Contextual Tokenization for Graph Inverted Indices

Pritish Chakraborty Indradyumna Roy Soumen Chakrabarti Abir De
IIT Bombay IIT Bombay IIT Bombay IIT Bombay

Emails: {pritish, indraroyl5, soumen, abir}@cse.iitb.ac.in

Abstract

Retrieving graphs that contain a query subgraph is a core operation in molecular
search, program analysis, and scene graph retrieval. Existing methods either rely
on single-vector dense embeddings, which are efficient but coarse, or multi-vector
neural alignments, which are accurate but require exhaustive corpus scoring. We
propose CORGII (Contextual Representation of Graphs for Inverted Indexing),
a framework that bridges these extremes by learning discrete, contextual graph
tokens that can be indexed with classical inverted indices. Our contributions
include (i) a differentiable graph tokenizer that discretizes node embeddings, (ii)
a query-aware, trainable impact weighting mechanism, and (iii) co-occurrence
based multi-probing for balancing recall and efficiency. Extensive experiments
show that CORGII provides better trade-offs between accuracy and efficiency,
compared to several baselines. The extended version is given in [1].

1 Introduction

Given a query graph G, the retrieval task is to find, from a large corpus of C' graphs, those G, that
contain a subgraph isomorphic to G4 [2]. A ranking relaxation returns the top-K corpus graphs that
best contain GG, under an approximate subgraph-containment score. Applications include functional
group search in molecular databases [3], control-flow pattern detection in program analysis [4], and
semantic search in scene graphs [5].

Two challenges arise. Locally, the exact subgraph isomorphism decision problem is NP-complete [6],
motivating approximate, often neural, surrogates. Globally, the most accurate approximations rely
on early cross-interaction between G, and G, which precludes precomputation and forces Q(C')
query-time scoring. We seek an indexing framework that preserves strong containment signals while
avoiding exhaustive scoring.

Single vs. multi-vector representations Neural containment surrogates fall into two families. Early
methods use a single vector per graph [7-9], enabling ANN-style indices but losing structural fidelity.
Later methods represent each graph as a set of node embeddings and compute transport/alignment
based scores [10-12], improving accuracy at the cost of query-time interaction. This mirrors dense
text retrieval’s move from bi-encoders [13—15] to multi-vector late interaction (e.g., CoIBERT [16]).

Lessons from text retrieval Classical IR uses inverted indices over discrete tokens [17—19]
with highly optimized engines [20-22]. With neural encoders, single-vector systems adopted ANN
structures [23-35]. Hybrid approaches contextualize words separately and aggregate via indexable
surrogates such as a Chamfer-like score [36] (e.g., CoIBERT [16], PLAID [37]), but incur decom-
pression/bookkeeping overhead. SPLADE [38] improves efficiency by expanding documents before
using a standard inverted index. For graphs, however, the lack of a canonical, finite vocabulary and of
clear impact weights complicates a direct port of text pipelines.

1.1 Our Contributions

We propose CORGII (Contextual Representation of Graphs for Inverted Indexing), which transfers
dense-text retrieval “wisdom” to graph retrieval by (i) learning a contextual discrete tokenization of

Chakraborty et al., Contextual Tokenization for Graph Inverted Indices. Proceedings of the Fourth Learning on
Graphs Conference (LoG 2025), PMLR 269, Hybrid Event, December 10-12, 2025.

Contextual Tokenization for Graph Inverted Indices

nodes so graphs admit inverted indexing, and (ii) retaining accurate late-interaction signals for final
reranking.

Differentiable graph tokenization We introduce a graph tokenizer network (GTNet) that maps
each node to a structure-aware token from a latent vocabulary. GTNet first produces binary-like
node codes that act as discrete tokens, yielding a multi-vector, sparse representation compatible with
inverted indices. Unlike continuous graph embeddings [7—12], our design uses separate tokenizer
heads for queries and corpus (asymmetry helps subgraph containment), while scoring matched nodes
via a symmetric distance. Instead of injective relaxations, we rely on a Chamfer-style matching over
discrete representations, then index tokens into posting lists of corpus graphs.

Query-aware trainable impact Pure set membership of tokens is weak. Inspired by TF-IDF/BM?25,
we learn a foken impact function that conditions on the discrete token and the underlying continuous
node embedding, enabling query-aware weighting while remaining index-compatible.

Recall-enhancing multiprobing Independent per-node matches can miss true positives due to
discretization noise. We introduce a co-occurrence multiprobing strategy: for each query token, we
also probe tokens with large posting-list overlap, and aggregate with a threshold, enabling smooth
accuracy—efficiency trade-offs prior to final reranking.

Across benchmarks, CORGII yields superior accuracy—efficiency trade-offs and supports tunable
latency/quality behavior.

2 Preliminaries

Notation Let G, = (V,, E,) be a query graph and G. = (V,, E.) a corpus graph; the corpus
is {G1,...,G¢c}. A pair (G4, G,.) has label y,. € {0,1} with y,c = 1iff G, C G,.. Denote
relevant and non-relevant sets by Co = {c¢ : Y4 = 1} and Cyg = [C] \ Cyg. After padding
to |Vy| = |Ve| = m, let A, A, € {0,1}™*™ be adjacencies; -]+ = max{0,-} and [-] is the
indicator.

Subgraph isomorphism and neural surrogate The exact check G, C G, is equivalent
to the existence of a permutation P with A, < PA_.P, inducing a coverage-loss distance
minpep, [A, — PA.PT];. Solving the associated QAP is NP-hard, so neural surrogates [10, 11]
compute node embeddings h,(u), h.(v) € RY™ and a soft alignment P (doubly stochastic via
Gumbel-Sinkhorn [39, 40]), yielding the hinge-style distance

A(Gy,Ge)= > [H,—PH] [u,i], Pel0,1]™™ (1)

1€[dimp], w€[m]

Pretrained backbone We use IsoNet [10] only for final reranking: it computes the alignment-based
distance A(Gg, G.) (Eq. 1) for each (G, G.) and exposes H, H. and the soft alignment P, while
our indexing and candidate generation remain independent.

Inverted index over graph tokens Let w be a token vocabulary. Each graph c is represented by a
multiset w(c) = {7(M, 7).} with 7(*) € w. The inverted index maps 7 € w to its posting list
PostingList(7) = {c¢ : 7 € w(c)}. Impact-ordered posting lists (as in TF-IDF) sort by a token’s
importance to each item. Given a query instance ¢, we form its token set w(q), traverse posting lists
for 7 € w(g), aggregate scores, and keep the top candidates for subsequent reranking by A(Gy, G.).

3 Proposed approach

CORGII is a scalable graph retrieval system that marries accurate late-interaction scoring with
the efficiency of classic inverted indices. Starting from the alignment-inspired hinge distance in
Eq. (1), we (i) learn contextual yet discrete node tokens suitable for indexing, (ii) score candidates
via a query-aware impact aggregator over posting lists, and (iii) use multiprobing to balance recall
and efficiency before a final reranking by A(Gy, G.). Figure 1 summarizes the pipeline; detailed
descriptions are in the Appendix D.

Contextual node embeddings: A shared GNN GNNy contextualizes nodes of Gy and G,
producing embeddings {x,(u)} and {z.(v)}. To preserve the asymmetry of subgraph contain-
ment while enabling exact token matches, we attach separate MLP heads for query and corpus:
zq(u) = o(MLPy, (z4(u))), zc(v) = c(MLPg,(x.(v))), driving both toward near-binary codes.

Contextual Tokenization for Graph Inverted Indices

@)} Elv)} T={n =[] (Postinglist(r))

[EEEEE | T — [z} [GiGs]Gi[Gs
R :

CEETT {re(v)}

> GGGy

clede -6

e H

Co-occurrence [t e H
P

Gq - - ""I.'I' | Multiprobing @ Gy -

e I

i mm ¥ j g
Pre-trained zq(u ‘ I—‘l _ Retrieved
hq (u)‘ { q()} : Ilnpactw ® J Simpact, oM | > 6‘ > graphs

Figure 1: CORGII block diagram. Each (query, corpus) graph pair (G, G,) is encoded us-
ing a shared GNNy, followed by separate MLPs (MLPg4, and MLP,,) to compute soft binary
node embeddings z.(v), z,(u) € (0,1)”. These are thresholded to obtain discrete binary codes
Zc(v), Z4(u) € {0,1}P, mapped to integer-valued latent tokens 7 € 7 = [2P]. Corpus tokens
are indexed into posting lists PostingList(7), enabling sparse inverted indexing. During retrieval,
query tokens 7,(u) are expanded via co-occurrence—based multi-probing (CM) to select similar
tokens N, (7,4 (u)). Each expanded token 7 contributes to the corpus score through an impact score
Impact,, (7, hy(u)), producing the overall retrieval score Simpact.om (G, Ge). Graphs with score ex-
ceeding a threshold ¢ are shortlisted and reranked using the alignment distance A(G,, G.) (Eq. (1)).

Chamfer-driven differentiable tokenization: Rather than an injective soft permutation, we
train with a Chamfer distance that independently matches each query node to its best corpus node:
Chamfer(G4, G.) = Zuevq minyev, ||2q(u) — 2c(v)||1. A margin-based pairwise ranking loss
encourages relevant pairs to have strictly smaller Chamfer than non-relevant pairs.

Discretization and inverted index: Post-training, we threshold to hard bit-vectors 2z, (u), z.(v) €

{0,1}P, inducing a latent token space 7 = [2”]. Each graph becomes a multiset of tokens w(G)
{Z(")}; the inverted index stores posting lists PostingList(7) = {¢: 7 € w(G.)}.

Candidate scoring: from uniform counts to impacts: A basic score counts matched tokens,
Sunit (Gq, Ge) = Zuevq [z,(u) € w(G,)], but ignores structure and frequency selectivity. We
introduce a lightweight MLP impact function Impact,, (7, h) = MLP(concat(7, h)) , conditioning
on the discrete token and the continuous node embedding (query-aware). The impact-weighted score
is Simpact(Gq, Ge) = X ,ev, Impact,, (Z4(u), hq(u)) [Z4(u) € w(Ge)l, trained with a pairwise
margin so relevant graphs outrank non-relevant ones. Impacts are computed on-the-fly at query time
and are not stored in the index.

Multiprobing for recall: Exact token matches can be brittle after discretization. We therefore probe
additional tokens per query token: (i) Hamming multiprobing probes a radius-r Hamming ball in
{0, 1}P; (ii) Co-occurrence multiprobing (CM) selects the top-b tokens whose posting lists have the
largest overlap with the seed token’s posting list, weighting contributions by the overlap.

Query-time pipeline and reranking: For a query G: (a) compute Z,(u) and impacts Impact,(-);
(b) probe the index for each token with CM; (c) aggregate per-graph scores and keep the shortlist
Ry(6) = {c : Si(Gy,G.) > 6}; (d) rerank candidates via the pretrained alignment distance
A(Gyq, G.) (Eq. (1)). The threshold ¢ directly controls latency/quality.

Training recipe: Stage 1: train GTNet = (6, ¢1, ¢2) with the Chamfer ranking loss to produce
discretization-friendly codes. Stage 2: freeze GTNet and train 1) with the impact ranking loss.

4 Experiments

We evaluate CORGII against strong baselines on real-world graph benchmarks and report the main
accuracy—efficiency trade-off; extended analyses are deferred to Appendix G.

Datasets: We use four TU datasets [41]: PTC-FR, PTC-FM, COX2, and PTC-MR, commonly
used in subgraph matching [10, 11].

Baselines: We compare to (1) FourierHashNet (FHN) [42] using single-vector graph embeddings;
(2) IVF-single (single-vector IVF) [26]; (3) IVF-multi (multi-vector IVF akin to ColBERT [16]);

Contextual Tokenization for Graph Inverted Indices

@ CoRGII » FHN m IVF-single ® IVF-multi o DiskANN-single Disk ANN-multi Random
0.48 0.49 0.56 ...? 0.48 °
A 0.36 * o 0.36 s
Bo. P 0.37 0.42 5 :r#0
=024 & .~ s 0.24 0.28 o 0.24 g
n F;ﬁv 0¥
0.12} 0.12 o 0.14 0.12 = ‘
0.25 0.5 0.75 1 0.25 0.5 0.75 1 0 025 0.5 0.75 1 0.25 0.5 0.75 1
k/C — k/C — k/C — k/C —
(a) PTC-FR (b) PTC-FM (¢) COX2 (d) PTC-MR

Figure 2: Accuracy—efficiency trade-off: MAP vs. fraction of corpus retrieved (k/C') on test queries.
CORGII consistently dominates baselines across datasets.

(4) DiskANN-single (single-vector HNSW-based ANN) [30]; (5) DiskANN-multi (multi-vector
variant); and (6) Random.

Protocol: Queries Q are split 60/20/20 into train/dev/test. For each test query, each method
retrieves a candidate set R;; we rerank candidates with the pretrained alignment scorer A(Gy, G..)
(Eq. (1)). We report mean average precision (MAP) versus retrieval budget, measured as the fraction
of the corpus retrieved k/C, where k = ﬁ >, [Rq|. For FHN we sweep hash/table settings; for

IVF/DiskANN we vary k directly. Hyperparameters: token bits D=10 (|7 |=2!°); co-occurrence
multiprobing size b=32 (when used).

4.1 Main result: CORGII vs. baselines

(1) Best trade-offs. Across all datasets, CORGII achieves the strongest MAP at a given retrieval
budget (Fig. 2). On COX2, for example, CORGII reaches ~0.50 MAP at k/C=0.5, whereas FHN
saturates near 0.35.

(2) Early gains at low budgets. CORGII attains competitive MAP while retrieving a much smaller
fraction of the corpus. On PTC-FR, CORGII achieves ~0.36 MAP with k/C <0.33, while most
baselines require k/C>0.75 to match.

(3) Multi- vs. single-vector. Multi-vector IVF/DiskANN variants improve upon their single-vector
counterparts, confirming the value of node-level granularity; nevertheless they trail CORGII, reflect-
ing the limitations of symmetric distances for inherently asymmetric subgraph containment.

4.2 Further analyses (Appendix)

We provide detailed studies in Appendix G: (i) co-occurrence vs. Hamming multiprobing and the
effect of the expansion budget b; (ii) the impact-weight network vs. uniform counts; (iii) asymmetric
vs. Siamese heads; (iv) Chamfer-based training vs. injective alignment; and (v) token co-occurrence
insights (posting-list—overlap similarity, Eq. (13), enabling robust multiprobing and smoother re-
call-latency trade-offs). These support the design choices behind CORGII and explain the observed
gains in Fig. 2.

5 Conclusion

We proposed CORGII, a scalable graph retrieval framework that bridges highly accurate late in-
teraction query containment scoring with the efficiency of inverted indices. By discretizing node
embeddings into structure-aware discrete tokens, and learning contextual impact scores, CORGII
enables fast and accurate retrieval. Experiments show that CORGII consistently outperforms several
baselines. Our work opens up several avenues of future work. It would be interesting to incorporate
richly attributed graphs, capturing temporal dynamics in evolving corpora, learning adaptive token
vocabularies, and exploring differentiable indexing mechanisms for end-to-end training. Another
avenue is to integrate CORGII into large retrieval-augmented systems that require structured subgraph
reasoning at scale.

Contextual Tokenization for Graph Inverted Indices

References

[1] Pritish Chakraborty, Indradyumna Roy, Soumen Chakrabarti, and Abir De. Contextual tokeniza-
tion for graph inverted indices (corgii). In Proceedings of the Neural Information Processing
Systems (NeurIPS) 2025, 2025. 1

[2] Bingqing Lyu, Lu Qin, Xuemin Lin, Lijun Chang, and Jeffrey Xu Yu. Scalable supergraph search
in large graph databases. In 2016 IEEE 32nd International Conference on Data Engineering
(ICDE), pages 157-168. IEEE, 2016. 1

[3] Robert P Sheridan and Simon K Kearsley. Why do we need so many chemical similarity search
methods? Drug discovery today, 7(17):903-911, 2002. 1

[4] Xiang Ling, Lingfei Wu, Saizhuo Wang, Gaoning Pan, Tengfei Ma, Fangli Xu, Alex X Liu,
Chunming Wu, and Shouling Ji. Deep graph matching and searching for semantic code retrieval.
ACM Transactions on Knowledge Discovery from Data (TKDD), 15(5):1-21, 2021. 1

[5] Justin Johnson, Ranjay Krishna, Michael Stark, Li-Jia Li, David Shamma, Michael Bernstein,
and Li Fei-Fei. Image retrieval using scene graphs. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 3668-3678, 2015. 1

[6] Donatello Conte, Pasquale Foggia, Carlo Sansone, and Mario Vento. Thirty years of graph
matching in pattern recognition. International journal of pattern recognition and artificial
intelligence, 18(03):265-298, 2004. 1

[7] Zhaoyu Lou, Jiaxuan You, Chengtao Wen, Arquimedes Canedo, Jure Leskovec, et al. Neural
subgraph matching. arXiv preprint arXiv:2007.03092, 2020. 1, 2,9

[8] Rishabh Ranjan, Siddharth Grover, Sourav Medya, Venkatesan Chakaravarthy, Yogish Sab-
harwal, and Sayan Ranu. Greed: A neural framework for learning graph distance functions.
In Advances in Neural Information Processing Systems 36: Annual Conference on Neural
Information Processing Systems 2022, NeurIPS 2022, November 29-Decemer 1, 2022, 2022. 9,
10

[9] Yujia Li, Chenjie Gu, Thomas Dullien, Oriol Vinyals, and Pushmeet Kohli. Graph matching
networks for learning the similarity of graph structured objects. In International conference
on machine learning, pages 3835-3845. PMLR, 2019. URL https://arxiv.org/abs/1904.
12787. 1,9

[10] Indradyumna Roy, Venkata Sai Velugoti, Soumen Chakrabarti, and Abir De. Interpretable
Neural Subgraph Matching for Graph Retrieval. AAAI 2022. 1,2,3,9, 13, 15

[11] Ashwin Ramachandran, Vaibhav Raj, Indradyumna Roy, Soumen Chakrabarti, and Abir De.
Iteratively refined early interaction alignment for subgraph matching based graph retrieval.
Advances in Neural Information Processing Systems, 37:77593-77629, 2024. 2, 3,9, 10

[12] Wei Zhuo and Guang Tan. Efficient graph similarity computation with alignment regularization.
Advances in Neural Information Processing Systems, 35:30181-30193, 2022. 1, 2,9

[13] Aliaksei Severyn and Alessandro Moschitti. Learning to rank short text pairs with convolutional
deep neural networks. In Proceedings of the 38th International ACM SIGIR Conference
on Research and Development in Information Retrieval, SIGIR 15, page 373-382, New
York, NY, USA, 2015. Association for Computing Machinery. ISBN 9781450336215. doi:
10.1145/2766462.2767738. URL https://doi.org/10.1145/2766462.2767738. 1

[14] Zhe Dong, Jianmo Ni, Dan Bikel, Enrique Alfonseca, Yuan Wang, Chen Qu, and Imed Zitouni.
Exploring dual encoder architectures for question answering. In Yoav Goldberg, Zornitsa
Kozareva, and Yue Zhang, editors, Proceedings of the 2022 Conference on Empirical Methods in
Natural Language Processing, pages 9414-9419, Abu Dhabi, United Arab Emirates, December
2022. Association for Computational Linguistics. doi: 10.18653/v1/2022.emnlp-main.640.
URL https://aclanthology.org/2022.emnlp-main.640/.

[15] Vladimir Karpukhin, Barlas Oguz, Sewon Min, Patrick Lewis, Ledell Wu, Sergey Edunov,
Dangi Chen, and Wen-tau Yih. Dense passage retrieval for open-domain question answering.
In Bonnie Webber, Trevor Cohn, Yulan He, and Yang Liu, editors, Proceedings of the 2020
Conference on Empirical Methods in Natural Language Processing (EMNLP), pages 6769—
6781, Online, November 2020. Association for Computational Linguistics. doi: 10.18653 /v
1/2020.emnlp-main.550. URL https://aclanthology.org/2020.emnlp-main.550/. 1

https://arxiv.org/abs/1904.12787
https://arxiv.org/abs/1904.12787
https://doi.org/10.1145/2766462.2767738
https://aclanthology.org/2022.emnlp-main.640/
https://aclanthology.org/2020.emnlp-main.550/

Contextual Tokenization for Graph Inverted Indices

[16] Omar Khattab and Matei Zaharia. Colbert: Efficient and effective passage search via contextual-
ized late interaction over bert. In Proceedings of the 43rd International ACM SIGIR conference
on research and development in Information Retrieval, pages 39-48, 2020. 1, 3,9

[17] Gerard Salton. Modern information retrieval. (No Title), 1983. 1

[18] C.D. Manning, P. Raghavan, and H. Schiitze. Introduction to Information Retrieval. An
Introduction to Information Retrieval. Cambridge University Press, 2008. ISBN 9780521865715.
URL https://books.google.co.in/books?id=GNvtngEACAAJ. 11

[19] Ricardo Baeza-Yates and Berthier Ribeiro-Neto. Modern Information Retrieval. ACM Press,
2nd edition, 1999. 1

[20] Otis Gospodnetic, Erik Hatcher, and Michael McCandless. Lucene in action. Simon and
Schuster, 2010. 1,9

[21] Clinton Gormley and Zachary Tong. Elasticsearch: the definitive guide: a distributed real-time
search and analytics engine. " O’Reilly Media, Inc.", 2015. 9

[22] Jimmy Lin, Xueguang Ma, Sheng-Chieh Lin, Jheng-Hong Yang, Ronak Pradeep, and Rodrigo
Nogueira. Pyserini: A python toolkit for reproducible information retrieval research with sparse
and dense representations. In Proceedings of the 44th International ACM SIGIR Conference
on Research and Development in Information Retrieval, SIGIR 21, page 2356-2362, New
York, NY, USA, 2021. Association for Computing Machinery. ISBN 9781450380379. doi:
10.1145/3404835.3463238. URL https://doi.org/10.1145/3404835.3463238. |

[23] Jingdong Wang, Heng Tao Shen, Jingkuan Song, and Jianqiu Ji. Hashing for similarity search:
A survey. arXiv preprint arXiv:1408.2927,2014. 1,9

[24] Yu A Malkov and Dmitry A Yashunin. Efficient and robust approximate nearest neighbor search
using hierarchical navigable small world graphs. IEEE transactions on pattern analysis and
machine intelligence, 42(4):824-836, 2018. 9

[25] Ruiqi Guo, Philip Sun, Erik Lindgren, Quan Geng, David Simcha, Felix Chern, and Sanjiv
Kumar. Accelerating large-scale inference with anisotropic vector quantization. In International
Conference on Machine Learning, 2020. URL https://arxiv.org/abs/1908.10396. 9

[26] Matthijs Douze, Alexandr Guzhva, Chengqi Deng, Jeff Johnson, Gergely Szilvasy, Pierre-
Emmanuel Mazaré, Maria Lomeli, Lucas Hosseini, and Hervé Jégou. The faiss library. arXiv
preprint arXiv:2401.08281, 2024. 3,9, 16

[27] Aristides Gionis, Piotr Indyk, Rajeev Motwani, et al. Similarity search in high dimensions via
hashing. In Vidb, volume 99, pages 518-529, 1999.

[28] Scott Deerwester, Susan T Dumais, George W Furnas, Thomas K Landauer, and Richard
Harshman. Indexing by latent semantic analysis. Journal of the American society for information
science, 41(6):391-407, 1990. 21

[29] Christos Faloutsos and Douglas W Oard. A survey of information retrieval and filtering methods.
Citeseer, 1995.

[30] Harsha Vardhan Simhadri, Ravishankar Krishnaswamy, Gopal Srinivasa, Suhas Jayaram
Subramanya, Andrija Antonijevic, Dax Pryce, David Kaczynski, Shane Williams, Siddarth
Gollapudi, Varun Sivashankar, Neel Karia, Aditi Singh, Shikhar Jaiswal, Neelam Mahap-
atro, Philip Adams, Bryan Tower, and Yash Patel. DiskANN: Graph-structured indices
for scalable, fast, fresh and filtered approximate nearest neighbor search, 2023. URL
https://github.com/Microsoft/DiskANN. 4, 16

[31] Alexandr Andoni and Piotr Indyk. Near-optimal hashing algorithms for approximate nearest
neighbor in high dimensions. Communications of the ACM, 51(1):117-122, 2008.

[32] Alexandr Andoni and Ilya Razenshteyn. Optimal data-dependent hashing for approximate near
neighbors. In Proceedings of the forty-seventh annual ACM symposium on Theory of computing,
pages 793-801, 2015.

[33] Alexandr Andoni, Piotr Indyk, Thijs Laarhoven, Ilya Razenshteyn, and Ludwig Schmidt.
Practical and optimal Ish for angular distance. Advances in neural information processing
systems, 28, 2015.

[34] Cong Fu, Chao Xiang, Changxu Wang, and Deng Cai. Fast approximate nearest neighbor search
with the navigating spreading-out graph. arXiv preprint arXiv:1707.00143, 2017.

https://books.google.co.in/books?id=GNvtngEACAAJ
https://doi.org/10.1145/3404835.3463238
https://arxiv.org/abs/1908.10396
https://github.com/Microsoft/DiskANN

Contextual Tokenization for Graph Inverted Indices

[35] Wen Li, Ying Zhang, Yifang Sun, Wei Wang, Mingjie Li, Wenjie Zhang, and Xuemin Lin.
Approximate nearest neighbor search on high dimensional data—experiments, analyses, and
improvement. IEEE Transactions on Knowledge and Data Engineering, 32(8):1475-1488,
2019. 1

[36] Ainesh Bakshi, Piotr Indyk, Rajesh Jayaram, Sandeep Silwal, and Erik Waingarten. A near-linear
time algorithm for the chamfer distance, 2023. URL https://arxiv.org/abs/2307.03043.
1,10

[37] Keshav Santhanam, Omar Khattab, Christopher Potts, and Matei Zaharia. Plaid: an efficient
engine for late interaction retrieval. In Proceedings of the 31st ACM International Conference
on Information & Knowledge Management, pages 1747-1756, 2022. 1,9

[38] Thibault Formal, Benjamin Piwowarski, and Stéphane Clinchant. Splade: Sparse lexical and
expansion model for first stage ranking. In Proceedings of the 44th International ACM SIGIR
Conference on Research and Development in Information Retrieval, pages 2288-2292, 2021. 1,
9

[39] Marco Cuturi. Sinkhorn distances: Lightspeed computation of optimal transport. Advances in
neural information processing systems, 26:2292-2300, 2013. 2, 14

[40] Gonzalo Mena, David Belanger, Scott Linderman, and Jasper Snoek. Learning latent per-
mutations with gumbel-sinkhorn networks. arXiv preprint arXiv:1802.08665, 2018. URL
https://arxiv.org/pdf/1802.08665.pdf. 2

[41] Christopher Morris, Nils M Kriege, Franka Bause, Kristian Kersting, Petra Mutzel, and Marion
Neumann. Tudataset: A collection of benchmark datasets for learning with graphs. arXiv
preprint arXiv:2007.08663, 2020. 3

[42] Indradyumna Roy, Rishi Agarwal, Soumen Chakrabarti, Anirban Dasgupta, and Abir De.
Locality sensitive hashing in fourier frequency domain for soft set containment search. Advances
in Neural Information Processing Systems, 36:56352-56383, 2023. 3, 15

[43] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. Distributed repre-
sentations of words and phrases and their compositionality. Advances in neural information
processing systems, 26, 2013. 9

[44] Jeffrey Pennington, Richard Socher, and Christopher D Manning. Glove: Global vectors for
word representation. In Proceedings of the 2014 conference on empirical methods in natural
language processing (EMNLP), pages 1532-1543, 2014. 9

[45] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. In Proceedings of the 2019 conference of
the North American chapter of the association for computational linguistics: human language
technologies, volume 1 (long and short papers), pages 4171-4186, 2019. 9

[46] Herve Jegou, Matthijs Douze, and Cordelia Schmid. Product quantization for nearest neighbor
search. IEEE transactions on pattern analysis and machine intelligence, 33(1):117-128, 2010.
9

[47] Number of simple connected graphs on n unlabeled nodes. Online. URL https://oeis.or
g/A001349. 11

[48] Yu A Malkov and Dmitry A Yashunin. Efficient and robust approximate nearest neighbor search
using hierarchical navigable small world graphs. IEEE transactions on pattern analysis and
machine intelligence, 42(4):824-836, 2018. 16

[49] Antonella Falini. A review on the selection criteria for the truncated svd in data science
applications. Journal of Computational Mathematics and Data Science, 5:100064, 2022. 21

[50] Jure Leskovec, Anand Rajaraman, and Jeffrey David Ullman. Mining of massive data sets.
Cambridge university press, 2020. 21

https://arxiv.org/abs/2307.03043
https://arxiv.org/pdf/1802.08665.pdf
https://oeis.org/A001349
https://oeis.org/A001349

Contextual Tokenization for Graph Inverted Indices

Appendix

A Broader Impact

Graph retrieval is a key enabler in many real-world domains where structured relationships are central.
Our work on CORGII contributes to subgraph-based retrieval, offering benefits across a range of
applications:

* Drug discovery and molecular search: Efficient subgraph containment enables rapid screening
of compounds containing functional motifs, aiding in virtual screening pipelines.

* Program analysis and code intelligence: Retrieval over control-flow or abstract syntax graphs
can improve vulnerability detection and semantic code search.

* Scene understanding and vision-language systems: Graph-based representations of scenes or
object relationships benefit from scalable matching of structured queries.

* Scientific knowledge extraction: Structured retrieval over citation or concept graphs supports
discovery in large corpora of scientific knowledge.

By enabling fast and accurate retrieval of graphs under substructure containment, our work has the
potential to improve the scalability and responsiveness of systems that rely on structured search over
large graph collections. The proposed method, CORGII, contributes toward democratizing structure-
aware search by bridging discrete indexing methods with neural representations, making such systems
more accessible to low-resource settings where dense model inference may be prohibitive.

While CORGII offers efficiency and interpretability advantages, like any retrieval system, it may
raise concerns when applied to sensitive graph-structured data—such as personal social networks or
proprietary molecular datasets—potentially risking privacy or intellectual property leakage. Moreover,
since training relies on learned embeddings, there remains a possibility of inherited biases from
the underlying data. Practitioners are advised to apply appropriate safeguards, including privacy-
preserving techniques and fairness auditing, when deploying the system in sensitive domains.

B Limitations

While CORGII demonstrates strong performance in scalable graph retrieval, several aspects offer
room for further improvement. We outline them below as avenues for future exploration:

* Static token vocabulary: Our framework relies on a fixed latent vocabulary defined by binary
token length. Learning adaptive or dynamic vocabularies could improve representation flexibility
and efficiency.

* Lack of support for attributed or heterogeneous graphs: CORGII currently operates on purely
structural information. Extending the framework to incorporate rich node/edge attributes and
heterogeneous graph types is a natural next step.

* Limited handling of evolving corpora: The inverted index assumes a static corpus. Incorporating
update-friendly indexing or continual learning mechanisms would enable deployment in dynamic
settings, such as codebases or scientific repositories.

Addressing these limitations can further improve the adaptability, expressivity, and deployment
readiness of CORGII in diverse graph-based retrieval settings.

Contextual Tokenization for Graph Inverted Indices

C Related Work
C.1 A Brief History of Text-based Retrieval Architectures

Early information retrieval (IR) systems for text, relied on sparse lexical matching using bag-of-words
(BoW) representations. Documents were encoded as high-dimensional sparse vectors over a fixed
vocabulary, with inverted indices mapping each term to its corresponding document sets. Statistical
term-weighting schemes like TF-IDF and BM25 were used to estimate relevance, prioritizing terms
that were both frequent within a document yet discriminative across the corpus. Decades of research
culminated in highly optimized sparse retrieval systems, such as Lucene [20] and Elasticsearch [21],
which remain industry standards for lexical search.

Despite their efficiency, lexical methods are fundamentally limited by their reliance on surface-level
token matching, failing to capture deeper semantic similarity. To address this, dense neural IR models
were proposed, using learned embeddings—initially static (e.g., Word2Vec [43], GloVe [44]) and later
contextual (e.g., BERT [45])- to encode text into compact, low-dimensional vector spaces that support
semantic retrieval. As these dense representations are incompatible with inverted indices, retrieval
relies on Approximate Nearest Neighbor (ANN) search techniques such as LSH [23], HNSW [24],
and IVF [46], with efficient implementations provided by libraries like FAISS [26] and ScaNN [25].

Early dense retrieval systems typically compressed entire texts into single-vector representations,
but this proved suboptimal for longer inputs due to over-compression, which obscures token-level
distinctions. This limitation motivated a shift toward multi-vector representations, which preserve
token-level information and enable more precise semantic alignment. Architectures such as Col-
BERT [16] and PLAID [37] adopt late interaction mechanisms that allow scalable token-wise retrieval.
However, these methods still rely on ANN search as a subroutine, which—despite its effectiveness in
dense settings—is slower than inverted indexing in practice.

To bridge the gap between dense semantic modeling and efficient retrieval, recent work has revisited
sparse representations through a neural lens. Sparse neural IR models seek to combine the semantic
expressiveness of dense models with the scalability and efficiency of traditional inverted indices.
Approaches like SPLADE [38] learn document-specific, term-weighted sparse vectors by projecting
inputs onto a high-dimensional vocabulary space. Crucially, this space is not limited to surface-level
input tokens; the model can activate latent or implicitly relevant terms through learned expansions,
effectively enriching the document representation beyond what is explicitly present in the text.
This allows for semantically-informed exact matching within classical IR frameworks, effectively
narrowing the gap between dense retrieval and sparse indexing.

C.2 A Briefer History of Neural Graph-Containment Scoring Models

Graph containment—determining whether a query graph G/ is (approximately) embedded within
a corpus graph G.—has long been a central problem in graph-based search. Traditional methods
rely on combinatorial algorithms and subgraph isomorphism solvers, which are computationally
expensive and scale poorly to large graph corpora. To address this, recent neural methods propose
differentiable surrogates for containment using graph neural networks (GNNs).

NeuroMatch [7] introduced a Siamese GNN with a hinge loss over aggregated node embeddings,
but its global pooling loses fine structural detail. IsoNet [10] addresses this by retaining node-level
embeddings H,,, H ., computing soft alignments via a Gumbel-Sinkhorn network to produce a doubly
stochastic matrix P, and scoring relevance using an asymmetric hinge loss [H, — PH_]. This
better models subgraph containment and achieves improved empirical performance. IsoNet++ [11]
extends this with early-interaction message passing for richer local-global representation. However,
both IsoNet and IsoNet++ require dense, pairwise alignment across the corpus, limiting scalability.

Other recent works, such as [8, 9, 12], model graph similarity via node-level interactions using
matching networks or soft attention. While these approaches capture structural alignment to some
extent, they are tailored for general-purpose similarity tasks, making them less suited for subgraph
containment and less scalable to large graph corpora.

Contextual Tokenization for Graph Inverted Indices

D Detailed Description of Proposed Approach

We now present CORGII: a scalable retrieval system for graph retrieval that takes advantage of
decades of optimization of inverted indices on discrete tokens, and yet supports scoring and ranking
using continuous node embeddings. Starting with the hinge distance (1), we propose a series of steps
that adapt GNN-based contextual node embeddings toward a discrete token space, enabling us to use
inverted indices. Before describing the modules of CORGII, we outline these adaptation steps.

GNN-based node embeddings: As described in Section 2, a (differentiable) GNN contextualizes
nodes in their graph neighborhood to output H, and H,.. The (transportation-inspired) hinge
distance between them, found effective for ranking in earlier work, is asymmetric and based on a
(soft) permutation P. These introduce two major hurdles in the way of deploying inverted indices.
CORGII approximates the asymmetric, early-interaction distance (1) with an asymmetric dual
encoder (late interaction) network, but based on a non-injective granular scoring function.

Efficient differentiable (near-)tokenization: As a first step toward tokenization, we apply two
(still differentiable, but distinct) networks to hy(u), h.(v), ending with sigmoid activations, which
take the outputs z,(u), z.(v) closer to bit-vector representation of tokens. The GNN, together with
these networks, are trained for retrieval accuracy (and not, e.g., any kind of reconstruction). We also
replace the permutation with a Chamfer distance [36] which brings us closer to inverted indices.

Token discretization and indexing: Finally, we round z,(u), z.(v) to 0/1 bit vectors Z,(u), Z.(v),
assigning a bit-vector token to each node. Much like text documents, a graph is now represented as a
multiset of discrete tokens. With this step, we lose differentiability, but directly use an inverted index.

Impact weights and multi-probing: All tokens should not contribute equally to match scores.
Based on corpus and query workloads, we learn suitable impact weights of these (manufactured)
tokens. We further optimize the performance of CORGII by designing a suitable aggregation
mechanism to prune the posting lists obtained from all the query tokens. Finally, we consider one
folklore and one novel means to explore the ‘vicinity’ of a query token, to provide a smooth trade-off
between query latency and ranking accuracy.

D.1 Graph tokenizer network GTNet

We now proceed to describe the major components of CORGII.

The first stage of GTNet is a standard GNN similar to that described in Section 2, but here we will
train it exclusively for indexing and retrieval. The GNN will share the same parameters 6 across
query and corpus graphs. After the GNN, we will append a multi-layer perceptron (MLP) layer with
different parameters ¢; and ¢, for the query and corpus graphs.

zq(u) = 0(MLPy, (x4(u))) foru € V; where, {z4(u)} = GNNy(Gy);)
zc(v) = 0(MLPy,(x.(v))) forv e V. where, {x.(v)} = GNNy(G.,). 3)

Rationale behind different MLP networks Unlike exact graph matching, the subgraph matching
task is inherently asymmetric, where Gy C G, does not mean G. C G. To model this asymmetry,
existing works [8—11] employs hinge distance A(Gy, G.) (1), while sharing a a Siamese network
with the same parameters for query and corpus pairs. However, such approach will preserve subgraph
matching through order embeddings: Z, < SZ.. But inverted indexing requires exact token
matching, making order embeddings incompatible with token-based indexing. Therefore, we retain
asymmetry through separate MLPs for queries and corpus.

Introducing Chamfer Distance between graphs An asymmetric Siamese network lets us replace
hinge distance [H, — P H_]; with the normed distance || Z, — PZ_||1, but, for the sake of indexing,
we need to avoid the permutation P (whose best choice depends on both H, and H.), so that
‘document’ graphs can be indexed independent of queries. Moreover, training from relevance labels
require P to be modeled as a doubly stochastic soft permutation matrix (see Eq. (1)). However, its
continuous nature of P smears the values in Z,; and Z_, leading to poor discretization. Due to these
reasons, we avoid the permutation, and for each query node w, match z,(u) to z.(v) for some corpus
node v, independently of other query nodes, as opposed to the joint matching of all nodes in query
corpus pairs, thus permitting non-injective mappings via the Chamfer distance [36]:

Chamfer(Gq, Ge) = 3, ey, Minvev, [[24(uw) = Z(v)]|1, 4)

10

Contextual Tokenization for Graph Inverted Indices

Ideally, relevant graphs yield Chamfer(G,, G.) = 0, but GTNet produces approximate binary
representations, making exact matches unlikely. To ensure a robust separation between the relevant
and non-relevant query-corpus pairs, we seek to impose a margin of separation m: non-relevant graphs
should differ by at least one additional bit per node compared to the relevant graphs, corresponding
to a total Chamfer distance separation of m.

Formally, for a query graph G, and the set of relevant and irrelevant (or less relevant) corpus graphs
cg € Cyp and co € Cyp, we require Chamfer(Gy, G,) +m < Chamfer(G,, G,). This yields
the following ranking loss optimized over parameters of GTNet, i.e., 0, ¢1, po:

min Z Z [Chamfer(Gy, G,) — Chamfer(G,, G._) + m]4 (5)

0,01,¢2
q cg€Cyo,ca€Cyn

Note that node embeddings Z,, Z.. still allow backprop, but are closer to “bit vectors”. Moreover, the
training of 0, ¢1, ¢ is guided not by reconstruction considerations, but purely by retrieval efficacy.

D.2 Discretization and inverted index

Once GTNet is trained, we compute, for each corpus graph and node therein, z.(v), and, from there,
a bit vector z.(v) = [z.(v) > 0.5] as a ‘hard’ representation of each corpus node (and similarly
from z,(u) to 2,(u) for query nodes u). Given z.(v) € (0,1), this means z.(v) € {0,1}7, i.e.,
each node gets associated with a D-bit integer. Let us call this the token space T = [2P]. Note that
multiple nodes in a graph may get assigned the same token. Thus, each query graph G4 and corpus
graph G are associated with multisets of tokens, denoted

w(Gq) ={z4(uw) :ueVy} and w(G.) = {Zz:(v):v eV .} (6)
(If a graph is padded for efficient tensor operations, the tokens corresponding to padded nodes are
logically excluded from the multisets. We elide this code detail for clarity.)

Conceptually, a basic inverted index is a map where the keys are tokens. Each token 7 € T is
mapped to the set (without multiplicity) of corpus graphs (analog of ‘documents’) in which it appears:
PostingList(7) = {c € C : 7 € w(G,)}. Intuitively, the goal of minimizing the Chamfer distance
(4) in the pre-discretized space corresponds, in the post-discretized space, to locating documents that
have large token overlap with the query, which finally enables us to plug in an inverted index.

Candidate generation using uniform impact At query time, the query graph G|, is processed
as in (0), to obtain w(G,). Given the inverted index, each token 7 € w(G,) is used to retrieve
PostingList(7). As a simple starting point (that we soon improve), a corpus graph can be scored as

Sunif(an Gc) = ZuEVq [[Eq(u) € UJ(GC)]]. @)

(If multiple nodes v have the same token z,(u), they are counted multiple times. Belongingness in
w(G,) is Boolean, without considering multiplicities.) These scores are used to select a subset of can-
didates from the whole corpus. These qualifying candidates are reranked using the (computationally
more expensive) alignment-based distance A(G,, G.) (1).

D.3 Impact weight network

The crude unweighted score (7) has some limitations:

(1) Information is lost from H to Z to Z. Nodes with minor differences in neighborhood structure
may be mapped to overlapping tokens, resulting in large candidate pools.

(1) Similar to IDF, we need to discriminate against common graph motifs with poor selectivity.

In our setting, the combinatorial explosion of motifs makes the estimation of motif frequencies
intractable [47]. Moreover, unlike IDF in text retrieval [18], frequent structures cannot be down-
weighted, as subgraph retrieval requires matching all query components, regardless of the frequency
of the subgraphs.

To mitigate the above difficulties, we use a notion of token impact weight in the same spirit as in
traditional text retrieval, although there are some crucial differences. We introduce an impact weight
network Impact,, : 7 x R4 — R, parameterized with 1, where dimy, is the dimension of the
pre-trained continuous node embedding h,(e) or h.(e). We often substitute 7 with Z,(u) in the
input to Impact,, depending on context.

11

Contextual Tokenization for Graph Inverted Indices

(a) 2-stage training of CORGII (b) Retrieval and reranking
1: input: graph corpus C, training queries {G,} with| 1: inputs: query G, threshold ¢, pre-trained embed-
relevance labels {yq.} dings {hq(u)} for G,.

// Train GTNet

// Obtain approximate binary representation
2: for each query-corpus pair (G, . _
5 Compute Z, — GTNet((G;I) (EZ] @) 2: Compute Z, = GTNet(G4) (Eq. (2))
4 Compute Z. = GTNet(Ge) (Eq. (3)) // Compute binary embeddings and tokens
5 Compute Chamfer(Gg4, G.) (Eq. (4)) 3: {2,(u)} = [Z, > 0.5]
6: end for . . .| 4 w(G,) = ObtainTokenSet({Z,(u)})
7: Train GTNet by minimizing margin-based ranking
loss on Chamfer(G4, G.) (Eq. (5)) // Compute impact weights
// Train impact network 5: for each node u € V; do
8: for each query-corpus pair (G4, G.) do 6: Compute Impactw(fq (u), hq(u)) (Eq. (8))
9: Compute Z; = GTNet(G4) 7: end for
// Compute binary embeddings // Probe index using query node tokens and their
10: {Z4(w)} =12, > 0.5] impacts (with optional token expansion) and aggre-
// compute impact scores of all query graphs gate preliminary relevance scores
11: compute Simpacl(un Gc) (Eq) 8: Simpacl,CM(GQ7 Gc) (Eq.)
12: end for // Shortlist candidates
13: Train Impact,, network by minimizing 9: Rq(8) = {Ge : Simpact,com (Gq, Ge) > 6} (11)
margin-based ranking loss on Simpact (Gq, Ge) 10: rerank surviving candidates using A(Gg4, G.) (1)
(Eq. (10)) 11: return top-k corpus graphs

Figure 3: (a) preprocessing and (b) query-time components of CORGII.

Neural architecture of Impact,, Network Impact,, is implemented as a lightweight multi layer

perceptron (MLP). Given input token 7, presented as a binary code from {0, 1}, and input node
embedding h, we concatenate them and pass the result through a multi-layer perceptron, i.e.,

Impact,, (7, h) = MLPy (concat (7, h)) . ®)
Rather than count all matched tokens uniformly (7), we compute an impact-weighted aggregate:
Simpact(Gg, Ge) = Y Tmpact, (24 (), hg(u)) [2,(u) € w(G.)])
u€Vy

Thus, token matches are weighted according to their learned structural importance rather than treated
uniformly, enabling fine-grained, query-sensitive retrieval over the inverted index.

Training Impact,, LetCyq and Cyg be the relevant and non-relevant graphs for query G ;. Similar
to Eq. (5), we encourage that §1pact(Gg, Geg) > S(Gg, Gey) + 7 for cg € Cyq and ¢ € Cye,
where v > 0 is a margin hyperparameter. As before, this leads to a pairwise hinge loss to train 1):

argmlnz Z Z 1mpact an G,) - Simpact(an GC@) + V]Jr . (10)
7 co€lqp co€Cqo
Note that the networks described earlier, with parameters 6, ¢1, @5 are frozen before training the
impact parameters . Unlike in classical inverted indices, impact weights are not associated with
documents, or stored in the index. Figure 3(a) shows all the training steps of CORGII.

D.4 Query processing steps and multi-probing

At retrieval time, the query graph G|, is first embedded using the pretrained encoder £ to obtain node
embeddings H,. The graph tokenizer GTNet then discretizes H, into soft binary codes Z, and later

hard binary codes Z, and Impact,, computes impact weights (if used).
Each query graph token is used to probe the inverted index. Candidate corpus graphs are retrieved by

aggregating impact scores across matching tokens. Graphs with cumulative relevance scores above a
tunable threshold ¢ form the shortlist:

Ry(6) ={ceC:Sa(Gy,G.) >0}, (11)
where & € {unif, impact}. Here, § controls the trade-off between the query time and retrieval
accuracy. High § results in smaller size of R,(4), yielding low query time, whereas a low ¢ gives high
query time. Note that, S¢ (G, G.) is used only to obtain R,. Candidates in R, are further reranked
using the pretrained alignment-based ‘true’ distance A(Gy, G) (1). Details are in Figure 3(b).

12

Contextual Tokenization for Graph Inverted Indices

Limitation of single probe per query node We have described how candidate corpus graphs are
scored using uniform and impact-weighted aggregates. In both methods, each token 2, () from the
query resulted in exactly one probe into the index. Preliminary experiments suggested that a single
probe using each query token leads to lost recall, brought on partly by losing signal from continuous
to bit-like node representations, and by replacing permutation-based node alignment with Chamfer
score. We must discover and exploit affinities between tokens while accessing posting lists.

In the rest of this section, we explore two means to this end. The first, Hamming expansion, has
already been used in the literature on locality-sensitive hashing. The second, co-occurrence expansion,
is a proposal novel to CORGII.

Term weighting | Single Probe | Hamming multiprobe (HM) | Co-occurrence multiprobe (CM)
Uniform Sumf Sumf’HM (T = ..) Sunif,CM (b = ..)
Impact Simpac[SimpaCLHM (7“ =..) Simpact,CM (b =..) (CoRGII)

Table 1: Possible combinations of term weighting and probing strategies. Default CORGII corre-
sponds to Simpact,cm- 7 and b indicate Hamming radius for HM and number of tokens chosen for CM.

Hamming expansion multiprobe (HM) While exact token matches may be adequate when
query and corpus graphs are locally near-isomorphic, discretization errors and structural noise
can cause relevant corpus graphs to be missed if no exact token match is found. To improve
recall, we “smooth the boundaries of token bit encodings” by introducing a lightweight token
expansion mechanism: given a query token 7 € 7T, we probe the inverted index using not only
7, but also nearby tokens within a Hamming ball of radius r in the binary space {0,1}?. Given
z and Z are the corresponding binary vectors of 7, 7’ respectively, we write B.(7) = {7’ : ||z —
Z'||1 £ 7}. Simpact from (9) is extended, by summing over the ball, to

Simpacti (G, Go) = > Y Impacty (7, hye(w)) [T € w(G)]. (12)
u€Vy T€Br(Z4(u))
This expansion allows retrieval of corpus graphs containing approximate matches, mitigating the
brittleness of hard discretization without requiring dense alignment. Hamming expansion has the
potential to improve recall, but there is a risk of too many false positive candidates to eliminate
through expensive scoring later.

Co-occurrence expansion multiprobe (CM) In classical text indexing, a token is sometimes
characterized by the set of documents that mention it. Two tokens can then be compared by comparing
their respective posting lists. A large overlap in these posting lists hints that the tokens have high
affinity to each other. Adapting this idea to graph indexing can provide an alternative to Hamming-
based affinity, which can be used either by itself, or in conjunction with Hamming-based token
expansion.

For each query token 7 € T, we identify additional tokens 7/ whose posting lists overlap significantly
with the posting list of 7, i.e., PostingList(7). Specifically, we define a similarity score between
tokens 7 and 7’ as

|PostingList(7) N PostingList(7’)]
> . e |PostingList(7) N PostingList (7,)|

and expanded token set N} (7) = argmax() o7 sim(7, 7’), where b is the number of similar tokens.
Similar to Impactd,, we overload the input notation for sim where necessary. Simpact from (9) is then
updated to aggregate over this expanded neighborhood, weighted by similarity:

Simpact.cm (Ge, Gq) Z Z sim(7, 2, (u)) Impact,, (7, hy(u)) [T € w(G:)D. (14)
u€Vy €Ny (Z4(w))
This way, a corpus graph G can receive a non-zero score for a query node u, if any token 7 in the

expanded set NV, (z,(u)) appears in w(G.) — not just z,(u) itself. Table 1 lists different variants
including CORGII.

(13)

sim(7,7") =

E Additional details about our model and training
E.1 Pre-trained backbone

We use Isonet [10] for final scoring mechanism. IsoNet has two components: (1) a GNN and (2) a
permutation network. GNN comprises of feature initialization network F’; a message computation

13

Contextual Tokenization for Graph Inverted Indices

network F5 and an embedding update (or combination) network F3. Specifically, for the query graph
G4, we execute L mesage passing layers as follows:

hgo(u) = Fy(Feature(u)) forallu €V, (15)

hoipi(u) = Fs | hor(u); Y Falhgi(u),hex(v)) |, forallue Vg, ke{0,.,L—1}
vi(u,v)EE

(16)
We use the same procedure to compute the embeddings k.. ;, for corpus graphs. We collect these em-
beddings in H,,, H. € R™*4mx_ These embeddings are finally used fed into multilayer perceptron,
followed by dot product, to obtain an affinity matrix MLP(H,) MLP(H,) " which is then provided
as input into a node alignment network to obtain P. Given a temperature hyperparameter temp, this
network outputs a soft-permutation matrix using Sinkhorn iterations [39].

P = Sinkhorn(MLP(H,) MLP(H,) " /temp) (17)

Gumbel-Sinkhorn network consists of iterative row-column normalization as follows:
Py = exp(MLP(H,) MLP(H.)" /temp) (18)
P, = RowNormalize (ColumnNormalize(P;)) 0<t¢<T —1. (19)

As T — oo Pr approaches as doubly stochastic matrix and as temp — 0,7 — oo, the matrix Pr
approaches a permutation matrix.

In our work, we set dimj;, = 10. Here, F} is 10-dimensional encoder; F5 consists of a combination of
a propagator layer with a hidden dimension of 20 and a GRU layer at the output, with final dimension
10; and F3 consists of an aggregator layer with hidden dimension 20 and output dimension 10. The
MLPs used in Sinkhorn network, are linear-ReLU-linear networks. Each MLP has a hidden layer of
25 dimensions, and the output is of 25 dimensions. Finally, we minimize the ranking loss to obtain
the parameters of F, F» and F3 (Eq. (15)— (16)); and MLP used in Eq. (19)

>3 D [A(GyGey) — A(Gy, Gey) + Margin] |, . (20)
9 cp€Clqp co€lqo
We used a margin of 0.5. Note that A is only used in the final stage of ranking. In Sinkhorn network,
we set the number of iterations 7' = 10 and temparature 0.1.

E.2 Details about CORGII

Architecture of GTNet and Impact,, The GNN in GTNet consists of same architecture as in
Egs. (15)- (16), with the same number of layers and hidden dimensions. Here, we set dim(x,) = 10.
Each of the MLPs in GTNet, i.e., MLP,, , MLP, in Egs. (2) and (3) consist of a linear-ReLU-linear
network with input dimension 10, hidden layer of size 64 and output dimension 10. Note that GTNet
does not share any components with the pre-trained backbone.

MLP, used in Eq. (8) to model the impact scorer admits a similar architecture as MLP, , MLPg, .
It consists of a linear-ReLU-linear network with input dimension 10, hidden layer of size 64 and
output dimension 10.

Optimization and Early Stopping. We train both models using the Adam optimizer with a learning
rate of 1 x 102 and a batch size of 3000. During GTNet training, early stopping is performed at the
sub-epoch level (i.e., across batches) with a patience of 30 steps and validation every 30 steps. For
Impact,,, early stopping is applied at the epoch level with a maximum of 20,000 epochs and patience
set to 50. Validation is conducted every epoch, with a default tolerance threshold of 5 x 1073, In
both cases, the model is evaluated using the score function aligned with its training objective.

Margin Hyperparameter Tuning. For the Chamfer-based ranking loss in Eq. (5), we experiment
with margin values of {0.01,0.1, 1.0, 10, 30}. The best-performing margins are 10 for PTC-FR and
PTC-FM, and 30 for COX2 and PTC-MR. For the impact network loss in Eq. (10), tested margins
include {0.01,0.1,1.0}. Margins of 0.01, 0.01, 1.0, and 0.1 work best for PTC-FR, PTC-FM,
COX2, and PTC-MR, respectively.

Training Under Co-Occurrence Expansion. During training with co-occurrence multiprobing,
the token neighborhood Ny, (Z,(u)) in Eq. (14) is replaced with the full vocabulary 7. This allows
Impact,, to learn a relevance-aware importance score for every token. At retrieval time, top-b tokens
are selected based on sim, using the learned impact scores.

14

Contextual Tokenization for Graph Inverted Indices

Reproducibility. All experiments are run with a fixed random seed of 42 across libraries
and frameworks. We leverage PyTorch’s deterministic execution setting and CuBLAS workspace
configuration to ensure reproducible execution.

F Additional details about experiments

Dataset | min(|Ve|) max(|Vo|) E[[Vo|] | min(|Ec|) max(|Ec|) E[Ec|]

PTC-FR 16 25 18.68 15 28 20.16
PTC-FM 16 25 18.70 15 28 20.13
COX2 16 25 19.65 15 26 20.23
PTC-MR 16 25 18.71 15 28 20.17

(a) Corpus graph statistics.

Dataset | min(|Vg|) max(|Vo|) E[Voll | min(|Eg|) max(|Eg|) E[|Eg|] | E[LX=H

ly=0]
PTC-FR 6 15 12.64 6 15 12.41 0.11
PTC-FM 7 15 12.58 7 15 12.34 0.12
CcOox2 6 15 13.21 6 16 12.81 0.11
PTC-MR 6 15 12.65 7 15 12.41 0.12

(b) Query graph statistics and average positive-to-negative label ratio (E[}Zié} D-
Table 2: Statistics of sampled subgraph datasets used in our experiments. Each dataset consists of
500 query graphs and 100,000 corpus graphs.

F.1 Datasets

All experiments are performed on the following datasets: PTC-FR, PTC-FM, COX2 and PTC-MR.
From each dataset, we extract corpus and query graphs using the sampling procedure outlined
in [10], such that |C] = 100000 and |Q| = 500. The queryset is split such that | Q| = 300,
|Quev| = 100 and | Qyest] = 100. Each dataset has its relevant statistics outlined in Table 2, including
the minimum, maximum and average number of nodes and edges in both the corpus set and the
queryset. Additionally, the table also lists the per-query average ratio of positive ground truth
relationships to negative ground truth relationships.

F.2 Baselines
We provide a detailed description of each of the baselines used in our experiments.

FourierHashNet: It is a Locality-sensitive Hashing (LSH) mechanism designed specifically for
the set containment problem [42], applied to subgraph matching. In particular, it overcomes the
weaknesses of symmetric relevance measures. Earlier work employed measures such as Jaccard
similarity, cosine similarity and the dot product to compute similarity between a pair of items, which
do not reflect the asymmetric nature of the problem. FHN, on the other hand, employs a hinge-
distance guided dominance similarity measure, which is further processed using a Fourier transform
into the frequency domain. The idea is to enable compatibility with existing fast LSH techniques by
leveraging inner products in the frequency domain, while retaining asymmetric notion of relevance.

We adopt the original architecture and training settings of FourierHashNet [42] without modification.
The model employs 10 sampled Fourier frequencies to compute learned asymmetric embeddings,
which are then optimized using a binary cross-entropy loss over embedding vectors of dimension 10.
The final hash representation consists of 64-bit codes. For training, we perform a full grid sweep over
the hyperparameter configurations proposed in the original work, including all specified loss weights.
To study the trade-off between retrieval accuracy and index efficiency, we vary the number of hash
table buckets at query time, ranging from 2 to 20,

15

Contextual Tokenization for Graph Inverted Indices

IVF: The FAISS library provides facilities for inverted file indexing (IVF) [26]. IVF clusters the
corpus of vectors using a suitable quantization method. The quantization method produces centroid
vectors for each corpus vector, and each centroid represents a cluster. Internally, the library stores the
vectors assigned to each cluster in the form of (possibly compressed) contiguous postings lists. To
search this construction, a query vector is transformed into its corresponding centroid to match with
the given cluster. Depending on the number of probes argument given during search time, one may
expand their search into multiple neighboring clusters. We implement single-vector and multi-vector
variants of IVF.

Note that we use the faiss.IndexFlatIP as the quantizer and faiss.IndexIVFFlat as the
indexer.

DiskANN: To tackle the challenge of having to store search indices in memory for strong recall,
DiskANN introduces efficient SSD-resident indices for billion-scale datasets [30]. To this end, the
authors develop a graph construction algorithm inspired by methods such as HNSW [48], but which
produce more compact graphs (smaller diameter). They construct smaller individual indices using this
algorithm on overlapping portions of the dataset, and then merge them into a single all-encompassing
index. These disk-resident indices can then be searched using standard techniques. One of the key
benefits of DiskANN is that it requires modest hardware for the construction and probing of their
disk-resident indices. We implement single-vector and multi-vector variants. Note that we test against
the memory-resident version of Disk ANN.

We employ a graph degree of 16, complexity level of 32, alpha parameter of 1.2 during indexing.
During search, we use an initial search complexity of 22!,

F.3 Evaluation metric

We report Mean Average Precision (MAP) and the average number of retrieved candidates to
characterize the efficiency—accuracy tradeoff. Retrieved candidates are reranked using the pretrained
alignment model for consistent evaluation. For a query g with relevant corpus set C,q, and a retrieved
ranking 7,, we define the average precision (AP) as
1 Imql

|Cq€9| r—1
where rel,(r) € {0,1} indicates whether the r-th ranked item is relevant to ¢ and Prec@r is the
precision at rank 7. MAP is the mean of AP over all queries. This formulation penalizes high
precision with low recall, ensuring models are rewarded only when most number of relevant items
are retrieved with high retrieval accuracy.

Prec@r - rel,(r) 21

F.4 System configuration

All experiments were conducted on an in-house NAS server equipped with seven 48GB RTX A6000
GPUs respectively. All model training is done on GPU memory. Further, the server is equipped with
96-core CPU and a maximum storage of 20TB, and runs Debian v6.1. We found that this hardware
was sufficient to train CORGII.

F.5 Licenses

Our code will be released under the MIT license. DiskANN, FAISS and FourierHashNet are all
released under the MIT license.

16

Contextual Tokenization for Graph Inverted Indices

G Additional experiments

We present additional experimental results covering the comparison between co-occurrence-based
multiprobing (CM) and Hamming multiprobing (HM), the ablation study on the impact scorer
Impact,,, and the effect of using a Siamese versus asymmetric architecture in GTNet. We also
include supporting analyses on posting list statistics—such as token frequency distributions and
posting list co-occurrence patterns—as well as extended results for various CORGII variants.

G.1 CMyvs HM

Benefits of co-occurrence based multi-probing Here, we analyze the effect of our co-occurence
based multiprobing (CM) strategy (14), by comparing it with a traditional Hamming distance-based
multiprobing variant (HM) (12).

A HM, r=1 & HM, r=3 # HM, r=7
mCM, b=8 ® CM, b=32 (CoRGII) @ CM, b=64
Single-probing
0.48 L \\»:J" 0.491 |4 3*«;?*
A “AA @ ;"‘
<0.36) W 0.37{ %
2 o
;'AO o ““
P v
Y — 024{f*
0.12 0.5 0.75 1 0.10 0.5 0.75 1
k/C — k/C —
(a) PTC-FR (b) PTC-FM
0.561 N 0.48; O © oo
@ | e
Q—l © ﬁl’ * < i
< 0.421 o= 0.361 ®
() @
2)}’“ I
o
028 | 0.24{% |
0.12 0.5 0.7 1 0.15 0.5 0.75 1
k/C — k/C —
(c) COX2 (d) PTC-MR

Figure 4: Comparison of Hamming expansion multiprobing (HM) against co-occurrence expansion
multiprobing (CM) across four real-world datasets and across several values of » (Hamming ball
radius) and b (number of topmost co-occurring tokens). Each plot consists of tradeoffs between
selectivity (k/C') and MAP, for different values of r and b. b = 32 is sufficient for CM to outperform
HM variants. To deal with the crowding and overlapping problem in the plots, we have applied point
sub-sampling on CORGII.

Figure 4 shows the results for HM and CM, with different values r and b, and single probing strategy.
We make the following observations.

(1) Single probing fails to span the full accuracy-efficiency trade-off curve across all datasets. The
retrieved set is noticeably sparse at k/C > 0.50. These results highlight the necessity of multiprobing
to achieve sufficient candidate coverage across varying levels of retrieval selectivity.

(2) CM consistently achieves better trade-off than the corresponding variant of HM and single-
probing strategy, while smoothly spanning the full range of retrieval selectivity. As b increases, its
performance improves consistently but with diminishing gains, saturating beyond b = 32. This
indicates that a moderate number of co-occurrence-based token expansions suffices to approach
near-exhaustive token expansion performance.

17

Contextual Tokenization for Graph Inverted Indices

(3) HM retrieves a broader range of candidates and spans the selectivity axis more effectively than the
base impact score. However, as the Hamming radius r increases, the expansion becomes increasingly
data-agnostic, ignoring semantic alignment from Impact,,. This leads to degraded MAP at large .

(4) On COX2, HM fails to sweep the entire selectivity axis; even with r = 7, it only reaches up to
k/C = 0.6.

(5) CM steadily improves with increasing b, approaching exhaustive coverage, and saturates beyond
b= 32.

(6) On PTC-MR, while the difference between HM (r = 7) and CM (b = 32) is less pronounced,
HM still does not cover the full selectivity range.

G.2 Impact weight network ablation

Next, we analyze the effect of impact weight network, by comparing with the variants of our model
for both co-occurrence based multiprobing (CM, Eq. (14)) and Hamming distance based multiprobing
(HM, Eq. (12)). This results in four models whose scores are Sypit,um> Stmpact,HM> Sunit,cm and
SImpact,CM (CORGII)

V Sunif, HM (r=3) * Simpact, HM (r=3)
¥ Sunif, CM (b=32) ® Simpact, CM (b=32) (CoRGII)
0.48
‘*,*%.9 0.49
A 0.36 oY DDDD 0.37
< g ’
0.24] o .= 0.24
0.12 jjﬂu 0.124
%0 0.25 0.5 0.75 1 %0 0.25 0.5 0.75 1
k/C — k/C —
(a) PTC-FR (b) PTC-FM
0.56 0.48
ﬂ~ 0.42 0.36
E 0.28 0.24
0.14 ! 0.12 4 J
0 0.25 0.5 0.75 1 0 0.25 0.5 0.75 1
k/C — k/C —
(c) COX2 (d) PTC-MR

Figure 5: Effect of ablation on the impact weight network across four datasets. Each subplot com-
pares four retrieval variants: uniform aggregation with Hamming multiprobing (Sypit, pm), uniform
aggregation with co-occurrence multiprobing (Synit, cm), impact-weighted Hamming multiprobing
(Simpact, iM), and impact-weighted co-occurrence multiprobing (Simpact, cm.» the default CORGII).

Figure 5 summarizes the results. We observe that addition of impact weighting network improves the
quality of trade-off. The performance gain achieved by impact weighting network is significant, for
co-occurrence based multiprobing. We make the following observations:

(1) CoRGII continues to outperform all other variants across the full retrieval budget spectrum on
both datasets.

(2) On COX2, uniform aggregation with Hamming multiprobing (HM) briefly approaches CORGII
at low k/C values, but quickly falls behind as selectivity increases.

(3) Removing impact weights causes a significant drop in CM performance across both datasets,
underscoring the value of learned token-level importance.

(4) Uniform aggregation under CM fails to deliver competitive trade-offs, confirming that context-
aware impact scoring is essential for effective retrieval.

18

Contextual Tokenization for Graph Inverted Indices

G.3 Siamese vs Asymmetric networks

As discussed in Section D.1, GTNet employs an asymmetric network architecture, which enables
exact token matching while capturing the inherent asymmetry of subgraph matching. Here, we
investigate its benefits by comparing against a Siamese variant of GTNet, which shares the same
MLP across query and corpus graphs.

Siamese (HM, r=3)
@ Siamese (CM, b=32)

@& Asymmetric (HM, r=3)
@ Asymmetric (CM, b=32) (CoRGII)

0.48 0.49 e
-y ¥
0.36 0.37 3 :
<«
= 0.24 0.24
0.12! Q ! 0.12 i |
0 0.250.5 0.75 1 0 025 05 075 1
k/C — k/C —
(a) PTC-FR (b) PTC-FM
. 0.48 oo
0.56 = &é@
A 0.42 0.36 o° &
< > &
= 0.28 0.24 &
: &
0.14 A | 0.12 OCQ
0 02505 0.75 1 0 0.25 0.5 0.75 1
k/C — k/C —
(¢) COX2 (d) PTC-MR

Figure 6: Ablation comparing Siamese and asymmetric network architectures under different probing
strategies. Each variant combines one of two network architectures—Siamese (shared MLP for
query and corpus) and Asymmetric (separate MLPs)—with one of two probing strategies: HM
(Hamming multiprobing with radius r = 3) or CM (Co-occurrence multiprobing with b = 32).
CORGII corresponds to the Asymmetric + CM configuration, shown as black circles.

Figure 6 summarizes the results for both co-occurrence based multiprobing (Eq. (14)) and Hamming
based multiprobing (Eq. (12)) We highlight the following key observations:

(1) The asymmetric variant of GTNet consistently outperforms the Siamese variant for both HM and
CM. The performance boost is strikingly high for CM.

(2) When using the asymmetric network, CM gives notable improvements over HM. However,
for the Siamese variant, CM performs poorly on both PTC-FR and PTC-FM, while HM also
suffers significantly on PTC-FM. This contrast highlights the importance of architectural asymmetry,
especially for effective co-occurrence-based token matching.

(3) CORGII consistently outperforms both Siamese variants (with CM and HM probing), reaffirming
the importance of architectural asymmetry for subgraph containment.

(4) Among the HM variants, the asymmetric network achieves a better tradeoff curve compared to
the Siamese counterpart, particularly evident in the mid-selectivity range.

(5) Despite this, HM-based variants—both asymmetric and Siamese—fail to span the full selectivity
axis, highlighting the limitations of Hamming multiprobing for recall.

(6) These results further validate the need for asymmetry in the encoder architecture to accurately
reflect containment semantics under both probing schemes.

G.4 Chamfer distance vs injective mapping

Chamfer distance provides a non-injective mapping. Here, we compare its performance against
traditional graph matching distance with injective mapping, i.e., ||Z, — PZ.||1, where P is a

19

Contextual Tokenization for Graph Inverted Indices

© Chamfer (CM, b=32) (CoRGII) © Injective (CM, b=32)
0.56 o 0.48 ...o;y‘
& @ C) .]
A 0.42 o® 0.361 o, ¢
< o e
= 0.28 0.24] /‘ W
o
L]
0.1418 ¢ | 0.12+2 |
0 0.25 0.5 0.75 1 0 0.25 0.5 0.75 1
k/C — k/C —
(a) COX2 (b) PTC-MR

Figure 7: Injective vs. Chamfer

soft permutation (doubly stochastic) matrix. Figure 7 shows that Chamfer distance outperforms
injective alignment-based graph matching. This is because injective mappings tightly couple corpus
embeddings Z,. with query embeddings Z,, preventing effective inverted indexing.

G.5 Insights into token co-occurrence

Drawing parallels from natural language and retrieval systems, the structure of posting lists and
corresponding token co-occurrence statistics are of key interest. In this section, we examine how
these properties vary across datasets.

Token rank vs Document frequency We rank each token in the vocabulary by the length of its
posting list, > PostingList(7), in descending order. Similarly, we rank each document by the number
of unique tokens it contains, i.e., | Tokens(C)|.

In the top row of Figure 8, we plot the posting list lengths of tokens by rank. A small number of
high-frequency tokens are associated with nearly all documents in the whole corpus, while the vast
majority of tokens have short posting lists. The distribution exhibits a steep drop-off with rank,
reminiscent of a Zipfian pattern. Inverted indexes are expected to be efficient in precisely these
settings. In the second row, we plot the ‘fill’ of documents against documents ranked by their fills. A
similar decay trend is observed, showing that most documents have a small number of tokens with
non-zero impacts.

= 100K 100K 100K 100K
'f:o 60K 60K 60K 60K
£ 20K & 20K L. 20K \ 20K k
“ 07735 50 75 100 0125 50 75 100 0125 50 75 100 01 25 50 75 100
,Otoken(T) — ptoken(T) — ptoken<7—) — ptoken(T) —
:20 20 15 20
\(%15 15 10 15
Z 10 10 - 10
-~
¥ : ; :
0 20K 60K 100K 20K 60K 100K 20K 60K 100K 20K 60K 100K
pdoc<c) — deC<C> — pdoc<C> — pdoc<c> —
(a) PTC-FR (b) PTC-FM (c) COX2 (d) PTC-MR

Figure 8: Top row: Posting list length vs descending token rank. Bottom row: Number of unique
tokens vs descending document rank. pken(7) represents the rank of the token 7 when sorted in
descending order of posting list lengths. pgoc(C) is the rank of the document C' when sorted in
descending order of unique token count.

Co-occurrence statistics Table 3 reports structural statistics of the posting list matrix across
all datasets. Let the posting list matrix be PL € {0,1}1024x100K ' \where each row represents

20

Contextual Tokenization for Graph Inverted Indices

a token and each column a document. The corresponding co-occurrence matrix is defined as
_ T 1024x1024
C=PL-PLT cZ .

We list both the actual rank and the effective rank of PL, the latter computed using the energy-
preserving criterion from truncated singular value decomposition (SVD) [49, 50]. Let o1, ...,0,

$K, o
e
i=1"14

with v = 0.95. Since rank(PL) = rank(C) but rank®"(PL) > rank®"(C), the effective rank of PL
serves as an informative upper bound for that of C.

denote the singular values of PL. The effective rank is the smallest K such that

The large gap between the actual and effective rank across datasets—particularly the low effective
rank—indicates that token co-occurrences lie on a low-dimensional manifold. This suggests that both
PL and C are highly compressible, enabling projection onto a lower-dimensional subspace without
significant loss of information. This again resembles the behavior of text corpora, where the discrete
word space may be in the tens or hundreds of thousands, but a few hundred dense dimensions suffice
to encode words and documents [28].

Dataset Actual Rank Effective Rank
PTC-FR 393 4
PTC-FM 498 9

COX2 250 7
PTC-MR 232 3

Table 3: Actual and effective rank (95% SVD energy threshold) of the posting list matrix PL for
each dataset.

G.6 End-to-End Training vs Frozen Backbone for S,it, cm and Synit, Hm

A key design consideration is whether GTNet benefits from end-to-end training using its own GNN
encoder, or whether comparable results can be obtained using frozen embeddings from a pretrained
backbone. Figure 9 compares the performance of Sunit, cm and Sunir, gv under both configurations.

v Sunif, HM (r=3) (end-to-end)
©® Sunif, CM (b=32) (end-to-end)

v Sunif, HM (r=3) (pre-trained)
Sunif, CM (b=32) (pre-trained)

0.56 0.56
A 0.42 oY ’ 0.42 L
< v OY/ ! . 43}\
=028 e 0.28 or

vo s

0.141 =% 0.141 %

0 0.25 0.5 0.75 1 0 025 05 075 1
k/C — k/C —
(a) PTC-FR (b) PTC-FM

0.56 -1 0.6
A 0.42 v 0.42 i d
< IE o’
= 0.28 7 0.28 . v

0.14.€ 0.141 #

0 0.25 0.5 0.75 1 0 025 05 075 1
k/C — k/C —
(c) COX2 (d) PTC-MR

Figure 9: Comparison of end-to-end training versus using a frozen backbone for Sypit, cm and
Sunit, aM, With 7 = 3 and b = 32. End-to-end training refers to learning the GTNet encoder jointly,
while the frozen variant reuses pretrained embeddings.

We observe that: (1) End-to-end training consistently yields better MAP-selectivity tradeoffs for

both CM and HM variants, indicating that learning task-specific embeddings improves token discrim-
inability. (2) The frozen backbone variant spans a wider range of selectivity values (k/C), suggesting

21

Contextual Tokenization for Graph Inverted Indices

looser token matching and higher recall, but at the cost of reduced precision. (3) End-to-end models
tend to retrieve fewer candidates for the same threshold, reflecting tighter, more precise tokenization.

22

	1 Introduction
	1.1 Our Contributions

	2 Preliminaries
	3 Proposed approach
	4 Experiments
	4.1 Main result: CoRGII vs. baselines
	4.2 Further analyses (Appendix)

	5 Conclusion
	A Broader Impact
	B Limitations
	C Related Work
	C.1 A Brief History of Text-based Retrieval Architectures
	C.2 A Briefer History of Neural Graph-Containment Scoring Models

	D Detailed Description of Proposed Approach
	D.1 Graph tokenizer network GTNet
	D.2 Discretization and inverted index
	D.3 Impact weight network
	D.4 Query processing steps and multi-probing

	E Additional details about our model and training
	E.1 Pre-trained backbone
	E.2 Details about CoRGII

	F Additional details about experiments
	F.1 Datasets
	F.2 Baselines
	F.3 Evaluation metric
	F.4 System configuration
	F.5 Licenses

	G Additional experiments
	G.1 CM vs HM
	G.2 Impact weight network ablation
	G.3 Siamese vs Asymmetric networks
	G.4 Chamfer distance vs injective mapping
	G.5 Insights into token co-occurrence
	G.6 End-to-End Training vs Frozen Backbone for S_unif,CM and S_unif,HM

