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Abstract

Low-rank adaptation (LoRA) is an attractive alternative of adapting full weights for
the federated fine-tuning of large pretrained models, which can significantly reduce
computational burden. In principle, federated LoRA can provide an effective
mean to allocate different resources to each client by tuning ranks for each client.
However, we find that the empirical performance of LoRA is highly unstable
with respect to such rank-heterogeneity. Our investigation reveals that the root
cause of this instability is the zero-padding-based aggregation strategy adopted
in conventional federated LoRA frameworks, which causes the information from
high rank clients to become diluted during the aggregation process. To address
this issue, we propose a new replication-based padding strategy, which allows us
to better leverage the information from clients with high-quality datasets. This
method ensures that valuable information from high rank clients is retained during
the aggregation process, accelerating the convergence speed and enhancing the
overall prediction quality of the global model.

1 Introduction

Large-scale pretrained models, or foundation models, have demonstrated unprecedentedly strong
performance on various tasks (Achiam et al., 2023; Radford et al., 2021; Kirillov et al., 2023), but
they also have unprecedentedly large number of parameters. Large language models (LLMs), for
instance, often have over trillions of parameters (Achiam et al., 2023). This vast scale is problematic
as it incurs much computational burden. In this context, low-rank adaptation (LoRA) has emerged as
a promising option for federated fine-tuning from pretrained weights (Hu et al., 2022). Instead of
fine-tuning full weight matrices, LoRA keeps the original weight matrices frozen and trains only the
updates, which is parametrized as a product of two low-rank matrices. This dramatically reduces the
effective number of parameters.

As research on LoRA progresses, its application in federated learning has also gained attention,
with some studies exploring the use of LoRA in heterogeneous setting. This aspect, however, is
immensely understudied in the literature, leaving much room for improvements (Babakniya et al.,
2023; Cho et al., 2024). In this paper, we identify a critical shortcoming of existing frameworks for
rank-heterogeneous federated low-rank adaptation: Whenever the client quality varies significantly,
existing rank-heterogeneous methods tend to converge slower than the rank-homogeneous federated
learning that uses a smaller total bandwidth. Our investigation reveals that this is primarily due to
the suboptimal aggregation strategy used in conventional federated LoRA frameworks (Cho et al.,
2024); to aggregate updates with disparate rank, such works rely on zero-padding, i.e., matching the
dimensionality by concatenating all-zero rows and columns to the low-rank-decomposed parameter
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updates. Such strategy may be suboptimal, as the high-priority information in the highest rank LoRA
update (from the privileged client) can be made less relevant by being averaged with padded zeros.

To address this problem, we develop a very simple yet effective replication strategy for aggregating
rank-heterogeneous LoRA updates in the setting where clients have high variances in the data quality.
To avoid having highly relevant information from being diluted, our strategy pads the lower rank
updates with the replicated entries of the higher-priority clients, instead of zeros. Empirically, the
proposed method achieves faster convergence to the higher accuracy than existing rank-homogeneous
and heterogeneous paradigms.

2 Background and Related work

2.1 Federated Fine-tuning with LoRA

Low-Rank Adaptation, or simply LoRA (Hu et al., 2022), is a parameter-efficient fine-tuning (PEFT)
method that keeps the original pretrained weight parameters fixed and only trains newly added
parameters. More concretely, consider fine-tuning a pretrained weight matrix Wpre ∈ Rm×n. LoRA
reparametrizes the updated weight matrix Wft ∈ Rm×n as a sum of the original weight matrix and a
product of two low-rank matrices:

Wft = Wpre +BA, A ∈ Rr×n, B ∈ Rm×r, (1)
where r is the rank of the parameter update. As we keep the original weight matrix Wpre frozen, only
the matrices A and B are trainable parameters. Thus, the number of (active) parameters becomes
(m+ n)r, which can be smaller than the number of parameters for the original matrix mn whenever
the rank r meets the condition r < mn/(m+ n). Typically, the rank r is chosen to be much smaller
than the dimensionality of the weight matrix m,n. For instance, for fine-tuning LLMs, e.g., Llama
(Touvron et al., 2023), it is conventional to use r = 16 for the matrices of size m = n = 4096. In this
case, the number of parameter reduces to the 1/128 ≈ 0.78% of the original weight matrix, leading to
a proportional decrease in the communication cost for federated fine-tuning.

2.2 Data Heterogeneity and the Federated PEFT

Data heterogeneity, or the discrepancy among the client-wise data distribution, has been studied
extensively in federated learning. Such heterogeneity is very common in real world scenarios, and can
severely degrade the model performance (Zhu et al., 2021). Many works have focused on resolving
this issue, proposing various solutions including that involve data sharing (Zhao et al., 2018) or better
calibration of batch normalization (Li et al., 2021).

The dataset heterogeneity has also been discussed in the context of parameter-efficient federated
learning. For instance, Kim et al. (2023) study how the negative impacts of dataset heterogeneity
can be mitigated the federated learning of adapters (Houlsby et al., 2019). Most closely related to
our work, Cho et al. (2024) consider assigning different rank for the clients, as a mean of addressing
inter-client heterogeneity.

In contrast to these works, our work primarily focuses on the scenario where the relative importance
of each client can be dramatically different. Even clients with similar amounts of data can have
significantly different importances depending on whether the data is uniformly distributed, and when
both clients have a similar degree of imbalance but different majority classes, their importances can
also differ. When some clients are notably of better quality than others, we demonstrate that the
algorithm of Cho et al. (2024) may not be effective; our work proposes a way to fix this problem.

3 Method

Aggregation with zero-padding. In the federated LoRA, the server receives k different LoRA
updates from the clients:

∆W1 = B1A1, A1 ∈ Rr1×n B1 ∈ Rm×r1 (2)

∆Wi = BiAi, Ai ∈ Rr2×n Bi ∈ Rm×r2 (i ̸= 1) (3)
where we assume r1 > r2. To aggregate LoRA updates with mismatched dimension, (Cho et al.,
2024) proposes to perform zero-padding, i.e., concatenate zero columns and rows to the LoRA
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Table 1: Comparison of accuracy before and after aggregation.

Method round 1 round 2 round 3

before after before after before after

Client A (balanced) Zero-padding 84.34 38.95 71.58 42.92 86.58 50.53
Replication method 84.34 82.11 88.82 86.16 89.47 86.05

Others (average) Zero-padding 24.96 23.95 31.07 43.42 45.06 49.11
Replication method 24.96 23.95 31.07 44.08 44.48 76.63

Figure 1: A comparison of two strategies for aggregating rank-heterogeneous LoRA updates. Left:
A visual illustration of the conventional zero-padding strategy. Right: A visual illustration of the
proposed replication-based strategy.

updates. That is, the matrix Bi is padded with all-zero columns as B̃i = [Bi|0|0| · · · |0], where the
number of zero-padded columns is r1 − r2. By averaging the zero-padded weight updates, the left r1
columns may retain the same relative scale as the original weight upate. However, the remaining r2
columns may have the relative scale of 1/k, having their impact on the overall model much diminished
as the number of clients grow. In this sense, the conventional zero-padding strategy can be deemed
suboptimal in retaining the information of the high-quality client as shown in table 1.

To resolve the issue, we propose a very simple yet effective solution. In particular, we develop a
replication-based aggregation strategy, which replicates the parameter-update information from the
high-quality clients and applies it to pad the updates for the lower rank clients. This operation can be
done rapidly, thus incurring only negligible latency to the overall federated learning pipeline.

Replication algorithm: A simplified description. For simplicity, we first describe the case where
we have one high rank client and one low rank client. Concretely, let ∆W1 = B1A1 be the high
rank parameter updates from the high-quality client (r = r1), and let ∆W2 = B2A2 be the low rank
parameter update from another client (r = r2 < r1). The padded version of the low rank matrix is

B̃2 =
[
B2

∣∣∣b(r2+1)
1

∣∣∣ · · · ∣∣∣b(r1)1

]
, (4)

where b
(i)
1 denotes the i-th column vector of the matrix B1. We process the matrix A2 in a similar

manner (figure 1). After this step, we average the weight matrices as usual in the FedAvg (McMahan
et al., 2017). That is, we perform the averaging:

Bnew =
1

2

(
B1 + B̃2

)
, Anew =

1

2

(
A1 + Ã2

)
(5)

The case of multiple clients. Whenever there are multiple high rank clients, we handle this in three
steps: (1) Aggregate the high rank clients (2) Replicate the entries of the aggregated high rank clients
(3) Take a weighted average of the padded low rank and the aggregated high rank LoRA updates;
here, we set the relative weight of the aggregated high rank LoRA updates to be proportional to the
number of high rank clients.

Allocating high rank. First, we allocate low rank to all clients. After the first local update phase, the
server select top-k clients with the highest validation accuracy. The clients are then allocated of a
high rank. We test this algorithm in Experiments section, where we find that the proposed algorithm
often performs even better than collecting high rank updates from every clients.
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4 Experiments

4.1 Experimental Setup

Datasets. We focus on the task of text classification. We use two datasets: AG’s News (Zhang et al.,
2015), and DBpedia (Auer et al., 2007). We use 10% of the test set for validation, and use the rest for
testing.

Models. Considering the fact that the computational resources of edge clients are often limited, we
use two lightweight BERT-style language models: DistilBERT (Sanh et al., 2019), and ALBERT
(Lan et al., 2020). For classification, we add an initialized classification layer to these models; the
layer is frozen to its initial values without further training, as in (Sun et al., 2024). We apply LoRA
only to the self-attention layer.

Clients. We employ total 100 clients, and the training dataset is distributed over these clients without
overlap. We model two different types of clients: (1) High-quality (HQ) clients have more balanced
local data, i.e., having similar number of samples from each class. (2) Low-quality (LQ) clients have
datasets with more class imbalance, i.e., minority classes can have very few samples. We randomly
select 10% of all clients to be HQ clients, and the remaining 90% to be LQ clients. To implement the
clients, we follow prior studies (Lin et al., 2021; Babakniya et al., 2023) to apply Dirichlet distribution
for generating non-i.i.d. datasets. The distribution is parametrized by a hyperparameter α; the smaller
α indicates more heterogeneity, and the larger α implies more uniformity. We use α = 5.0 and
α = 1.0 for HQ and LQ data, respectively. The average number of samples for both HQ and LQ data
have been set to be equal. At the initial round, we apply r = 5 to all clients. After initial round, we
assign r = 20 to the top 10% clients that achieve highest validation accuracy.

Training. We follow FedAvg (McMahan et al., 2017) to conduct one local epoch training per a global
round. We randomly select 10% of clients to participate global round, ensuring that the proportion of
clients with high and low rank remains consistent with the overall distribution. We use Adam with
the learning rate 5e-4, without any further scheduling.

Baselines. We compare the proposed replication-based aggregation strategy with three baselines. (1)
Homogeneous. All clients have a same rank; there is no need to aggregate or truncate. We evaluate
r ∈ {5, 7, 20}, where r = 7 has a similar total communication cost with the rank-heterogeneous
LoRA; see table 2. (2) Naïve zero-padding. The strategy where one pads all-zero rows and all-zero
columns to match the dimensionality of rank-heterogeneous weight updates (proposed in Cho et al.
(2024)). (3) Frobenius zero-padding. One performs the same zero-padding, but applies a weighted
sum instead of averaging, with weight proportional to the frobenius norm of the product matrix
∥∆Wi∥F (proposed in (Cho et al., 2024)).

4.2 Experimental Results

The leftmost data point denotes the accuracy at initialization (thus can be ignored when comparing
baselines), and the subsequent data points denote the test accuracies after each communication round.

Result in DistilBERT. (Figure 2, top row) Our first observation is that the proposed replication-
based aggregation strategy (red) achieves the fastest convergence over all compared methods in both
cases. In particular, the proposed strategy successfully achieves the near-peak test accuracy in two
communication rounds. In terms of the converged test accuracy, the proposed strategy is also among
one of the best methods, with the communication-heavy option (homogeneous rank 20; orange) only
slightly outperforming on AG’s News. Zero-padding-based strategies (dashed lines with circles)
converge slower than rank-homogeneous options, with Frobenius padding converging slightly faster
than naïve. Among rank-homogeneous models, the one with a higher rank tends to converge faster,
to a higher final accuracy than the one that uses a lower rank.

Result in ALBERT. (Figure 2, bottom row) Similarly, our method achieves a the fastest convergence
to the high accuracy, only slightly worse than the communication-heavy case (homogeneous rank
20). We note that, in AG’s News, the homogeneous LoRA tend to perform slightly better than the
replication-based padding after the very first round; this is because the quality of the high rank client
selected in the step by our method happened to be worse than other high rank clients. However, our
method quickly starts to outperform the baselines in the subsequent rounds; this suggests that our
method performs robust w.r.t. the suboptimalities in the high rank client selection.
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Figure 2: Test accuracy of DistilBERT (top) and ALBERT (bottom) on the AG’s News (left) and
DBPedia (right) datasets.

Table 2: Comparison of Communication Costs by Rank with DistilBERT
Method LoRA (r=20) LoRA (r=7) Ours LoRA (r=5)

num of parameters 552,960 193,536 179,715 138,240
communication cost 2.11MB 0.74MB 0.69MB 0.53MB
percent of total model 0.83% 0.30% 0.27% 0.21%

Comparison of communication cost. In this part, we make a quantitative comparison of the commu-
nication cost used by each rank-homogeneous and hetero-geneous methods (table 2). In particular, we
compare the uplink communication, i.e., sent to server, which is the main communication bottleneck.
We compare the communication cost used per client (in average) for the transmission of LoRA
updates. We use DistilBERT for comparison. Percent of total model indicates the percentage of
parameters used when applying LoRA compared to fully fine-tuning the original DistilBERT.

From the table, we confirm that our method uses less communication bandwidth than rank-
homogeneous options with r = 7. As our method requires smaller number of rounds for convergence,
our method is communication-efficient than rank-homogeneous options in both ends.

5 Conclusion

We have analyzed the negative impacts that the zero-padding method during the aggregation process
when using heterogeneous LoRA in federated learning, and proposed a replication-based padding
method to address these issues. We have experimentally demonstrated that this method not only
outperforms heterogeneous LoRA using zero-padding but also achieves faster convergence compared
to homogeneous LoRA with high ranks. This suggests that in situations with extremely limited
bandwidth, a strategy of assigning higher ranks to only a limited set of clients—while leaving others
with low rank—can reduce the overall communication cost burden. We believe that our research
opens up new challenges and opportunities in federated fine-tuning, and we are confident that this
study will contribute to more efficient federated learning in terms of communication costs.
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