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Abstract

Segmentation models can recognize a pre-defined set of objects in images. How-
ever, segmentation models capable of "reasoning" over complex user queries that
implicitly refer to multiple objects of interest remain underexplored, especially in
the geospatial domain. Recent advances in "reasoning segmentation"—generating
segmentation masks from complex, implicit query text—demonstrate the potential
of vision-language models (VLMs) to reason across an open domain of objects.
Yet, our experiments reveal that these models struggle when applied to the unique
challenges of remote-sensing imagery. To address this gap, we introduce a new
dataset which consists of: GRES, a curated geospatial reasoning-segmentation
dataset with 27,615 annotations across 9,205 images, and PreGRES, a collection
of existing datasets to make up a large-scale multimodal pretraining corpus with
over 1M question-answer pairs across 119,279 images. We propose an initial
benchmark model, LISAT, a VLM for geospatial analysis that can describe com-
plex remote-sensing scenes, answer detailed queries, and segment objects based on
natural-language prompts. LISAT establishes a strong initial geospatial benchmark,
outperforming prior foundation models such as RS-GPT4V by 10.04% (BLEU-4)
on visual description tasks and surpassing open-domain models on geospatial
reasoning segmentation by 143.36% (gIoU). Our model, dataset, and code are
available on our project page.

1 Introduction

Segmentation models for remote-sensing have been a staple of geospatial analysis, supporting
applications ranging from disaster response, environmental monitoring, and more [56, 47]. These
models typically operate within rigid boundaries but struggle to adapt to real-world scenarios in
which the ability to segment regions based on flexible, user-defined queries—tasks often referred to
as reasoning segmentation—is paramount [24]. For instance, a query such as “identify flood-prone
urban areas” or “which regions have observed urban expansion” demands that segmentation models
move beyond static object recognition and into contextual, task-specific reasoning. However, progress
in this area has been limited, primarily due to the absence of datasets that pair natural language
reasoning prompts with pixel-level segmentation in remote-sensing imagery.

Adapting vision-language models to remote-sensing is challenging due to the unique characteristics of
satellite imagery—high variability in object scale, spatial context, and clutter [46]. These challenges
are compounded by the lack of high-quality datasets that pair natural language queries with fine-
grained spatial annotations. While large-scale multimodal datasets exist for natural images, remote-
sensing lacks such resources, making it difficult for general-purpose or natural-image-trained models
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Figure 1.1: Existing models struggle to generate accurate segmentation masks for complex natural
language queries in remote-sensing imagery. LISAT, our open-source, open-data, foundation model
for geospatial reasoning segmentation trained on GRES, our new semi-synthetic dataset for remote-
sensing reasoning segmentation, helps to bridge the gap between SOTA reasoning segmentation
models and remote-sensing domains.

to perform reasoning segmentation effectively [61, 69]. Recent geospatial foundation models excel at
tasks like captioning and VQA but are limited to textual outputs and cannot generate segmentation
masks. Existing vision-language models that support segmentation [24, 45, 19] struggle in this
domain due to the scarcity of spatially grounded language supervision in remote-sensing.

We address these challenges by introducing a new dataset designed to enable multimodal learning
for geospatial reasoning segmentation. First, it contains PreGRES, which aggregates over 1 million
question-answer pairs from diverse remote-sensing datasets along with 119,279 images and serves
as a large-scale dataset for pretraining multimodal large language models on geospatial content.
Then, GRES (Geospatial Reasoning Segmentation dataset), which provides a fine-grained supervi-
sion through 27,615 pixel-level annotations paired with natural language reasoning segmentation
queries across 9,205 satellite images. These two components of the dataset form a complementary
training pipeline where models are first pretrained on PreGRES to acquire broad geospatial reasoning
capabilities, then fine-tuned on GRES for dense, spatially grounded segmentation.

To demonstrate the utility of this dataset, we train an initial benchmark model LISAT (Language
Instruction Segmentation Assistant for Satellite Images), an open-source and open-data vision-
language model that bridges the gap between reasoning segmentation and remote-sensing foundation
models. LISAT achieves significant performance gains over state-of-the-art geospatial and open-
domain models. Specifically, LISAT outperforms existing geospatial foundation models, such as
RS-GPT4V, by over 10.04% on BLEU-4 on remote-sensing visual description tasks and outperforms
state-of-the-art open-domain models on remote-sensing reasoning segmentation by 143.36% on gIoU.

2 Related Work

Semantic segmentation is a core task in remote sensing, supporting applications in urban planning,
economic assessment, agriculture, resource management, and environmental protection [56, 15, 16,
7, 14, 47]. However, traditional models are often task-specific and require extensive fine-tuning to
adapt across use cases. The rise of vision-language models (VLMs) [42, 32] has driven interest in
models that can handle arbitrary natural language queries alongside images. General-purpose models
like GPT-4 [1] and LLaVA [31] enable tasks such as visual description and question answering, but
they do not perform well in geospatial reasoning segmentation. Developing effective models in
this context requires access to large, high-quality datasets that pair natural language with detailed,
spatially-grounded annotations, which remains a significant gap in the field that we seek to close.

2.1 Remote-Sensing Datasets for Multimodal Learning

Semantic segmentation in remote sensing has long been constrained by a lack of large-scale datasets
that combine fine-grained spatial annotations with multimodal supervision. Well-established bench-
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marks such as DeepGlobe [11, 51, 25] have advanced geospatial vision tasks by providing imagery
annotated for classification, detection, and basic segmentation. However, these datasets do not
support the kind of complex, query-driven interaction that modern vision-language models require.
To support multimodal tasks, several remote sensing datasets have emerged at the image or region
level. Datasets like Sydney-Captions [41], RSICD [35], NWPU-Captions [41], RSITMD [65], and
UCM-Captions [41] enable captioning and image-text retrieval. While useful for high-level semantic
understanding, they are individually small in scale, and combining them will help improve text
generation. More recent efforts, such as VRSBench [27] and GeoChatInstruct [23] have expanded
multimodal learning to region-level tasks like grounded image captioning, region-specific question
answering, and visual grounding. These datasets are built on existing remote sensing datasets (e.g.,
[66, 54]) and use rule-based or GPT-based methods to automatically generate textual descriptions for
objects or regions within images. While they support region-level reasoning through bounding box
annotations, they do not include pixel-level ground truth, which is necessary for supervised training
in segmentation tasks. Datasets that do provide segmentation supervision, such as FloodPrompt
[26] and RefSegRS [64], are often domain-specific or limited in scale, with RefSegRS offering only
4,420 images. The dataset we introduce, PreGRES and GRES, are specifically developed to address
these limitations. Together, they provide a unified pipeline of detailed spatial annotations paired
with natural language, enabling the training of models that can both understand and segment remote
sensing imagery.

2.2 Reasoning Segmentation

Reasoning segmentation refers to generating segmentation masks from complex or implicit natu-
ral language queries (Figure 1.1). Two main approaches have emerged for this task. The first is
the embedding-as-mask paradigm, introduced by LISA [24], which decodes a [SEG] token into a
segmentation mask using a SAM-based decoder [22]. PixelLM [45] improved multi-target differen-
tiation with a lightweight pixel decoder and segmentation codebook, while GSVA [58] introduced
a [REJ] token to handle ambiguous or absent targets. GLaMM [44] addressed granularity through
focused training data. The second approach represents visual outputs directly in language, as in
Shikra [6], Kosmos-2 [40], and others [71, 62, 31, 32], which align vision and language to predict
textual descriptions or coordinates. Despite progress, existing methods underperform in remote
sensing due to challenges like varying spatial resolution, fine-grained class differences, and a lack of
domain-specific datasets (Table 5.4). Our proposed model, LISAT, extends the embedding-as-mask
paradigm to top-down remote-sensing data.

2.3 Geospatial Foundation Models

Recent geospatial foundation models have extended the foundation model paradigm to remote
sensing, supporting tasks such as captioning, VQA, and object detection. EarthGPT [69] unifies
multi-sensor RS tasks using a large-scale multimodal dataset (see subsection 3.1). TEOChat [21]
introduces temporal reasoning for change detection and damage assessment, while GeoChat [23]
enables region-specific dialogue and visual grounding. SkyEyeGPT [67] and RS-GPT4V [61] focus
on instruction-following and complex scene understanding. Despite this progress, existing models
primarily produce natural language outputs and lack support for spatial outputs like segmentation
masks. Our proposed model, LISAT, addresses this limitation by directly generating segmentation
masks in response to reasoning queries.

3 Geospatial Reasoning Segmentation Dataset

The development of vision-language models (VLMs) for remote sensing has been hindered by the
lack of high-quality remote sensing imagery paired with natural language data, a key challenge
outlined in our introduction. Unlike natural image datasets, remote-sensing data require fine-grained,
context-aware segmentation that accounts for extreme variations in scale, subtle object differences,
and the ability to reason across complex spatial relationships. To help alleviate this need, we introduce
the Geospatial Reasoning Segmentation Dataset (GRES), a collection of vision and language data
designed around remote-sensing applications. GRES consists of two core components: PreGRES, a
dataset consisting of over 1M remote-sensing specific visual instruction-tuning Q/A pairs for pre-
training geospatial models, and GRES, a semisynthetic dataset specialized for reasoning segmentation
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Figure 3.2: To generate synthetic data, we start with a seed detection dataset (xView). We then
filter detections for those that are both visually interesting and highly distinguishable (A). For those
detection, we then generate a natural language description (B), and a pixel-wise segmentation mask
(C). Finally, the natural language description is used to generate a localization query (D). Together,
the segmentation mask and the query form a ground-truth pair for the LISAT reasoning segmentation
fine-tuning.

of remote-sensing data. With this structure of GRES, we enable LISAT to overcome both data scarcity
and the domain transfer limitations faced by general-purpose models.

3.1 PreGRES

PreGRES is a large-scale structured collection of existing smaller-scale geospatial datasets designed
for fine-tuning vision-language models in remote sensing applications. It integrates multiple sources,
each contributing to different aspects of geospatial data understanding. The datasets within GRES
provide coverage across image captioning, visual question answering, and visual grounding tasks:

1. Image Captioning: NWPU-Captions [9], RSICD [35], RSITMD [65],
Sydney-Captions [41], and UCM-Captions [41]. Each contributes paired image-
text data, and contains long-form descriptions of top-down imagery across different
geospatial environments, increasing the diversity of language supervision.

2. Visual Question Answering (VQA): RSVQA_LR [33], RSVQA_HR [33], FloodNet [43],
and RSIVQA [73]. Each of these datasets consists of structured question-answer pairs
and supports reasoning over aerial and satellite images, covering tasks such as object
identification, scene understanding, and disaster assessment.

3. Visual Grounding / Region-Level Captioning: DIOR-RSVG [66] provides paired text-
image data for object localization and spatial reference resolution, and NWPU-RESISC45 [8]
supplies scene classification labels.

Overall, PreGRES consists of 119,279 images and 1,204,993 question-answer pairs and is used in the
first-stage pre-training of the LISAT model enabling general-purpose geospatial question-answering
in the final LISAT model. For more details on dataset composition, see Table D.11.

3.2 GRES

GRES is a semi-synthetic dataset designed explicitly for geospatial reasoning segmentation. Each
sample in GRES consists of an image, a natural language query referring to a single object in that
image, and a pixel-level segmentation mask (See Figure 3.2 for an example of a GRES query/image
pair). This task allows us to train the LISAT model to correctly localize images at a pixel level within
the scene, even in the case of multiple objects requiring disambiguation.

To build the dataset, we begin with a subset of the xView dataset [25] consisting of 26, 541 high-
resolution satellite images spanning approximately 1, 400 square kilometers, covering more than 60
classes. xView consists of paired images and object detections within the images in bounding box
form. To convert xView images/annotations to GRES annotations/images, we follow the process
overviewed in Figure 3.2.
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Given an input image of size 512 × 512, we divide it into 4 quadrants, where the top-left quadrant
is defined by 0 ≤ x ≤ 255, 0 ≤ y ≤ 255; the top-right quadrant is defined by 256 ≤ x ≤ 511, 0 ≤

y ≤ 255; the bottom-left quadrant is defined by 0 ≤ x ≤ 255, 256 ≤ y ≤ 511; the bottom-right
quadrant is defined by 256 ≤ x ≤ 511, 256 ≤ y ≤ 511.

In the first part of the pipeline, we need to generate a “disambiguating query” that selects for a single
object within the scene from the large set of objects. To do so, we first filter the scenes for two key
objectives: (1) uniqueness (i.e. can objects be easily disambiguated with a natural language query),
and (2) interest (i.e. are the objects visually interesting) (Figure 3.2, A). An object is considered
“unique” in an image if it is one of less than 2 detections of its class in its respective quadrant, and
an object is considered “visually interesting” if it belongs to a class appearing in less than 50% of
the overall subset of xView detections. Comprehensive statistics of object categories after filtering
are available in Table C.7. To ensure a balanced evaluation, our dataset includes queries with and
without explicit spatial references, each with a 50% probability.

After the filtering stage, we convert the object detection to a query using a set of structured queries to
a large vision and language model trained on natural images (in our case, GPT-4v [1], Figure 3.2, B).
In the first prompting stage, we ask the VLM to identify unique characteristics of the class within the
bounding box by asking the model to “Find visual features (color, shape, size, etc.)
that to help find or segment {class_name} in the image.”. We then ask the VLM to
come up with a sentence describing the object in the bounding box within the scene using the collected
unique characteristics (See the full prompt in Appendix C.1.1). Given these features, we prompt
the VLM again with the full image, along with other detections in the image and the position of the
bounding box to produce a query(see the full prompt in Appendix C.1.2, Figure 3.2, D).

In the second part of the pipeline (Figure 3.2, C), we need to generate the pixel-based mask from
the bounding box. To do this, we leverage a GeoSAM model [48] with a custom high-resolution
inference configuration (128 points per side, 0.95 prediction IoU threshold, and 0.95 stability score
with an 80-pixel minimum mask region area) to produce a part-wise segmentation of each bounding
box. We then add any sub-parts that cover more than 80px of the underlying bounding box to the
final pixel mask.

We then asked the VLM to rephrase each query two separate ways which added to the initially
generated query gives us 3 queries per image. This pipeline overall results in a dataset consisting of
9,205 images and 27,615 natural language queries/answers within those images. From this dataset,
we generate train, test, and validation splits consisting of 7,205, 1,500, and 500 images respectively.

4 Training LISAT for Geospatial Reasoning Segmentation

Inspired by LISA [24], LISAT integrates a multimodal large language model (LLM) with a segmen-
tation model. The multimodal LLM processes both textual and visual inputs, leveraging datasets that
contain image-text pairs for instruction-following and reasoning [32] while the segmentation model
uses a dataset designed for high-quality mask generation [22]. An overview of the architecture is
given in Figure 4.3.

4.1 Geospatial Multimodal Language Models

While LISA [24] leverages a pre-trained LLaVA [31, 32] model as a vision and language backbone,
we found that leveraging LLaVA alone was insufficient to capture the range of queries and visual
variance in remote-sensing applications. To solve this problem, in the first stage of our training
process we trained a remote-sensing specific multimodal large language model to serve as the base
MLLM for the segmentation backbone. Our architecture generally follows LLaVA [31, 32] with
several modifications for remote-sensing applications.

For the base language model, we leverage the default Vicuna-7B [10] without additional pre-training
or fine-tuning for remote sensing data to embed a text query Xl. For the visual backbone, LISAT

adopts the Remote-CLIP ViT-L/14 encoder [30] to extract visual features from an input image Xv.
To align visual representations with the language model’s word embedding space, we use a simple
linear projection matrix to produce a sequence of visual tokens that match the dimensionality of the
word embeddings in the language model. A pre-trained Vicuna base model combined with the vision
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Figure 4.4: Scaling behavior of LISAT on the
GRES dataset. While adding additional data
is helpful, even with 7K training images (the
full GRES dataset), we observe the beginning of
a plateau in performance, particularly on cIoU
scores. This suggests that more data alone may
not be helpful, and instead, we may need addi-
tional data variance outside the xView classes.

Segmentation Model cIoU gIoU

GeoSAM [48] 0.220±0.019 0.238±0.007

SAM [22] 0.245±0.023 0.275±0.009

Table 4.1: Comparison of LISAT’s performance
using GeoSAM vs. SAM for segmentation on
the All dataset configuration.

encoder is further pre-trained on PreGRES (see section 5) with LoRA [18] prior to being trained on
GRES. We refer to this pre-trained variant as LISATPRE.

4.2 Preliminaries

Existing multimodal LLMs for remote sensing, such as RS-GPT4V [61] and EarthGPT [69], support
images and text as input but output only text. To produce segmentation masks, LISAT leverages the
“embedding-as-a-mask” paradigm introduced by LISA [24], and expands the LLM vocabulary with
a new token, <SEG>, which represents segmentation requests. When the model produces an output
containing the <SEG> token, we extract the final layer embedding of that token, and project it via an
MLP layer to the query space of a SAM-based segmentation decoder [22]. The segmentation decoder
combines the query-projected final embedding and a set of visual features extracted from the base

image to produce a final segmentation mask M̂.

4.3 Training Objectives

LISAT is trained end-to-end with a loss function that combines text generation and segmentation
objectives. The total loss L is the weighted sum of two components:

L = λtxtLtxt + λmaskLmask. (4.1)

where the text generation loss Ltxt is an autoregressive cross-entropy loss:

Ltxt = CE(ŷtxt,ytxt). (4.2)

and the segmentation loss Lmask consists of a per-pixel binary cross-entropy (BCE) loss and a DICE
loss, weighted by λbce and λdice:

Lmask = λbceBCE(M̂,M) + λdiceDICE(M̂,M). (4.3)
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Table 5.2: Qualitative examples of the segmentations generated by LISAT on the GRES dataset.

Queries RGB LISA LISAT (Ours) Ground Truth

Locate the
building with a

large rectangular
structure, dark

roof, and
symmetrical

window patterns.

Identify the
facility in the

center-left of the
image.

Identify the
damaged building

in the center of
the image.

Failure Case:
Locate the dark,

elongated
rectangular shape
with a red outline
against the dark
background to

identify the barge.

5 Experimental Results

Implementation Details: LISAT and LISATPRE are trained on eight DGX A100 80GB GPUs.
In the first stage, we pretrain LISATPRE (context length = 2048) using LoRA [18] for 1 epoch on
PreGRES (described in subsection 3.1) with next-token prediction cross-entropy loss. We employ
the AdamW optimizer [34] with a learning rate of 3e−4 and a cosine-decay learning rate scheduler,
setting the batch size to 2 and gradient accumulation steps to 6.

In the second stage, we train LISAT using GRES, as well as two traditional natural image referring
segmentation datasets, FP-Ref-COCO [57] and ReasonSeg [24]. LoRA is applied to LISATPRE,
while the SAM decoder undergoes full fine-tuning. The learning rate is set to 3e−4, with all other
configurations remaining the same. For the loss function, we empirically found that setting the weight
for text generation loss (λtxt) and mask loss (λmask) to 1.0, while the binary cross-entropy loss
(BCE) (λbce) and Dice loss (λdice) are assigned weights of 2.0 and 0.5, respectively performs better
as suggested by [57, 24, 55]. The total training time was approximately 12 hours on eight DGX A100
80GB GPUs.

Evaluation Protocol: We use the GRES test set to evaluate segmentation performance. We focus
on two subsets of the GRES test set, Small and Large, to evaluate performance on small and large
objects, respectively. We define a threshold of 500 pixels2 and categorize any object in the test set that
covers an area less than the threshold to be Small and bigger to be Large. We evaluate segmentation
performance using generalized Intersection-over-Union (gIoU) and cumulative Intersection-over-
Union (cIoU) [24]. To evaluate the performance of our approach on traditional vision and language
tasks, we use several existing datasets, including NWPU-Captions [9], UCM-Captions [41], Sydney-
Captions [41], and RSICD [35]. Following prior work, we report standard evaluation metrics: BLEU
[39], CIDEr [52], and SPICE [2].
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Vision Encoder LLM BLEU-4 CIDEr SPICE

CLIP Llama 2 69.03 328.82 52.21

CLIP336 Llama 2 66.97 324.61 50.46

SAT-CLIP Llama 2 8.82 30.41 8.15

Geo-CLIP Llama 2 12.77 44.64 11.67

RemoteCLIP Llama 2 68.31 330.94 52.17

CLIP Vicuna 66.68 329.32 52.00

CLIP336 Vicuna 68.28 324.89 51.55

SAT-CLIP Vicuna 16.87 63.92 15.08

Geo-CLIP Vicuna 24.56 109.20 21.15

RemoteCLIP Vicuna 72.34 355.32 54.15

Table 5.3: Ablations of the base language model
and visual feature extractor for LISATPRE on the
UCM-Captions dataset. We found that the com-
bination of RemoteCLIP and Vicuna gives the
best performance. This demonstrates the impor-
tance of carefully choosing vision encoders and
language models for improved multimodal un-
derstanding, as doing so can significantly boost
captioning metrics compared to generic CLIP
variants.

Model Obj. Size cIoU gIoU

LISA-7B All 0.122±0.014 0.113±0.007

Small 0.104±0.022 0.062±0.008

Large 0.157±0.017 0.222±0.013

LISA-13B (llama2) All 0.122±0.014 0.139±0.006

Small 0.106±0.016 0.089±0.007

Large 0.148±0.018 0.244±0.019

PixelLM-7B All 0.101±0.011 0.142±0.006

Small 0.069±0.009 0.094±0.006

Large 0.142±0.019 0.243±0.014

PixelLM-13B All 0.145±0.013 0.162±0.008

Small 0.102±0.015 0.106±0.008

Large 0.204±0.028 0.277±0.014

LISAT (Ours) All 0.245±0.023 0.275±0.009

Small 0.232±0.024 0.240±0.009

Large 0.250±0.029 0.348±0.015

Table 5.4: Performance of LISAT against LISA-
7B-v1, LISA-13B-Llama2-v1, PixelLM-7B and
PixelLM-13B on GRES across different object
sizes. LISAT-7B consistently outperforms the
baseline models, particularly in the Small object
category.

5.1 Segmentation

Table 5.4 compares LISAT with LISA-7B-v1 and LISA-13B-Llama2-v1 [24] across different dataset
configurations (All, Small, Large). LISAT consistently and significantly outperforms both natural-
image trained referring segmentation models. Notably, for smaller objects, LISAT has larger relative
gains compared to large models, suggesting that LISAT is more effective for capturing fine-grained
spatial details, which is important for applications involving dense scenes or small-scale features in
remote sensing imagery.

Some qualitative examples are given in Table 5.2. The first three rows represent success cases, where
LISAT correctly identifies and localizes objects based on the queries. In the first, LISAT correctly
segments the building against a noisy background, and when many of the ground features match the
visual features of the target object. In the second and third, LISAT correctly identifies the key object
of interest, ignoring other potential distractor objects. In the failure case, LISAT fails to correctly
identify the barge alone from the two ships, likely due to the color patterns on the first ship, but still
manages to outperform LISA, which only focuses on the larger ship objects.

Figure 4.4 demonstrates the influence of training dataset size on LISAT ’s performance. With an
increasing number of training images, LISAT demonstrates notable improvements in both cIoU
and gIoU scores. These results indicate that LISAT benefits from larger training datasets thereby
exhibiting some good scaling properties, as its segmentation performance improves with more data,
particularly for small objects.

Table 4.1 compares LISAT’s performance using GeoSAM and SAM as base segmentation models on
the All dataset. While both models yield competitive results, SAM achieves slightly higher cIoU
(0.245) and gIoU (0.275) than GeoSAM. This suggests that despite being designed for geospatial
tasks, GeoSAM alone without specific language-aligned fine-tuning may be limited by training-
specific biases, whereas SAM’s broader training on diverse natural images enables more adaptable
feature extraction, leading to improved segmentation performance.

5.2 Captioning and Question-Answering

On the UCM-Captions dataset (Table 5.5), LISATPRE achieves the highest BLEU-4 (72.34) and CIDEr
(355.32) scores, surpassing previous geospatial models such as RS-GPT4V [61] and post-processing
methods [20], as well as general-purpose vision-language models such as LLaVA-v1.5 and LLaVA-
v1.6 [32, 31]. For NWPU-Captions (Table 5.6), LISATPRE achieves the highest BLEU-4 score and
matches the best SPICE performance, outperforming prior geospatial captioning models such as
MLCA-Net [9] and multimodal attention-based methods [35]. General-purpose vision-language
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Method BLEU-4 CIDEr

SAA [33] 64.77 294.51

SD-RSIC [49] 53.80 213.20

RTRMN (semantic) [53] 35.87 180.25

RTRMN (statistical) [53] 63.93 312.70

SVM-D BOW [17] 51.95 271.42

SVM-D CONC [17] 59.42 292.28

Post-processing [20] 62.62 309.64

LLaVA-v1.5-7b [32] 5.54 32.67

LLaVA-v1.6-7b [31] 5.44 23.86

RS-GPT4V [61] 65.74 333.23

LISA-7B (baseline) 0.00 0.00

LISA-7B (fine-tuned on GRES) 8.73 59.96

LISATPRE (Ours) 72.34 355.32

Table 5.5: Comparison of captioning perfor-
mance on the UCM-Captions dataset. Results
are reported for BLEU-4 and CIDEr metrics.

Method BLEU-4 SPICE

CSMLF [50] 47.1 26.5

Multimodal [41] 45.5 27.6

Attention (hard) [35] 46.4 28.4

FC-Att [70] 46.9 28.3

MLCA-Net [9] 47.8 28.5

LLaVA-v1.5-7b [32] 4.8 11.1

LLaVA-v1.6-7b [31] 2.9 8.7

EarthGPT[69] 65.5 32.2

LISA-7B (baseline) 0.00 0.00

LISA-7B (fine-tuned on GRES) 39.9 19.52

LISATPRE (Ours) 65.8 32.2

Table 5.6: Comparison of captioning perfor-
mance on the NWPU-Captions dataset. Results
are reported for BLEU-4 and SPICE metrics.

models (LLaVA-v1.5 and LLaVA-v1.6) [32, 31] perform significantly worse, highlighting the benefits
of domain-specific training. Similar trends are observed on RSICD (Table D.12) and Sydney-Captions
(Table D.14).

Table D.13 presents the performance of LISATPRE on the RSVQA-LR dataset across Count, Pres-
ence, and Comparison categories. The model achieves the highest Presence accuracy (92.36) and
Comparison accuracy (92.20), indicating strong performance in these tasks. In contrast, models such
as LLaVA-1.5 and InternLM-XC2 report lower scores in Count and Presence. These results suggest
that LISATPRE effectively handles multimodal reasoning and task-specific fine-tuning, particularly in
Presence-based evaluations.

The ablation study in Table 5.3 evaluates different vision encoders and language models for LISATPRE

on the UCM-Captions dataset. Among the vision encoders, RemoteCLIP (which we use in LISAT)
significantly outperforms both Geo-CLIP and Sat-CLIP on all domains, while slightly outperforming
the base CLIP models as it is specifically trained to learn geospatial relationships. Models using
LLama 2 as a base LLM are notably worse than Vicuna. We found that SatCLIP demonstrates
low scores because it is primarily optimized for location encoding rather than fine-grained object
recognition. GeoCLIP shows inconsistent performance due to its design focus on large-scale geo-
localization, which limits its effectiveness for object-level understanding. These findings highlight
that both the vision encoder and the language model play crucial roles, with RemoteCLIP and Vicuna
forming the most effective pairing for remote sensing imagery.

5.3 Limitations and Failure Cases

While LISAT outperforms all existing reasoning segmentation models, it is not perfect. Appendix E.2
highlights examples of failure cases in our pipeline. In some instances, LISAt struggles to produce
accurate predictions when images are cloudy or when key features are obscured. Other challenges
arise when the query is too vague like “Identify the plane in the bottom-right of the
image.“ while there are several planes in the bottom right corner of the image. We hypothesize that
training on a larger dataset and refining the query design could help mitigate these issues. Another
issue arises from the ground truth masks generated by GeoSAM in the GRES dataset. In some cases,
the underlying ground truth mask is incorrect, and LISAt is occasionally penalized even when making
correct predictions, as demonstrated in Appendix E.3.

6 Conclusion

In this paper, we introduce PreGRES and GRES, a new open dataset for geospatial reasoning
segmentation, along with LISAT, an open-source foundation model for referring segmentation in
remote-sensing. Together, they represent a first step toward models capable of generating task-specific
outputs such as masks when reasoning about the geospatial world using natural language. With
promising future directions in scaling, model fusion, and multimodal learning, we hope this effort
lays a strong foundation for advancing geospatial AI through the fusion of vision and language.
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Appendix

In this appendix, we include several additional discussions:

• Appendix A expands on the societal impact of this project.

• Appendix B details the code release, including links to the codebases and datasets used in
this project.

• Appendix C outlines the prompt structure used for engineering the GRES dataset for LISAT,
provides further details on its class distribution as well as its quality verification, and
discusses additional experiments.

• Appendix D presents additional details on the PreGRES dataset used to fine-tune LISATPRE,
discussing its composition and further evaluations.

• Appendix E showcases qualitative results, highlighting both successful and failure cases, as
well as instances where LISAT was penalized due to incomplete Ground Truth annotations
generated by GeoSAM (GT).

• Appendix F provides some additional directions for future work.
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A Impact, Limitations and Ethical Considerations

This paper presents advancements in reasoning segmentation for remote sensing tasks. LISAT is a
method that is able to reason over arbitrary remote sensing images and output both explanations and
segmentation masks for objects of interest. These kinds of workflows are extremely common across
multiple fields. For example, disaster management personnel may want to know which roads leading
to an airport are undamaged, and why. LISAT is the first such model that can simultaneously answer
both components of such questions.

Broadly, LISAT has impacts in numerous domains such as environmental monitoring, urban planning,
and search and rescue. However, one of the biggest uses of satellite imaging is surveillance. Being
cognizant of this, our work is primarily based on datasets that have been widely adopted by the
remote sensing community over interesting, cluttered scenes that do not capture any individual entity.

In other words, the challenge of surveillance is inherent to many imaging technologies, including
satellite data, and is not unique to our method. In that sense, the goal of LISAT is to advance
geospatial analysis for a wide range of applications, such as environmental monitoring and disaster
response. We train on a dataset that the community has widely accepted to be benign (xView [25]).

This research is intended solely for scientific and humanitarian applications such as disaster response,
environmental monitoring, and urban planning. While the models and datasets developed here
demonstrate strong geospatial reasoning capabilities, they should not be used for surveillance,
targeting, or any activity that infringes upon individual privacy or human rights. All data sources
used are publicly available and non-sensitive, and we release our work under a research-oriented
license to encourage transparent, responsible innovation. We also advocate that any derivative work
or downstream application of this model align with ethical AI development and use guidelines. We
believe that the most effective way to mitigate the risks of misuse is to foster open and transparent
research in this area, and we encourage continued discourse on the implications of geospatial AI in
real-world applications.
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B Code Release

The project page for this paper is available here. Our code for LISAT, derived from the Apache
2.0-licensed LISA codebase [24], as well as the curated datasets are publicly released under the MIT
license (or their respective licenses) and could also be found on the same page.

C More on GRES

C.1 Prompt Engineering

As outlined in Section 3, we used GPT-4o to generate the final prompt in two stages, detailed below.

C.1.1 Promt Engineering Stage 1

In the first stage, we input a 512 × 512 chip into the model and prompt it, following the template
below, to generate a sentence that accurately describes the item within the bounding box provided, as
specified by the Ground Truth from xView

The size of the original image is (512 ,512).
This original image , where the image ’s origin is at the top left corner ,

contains the following objects: {classes_list_str }.
Only focus on {class_name} in the image.
If {class_name} contains the word ’Other ’, remove the word ’Other ’ and

use only the second word in {class_name} describing the class. In
that case , make sure that second word in {class_name} starts with a
lowercase letter.

The following are the bounding boxes [x, y, width , height] of objects of
class {class_name}, where (x,y) represents the top left corner of

the bounding box , and ’width ’ represents the bounding box ’s width ,
and ’height ’ represents the bounding box ’s height.

The bounding box of the {class_name} is at coordinates {bbox }.
Find visual features (color , shape , size , etc.) that can help find or

segment {class_name} in the image.
Generate a sentence (not a question) that can uniquely segment or

identify or find or locate {class_name} in this image , be concise
and clear.

Where {classes_list_str}, {class_name}, and {bbox} are the ground truth list of classes, the
object class name or category, and the bounding box of the object from the xView dataset bounding
box and class annotations.

The model outputs a descriptive sentence in the variable {unique_characteristics.query},
which is then used to query the model again in the second stage, as shown below.

C.1.2 Prompt Engineering stage 2

Once the uniquely descriptive sentence is generated, we asked the model using the template below to
come with a question to which the given sentence in {unique_characteristics.query} will be
the answer.
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The size of the original image is (512 ,512).
Only focus on {class_name} in the image.
In the original image , where the image ’s origin is at the top left

corner , the object is a {class_name} located at bounding box
coordinates {bbox}.

The following are the bounding boxes [x, y, width , height] of objects of
class {class_name}, where (x,y) represents the top left corner of

the bounding box , and ’width ’ represents the bounding box ’s width ,
and ’height ’ represents the bounding box ’s height:

This original image , where the image ’s origin is at the top left corner ,
contains the following objects: {classes_list_str }.

If {class_name} contains the word ’Other ’, remove the word ’Other ’ and
use only the second word in {class_name} describing the class. In
that case , make sure that second word in {class_name} starts with a
lowercase letter.

{ ’ located at bounding box coordinates {bbox}.’ if include_bbox else
’.’}

Please generate a query that would help locate this {class_name} in the
original image.

Your query will be the question to the answer provided by {
unique_characteristics.query}.

For example , if the value contained in {unique_characteristics.query} is
’Look for a long rectangular shape with distinct wheels , typically

metallic or painted in color , connected to a truck cab at the front
’, your query should be:

’Segment the blue car in the bottom right of the image with a long
rectangular shape with distinct wheels , typically metallic or
painted in color , connected to a truck cab at the front ’

’Identify the blue car in the bottom right of the image with a long
rectangular shape with distinct wheels , typically metallic or
painted in color , connected to a truck cab at the front ’

’Find the blue car in the bottom right of the image with a long
rectangular shape with distinct wheels , typically metallic or
painted in color , connected to a truck cab at the front ’

’Locate the blue car in the bottom right of the image with a long
rectangular shape with distinct wheels , typically metallic or
painted in color , connected to a truck cab at the front ’

’Show the blue car in the bottom right of the image with a long
rectangular shape with distinct wheels , typically metallic or
painted in color , connected to a truck cab at the front ’.

Generate the query considering the sentence: {unique_characteristics.
query}

{ ’and the location described by the bounding box.’ if include_bbox else
’.’}

Make sure to vary the start of your queries with key words such as ’
Segment , Find , Locate , Show , Identify ’ and similar synonyms. Do not
overuse one over the others.

Rephrase the generated query to make it sound better.
{ ’Do not mention or use any location -related info such as: top , near

the center in your query.’ if not include_bbox else ’’}
Do not output the exact bounding box coordinates , instead , output the

locations such as: bottom -left , top -right , top -left , bottom -right ,
center , etc.

The response to the generated queries should be a JSON object in the
following format and contain nothing else:

The response to the generated query should be a sentence , not a question
.

Be concise and clear , start the sentence with: Locate , Segment , or
Identify.

{"query ": "<your_query_here >"}

Where {class_name}, {bbox}, {unique_characteristics.query}, and {class_name} are
the ground truth class name or category of the object class name or category, its bounding box and
the unique characteristics obtained from GPT-4 [1] in the first stage.

The final query is then treated as the principal query. To enhance query diversity, we ask GPT to
rephrase the principal query into two additional variants, resulting in three distinct queries per image.
We then use GeoSAM to generate corresponding masks, forming image-queries-mask tuples.

C.2 Dataset Quality Assurance

We use RGB images from the xView dataset [25], as referenced in our manuscript. Although the
dataset covers regions in South America, Africa, Europe, Asia, and Australia, we agree that LISAT

and GRES would benefit from additional datasets from around the world, as shown in Figure 4.4.
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For the classes of the targeted object referenced in the GRES natural language queries associated with
each image, we inherited them from the Quality Control and Gold Standards method used
in the xView paper [25]. In their paper, the authors outline a three-tier quality assurance process:
worker, supervisory, and expert stage. In the first stage, labelers reviewed each other’s annotations
in a rotating manner. During the supervisory phase, the process included checks for duplicate or
incorrect labels, geometry errors, incomplete annotation coverage, misaligned features, and empty
image tiles. In the final expert stage, annotations were compared against a gold standard dataset.
This reference dataset was developed by the paper’s co-authors and professional image analysts. It
involves a manual labeling of six 1 km2 image chips per batch. To meet the expert-level quality
standard at this 3rd stage, annotation batches were required to achieve a minimum of 0.75 precision
and 0.95 recall at a 0.5 Intersection over Union (IoU) threshold when evaluated against the gold
standard.

For natural language queries in GRES, we generated three variations per RGB image and used cosine
similarity to ensure they conveyed semantically equivalent information. Only those with a similarity/
alignment score of 0.9 or higher were retained.

Regarding ground truth segmentation masks produced via GeoSAM, we used only the cropped RGB
regions defined by the bounding boxes in the xView dataset [25]. Random batches of GeoSAM
outputs were inspected by co-authors in a rotating manner. Their task was to validate or reject the
generated masks. A randomly selected data point from a random batch was retained only if all
participants unanimously agreed on its accuracy.

For the obtained data, we employ Human Verification, where multiple team members manually
inspect randomly selected subsets of the dataset to verify the accuracy of the query-image-annotation
triplets.

C.3 GRES Dataset Summary

Table C.7 below shows the LISAT dataset distribution per class. We have also provided bar charts for
the dataset distributions in Figures C.5 through C.9.

Figure C.5: Class Distribution of 33% Training Set

C.4 Additional Experiments

C.4.1 GPT vs. Human vs. Template style Queries

We start by asking whether there is a difference in language style and complexity between queries
generated by Large Language Models and real analysts. Though using GPT-generated queries is an
effective strategy, it is important to consider the potential differences between the two.

To preliminarily investigate this, we conducted a small-scale comparative analysis using 10 test
examples. We created two additional query variants: (1) human-like rewordings and (2) template-
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Table C.7: Summary of Object Categories Across Train, Validation, and Test Sets

Object Category Train
(2.5k)

Train
(4.5k)

Train
(7.2k)

Val
(0.5k)

Test
(1.5k)

Test-L
(0.5k)

Test-S
(1k)

Truck w/Trailer Bed 142 298 469 25 100 34 66
Dump/Haul Truck 104 148 208 16 50 18 32
Bus 224 417 671 61 139 8 131
Facility 115 197 370 28 66 44 22
Car 247 546 914 65 182 2 180
Truck 240 518 932 75 173 12 161
Small Plane 6 18 39 2 7 3 4
Shed 80 152 249 7 51 16 35
Hut/Tent 26 46 82 9 16 8 8
Storage Tank 47 74 120 8 25 14 11
Truck w/Liquid Tank 21 29 45 3 10 4 6
Building 331 548 937 69 183 102 81
Helicopter 6 12 19 2 4 1 3
Passenger/Cargo Plane 107 135 198 11 45 25 20
Aircraft Hangar 25 39 73 6 13 9 4
Aircraft 3 15 29 0 5 3 2
Container Ship 31 72 102 5 24 11 13
Motor/Sail/Small Boat 32 58 87 7 20 2 18
Maritime Vessel 41 92 134 12 31 21 10
Crane Truck 33 48 70 2 16 5 11
Container Crane 12 25 38 4 9 0 9
Tower Crane 18 42 57 6 14 7 7
Engineering Vehicle 82 115 166 15 39 11 28
Excavator 84 115 161 12 39 10 29
Straddle Carrier 3 7 14 2 3 2 1
Passenger Vehicle 96 145 215 15 49 0 49
Pylon 104 140 177 6 47 34 13
Helipad 15 21 32 2 8 6 2
Loader/Dozer/Tractor 100 137 186 7 46 7 39
Damaged Building 61 151 226 8 51 37 14
Railway Vehicle 13 22 26 1 8 8 0
Locomotive 13 21 32 3 8 4 4
Tower Structure 16 30 41 1 11 6 5
Barge 17 42 59 5 14 13 1
Passenger Car 5 14 27 1 5 1 4

Total 2500 4489 7205 500 1500 488 1023

based queries referencing specific image regions. Our evaluation showed in Table C.8 revealed that
while GPT-style queries achieved slightly higher average performance on segmentation metrics, the
differences were accompanied by relatively high variance, likely due to the tiny sample size.

This initial result suggests that GPT-generated queries are a reasonable proxy for human queries in
the current setting, supporting the effectiveness of our dataset construction approach. However, we
agree that a larger-scale collection of real human queries would provide a stronger validation and
potentially improve the dataset further if augmented with such a collection.

Table C.8: Performance comparison across different query types on 10 test examples.

Type of Queries (10 test examples) cIoU (±) gIoU (±)

LISAT on Template-style queries 0.025 ± 0.014 0.045 ± 0.021
LISAT on Human-entered queries 0.037 ± 0.022 0.063 ± 0.040
LISAT on GPT-style queries (GRES Data) 0.050 ± 0.036 0.099 ± 0.045
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Figure C.6: Class Distribution of 66% Training Set

Figure C.7: Class Distribution of 100% Training Set

C.4.2 LISAT vs. LISA on Natural Images

We also evaluated and reported in Table C.9 the performance of LISAT on the natural images test set
from the LISA benchmark [24]. LISA-7B on LISA Natural Images Data is the baseline model
reported in the original paper. LISA-7B (ft) on LISA Natural Images Data refers to the fine-
tuned version, where [24] note that performance improves after fine-tuning on 239 complex-reasoning
samples. LISAt on LISA Natural Images Data represents our LISAT model evaluated on the
same test set, while LISAt on GRES Data shows its performance on the GRES dataset.

Table C.9: Performance comparison across different models and datasets.

Type of Model and Data cIoU gIoU

LISA-7B on LISA Natural Images Data 0.341 0.368
LISA-7B (ft) on LISA Natural Images Data 0.484 0.473
LISAT on LISA Natural Images Data 0.326 0.341
LISAT (Ours) on GRES Data 0.245 0.275

The results shown in Table C.9 indicate that LISAT does perform slightly worse than the original
LISA-7B model and its fine-tuned version on this domain. Specifically, LISAT achieved a cIoU of

22



Figure C.8: Class Distribution of Validation Set

Figure C.9: Class Distribution of Testing Set

0.326 and gIoU of 0.341, compared to 0.341/0.368 for LISA-7B and 0.484/0.473 for the fine-tuned
LISA-7B (ft).

While LISAT is not optimized for natural image reasoning tasks, its performance is still in a
comparable range to the baseline LISA-7B model. The difference is expected, as LISAT is designed
for generalization across geospatial and abstract reasoning segmentation tasks, and has not been
fine-tuned on the LISA dataset. Thus, while it does not outperform models specialized or fine-tuned
on natural image tasks, it remains competitive and shows promise as a more generalizable model.

C.4.3 LISAT’s Latency Across Image resolutions

Because assessing inference speed and computational requirements is important for evaluating
practical deployment feasibility, we have included an analysis in Table C.10, which reports the
average inference time per image-query pair on a single NVIDIA A100 GPU across different image
resolutions.

We found that at a standard resolution of 512×512, the model achieves 0.244 seconds per query,
while maintaining competitive accuracy (cIoU: 0.245 ± 0.023, gIoU: 0.275 ± 0.009). As expected,
inference becomes slower and less accurate at very low resolutions (e.g., 32×32), where performance
drops (gIoU: 0.042 ± 0.004) and latency slightly increases (0.468s).
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Table C.10: Effect of input image size on performance and inference time (All object sizes). Measured
on a single NVIDIA A100.

Image Size Object Size cIoU (±) gIoU (±) Avg. Inference Time

(s/image-query pair)

512 × 512 All 0.245 ± 0.023 0.275 ± 0.009 0.244

256 × 256 All 0.237 ± 0.029 0.207 ± 0.007 0.262

128 × 128 All 0.158 ± 0.019 0.130 ± 0.007 0.391

64 × 64 All 0.102 ± 0.010 0.061 ± 0.003 0.454

32 × 32 All 0.081 ± 0.007 0.042 ± 0.004 0.468

We believe the inference time increases at lower resolutions because the frozen vision encoder still
processes inputs at a fixed size of 512×512 in our case. This requires lower-resolution input images
to the resized back to 512x512, which adds an overhead. These resized images also contain fewer
details, which makes it harder for the model to perform well since our pipeline resizes all inputs to
the fixed resolution required by the encoder before inference.

For very small images (e.g., 32×32), the additional overhead from resizing operations and suboptimal
GPU utilization can slightly increase inference time, as shown in Table C.10.

This indicates that reducing input resolution significantly degrades visual quality without providing
meaningful speed benefits, which supports the use of higher resolutions (e.g., 512×512) in deployment
settings.

C.4.4 LISATPRE vs. GPT-4o vs. GPT-o1

At the time of this work, we note that since GPT-4o [37] and GPT-o1 [38] do not explicitly output
segmentation masks, they cannot be fairly compared with LISAT. A specialized prompt must be
engineered to extract the coordinates of points along the contour lines for the target object. Instead,
we compare them to LISATPRE.

We found that GPT-4o [37] and GPT-o1 [38] yielded identical scores across all metrics and benchmark
datasets, while significantly underperforming compared to LISATPRE on the PreGRES test data. We
verified that this results from both models returning generic or irrelevant outputs (e.g., hallucinated
captions, answers unrelated to the query, or blank responses), likely due to their lack of grounding in
geospatial semantics and structured output generation.

While these models represent the state of the art in general-purpose multimodal reasoning, they
often require carefully crafted prompts to perform meaningfully on domain-specific tasks such as
geospatial captioning or other domain-related VQA. This highlights the need for specialized VLMs
like LISAT, which natively support geospatial semantics and reasoning.

D Additional Information on PreGRES

We conducted additional evaluations of LISATPRE. We show evaluation results on the NWPU Caption
in Table 5.6, RSICD in Table D.12, Sidney-Caption in Table D.14. We also ran Count, Presence,
Comparisaon and Area evaluation as was done in [61] in Table D.16.

Table D.11: Overview of Task Data Sources and Statistics
Task Data Source Train Images Train QA Pairs Test Images Test QA Pairs

Image Captioning

NWPU-Captions 25200 125894 3150 1093

RSICD 8734 17813 1093 1093

RSITMD 4291 20096 - -

Sydney-Captions 497 2294 58 58

UCM-Captions 1680 7999 210 210

Visual Question Answering

RSVQA-LR 572 57223 100 10004

RSVQA-HR 6251 625340 2226 222684

FloodNet 1448 4511 - -

RSIVQA 5401 19218 - -

Visual Grounding DIOR-RSVG 9466 19643 7936 18677

Region-level Captioning DIOR-RSVG 9466 19643 - -

Scene Classification NWPU-RESISC45 31500 31500 - -

Total - 104506 951174 14773 253819
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Table D.12: Comparison of Various Models for LISATPRE on RSICD
Method BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR ROUGE L CIDEr

VLAD + RNN [35] 49.38 30.91 22.09 16.77 19.96 42.42 103.92

VLAD + LSTM [35] 50.04 31.95 23.19 17.78 20.46 43.34 118.01

mRNN [41] 45.58 28.25 18.09 12.13 15.69 31.26 19.15

mLSTM [41] 50.57 32.42 23.29 17.46 17.84 35.02 31.61

mGRU [28] 42.56 29.99 22.91 17.98 19.41 37.97 124.82

mGRU embedword [28] 60.94 46.24 36.80 29.81 26.14 48.20 159.54

CSMLF [50] 57.59 38.59 28.32 22.17 21.28 44.55 52.97

SAA [33] 59.35 45.11 35.29 28.08 26.11 49.57 132.35

Soft-attention [60] 65.13 49.04 39.00 32.30 26.39 49.69 90.58

SD-RSIC [49] 64.50 47.10 36.40 29.40 24.90 51.90 77.50

RTRMN (semantic) [53] 62.01 46.23 36.44 29.71 28.29 55.39 151.46

RTRMN (statistical) [53] 61.02 45.14 35.35 28.59 27.51 54.52 148.20

SVM-D BOW [17] 61.12 42.77 31.53 24.11 23.03 45.88 68.25

SVM-D CONC [17] 59.99 43.47 33.55 26.89 22.99 45.57 68.54

MLAT [29] 66.90 51.13 41.14 34.21 27.31 50.57 94.27

Post-processing [20] 62.90 45.99 35.68 28.68 25.30 47.34 75.56

RS-GPT4V [61] 70.32 54.23 44.02 36.83 30.10 53.34 102.94

LLaVA-v1.5-7b [32] 38.36 18.27 8.46 3.57 14.64 27.36 16.96

LLaVA-v1.6-7b [31] 29.31 13.40 6.00 2.44 13.11 24.40 10.69

LISATPRE (Ours) 72.51 54.98 43.77 36.10 30.28 53.80 118.39

Table D.13: Performance on RSVQA-LR (% accuracy).

Model Count Presence Comparison

RSVQA [33] 67.01 87.46 81.50
EasyToHard [63] 69.22 90.66 87.49
Bi-Modal [4] 72.22 91.06 91.16
SHRNet [72] 73.87 91.03 90.48
LLaVA-1.5 [32] 26.81 54.72 66.22
InternLM-XC2 [12] 26.91 55.74 64.89
RS-GPT4V [61] - 91.17 91.70
GeoChat [68] - 91.09 90.33
Full-FT [61] 70.48 91.10 92.23
RS-GPT4V-LoRA-FT [61] 70.34 92.24 92.10
RS-GPT4V-MoE-LoRA-FT [61] 71.06 91.10 92.55
LLaVA-v1.5-7b [32] 18.66 53.98 66.22
LLaVA-v1.6-7b [31] 19.65 57.53 62.32
LISA-7B (baseline) 0.00 0.00 0.00
LISA-7B (fine-tuned on GRES) 25.86 79.80 84.41
LISATPRE (Ours) 70.24 92.36 92.20

E Qualitative Analysis

In this section, we present a qualitative analysis of the model’s performance, showcasing a range of
success cases Appendix E.1, failure cases Appendix E.2, and instances where the ground truth (GT)
was erroneous Appendix E.3. Success cases shown in Table E.17, Table E.18, Table E.19, Table E.20,
and Table E.21 highlight scenarios where the model successfully aligns with the expected outcomes,
demonstrating its ability to handle complex tasks accurately. Failure cases shown in Table E.22,
however, indicate situations where the model struggles due to challenges such as occlusion, poor
lighting, or ambiguous object representations, leading to incorrect predictions or missed detections.
These cases reveal areas where model improvements are needed, particularly in dynamic environments
or with less structured input data. Finally, GT mistake cases, as shown in Table E.23, refer to instances
where the GT was erroneous but the model aligns with the expected ground truth annotations. The
model is penalized here due to inherent inconsistencies in the dataset from the mask labeling
with GeoSAM. These cases reveal the challenges posed by noisy or ambiguous ground truth data,
highlighting the importance of dataset refinement and improved model calibration to reduce such
errors. Together, these cases provide valuable insights into the model’s performance, guiding future
research and optimizations.

25



Table D.14: Comparison of Various Models for LISATPRE on Sydney-Captions
Method BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR ROUGE L CIDEr

VLAD + RNN [35] 56.58 45.14 38.07 32.79 26.72 52.71 93.72

VLAD + LSTM [35] 49.13 34.12 27.60 23.14 19.30 42.01 91.64

mRNN [41] 51.30 37.50 20.40 19.30 18.50 - 161.00

mLSTM[41] 54.60 39.50 22.30 21.20 20.50 - 186.00

mGRU [28] 69.64 60.92 52.39 44.21 31.12 59.17 171.55

mGRU embedword [28] 68.85 60.03 51.81 44.29 30.36 57.47 168.94

CSMLF [50] 59.98 45.83 38.69 34.33 24.75 50.18 75.55

SAA [33] 68.82 60.73 52.94 45.39 30.49 58.20 170.52

Soft-attention [60] 73.22 66.74 62.23 58.20 39.42 71.27 249.93

Hard-attention [60] 75.91 66.10 58.89 52.58 38.98 71.89 218.19

SD-RSIC [49] 72.40 62.10 53.20 45.10 34.20 63.60 139.50

SVM-D BOW [17] 77.87 68.35 60.23 53.05 37.97 69.92 227.22

SVM-D CONC [17] 75.47 67.11 59.70 53.08 36.43 67.46 222.22

Post-processing [20] 78.37 69.85 63.22 57.17 39.49 71.06 255.53

LLaVA-v1.5-7b [32] 41.04 19.62 10.80 4.69 13.71 31.38 10.89

LLaVA-v1.6-7b [31] 32.25 17.15 9.98 5.92 14.11 29.17 12.20

RS-GPT4V [61] 82.26 75.28 68.57 62.23 41.37 74.77 273.08

LISATPRE (Ours) 77.92 68.30 60.75 54.24 38.50 69.92 216.36

E.1 Success Cases of LISAT

In this subsection, we present a selection of successful cases where LISAT accurately predicted
object categories and configurations. These examples highlight the model’s ability to generalize and
perform well under varied conditions, demonstrating its effectiveness in real-world applications.

E.2 Failure Cases of LISAT

We examined failure cases where LISAT struggled to make accurate predictions in subsection 5.3.
Some of these instances, where the model’s performance could be improved, highlight the challenges
it faces under complex conditions, such as cloudy or ambiguous scenes as shown in Table E.22.

E.3 Ground Truth Error Cases

Table E.23 displays cases where the model’s predictions are affected by errors in the ground truth
data. These errors highlight discrepancies between the model’s output and the labeled data, shedding
light on limitations within the dataset and the potential impact on evaluation metrics.

F Additional Future Work

Building on the promising performance of LISAT, we outline several directions for future work to
enhance both the model and the GRES dataset:

1. Incorporation of Temporal Data
It will be interesting to extend LISAT’s capabilities by incorporating temporal geospatial
data, enabling the model to reason over frame sequences. This includes investigating the
effects of frame-rate downsampling and adapting architectures that leverage temporal vision
encoders such as TimeSformer [5] and ViViT [3], as well as contrastive video-text pretraining
approaches like VideoCLIP [59], in combination with different language encoders. These
explorations aim to identify the most effective architectural combinations for spatiotemporal
grounding and reasoning in remote sensing contexts.

2. Expansion to Additional Modalities
To enhance generalization and robustness, it will be interesting to integrate additional
modalities such as synthetic aperture radar (SAR), LiDAR, aerial imagery, and elevation
data (e.g., digital surface models, DSM), in both static and temporal settings. Once collected
and processed, these modalities will broaden the applicability of the model and enable it to
handle more dynamic and realistic geospatial scenarios. Incorporating these diverse inputs
will also help evaluate LISAT’s cross-modal generalization capabilities.

3. Dataset Enrichment and Potential Bias Mitigation
For future iterations of the GRES dataset, it will be valuable to augment it with additional
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publicly available datasets such as SpaceNet [13] and COWC [36]. This enrichment will help
address existing dataset potential biases and improve the robustness and fairness of LISAT

across a wider range of environmental and sensor conditions. To further enhance data quality,
a promising direction includes implementing an active-learning–driven GeoSAM correction
pipeline, where low-confidence or inconsistent masks are automatically identified and sent
for human review, yielding progressively refined annotations. In parallel, incorporating
large-scale human-query evaluations will complement GPT-generated queries, allowing us
to better assess how real-world and GPT-style linguistic diversity and ambiguity affect visual
grounding performance and overall model generalization.

4. Efficient Model Variants for Deployment
For deployment in resource-constrained environments, future avenues include exploring
model compression techniques such as knowledge distillation, quantization, and pruning.
These approaches will enable us to reduce model size and improve inference efficiency
while maintaining competitive performance, thereby supporting broader accessibility and
real-time applications of LISAT.

Through these efforts, we believe LISAT will turn into an even more comprehensive and generalizable
foundation model for geospatial-language understanding, capable of reasoning across modalities and
time with increased accuracy and efficiency.
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Table D.16: Performance Metrics for LISATPRE on the RSVQA_LR

Model Count Presence Comparison Area

RSVQA [33] 67.01 87.46 81.50 85.24
EasyToHard [63] 69.22 90.66 87.49 85.92
Bi-Modal [4] 72.22 91.06 91.16 86.27
SHRNet [72] 73.87 91.03 90.48 86.35
LLaVA-1.5 [32] 26.81 54.72 66.22 1.45
InternLM-XC2 [12] 26.91 55.74 64.89 5.94
RS-GPT4V [61] - 91.17 91.70 -
GeoChat [68] - 91.09 90.33 -
Full-FT [61] 70.48 91.10 92.23 86.00
LoRA [61] 70.34 92.24 92.10 85.84
MoE LoRA [61] 71.06 91.10 92.55 85.82
LLaVA-v1.5-7b [32] 18.66 53.98 66.22 58.00
LLaVA-v1.6-7b [31] 19.65 57.53 62.32 62.00
LISATPRE (Ours) 70.24 92.36 92.20 61.43
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Table E.17: Comparison of Predictions and Ground Truth Across Models
Queries RGB LISA LISAT (Ours) Ground Truth

Identify the excavator by
locating the bright

yellow arm and bucket
against the darker

background.

Locate the building with
a beige facade and a dark
brown roof in the image.

Locate the large,
elongated structure with

stacked rectangular
containers and a

reddish-brown deck,
characteristic of a

container ship, against
the dark water
background.

Locate the building in
the center-left of the

image.

Locate the long, green
vehicle with rectangular

windows and wheels,
positioned horizontally

across the image.

Locate the building in
the top-left of the image.
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Table E.18: Comparison of Predictions and Ground Truth Across Models (Cont.)
Queries RGB LISA LISAT (Ours) Ground Truth

Identify the triangular
metal structure with

intersecting lines,
standing vertically in the

image.

Identify the circular
structure with a metallic
appearance and distinct

shadow, contrasting
against the surrounding

terrain.

Identify the pylon in the
top-left area of the image.

Identify the pylon
located in the

bottom-right of the
image.

Identify the engineering
vehicle with a metallic
appearance and distinct

geometric shapes against
the brown background.

Identify the damaged
building with an

irregular, fragmented
roof structure and
scattered debris
contrasting with

surrounding vegetation.
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Table E.19: Comparison of Predictions and Ground Truth Across Models (Cont.)
Queries RGB LISA LISAT (Ours) Ground Truth

Segment the damaged
building located in the
top-right of the image.

Identify the building in
the center-left of the

image.

Identify the building
with a unique vertical
dark brown structure

with a slight curvature on
the edge.

Identify the large,
rectangular building with
a dark roof and multiple

visible roof fixtures.

Locate the trailer bed in
the top-right of the

image, characterized by
a long rectangular shape

with distinct wheels,
typically metallic or

painted in color, attached
to a truck cab.

Identify the liquid tank
in the top-right of the

image with a long
rectangular shape

connected to a truck cab
at the front.
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Table E.20: Comparison of Predictions and Ground Truth Across Models (Cont.)
Queries RGB LISA LISAT (Ours) Ground Truth

Locate the building with
a reddish-brown roof
next to a dark black

structure in the image.

Identify the damaged
building in the center of

the image.

Locate the maritime
vessel in the

bottom-right of the
image.

Identify the building
with a rectangular shape,
dark roof, and noticeable

white lines across its
surface, set against a
brownish background

with green areas nearby.

Identify the building
with a grayish roof and

white linear features.

Locate the engineering
vehicle in the top-left of

the image.
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Table E.21: Comparison of Predictions and Ground Truth Across Models (Cont.)
Queries RGB LISA LISAT (Ours) Ground Truth

Locate the large
rectangular structure

with stacked,
multicolored containers
floating on water as the

container ship.

Locate the building in
the top-left corner of the

image.

Identify the maritime
vessel near the top-left

corner of the image.

Identify the aircraft
hangar with the large

rectangular structure and
curved roof, displaying a
uniform beige coloration
and surrounded by open

areas.

Identify the large
rectangular brown

building with a flat roof
surrounded by

vegetation.

Identify the railway
vehicle with an

elongated, rectangular
shape and a metallic
texture contrasting

against the dark
background.
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Table E.22: Failure Cases
Queries RGB LISA LISAT (Ours) Ground Truth

Locate the facility in the
top-center of the image

for identification.

Find the facility in the
bottom-left corner of the

image.

Identify the plane in the
bottom-right of the

image.

Locate the barge in the
top-left of the image.

Locate the building with
a distinctive light gray
color and rectangular

shape against the darker
background.

Identify the trailer in the
bottom-right of the

image with a distinct
shape, typically metallic
or painted, connected to
a truck cab at the front.
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Table E.23: GT Mistake Cases
Queries RGB LISA LISAT (Ours) Ground Truth

Identify the pylon in the
top-right area of the

image.

Identify the vertical,
metallic structure with a

lattice framework
contrasting against the

brown, earthy
background.

Identify the building
with a large, rectangular
structure and a distinct

reddish-brown roof,
surrounded by greenery.
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NeurIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction clearly present our main contributions: the
introduction of a new multi-modal dataset and a baseline model for Geo-spatial Artificial
Intelligence. These contributions are substantiated by experimental results, Code Release,
and additional details provided in the rest of the appendix, accurately reflecting the scope
and limitations of our work.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: The limitations of our proposed pipeline are discussed in the Limitations and
Failure Cases section in the main paper.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.

• The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
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Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

Justification: This paper does not include theoretical results.

Guidelines:

• The answer NA means that the paper does not include theoretical results.

• All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

• All assumptions should be clearly stated or referenced in the statement of any theorems.

• The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: This paper provides a comprehensive disclosure of all information necessary
to reproduce the main experimental results that support the core claims and conclusions.
This includes detailed descriptions of dataset construction in the Geospatial Reasoning Seg-
mentation Dataset section, model architecture details in the Training VLMs for Geospatial
Reasoning Segmentation section, and training and evaluation procedures in the Experimental
Results section, ensuring reproducibility independent of the released code and data.

Guidelines:

• The answer NA means that the paper does not include experiments.

• If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).
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(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We have released all code and dataset for both GitHub and HuggingFace , with
sufficient instructions to faithfully reproduce the main experimental results, as described in
the paper on project page.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We discussed all experimental and evaluation setting/details experimental
results.

Guidelines:

• The answer NA means that the paper does not include experiments.

• The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

• The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: While evaluating LISAT, we provided standard deviations in the model
performance Table 5.4 and Figure 4.1.
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Guidelines:

• The answer NA means that the paper does not include experiments.

• The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).

• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The compute ressources used for experiments in this paper are provided in the
Implementation Details section of experimental results.

Guidelines:

• The answer NA means that the paper does not include experiments.

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

• The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

• The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: This DB track submission complies with the NeurIPS Code of Ethics. It
adheres to the requirements outlined in the single-blind submission guidelines, provides the
necessary dataset and benchmark code, and aligns with the specific scope and criteria for
dataset and benchmark paper submissions.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

• If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

10. Broader impacts

40

https://neurips.cc/public/EthicsGuidelines


Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We highlighed potential positive societal impacts and negative societal impact
in the Impact Statement section of the paper.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.

• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [Yes]

Justification: . We have discused this in our Impact Statement.

Guidelines:

• The answer NA means that the paper poses no such risks.

• Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: All licenses for our code, models, and datasets are provided in their respective
repositories. The code and models are released under the MIT License. The GRES dataset
annotations are released under the CC BY-NC-SA 4.0 license, and its images inherit the

41



license of the xView dataset (CC BY-NC-SA 4.0). The PreGRES annotations are released
under the MIT License, while the images are subject to the respective licenses of their origi-
nal source datasets. Citations for the relevant papers are provided in Geospatial Reasoning
Segmentation Dataset section.

• The answer NA means that the paper does not use existing assets.

• The authors should cite the original paper that produced the code package or dataset.

• The authors should state which version of the asset is used and, if possible, include a
URL.

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.

• For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: All new assets are documented in the respestive sections 3, 4, and 5.

Guidelines:

• The answer NA means that the paper does not release new assets.

• Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: This paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
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Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: This paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [Yes]

Justification: As this paper focuses on advancing research in Vision-Language Models
(VLMs), it references the various large language models (LLMs) used in our experiments
throughout the content.

Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

43

https://neurips.cc/Conferences/2025/LLM

	Introduction
	Related Work
	Remote-Sensing Datasets for Multimodal Learning
	Reasoning Segmentation
	Geospatial Foundation Models

	Geospatial Reasoning Segmentation Dataset
	PreGRES
	GRES

	Training LISAt for Geospatial Reasoning Segmentation
	Geospatial Multimodal Language Models
	Preliminaries
	Training Objectives

	Experimental Results
	Segmentation
	Captioning and Question-Answering
	Limitations and Failure Cases

	Conclusion
	Impact, Limitations and Ethical Considerations
	Code Release
	More on GRES
	Prompt Engineering
	Promt Engineering Stage 1
	Prompt Engineering stage 2

	Dataset Quality Assurance
	GRES Dataset Summary
	Additional Experiments
	GPT vs. Human vs. Template style Queries
	LISAt vs. LISA on Natural Images
	LISAt's Latency Across Image resolutions
	LISAtpre vs. GPT-4o vs. GPT-o1


	Additional Information on PreGRES
	Qualitative Analysis
	Success Cases of LISAt
	Failure Cases of LISAt
	Ground Truth Error Cases

	Additional Future Work

