

)⊤
S

(t)
i

)
a

≤
Bt∑
i=1

σi · ∥a∥22.

(16)

Therefore, the ratios of norms on the right-hand side of equation 15 can be bounded as∥∥∥θ̂t − θ⋆

∥∥∥
A(t)∥∥∥θ̂t − θ⋆

∥∥∥
Â(t)

=

√√√√√√
∥∥∥θ̂t − θ⋆

∥∥∥2
A(t)∥∥∥θ̂t − θ⋆

∥∥∥2
Â(t)

≤

√√√√√√
∥∥∥θ̂t − θ⋆

∥∥∥2
Â(t)

+
∑Bt

i=1 σi

∥∥∥θ̂t − θ⋆

∥∥∥2∥∥∥θ̂t − θ⋆

∥∥∥2
Â(t)

≤

√
1 +

∑Bt

i=1 σi

λ
.

(17)

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Substituting equation 17 and Proposition 1 into equation 15 gives

∥∥∥θ̂t − θ⋆

∥∥∥
Â(t)
·

∥∥∥θ̂t − θ⋆

∥∥∥
A(t)∥∥∥θ̂t − θ⋆

∥∥∥
Â(t)

·
∥∥X⊤

t zt
∥∥
(A(t))

−1

≤

√
1 +

∑Bt

i=1 σi

λ
·

√
2R2 ln

(
1

δ

∣∣A(t)
∣∣ 12 |λI|− 1

2

)
·
∥∥∥θ̂t − θ⋆

∥∥∥
Â(t)

.

(18)

Motivated by Abbasi-Yadkori et al. (2011); Kuzborskij et al. (2019), we apply the multi-scale sketch-
based determinant-trace inequality. Compared to the non-sketched version, this inequality depends
on the approximate covariance matrix Â, reflecting the costs associated with the shrinkage due to
multi-scale sketching.

Lemma 2. For any t ≥ 1, define A(t) = λI +X⊤
t Xt, and assume ∥xt∥2 ≤ L, we have

ln

(∣∣A(t)
∣∣

|λI|

)
≤ d ln

(
1 +

∑Bt

i=1 σi

λ

)
+ 2lBt

· ln
(
1 +

tL2

2lBtλ

)
.

Proof.
∑Bt

i=1

(
S

(t)
i

)⊤
S

(t)
i has rank at most 2lBt

due to the Dyadic Block Sketching. Since Â(t) =

λI +
∑Bt

i=1

(
S

(t)
i

)⊤
S

(t)
i and A(t) ⪯ Â(t) +

∑Bt

i=1 σi · I , we have

∣∣∣A(t)
∣∣∣ ≤ ∣∣∣∣∣Â(t) +

Bt∑
i=1

σi · I

∣∣∣∣∣
≤

(
λ+

Bt∑
i=1

σi

)d−2lBt

·

∑2lBt
i=1

(
λi

(
Â(t)

)
+
∑Bt

i=1 σi

)
2lBt

2lBt

≤

(
λ+

Bt∑
i=1

σi

)d−2lBt

·

λ+

Bt∑
i=1

σi +

Tr
(∑Bt

i=1

(
S

(t)
i

)⊤
S

(t)
i

)
2lBt


2lBt

≤

(
λ+

Bt∑
i=1

σi

)d−2lBt

·

(
λ+

Bt∑
i=1

σi +
tL2

2lBt

)2lBt

,

where the last inequality holds because

Tr

(
Bt∑
i=1

(
S

(t)
i

)⊤
S

(t)
i

)
≤ Tr

(
X⊤

t Xt

)
=

t∑
s=1

x⊤
s xs

≤ tL2

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Therefore, we have

ln

(∣∣A(t)
∣∣

|λI|

)
≤ ln


(
λ+

∑Bt

i=1 σi

λ

)d−2lBt

·

λ+
∑Bt

i=1 σi +
tL2

2lBt

λ

2lBt


= (d− 2lBt

) ln

(
1 +

∑Bt

i=1 σi

λ

)
+ 2lBt

ln

(
1 +

∑Bt

i=1 σi

λ
+

tL2

2lBt
λ

)

≤ d ln

(
1 +

∑Bt

i=1 σi

λ

)
+ 2lBt

· ln
(
1 +

tL2

2lBt
λ

)
.

According to Lemma 2, we finally bound the variance error term as follows

∥∥∥θ̂t − θ⋆

∥∥∥
Â(t)
·

∥∥∥θ̂t − θ⋆

∥∥∥
A(t)∥∥∥θ̂t − θ⋆

∥∥∥
Â(t)

·
∥∥X⊤

t zt
∥∥
(A(t))

−1

≤

√
1 +

∑Bt

i=1 σi

λ
·

√
2R2 ln

(
1

δ

∣∣A(t)
∣∣ 12 |λI|− 1

2

)
·
∥∥∥θ̂t − θ⋆

∥∥∥
Â(t)

≤ R ·

√
1 +

∑Bt

i=1 σi

λ
·

√√√√2 ln

(
1

δ

)
+ d ln

(
1 +

∑Bt

i=1 σi

λ

)
+ 2lBt · ln

(
1 +

tL2

2lBtλ

)
·
∥∥∥θ̂t − θ⋆

∥∥∥
Â(t)

.

Sum up the bias error and the variance error and divide both sides of equation 11 by
∥∥∥θ̂t − θ⋆

∥∥∥
Â(t)

simultaneously, we have

∥∥∥θ̂t − θ⋆

∥∥∥
Â(t)
≤ R ·

√
1 +

∑Bt

i=1 σi

λ
·

√√√√2 ln

(
1

δ

)
+ d ln

(
1 +

∑Bt

i=1 σi

λ

)
+ 2lBt

· ln
(
1 +

tL2

2lBtλ

)

+H ·
λ+

∑Bt

i=1 σi√
λ

,

which concludes the proof.

Having established the confidence ellipsoid, we now focus on analyzing the regret. We begin with an
analysis of the instantaneous regret.

Recall that the optimal arm at round t is defined as x⋆
t = argmax

x∈Xt

(x⊤θ⋆). On the other hand, the

principle of optimism in the face of uncertainty ensures that
(
xt, θ̂t−1

)
= argmax

(x,θ)∈Xt×Θt−1

x⊤θ. By

denoting θ̃t as the RLS estimator, we utilize these facts to establish the bound on the instantaneous
regret as follows

(x⋆
t − xt)

⊤
θ⋆

≤ x⊤
t θ̂t−1 − x⊤

t θ⋆

= x⊤
t

(
θ̂t−1 − θ̃t−1

)
+ x⊤

t

(
θ̃t−1 − θ⋆

)
≤ ∥xt∥(Â(t−1))

−1 ·
(∥∥∥θ̂t−1 − θ̃t−1

∥∥∥
Â(t−1)

+
∥∥∥θ̃t−1 − θ⋆

∥∥∥
Â(t−1)

)
≤ 2β̂t−1(δ) · ∥xt∥(Â(t−1))

−1 .

(19)

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Now, we are prepared to establish the upper bound of regret. Utilizing equation 19 and Cauchy-
Schwartz inequality, we derive the following bound

RegretT =

T∑
t=1

max
x∈X

x⊤θ⋆ −
T∑

t=1

x⊤
t θ⋆

≤ 2

T∑
t=1

min
{
HL, β̂t−1(δ) · ∥xt∥(Â(t−1))

−1

}
≤ 2

T∑
t=1

β̂t−1(δ)min

{
L√
λ
, ∥xt∥(Â(t−1))

−1

}

≤ 2 ·max

{
1,

L√
λ

}
· β̂T (δ) ·

T∑
t=1

min
{
1, ∥xt∥(Â(t−1))

−1

}

≤ 2 ·max

{
1,

L√
λ

}
· β̂T (δ) ·

√√√√T

T∑
t=1

min

{
1, ∥xt∥2

(Â(t−1))
−1

}
.

(20)

We further bound the terms in the above. In particular, we formulate β̂T (δ) by Theorem 5 as follows

β̂T (δ) = R

√
1 +

∑BT

i=1 σi

λ
·

√√√√2 ln
1

δ
+ d ln

(
1 +

∑BT

i=1 σi

λ

)
+ 2lBT

· ln
(
1 +

TL2

2lBT
λ

)

+H
√
λ

(
1 +

∑BT

i=1 σi

λ

)
.

(21)

Besides, we adopt the Sketched leverage scores established by Kuzborskij et al. (2019) as follows

Proposition 2 (Lemma 6 of Kuzborskij et al. (2019)). The sketched leverage scores through sketching
at round T can be upper bounded as

T∑
t=1

min

{
1, ∥xt∥2(Â(t))

−1

}

≤ 2

(
1 +

∑BT

i=1 σi

λ

)
· ln

(∣∣A(T)
∣∣

|λI|

)

≤ 2

(
1 +

∑BT

i=1 σi

λ

)
·

(
d ln

(
1 +

∑BT

i=1 σi

λ

)
+ 2lBt

· ln
(
1 +

TL2

2lBT
λ

))
.

Combining equation 21, equation 20 and Proposition 2, assume L ≥
√
λ, we have

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

RegretT ≤ 2 ·max

{
1,

L√
λ

}
· β̂T (δ) ·

√√√√T

T∑
t=1

min

{
1, ∥xt∥2

(Â(t−1))
−1

}
Õ
=

L√
λ
·
√
T ·

(
1 +

∑BT

i=1 σi

λ

)
·

(
d ln

(
1 +

∑BT

i=1 σi

λ

)
+ 2lBt

· ln
(
1 +

TL2

2lBT
λ

))

·

(
R

√
1 +

∑BT

i=1 σi

λ
·

√√√√2 ln
1

δ
+ d ln

(
1 +

∑BT

i=1 σi

λ

)
+ 2lBT

· ln
(
1 +

TL2

2lBT
λ

)

+H
√
λ

(
1 +

∑BT

i=1 σi

λ

))
Õ
=

L(R+H
√
λ)√

λ
·

(
d ln

(
1 +

∑BT

i=1 σi

λ

)
+ 2lBT

· ln
(
1 +

TL2

2lBT
λ

))

·

(
1 +

∑BT

i=1 σi

λ

) 3
2 √

T .

According to Theorem 2, we can bound the spectral error by error ϵ, which is

RegretT
Õ
=

L(R+H
√
λ)√

λ
·
(
d ln

(
1 +

ϵ

λ

)
+ 2lBT

· ln
(
1 +

TL2

2lBT
λ

))
·
(
1 +

ϵ

λ

) 3
2 √

T .

F PROOF OF THEOREM 4

We denote Bt as the number of blocks at round t, and σi as the cumulative shrinking singular values
in the sketch of block i. Let lBt be the sketch size in the active block at round t. Similarly, our
analysis establishes an intermediate result regarding the confidence ellipsoid.

Theorem 6. Let θ̂t be the RLS estimate constructed by an arbitrary policy for linear bandits
after t rounds of play. For any δ ∈ (0, 1), the optimal unknown weight θ⋆ belongs to the set

Θt ≡
{
θ ∈ Rd :

∥∥∥θ − θ̂t

∥∥∥
Â(t)
≤ β̂t(δ)

}
with probability at least 1− δ, where

β̂t(δ) = R ·

√√√√2 ln

(
1

δ

)
+ d ln

(
1 +

∑Bt

i=1 σi

λ

)
+ 2lBt

· ln
(
1 +

tL2

2lBt
λ
+

ht

λ

)

+H ·

√√√√λ+

Bt∑
i=1

σi

and

ht =

Bt∑
i=1

σi −
∑Bt

i=1 li · σi

2lBt

.

Proof. Notice that RFD uses the adaptive regularization term to approximate the covariance matrix,

i.e., Â(t) = λI +
∑Bt

i=1 α
(t)
i I +

∑Bt

i=1

(
S

(t)
i

)⊤
S

(t)
i , where S(t)

i is the sketch matrix in block i and

α
(t)
i is the adaptive regularization term of RFD at round t.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Similarily, we decompose
∥∥∥θ̂t − θ⋆

∥∥∥2
Â(t)

into two parts as follows∥∥∥θ̂t − θ⋆

∥∥∥2
Â(t)

=
(
θ̂t − θ⋆

)⊤
Â(t)

(
θ̂t − θ⋆

)
=
(
θ̂t − θ⋆

)⊤
Â(t)

((
Â(t)

)−1

X⊤
t (Xtθ⋆ + zt)− θ⋆

)
=
(
θ̂t − θ⋆

)⊤
Â(t)

((
Â(t)

)−1

X⊤
t Xtθ⋆ − θ⋆

)
︸ ︷︷ ︸

Term 1: Bias Error

+
(
θ̂t − θ⋆

)⊤
X⊤

t zt︸ ︷︷ ︸
Term 2: Variance Error

.

Bounding the bias error. For the bias error term, we have(
θ̂t − θ⋆

)⊤
Â(t)

((
Â(t)

)−1

X⊤
t Xtθ⋆ − θ⋆

)
=
(
θ̂t − θ⋆

)⊤ (
Â(t)

) 1
2
(
Â(t)

)− 1
2
(
X⊤

t Xtθ⋆ − Â(t)θ⋆

)
=
(
θ̂t − θ⋆

)⊤ (
Â(t)

) 1
2
(
Â(t)

)− 1
2

(
X⊤

t Xt − λI −
Bt∑
i=1

α
(t)
i I −

Bt∑
i=1

(
S

(t)
i

)⊤
S

(t)
i

)
θ⋆

≜
(
θ̂t − θ⋆

)⊤ (
Â(t)

) 1
2
(
Â(t)

)− 1
2

Dt · θ⋆

(22)

Since Dt = X⊤
t Xt − λI −

∑Bt

i=1 α
(t)
i I −

∑Bt

i=1

(
S

(t)
i

)⊤
S

(t)
i , for any unit vector a, we have

∣∣a⊤Dta
∣∣ = ∣∣∣∣∣a⊤

(
X⊤

t Xt − λI −
Bt∑
i=1

α
(t)
i I −

Bt∑
i=1

(
S

(t)
i

)⊤
S

(t)
i

)
a

∣∣∣∣∣
=

∣∣∣∣∣a⊤

(
X⊤

t Xt −
Bt∑
i=1

(
S

(t)
i

)⊤
S

(t)
i

)
a− λI −

Bt∑
i=1

α
(t)
i I

∣∣∣∣∣ .
(23)

According to Theroem 2, we can get

0 ≤ a⊤

(
X⊤

t Xt −
Bt∑
i=1

(
S

(t)
i

)⊤
S

(t)
i

)
a ≤

Bt∑
i=1

σi.

Bring the above equation into equation 23, since
∑Bt

i=1 α
(t)
i =

∑Bt

i=1 σi, we can bound the spectral
norm of Dt as follows

∥Dt∥2 ≤ λ+

Bt∑
i=1

σi. (24)

By Cauchy-Schwartz inequality and the triangle inequality, we can bound equation 22 by(
θ̂t − θ⋆

)⊤ (
Â(t)

) 1
2
(
Â(t)

)− 1
2

Dt · θ⋆

≤
∥∥∥θ̂t − θ⋆

∥∥∥
Â(t)
· ∥Dt∥2 · ∥θ⋆∥(Â(t))

−1

≤ H ·

√√√√λ+

Bt∑
i=1

σi ·
∥∥∥θ̂t − θ⋆

∥∥∥
Â(t)

,

(25)

where the last inequality holds because

∥θ⋆∥2(Â(t))
−1 ≤ ∥θ⋆∥22

λmin

(
Â(t)

) ≤ H2

λ+
∑Bt

i=1 σi

.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

Bounding the variance error. For the variance error, we have

(
θ̂t − θ⋆

)⊤
X⊤

t zt =
(
θ̂t − θ⋆

)⊤ (
A(t)

)− 1
2
(
A(t)

) 1
2

X⊤
t zt

≤
∥∥∥θ̂t − θ⋆

∥∥∥
Â(t)
·

∥∥∥θ̂t − θ⋆

∥∥∥
A(t)∥∥∥θ̂t − θ⋆

∥∥∥
Â(t)

·
∥∥X⊤

t zt
∥∥
(A(t))

−1

≤
∥∥∥θ̂t − θ⋆

∥∥∥
Â(t)
·
∥∥X⊤

t zt
∥∥
(A(t))

−1 .

(26)

where the last inequality holds because for any vector a

∥a∥2A(t) − ∥a∥2Â(t) = a⊤

(
X⊤X −

Bt∑
i=1

(
S

(t)
i

)⊤
S

(t)
i −

Bt∑
i=1

σiI

)
a

= a⊤

(
X⊤X −

Bt∑
i=1

(
S

(t)
i

)⊤
S

(t)
i

)
a−

Bt∑
i=1

σi∥a∥22

≤
Bt∑
i=1

σi∥a∥22 −
Bt∑
i=1

σi∥a∥22

= 0

(27)

By Proposition 1, we can bound the variance error term as follows

(
θ̂t − θ⋆

)⊤
X⊤

t zt

=
(
θ̂t − θ⋆

)⊤ (
A(t)

)− 1
2
(
A(t)

) 1
2

X⊤
t zt

≤
∥∥∥θ̂t − θ⋆

∥∥∥
Â(t)
·
∥∥X⊤

t zt
∥∥
(A(t))

−1

≤

√
2R2 ln

(
1

δ

∣∣A(t)
∣∣ 12 |λI|− 1

2

)
·
∥∥∥θ̂t − θ⋆

∥∥∥
Â(t)

.

(28)

According to equation 27, we have
∣∣∣Â(t)

∣∣∣ ≥ ∣∣A(t)
∣∣. For any t ∈ [T], since the rank of Â(t) is at

most 2lBt
, we can bound the determinant of Â(t) as follows

∣∣∣Â(t)
∣∣∣ ≤ (Bt∑

i=1

α
(t)
i + λ

)d−2lBt

·
2lBt∏
i=1

λi

(
Â(t)

)

≤

(
Bt∑
i=1

α
(t)
i + λ

)d−2lBt

∑2lBt
i=1 λi

(
Â(t)

)
2lBt

2lBt

=

(
Bt∑
i=1

σi + λ

)d−2lBt

 Bt∑
i=1

σi + λ+

Tr
(∑Bt

i=1

(
S

(t)
i

)⊤
S

(t)
i

)
2lBt


2lBt

≤

(
Bt∑
i=1

σi + λ

)d−2lBt
((

Bt∑
i=1

σi −
∑Bt

i=1 li · σi

2lBt

)
+ λ+

TL2

2lBt

)2lBt

,

(29)

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

where the last inequality satisfies due to

Tr

(
Bt∑
i=1

(
S

(t)
i

)⊤
S

(t)
i

)
=

Bt∑
i=1

Tr
((

S
(t)
i

)⊤
S

(t)
i

)

=

t∑
s=1

Tr(x⊤
s xs)−

Bt∑
i=1

li · σi

≤ TL2 −
Bt∑
i=1

li · σi.

Therefore, the variance error term can be bounded as

(
θ̂t − θ⋆

)⊤
X⊤

t zt

≤

√
2R2 ln

(
1

δ

∣∣A(t)
∣∣ 12 |λI|− 1

2

)
·
∥∥∥θ̂t − θ⋆

∥∥∥
Â(t)

≤

√
2R2 ln

(
1

δ

∣∣∣Â(t)
∣∣∣ 12 |λI|− 1

2

)
·
∥∥∥θ̂t − θ⋆

∥∥∥
Â(t)

≤ R ·

√√√√2 ln

(
1

δ

)
+ (d− 2lBt) ln

(
1 +

∑Bt

i=1 σi

λ

)
+ 2lBt

· ln
(
1 +

tL2

2lBtλ
+

ht

λ

)
·
∥∥∥θ̂t − θ⋆

∥∥∥
Â(t)

≤ R ·

√√√√2 ln

(
1

δ

)
+ d ln

(
1 +

∑Bt

i=1 σi

λ

)
+ 2lBt

· ln
(
1 +

tL2

2lBt
λ
+

ht

λ

)
·
∥∥∥θ̂t − θ⋆

∥∥∥
Â(t)

,

where ht =
∑Bt

i=1 σi −
∑Bt

i=1 li·σi

2lBt
.

Sum up the bias error term and the variance error term and divide both sides by
∥∥∥θ̂t − θ⋆

∥∥∥
Â(t)

simultaneously, we have

∥∥∥θ̂t − θ⋆

∥∥∥
Â(t)
≤ R ·

√√√√2 ln

(
1

δ

)
+ d ln

(
1 +

∑Bt

i=1 σi

λ

)
+ 2lBt · ln

(
1 +

tL2

2lBtλ
+

ht

λ

)

+H ·

√√√√λ+

Bt∑
i=1

σi,

which concludes the proof.

Next, we start to prove the regret. Similar to the case using FD, since the algorithm uses the principle
of optimism in the face of uncertainty to select the arm, we can bound instantaneous regret by

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

equation 19. Utilizing equation 19 and Cauchy-Schwartz inequality, we derive the following bound

RegretT =

T∑
t=1

max
x∈X

x⊤θ⋆ −
T∑

t=1

x⊤
t θ⋆

≤ 2

T∑
t=1

min
{
HL, β̂t−1(δ) · ∥xt∥(Â(t−1))

−1

}
≤ 2

T∑
t=1

β̂t−1(δ)min

{
L√
λ
, ∥xt∥(Â(t−1))

−1

}

≤ 2 ·max

{
1,

L√
λ

}
· β̂T (δ) ·

T∑
t=1

min
{
1, ∥xt∥(Â(t−1))

−1

}

≤ 2 ·max

{
1,

L√
λ

}
· β̂T (δ) ·

√√√√T

T∑
t=1

min

{
1, ∥xt∥2

(Â(t−1))
−1

}
.

(30)

We present a lemma of RFD-sketched leverage scores to conclude the proof.
Lemma 3.

T∑
t=1

min

{
1, ∥xt∥2(Â(t−1))

−1

}
≤ 2lBT

· ln
(
1 +

TL2

2lBT
λ
+

hT

λ

)
.

Proof. Denote Ct = Â(t−1) + x⊤
t xt. Notice that the first 2lBt

eigenvalues of Ct are the same

as Â(t) while the other eigenvalues of Ct are
∑Bt

i=1 α
(t−1)
i + λ. Thus we can obtain |Â

(t)|
|Ct| =(∑Bt

i=1 α
(t)
i +λ∑Bt−1

i=1 α
(t−1)
i +λ

)d−2lBt

.

For the determinant of Â(t), we have∣∣∣Â(t)
∣∣∣ = (∑Bt

i=1 α
(t)
i + λ∑Bt−1

i=1 α
(t−1)
i + λ

)d−2lBt

· |Ct|

=

(∑Bt

i=1 α
(t)
i + λ∑Bt−1

i=1 α
(t−1)
i + λ

)d−2lBt

·
∣∣∣Â(t−1)

∣∣∣ · ∣∣∣∣I +
(
Â(t−1)

)−1

x⊤
t xt

∣∣∣∣
=

(∑Bt

i=1 α
(t)
i + λ∑Bt−1

i=1 α
(t−1)
i + λ

)d−2lBt

·
∣∣∣Â(t−1)

∣∣∣ · (1 + ∥xt∥2(Â(t−1))
−1

)

=

(∑Bt

i=1 σi + λ

λ

)d−2lBt

· |λI| ·
t∏

s=1

(
1 + ∥xs∥2(Â(s−1))

−1

)
.

(31)

Since min (1, x) ≤ 2 ln (1 + x) for all x ≥ 0, using equation 31, we can derive the following bound
T∑

t=1

min

{
1, ∥xt∥2(Â(t−1))

−1

}

≤ 2

T∑
t=1

ln

(
1 + ∥xt∥2(Â(t−1))

−1

)

= 2 · ln

(λ∑BT

i=1 σi + λ

)d−2lBT

·

∣∣∣Â(T)
∣∣∣

|λI|


≤ 2lBT

· ln
(
1 +

TL2

2lBT
λ
+

hT

λ

)
,

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

where the last step holds by equation 29 and hT =
∑BT

i=1 σi −
∑BT

i=1 li·σi

2lBT
.

We combine equation 30, Theorem 6 and Lemma 3. Assume L ≥
√
λ, we have

RegretT =

T∑
t=1

max
x∈X

x⊤θ⋆ −
T∑

t=1

x⊤
t θ⋆

≤ 2 ·max

{
1,

L√
λ

}
· β̂T (δ) ·

√√√√T

T∑
t=1

min

{
1, ∥xt∥2

(Â(t−1))
−1

}

Õ
=

L√
λ
·
√
T ·

√
2lBT

· ln
(
1 +

TL2

2lBT
λ
+

hT

λ

)
·

(
H ·

√√√√λ+

BT∑
i=1

σi+

R ·

√√√√d ln

(
1 +

∑BT

i=1 σi

λ

)
+ 2lBT

· ln
(
1 +

TL2

2lBT
λ
+

hT

λ

))
.

According to Theorem 2, we can bound the spectral error by error ϵ, which is

RegretT
Õ
=

L√
λ
·

√
ln

(
1 +

TL2

2lBT
λ
+

hT

λ

)
·

(
H ·
√
λ+ ϵ+

R ·

√
d ln

(
1 +

ϵ

λ

)
+ 2lBT

· ln
(
1 +

TL2

2lBT
λ
+

hT

λ

))

Õ
=

L√
λ
·

√
ln

(
1 +

TL2

2lBT
λ
+

(
1− 2−BT

2BT+1

)
· ϵ
λ

)
·

(
H ·
√
λ+ ϵ+

R ·

√
d ln

(
1 +

ϵ

λ

)
+ 2lBT

· ln
(
1 +

TL2

2lBT
λ
+

(
1− 2−BT

2BT+1

)
· ϵ
λ

))
,

where the last inequality holds because

hT =

BT∑
i=1

σi −
∑BT

i=1 li · σi

2lBT

=

BT∑
i=1

(
1− 2i−1

2BT

)
· σi

≤ ϵ ·
BT∑
i=1

(
1− 2i−1

2BT

)
· 1
2i

=

(
1− 2−BT

2BT+1

)
· ϵ

G PROPERTIES OF DYADIC BLOCK SKETCHING FOR RFD

In this section, we highlight two significant properties of Dyadic Block Sketching for RFD that
elucidate why the regret bound of DBSLinUCB using RFD is improved. Although Robust Frequent
Directions for ridge regression have been studied by Luo et al. (2019), their theory is limited to single
deterministic streaming sketches. We demonstrate that the decomposability of multi-scale sketching
does not alter the properties of RFD.

We begin with the positive definite monotonicity of Dyadic Block Sketching for RFD, which ensures
that the sequence of approximation matrices is per-step optimal.
Theorem 7 (Positive Definite Monotonicity). At round t, denote that the Dyadic Block Sketching for
RFD provides a sketch S(t), we have the following equation(

S(t)
)⊤

S(t) + α(t)I ⪰
(
S(t−1)

)⊤
S(t−1) + α(t−1)I.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

Proof. Notice that α(t)I +
(
S(t)

)⊤
S(t) =

∑Bt

i=1 α
(t)
i I +

∑Bt

i=1

(
S

(t)
i

)⊤
S

(t)
i , where S

(t)
i is the

sketch matrix in block i and α
(t)
i is the adaptive regularization term of RFD at round t.

Let Q =

[(
S

(t−1)
Bt

)⊤
,x⊤

t

]⊤
, σt is the shrinking singular values of active block at round t, the

shrinking step of RFD provides

Bt∑
i=1

(
S

(t)
i

)⊤
S

(t)
i + σtI ⪰

Bt−1∑
i=1

(
S

(t)
i

)⊤
S

(t)
i +Q⊤Q ⪰

Bt−1∑
i=1

(
S

(t−1)
i

)⊤
S

(t−1)
i . (32)

Therefore, for any unit vector a, we have

a⊤
((

S(t)
)⊤

S(t) + α(t)I −
(
S(t−1)

)⊤
S(t−1) + α(t−1)I

)
a

= a⊤

 Bt∑
i=1

α
(t)
i I +

Bt∑
i=1

(
S

(t)
i

)⊤
S

(t)
i −

Bt−1∑
i=1

α
(t−1)
i I −

Bt−1∑
i=1

(
S

(t−1)
i

)⊤
S

(t−1)
i

a

= a⊤

 Bt∑
i=1

(
S

(t)
i

)⊤
S

(t)
i + σtI −

Bt−1∑
i=1

(
S

(t−1)
i

)⊤
S

(t−1)
i

a

≥ 0,

which concludes the proof.

Next, we prove that the sketch matrix produced by Dyadic Block Sketching for RFD is better
conditioned than those produced by Dyadic Block Sketching for FD and the covariance matrix. In
this context, the α selected by RFD is optimal, as choosing a smaller α would result in a worse
condition number for the approximation matrices.

Theorem 8 (Well-Conditioned Property). Let cond(X) = σmax(X)
σmin(X) be the condition number of

matrix X . At round t, denote that the Dyadic Block Sketching for RFD provides a sketch S(t), we
have

cond
((

S(t)
)⊤

S(t) + α(t)I + λI

)
≤ cond

((
S(t)

)⊤
S(t) + λI

)
,

cond
((

S(t)
)⊤

S(t) + α(t)I + λI

)
≤ cond

(
X⊤

t Xt + λI
)
.

Proof. Notice that α(t)I +
(
S(t)

)⊤
S(t) =

∑Bt

i=1 α
(t)
i I +

∑Bt

i=1

(
S

(t)
i

)⊤
S

(t)
i , where S

(t)
i is the

sketch matrix in block i and α
(t)
i is the adaptive regularization term of RFD at round t. We have

cond
((

S(t)
)⊤

S(t) + α(t)I + λI

)
=

σmax

(∑Bt

i=1

(
S

(t)
i

)⊤
S

(t)
i

)
+ λ+

∑Bt

i=1 α
(t)
i

λ+
∑Bt

i=1 α
(t)
i

≤
σmax

(∑Bt

i=1

(
S

(t)
i

)⊤
S

(t)
i

)
+ λ

λ

= cond
((

S(t)
)⊤

S(t) + λI

)
.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

Similarly, we have

cond
((

S(t)
)⊤

S(t) + α(t)I + λI

)
=

σmax

(∑Bt

i=1

(
S

(t)
i

)⊤
S

(t)
i

)
+ λ+

∑Bt

i=1 α
(t)
i

λ+
∑Bt

i=1 α
(t)
i

≤
σmax

(
X⊤

t Xt

)
+ λ+

∑Bt

i=1 α
(t)
i

λ+
∑Bt

i=1 α
(t)
i

≤
σmax

(
X⊤

t Xt

)
+ λ

λ

≤ cond
(
X⊤

t Xt + λI
)
,

which concludes the proof.

H OPEN ACCESS TO DATA

MNIST: http://yann.lecun.com/exdb/mnist/

I EXPERIMENT OF ERROR PARAMETER

We evaluate the performance of the proposed method by varying the error parameter ϵ on the real-
world dataset MNIST. The experimental setup is consistent with Section 5.3. Specifically, we set
ϵ = 200, 1000, and 8000, and record the spectral norm error ∥A⊤

t At −S⊤
t St∥2, regret, and running

time.

0 200 400 600 800 1000 1200
Number of Rows

0

500

1000

1500

2000

2500

3000

3500

Sp
ec

tra
l N

or
m

 E
rro

r

DBS-FD(= 200)
DBS-FD(= 1000)
DBS-FD(= 8000)

(a) Spectral norm error on MNIST

0 500 1000 1500 2000
Number of Rounds

0

50

100

150

200

250

300

350

Re
gr

et

DBSLinUCB (= 200)
DBSLinUCB (= 1000)
DBSLinUCB (= 8000)

(b) Regret on MNIST

DBSLinUCB
(= 200)

DBSLinUCB
(= 1000)

DBSLinUCB
(= 8000)

Methods

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

Ti
m

e(
s)

(c) Running time on MNIST

Figure 5: (a), (b), (c): The spectral norm error, cumulative regret and total running time w.r.t the error
parameter ϵ on MNIST

From Figure 5, we observe that increasing the error parameter ϵ results in higher spectral error
and regret but reduces computational time, which aligns with the theoretical results. Furthermore,
in practical applications, it is unnecessary to set ϵ too small. As shown in Figures 5a and 5b, the
performance with ϵ = 200 is comparable to that with ϵ = 1000. This is because ϵ serves as an upper
bound on the spectral error, and appropriate sketching operations have minimal impact on overall
performance.

28

http://yann.lecun.com/exdb/mnist/

	Introduction
	Revisiting Matrix Sketching in Linear Bandits
	Linear Bandits through Matrix Sketching
	The Motivation of Revisiting

	Dyadic Block Sketching for Constrained Global Error Bound
	Decomposability
	Algorithm Descriptions
	Analysis

	Linear Bandits through Dyadic Block Sketching
	Experiments
	Matrix Approximation
	Online Regression in Synthetic Data
	Online Classification in Real-world Data

	Conclusion
	Proof of Theorem 1
	Proof of Theorem 2
	Fast Algorithm of Dyadic Block Sketching
	Pseudo-code of Deterministic Matrix Sketching
	Proof of Theorem 3
	Proof of Theorem 4
	Properties of Dyadic Block Sketching for RFD
	Open Access to Data
	Experiment of error parameter

