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ABSTRACT

Diffusion models have achieved remarkable success in generative modeling. De-
spite more stable training, the loss of diffusion models is not indicative of absolute
data-fitting quality, since its optimal value is typically not zero but unknown, lead-
ing to the confusion between large optimal loss and insufficient model capacity. In
this work, we advocate the need to estimate the optimal loss value for diagnosing
and improving diffusion models. We first derive the optimal loss in closed form
under a unified formulation of diffusion models, and develop effective estimators
for it, including a stochastic variant scalable to large datasets with proper control
of variance and bias. With this tool, we unlock the inherent metric for diagnos-
ing training quality of mainstream diffusion model variants, and develop a more
performant training schedule based on the optimal loss. Moreover, using models
with 120M to 1.5B parameters, we find that the power law is better demonstrated
after subtracting the optimal loss from the actual training loss, suggesting a more
principled setting for investigating the scaling law for diffusion models.

1 INTRODUCTION

Diffusion-based generative models (Sohl-Dickstein et al., 2015; Ho et al., 2020; Song et al., 2021b)
have shown unprecedented capability in modeling high-dimensional distribution and have become
the dominant choice in various domains. The attractive potential has incentivized advances in mul-
tiple dimensions, such as prediction targets (Kingma et al., 2021; Salimans and Ho, 2022; Lipman
et al., 2023), diffusion process design (Karras et al., 2022; Liu et al., 2023), and training schedule
design (Nichol and Dhariwal, 2021; Kingma and Gao, 2023; Esser et al., 2024).

The success is largely benefited from the more stable training process. Nevertheless, the diffusion
loss only reflects the relative data-fitting quality for monitoring training process or comparing mod-
els under the same setting, while remains obscure for measuring the absolute fit to the training data.
It is due to that the optimal loss of diffusion model, i.e., the lowest possible loss value that can be
attained by any model, is actually not zero but unknown beforehand. This introduces a series of
inconveniences. After the training converges, one still does not know whether the model is already
close to oracle, or the remaining loss can be further reduced by tuning the model. Practitioners have
to rely on generating samples to evaluate diffusion models, which requires significant computational
cost, and sampler configurations introduce distracting factors. The unknown optimal loss also makes
it obscured to analyze and compare learning quality at different diffusion steps, impeding a princi-
pled design of training schedule. Moreover, as the actual loss value is not fully determined by model
capacity but also the unknown optimal loss as the base value, it poses a question on using the actual
loss value alone for monitoring the scaling law of diffusion models.

In this work, we highlight the importance of estimating the optimal loss value, and develop effective
estimation methods applicable to large datasets. Using this tool, we unlock new observations of
data-fitting quality of diffusion models under various formulation variants, and demonstrate how the
optimal loss estimate leads to more principled analysis and performant designs. Specifically,

• We reveal the indefiniteness of the optimal loss from its expression, then develop estimators for
the optimal loss based on the expression. For large datasets, we design a scalable estimator based
on dataset sub-sampling, with a delicate design to properly balance variance and bias.

• Using the estimator, we reveal the patterns of the optimal loss across diffusion steps on diverse
datasets, and by comparison with the losses of mainstream diffusion models under a unified for-

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

mulation, we find the characteristics of different diffusion formulation variants, and identify the
diffusion-step region where the model still underfits compared to the optimal loss.

• From the analysis, we designed a principled training schedule for diffusion models, based on the
gap between the actual loss and the optimal loss. Our training schedule improves the FID by
2%-14% (for EDM (Karras et al., 2022) / FM (Lipman et al., 2023)) on CIFAR-10, 7%-25% (for
EDM / FM) on ImageNet-64, and 9% (for LightningDiT (Yao et al., 2025)) on ImageNet-256.

• We challenge the conventional formulation to study neural scaling law for diffusion models. We
propose using the loss gap as the measure for data-fitting quality. Using state-of-the-art diffu-
sion models (Karras et al., 2024) in various sizes from 120M to 1.5B on both ImageNet-64 and
ImageNet-512, we find that our modification leads to better satisfaction of the power law.

We would mention that estimating the optimal loss is not meant to achieve it, which may render
overfitting, but to introduce a metric for measuring the absolute fitness to a dataset that reveals new
observations (Appx. B). We review more related works in Appx. A.

2 FORMULATION OF DIFFUSION MODEL

Diffusion models perform generative modeling by leveraging a step-by-step transformation from
an arbitrary data distribution pdata to a Gaussian distribution. Sampling and density evaluation for
the data distribution can be done by reversing this transformation process step by step from the
Gaussian. In general, the transformation of distribution is constructed by:

xt = αtx0 + σtϵ, t ∈ [0, T ], (1)
where x0 ∼ pdata is taken as a data sample, ϵ ∼ p(ϵ) := N (0, I) is a Gaussian noise sample, and
xt is the constructed random variable that defines the intermediate distribution pt. The coefficients
αt and σt satisfy α0 = 1, σ0 = 0, and αT ≪ σT , so that p0 = pdata and pT = N (0, σ2

T I)
yield the desired distributions. Eq. (1) gives p(xt | x0) = N (xt | αtx0, σ

2
t I), which corresponds

to a diffusion process expressed in the stochastic differential equation dxt = atxt dt + gt dwt

starting from x0 ∼ p0, where at := (logαt)
′, gt := σt

√
(log σ2

t /α
2
t )

′, and wt denotes the Wiener
process. The blessing of the diffusion-process formulation is that the reverse process can be given
explicitly (Anderson, 1982):

dxs = −aT−sxs ds+ g2T−s∇log pT−s(xs) ds+ gT−s dws

from xs=0 ∼ pT , where s := T−t denotes the reverse time. Alternatively, the deterministic process

dxs = −aT−sxs ds+
1

2
g2T−s∇ log pT−s(xs) ds,

also recovers pdata at s = T (Song et al., 2021b). The only obstacle to simulating the reverse process
for generation is the unknown term ∇ log pt(xt) called the score function. Noting that pt is produced
by perturbing data samples with Gaussian noise, diffusion models employ a neural network model
sθ(xt, t) to learn the score function using the denoising score matching loss (Vincent, 2011; Song
et al., 2021b): J (s)

t (θ) :=

Ep0(x0)p(xt|x0)∥sθ(xt, t)−∇xt log p(xt|x0)∥2
Eq. (1)
= Ep0(x0)p(ϵ)∥sθ(αtx0+σtϵ, t) + ϵ/σt∥2. (2)

To cover the whole diffusion process, loss weight w(s)
t and noise schedule p(t) are introduced to

optimize over all diffusion steps using J(θ) := Ep(t)w
(s)
t J

(s)
t (θ).

Alternative prediction targets. Besides the above score prediction target, diffusion models also
adopt other prediction targets. Eq. (2) motivates the noise prediction (ϵ-prediction) target (Ho
et al., 2020) ϵθ(xt, t) := −σtsθ(xt, t), which turns the loss into :

J
(ϵ)
t (θ) := Ep0(x0)Ep(ϵ)∥ϵθ(αtx0 + σtϵ, t)− ϵ∥2. (3)

If formally solving x0 from Eq. (1) and let x0θ(xt, t) :=
xt−σtϵθ(xt,t)

αt
, then we get the loss:

J
(x0)
t (θ) := Ep0(x0)Ep(ϵ)∥x0θ(αtx0 + σtϵ, t)− x0∥2. (4)

It holds the semantics of clean-data prediction (x0-prediction) (Kingma et al., 2021; Karras et al.,
2022), and can be viewed as denoising auto-encoders (Vincent et al., 2008; Alain and Bengio, 2014)
with multiple noise scales. From the equivalent deterministic process, one can also derive the vector-
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field prediction (v-prediction) target vθ(xt, t) := atxt − 1
2g

2
t sθ(xt, t) with loss function

J
(v)
t (θ) := Ep0(x0)Ep(ϵ)∥vθ(αtx0+σtϵ, t)− (α′

tx0+σ′
tϵ)∥

2 (5)
It coincides with velocity prediction (Salimans and Ho, 2022) and the flow matching formula-
tion (Lipman et al., 2023; Liu et al., 2023). Please refer to Appx. C for details.

3 ESTIMATING THE OPTIMAL LOSS VALUE FOR DIFFUSION MODELS

The diffusion loss in various forms (Eqs. 2-5) allows effective and stable learning of intractable
targets that would otherwise require diffusion simulation or posterior estimation. Nevertheless, as
we will show from the expression of the optimal solution and loss (Sec. 3.1), the optimal loss value
is typically non-zero but unknown, obscuring the diagnosis and design of diffusion training. We
then develop practical estimators of the optimal loss value, starting from a standard one (Sec. 3.2) to
stochastic but scalable estimators applicable to large datasets (Sec. 3.3). Using these tools, we inves-
tigate mainstream diffusion models against the optimal loss with a few new observations (Sec. 3.4).

3.1 OPTIMAL SOLUTION AND LOSS VALUE OF DIFFUSION MODELS

Despite the intuition, the names of the prediction targets of diffusion model introduced in Sec. 2
might be misleading. Taking the clean-data prediction formulation as an example, it is information-
ally impossible to predict the exact clean data from its noised version (Daras et al., 2023). From the
appearance of the loss functions (Eq. (2-5)), the actual learning targets of the models are conditional
expectations (De Bortoli et al., 2021; Bao et al., 2022b;a):

s⋆θ(xt, t) = Ep(x0|xt)[∇xt
log p(xt | x0)], ϵ⋆

θ(xt, t) = Ep(ϵ|xt)[ϵ],

x⋆
0θ(xt, t) = Ep(x0|xt)[x0], v⋆

θ(xt, t) = Ep(x0,ϵ|xt)[α
′
tx0 + σ′

tϵ],

where the conditional distributions are induced from p(x0,xt,ϵ) := p0(x0)p(ϵ)δαtx0+σtϵ(xt). For
completeness, we detail the derivation in Appx. D.

Looking back into the loss functions, the model learns the conditional expectations over random
samples from the joint distribution. Hence even at optimality, the loss still holds a conditional
variance value. Noting that the joint distribution hence the conditional variance depends on the data
distribution, it would be more direct to write down the optimal loss value in the clean-data prediction
formulation, which we formally present below:

Theorem 1. The optimal loss value for clean-data prediction defined in Eq. (4) is:

J
(x0)
t

⋆
= Ep0(x0)∥x0∥2︸ ︷︷ ︸

=:A

−Ep(xt)

∥∥Ep(x0|xt)[x0]
∥∥2︸ ︷︷ ︸

=:Bt

, J⋆ = Ep(t)w
(x0)
t J

(x0)
t

⋆
. (6)

See Appx. F.1 for proof. For other prediction targets, the optimal loss value can be calculated based
on their relations in Eqs. (3, 4, 5) . The expression is derived from

J
(x0)
t

⋆
= Ep(xt)

[
Ep(x0|xt)

∥∥x0 − Ep(x′
0|xt)[x

′
0]
∥∥2],

which is indeed an averaged conditional variance of p(x0 | xt), and takes a positive value unless
at t = 0 or when p0(x0) concentrates only on a single point. For sufficiently large t, xt becomes
dominated by the noise (see Eq. (1)) hence has diminishing correlation with x0. This means
p(x0 | xt) ≈ pdata(x0), hence J

(x0)
t

⋆
≈ Epdata(x0)

∥∥x0 − Epdata(x′
0)
[x′

0]
∥∥2 approaches the data

variance. Note that this optimal loss only depends on dataset and diffusion settings, but not on
model architectures and parameterization.

3.2 EMPIRICAL ESTIMATOR FOR THE OPTIMAL LOSS VALUE

To estimate the optimal loss value using Eq. (6) on a dataset {x(n)
0 }n∈[N ], where [N ] :=

{1, · · · , N}, the first term A := Ep0(x0)∥x0∥2 can be directly estimated through one pass:

Â =
1

N

∑
n∈[N ]

∥x(n)
0 ∥2. (7)

However, the second term Bt := Ep(xt)

∥∥Ep(x0|xt)[x0]
∥∥2 requires estimating two nested expec-

tations that cannot be reduced. The inner expectation is taken under the posterior distribution
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p(x0 | xt) which cannot be sampled directly. By expanding the distribution using tractable ones
(Bayes rule), the term can be reformulated as

Ep(x0|xt)[x0] =

∫
x0p(x0,xt) dx0∫
p(x0,xt) dx0

=
Ep(x0)[x0p(xt | x0)]

Ep(x0)[p(xt | x0)]
.

Using Eq. (1) further reduces it as: 1

Ep(x0|xt)[x0] =
Ep(x0)[x0Kt(xt,x0)]

Ep(x0)[Kt(xt,x0)]
, where Kt(xt,x0) := exp

{
−∥xt − αtx0∥2

2σ2
t

}
, (8)

whose numerator and denominator can then be estimated on the dataset. The outer expectation
can be estimated by averaging over a set of independent and identically distributed (IID) samples
{x(m)

t }m∈[M ] following Eq. (1), where each sample is produced by an independently (i.e., with
replacement) randomly selected data sample x0 and a randomly drawn noise sample ϵ ∼ N (0, I).
The estimator for the second term is then:

B̂t =
1

M

∑
m∈[M ]

∥∥∥∥∥
∑

n∈[N ] x
(n)
0 Kt(x

(m)
t ,x

(n)
0 )∑

n′∈[N ] Kt(x
(m)
t ,x

(n′)
0 )

∥∥∥∥∥
2

. (9)

The outer expectation can be conducted sequentially until the estimation converges. This typically
takes M up to two to three times of N . The estimator in Eq. (9) performs the most accurate analysis
using the given dataset, thus its results serve as the ground truth value in our following developments.
See Appx. H.1 for details.

3.3 SCALABLE ESTIMATORS FOR LARGE DATASETS

Although asymptotically unbiased (Appx. G), the B̂ estimator in Eq. (9) incurs a quadratic com-
plexity in dataset size N , which is unaffordably costly for large datasets which are ubiquitous in
modern machine learning tasks. For a scalable estimator, dataset sub-sampling is an effective strat-
egy. This strategy inspires us to estimate Eq. (9) using a subset of the dataset, which helps to
reduce the computation complexity. Instead of using independent random subsets to estimate the
numerator and denominator separately, we adopt the self-normalized importance sampling (SNIS)
estimator (Robert et al., 1999; Kroese and Rubinstein, 2012) (see Appx. G for background):

B̂SNIS
t :=

1

M

∑
m∈[M ]

∥∥∥∥∥
∑

l∈[L] x
(l)
0 Kt(x

(m)
t ,x

(l)
0 )∑

l′∈[L] Kt(x
(m)
t ,x

(l′)
0 )

∥∥∥∥∥
2

.

It uses the same randomly selected (with replacement) subset {x(l)
0 }l∈[L], where L ≪ N , for both

the numerator and denominator, which leads to more stable estimates. One can repeat drawing the
random data subset {x(l)

0 }l∈[L] and calculate the estimate until convergence.

A specialty for estimating the diffusion optimal loss is that, for a given x(m)
t sample, when σt is

small, the weight term Kt(x(m)
t ,x(l)

0 ) is dominated by the x0 sample closest to x(m)
t /αt (see Eq. (8)),

which could be missed in the randomly selected subset {x(l)
0 }l∈[L], thus incurring a large variance.

Fortunately, we know that by construction (Eq. (1)), each x(m)
t sample is produced from a data

sample x(nm)
0 and a noise sample ϵ(m) using x(m)

t = αtx(nm)
0 + σtϵ

(m), and when σt is small,
αt is also close to 1 (Sec. 2), indicating that x(nm)

0 is likely the most dominant x0 sample and
should be included in the subset {x(l)

0 }l∈[L]. This can be simply implemented by constructing the
{x(m̃)

t }m̃∈[M ] samples by independently (i.e., with replacement) drawing a sample x(lm̃)
0 from the

subset {x(l)
0 }l∈[L] and setting x(m̃)

t = αtx(lm̃)
0 +σtϵ

(m̃) with ϵ(m̃) ∼ N (0, I). We call it the Diffusion
Optimal Loss (DOL) estimator:2

B̂DOL
t :=

1

M

∑
m̃∈[M ]

∥∥∥∥∥
∑

l∈[L] x
(l)
0 Kt(x

(m̃)
t ,x

(l)
0 )∑

l′∈[L] Kt(x
(m̃)
t ,x

(l′)
0 )

∥∥∥∥∥
2

. (10)

1Similar derivations to Eq. (8) have been presented in prior works (Karras et al., 2022; Xu et al., 2023;
Niedoba et al., 2024). Here we use it for deriving the estimator for the optimal loss.

2Prior works (Xu et al., 2023; Niedoba et al., 2024) also used important sampling for estimating the optimal
solution, which has a similar form to the inner summation of DOL. See Appx. H.2 for details.
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(a) (b) (c)

Figure 1: Estimation results of optimal loss value. (a,b) Stepwise optimal loss estimates by the DOL
(Eqs. 7, 10) and the corrected DOL (cDOL) (Eqs. 7, 11) estimators, with the full-dataset estimate
(Eqs. 7, 9) as reference, on the (a) CIFAR-10 and (b) FFHQ-64 datasets. (c) Stepwise optimal
loss on various datasets in different scales. Figures are plotted for the x0 prediction loss of the VE
process.

Nevertheless, this introduces an artificial correlation between xt and x0 samples: it becomes more
probable to calculate Kt for (xt,x0) pairs where xt is constructed from x0. Such pairs have larger
Kt values, hence over-estimating Bt and under-estimating the optimal loss J (x0)⋆

t . This pair intro-
duces bias for the DOL estimator and leads to poor practical performance. We introduce a simple
correction by down-weighting such pairs with a coefficient C, and call it the corrected DOL (cDOL)
estimator:

B̂cDOL
t :=

1

M

∑
m̃∈[M ]

∥∥∥∥∥
∑

l∈[L],l ̸=lm̃
x
(l)
0 Kt(x

(m̃)
t ,x

(l)
0 ) + 1

Cx
(lm̃)
0 Kt(x

(m̃)
t ,x

(lm̃)
0 )∑

l′∈[L],l′ ̸=lm̃
Kt(x

(m̃)
t ,x

(l′)
0 ) + 1

CKt(x
(m̃)
t ,x

(lm̃)
0 )

∥∥∥∥∥
2

, (11)

where lm̃ indexes the sample in {x(l)
0 }l∈[L] that is used to construct x(m̃)

t . To formalize the effec-
tiveness, we provide the following theoretical result on the cDOL estimator:

Theorem 2. The B̂cDOL
t estimator with subset size L has the same expectation as the B̂SNIS

t esti-
mator with subset size L− 1 when M → ∞, C → ∞, hence is a consistent estimator.

See Appx. F.2 for proof. Note that the first terms in the numerator and denominator are unbiased,
but the second terms introduce biases due to the artificial correlation between xt and x0 samples.
The DOL estimator in Eq. (10) amounts to using C = 1, which suffers from the biases. The bias
can be reduced using C > 1 in the cDOL estimator. On the other hand, the second terms become
the dominant components at small t for estimating the numerator and denominator, respectively.
Always including them using a finite C hence reduces estimation variance. The complete process
of the cDOL estimator is concluded in Alg. 1 in Appx. H.1.

3.4 ESTIMATION RESULTS OF OPTIMAL LOSS VALUES

Figure 2: Error and variance of
cDOL estimates using various C val-
ues (including DOL and SNIS as ex-
treme cases) for the optimal loss at
log σ = 1.25 on CIFAR-10.

We now provide empirical results of diffusion optimal loss
estimates on popular datasets. We first compare the scal-
able estimators on CIFAR-10 (Krizhevsky et al., 2009)
and FFHQ-64 (Karras, 2019) (Fig. 1(a,b)), whose relatively
small sizes allow the full-dataset estimate by Eqs. (7, 9) ,
providing a reference for the scalable estimators. With the
best scalable estimator identified (from Fig. 2), we apply it
to the much larger ImageNet-64 (Krizhevsky et al., 2012)
dataset, and analyze the optimal loss pattern (Fig. 1(c)).

As different prediction targets (Sec. 2) and diffusion pro-
cesses (Sec. 4.1 below) can be converted to each other, we
choose the clean-data prediction target and variance explod-
ing (VE) process (αt ≡ 1) (Song and Ermon, 2019; Song
et al., 2021b) to present the diffusion optimal loss. We plot
the optimal loss for each diffusion step, which is marked by
log σ to decouple the arbitrariness in the time schedule σt (as
advocated by (Karras et al., 2022); the same σ indicates the
same distribution at that step of diffusion). All the scalable

5
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estimators repeat data subset sampling until the estimate converges. See Appx. H.1 for settings and
discussions on efficiency.

Comparison among the scalable estimators. From Fig. 1(a,b), we can see that the DOL estimator
indeed under-estimates the optimal loss as we pointed out, especially at intermediate diffusion steps.
The cDOL estimator can effectively mitigate the bias, and stays very close to the reference under
diverse choices of C. The insensitivity of the cDOL estimator w.r.t C can be understood as that,
for small t (equivalently, σ), both the numerator and denominator are dominated by the C-corrected
terms, in which C cancels out, and for large t, the Kt(x

(m̃)
t ,x

(lm̃)
0 ) term is in the same scale as other

terms hence is overwhelmed when compared with the summation.

To better analyze the behavior of the estimators, we zoom in on their estimation error and standard
deviation. Fig. 2 presents the results at an intermediate log σ where the estimation is more chal-
lenging. The result confirms that the variance increases with C. Particularly, at C = ∞ which
corresponds to the SNIS estimator (Thm. 2), it is hard to sample the dominating cases for the esti-
mate, leading to a large variance, and a significantly large estimation error. At the C = 1 end which
corresponds to the DOL estimator, although the variance is smaller, its bias still leads it to a large
estimation error. The cDOL estimator with C in between achieves consistently low estimation error.
Empirically, a preferred C is around 4N/L. The subset size L can be taken to fully utilize memory.
We also compare our cDOL estimators with prior estimators for optimal solution, see Appx. H.2.

The pattern of optimal loss. From Fig. 1(c), we observe that the optimal loss J
(x0)
σ

⋆
increases

monotonically with the noise scale σ on all the three datasets. The optimal loss is close to zero
only when the noise scale σ is less than a critical point σ⋆, in which situation the noisy samples
stay so close to their corresponding clean sources that they are unlikely to intersect with each other,
hence preserve the information of the clean samples, allowing the model to perform a nearly perfect
denoising. We can see that the critical point σ⋆ depends on the dataset. CIFAR-10 achieves the
minimal σ⋆, since it has the lowest image resolution (32×32), i.e., the lowest data-space dimension,
where the data samples appear less sparse hence easier to overlap after isotropic noise perturbation.
Both FFHQ-64 and ImageNet-64 have 64×64 resolution, but ImageNet-64 is larger, hence data
samples are easier to overlap, leading to a smaller σ⋆.

Beyond the critical point, the optimal loss takes off quickly. The positive value indicates the intrinsic
difficulty of the denoising task, where even an oracle denoiser would be confused. The increase trend
converges for sufficiently large noise scale σ, which meets our analysis under Thm. 1 that J (x0)

σ

⋆

converges to the data variance. As ImageNet-64 contains more diverse samples (images from more
classes), it has a larger data variance, hence converges to a higher value than the other two.

4 ANALYZING AND IMPROVING DIFFUSION TRAINING SCHEDULE WITH
OPTIMAL LOSS

From the training losses in Sec. 2, the degree of freedom for the training strategy of diffusion models
is the noise schedule p(t) and the loss weight wt, collectively called the training schedule. In the
literature, extensive works (Ho et al., 2020; Song et al., 2021b; Karras et al., 2022; Kingma and
Gao, 2023; Esser et al., 2024) have designed training schedules for various prediction targets and
diffusion processes individually, based on the analysis on the loss scale over diffusion steps. Here,
we argue that analyzing the gap between the loss and the optimal loss would be a more principled
approach, since it is the gap but not the loss itself that reflects the data-fitting insufficiency and the
potential for improvement. Under this view, we first analyze and compare the loss gap of mainstream
diffusion works on the same ground (Sec. 4.1), identifying new patterns that are related to generation
performance. We then develop a new training schedule based on the observation (Sec. 4.2).

4.1 ANALYZING TRAINING SCHEDULES THROUGH OPTIMAL LOSS

Existing training schedules are developed under different diffusion processes and prediction targets.
For a unified comparison on the same ground, we start with the equivalence among the formulations
and convert them to the same formulation. As explained in Sec. 3.4, we use the noise scale σ in
place of t to mark the diffusion step to decouple the choice of time schedule σt.
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Table 1: Viewing mainstream diffusion models under the same formulation as x0 prediction un-
der the VE process, following Eq. (12). Each diffusion model is labeled by “diffusion process”-
“prediction target” (“common name”).

Formulations cskipσ coutσ cinσ cnoiseσ wσ p(σ)

VP-ϵ (DDPM) (Ho et al., 2020) 1 −σ 1√
1+σ2

999 t(σ) 1
σ2

t ∼ U(10−5, 1),

σ=

√
eβmint+

1
2
(βmax−βmin)t

2−1

VE-F (EDM) (Karras et al., 2022) σ2
data

σ2+σ2
data

σdataσ√
σ2+σ2

data

1√
σ2+σ2

data

1
4
log σ

σ2+σ2
data

σ2σ2
data

log σ ∼ N (Pmean, P
2
std)

VE-ϵ (NCSN) (Song et al., 2021a) 1 σ 1 log σ
2

1
σ2 log σ ∼ U(log σmin, log σmax)

FM-v (FM) (Lipman et al., 2023) 1
1+σ

− σ
1+σ

1
1+σ

σ
1+σ

( 1+σ
σ

)2 t ∼ U(0, 1), σ = t
1−t

FM-v (SD3) (Esser et al., 2024) 1
1+σ

− σ
1+σ

1
1+σ

σ
1+σ

( 1+σ
σ

)2 log σ ∼ N (0, 1)

Equivalent conversion among diffusion formulations. Sec. 2 has shown the equivalence and
conversion among prediction targets. We note that different diffusion processes in the form of Eq. (1)
can also be equivalently converted to each other. Particularly, the variance preserving (VP) process
(ασ =

√
1− σ2) (Sohl-Dickstein et al., 2015; Ho et al., 2020) and the flow matching (FM) process

(ασ = 1−σ) (Lipman et al., 2023; Liu et al., 2023) can be converted to the variance exploding (VE)
process (ασ ≡ 1) (Song and Ermon, 2019; Song et al., 2021b) by xVE

σ := xσ

ασ
, since xVE

σ = x0+
σ
ασ

ϵ

by Eq. (1), and x0 = xVE
0 . The correspondence of diffusion step is given by σVE = σ

ασ
. With this

fact, various diffusion models can be viewed as different parameterizations of the x0 prediction
under the VE process (Karras et al., 2022), where the parameterization is formulated by:

x0θ(x, σ) = cskipσ x+ coutσ Fθ(c
in
σ x, cnoiseσ ), (12)

where x0θ, x, and σ are the x0 prediction model, the diffusion variable, and the noise scale under the
VE process, and Fθ(·, ·) represents the bare neural network used for the original prediction target
and diffusion process. The precondition coefficients c·σ are responsible for the conversion. Their
instances for reproducing mainstream diffusion models are listed in Table 1, where the converted wσ

and p(σ) from the original works are also listed. See Appx. E for details. For EDM (Karras et al.,
2022), the precondition coefficients are not derived from a conversion but directly set to satisfy the
input-output unit variance principle. This leads to a new prediction target we call the F prediction.

Comparison between optimal loss gaps. Under the above convention, we convert the actual train-
ing loss of various diffusion models to the x0 prediction loss under the VE process, which serves as
a unified metric on the same ground. In the following development of the paper, we consider the x0

prediction loss under the VE process of the diffusion model without loss of generality. We conduct
the comparison on the CIFAR-10 dataset, and compare the gap between their actual loss and the
optimal loss, which has been estimated and presented in Fig. 1(a; the full-dataset curve). The results
are shown in Fig. 3(a), which reveals some new observations. The optimal loss gap across different
diffusion steps is not even: most of the representative diffusion models leave a large loss gap in
the intermediate diffusion steps around log σ ∈ [−2, 2], indicating room to improve. In addition, ϵ
prediction models incur a large error for large σ, revealing a difficulty in learning such models.

Loss gap vs. generation performance. We now use the gap to the optimal loss as the fundamen-
tal data-fitting measure to analyze which region is more critical for the generation performance,
measured in Fréchet Inception Distance (FID) (Heusel et al., 2017) also marked in Fig. 3(a). All
diffusion models use the same deterministic ODE sampler with NFE = 35 following Karras et al.
(2022). We can see that an erroneous fit at large noise scales of ϵ prediction models leads to a
deficiency in generation quality, e.g., NCSN vs EDM in Fig. 3(a). Among methods with a good fit
for large σ, the intermediate noise scale region log σ ∈ [−2.0, 2.0] becomes more relevant to the
generation performance. We then zoom into the intermediate region and compare these methods
using the normalized training loss gap, taken by dividing the value on each curve by the average
value over the four curves, as shown in Fig. 3(b) (“VE-ϵ” is omitted due to its significant deviation
from other curves). Counter-intuitively, around the critical point σ⋆ defined as the largest σ whose
optimal loss J⋆

σ becomes positive, although the gap is around the largest over noise scales, the loss
gap turns out to negatively correlate with FID. The correlation becomes positive only in the region
further left to σ⋆. This reveals that there is a trade-off in learning a diffusion model at different noise
scales, and sacrificing the fit in the region around σ⋆ for a better fit in the noise scale interval further
left to σ⋆ leads to a better inference performance.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

(a) (b) (c)

Figure 3: Actual and relative training loss gap across noise scales by various diffusion models on
CIFAR-10. (a) Actual training loss gap of mainstream diffusion models. (b) Normalized training
loss gap, taken by dividing the value on each curve by the average value over the four curves, for
a clearer comparison over mainstream diffusion models (“VE-ϵ” is omitted for its salient differ-
ence). (c) Normalized training loss gap for comparing existing training schedules and our schedule
(Sec. 4.2) under the FM process with the v prediction target. Curves of different diffusion models
are plotted together by viewing them as parameterizations of the x0 prediction under the variance
exploding (VE) process (Eq. (12); Table 1). See Appx. H.3 for detailed settings.

4.2 PRINCIPLED DESIGN OF TRAINING SCHEDULE

From the observation above, the training schedule plays a crucial role in optimizing diffusion mod-
els, due to the trade-off over different noise scales. We hence design a principled training schedule
based on conclusions from the representative optimal loss estimates.

The loss weight. wσ calibrates the error resolution across different noise scales. For this, the optimal
loss J⋆

σ provides a perfect reference scale for the loss at each diffusion step σ, so wσ = a/J⋆
σ with

a scale factor a is a natural choice to align the loss at various σ to the same scale. Although it
downweighs the loss for large noise scales, the above observation suggests that the model can still
achieve a good fit if using v-prediction and F-prediction (Table 1). For smaller noise scales, a cutoff
w⋆ is needed to avoid divergence, which stops the increase of wσ before σ runs smaller than the
critical point σ⋆. As observed in Sec. 4.1, the interval where the loss gap has a positive correlation
to inference performance is on the left of (vs. around) σ⋆. We hence introduce an additional weight
function f(σ) = N (log σ;µ, ς2), whose parameters µ and ς are chosen to put the major weight over
the left interval. The resulting loss weight is finally given by: wσ = a min{ 1

J⋆
σ
, w⋆}+ f(σ) Iσ<σ⋆ .

Table 2: Generation FID (↓) by existing training sched-
ules and ours on CIFAR-10 and ImageNet-64.

CIFAR-10 ImageNet-64

Conditional Unconditional Conditional

StyleGAN (Karras, 2019) 2.42 2.92 -
ScoreSDE (deep) (Song et al., 2021b) - 2.20 -
Improved DDPM (Nichol and Dhariwal, 2021) - 2.94 3.54
2-Rectified Flow (Liu et al., 2023) - 4.85 2.92
VDM (Kingma et al., 2021) - 2.49 3.40

EDM (Karras et al., 2022) 1.79 1.98 2.44
+ EDM2 (Karras et al., 2024) schedule 1.94 2.09 -
+ our schedule 1.75 1.94 2.25

FM (Lipman et al., 2023) - 6.35 14.45
+ EDM sampler 2.07 2.24 3.06
+ our schedule 1.77 2.03 2.29

The noise schedule. p(σ) allocates
the optimization frequency to each noise
level. A desired p(σ) should favor
noise steps on which the optimization
task has not yet been done well, which
can be measured by the difference from
wσJσ(θ) to wσJ

⋆
σ . This provides a prin-

cipled measure for optimization insuffi-
ciency, which leads to an adaptive noise
schedule: p(σ) ∝ wσ(Jσ(θ)− J⋆

σ).

Note that applying the loss weight and
noise schedule in training a model only
requires estimating the optimal loss J⋆

σ
on the training dataset, which does not
require training a model beforehand.

CIFAR-10 & ImageNet-64 Results. We evaluate the designed training schedule in training two
advanced diffusion models EDM (Karras et al., 2022) and Flow Matching (FM) (Lipman et al.,
2023) on the CIFAR-10 and ImageNet-64 datasets (details in Appx. H.5). As shown in Table 2,
our training schedule significantly improves generation performance upon the original for both the
EDM and FM settings on both datasets, demonstrating the value of new insights from our analysis
using the optimal loss. For a closer look at how our schedule works, in Fig. 3(c) we plot the relative
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Table 3: Comparison between existing training schedules and ours on ImageNet-256 dataset.
Method Generation w/o CFG Generation w/ CFG

FID(↓) IS(↑) Pre.(↑) Rec.(↑) FID(↓) IS(↑) Pre.(↑) Rec.(↑)

Pixel-space Diffusion Models
ADM (Dhariwal and Nichol, 2021) 10.94 – 0.69 0.63 3.94 215.9 0.83 0.53
RIN (Jabri et al., 2022) 3.42 182.0 – – – – –
Simple Diffusion (Hoogeboom et al., 2023) 2.77 211.8 – – 2.12 256.3 – –
VDM++ (Kingma and Gao, 2023) 2.40 225.3 – – 2.12 267.7 – –
SiD2 (Hoogeboom et al., 2024) – – – – 1.38 – – –

Latent Diffusion Models
MaskDiT (Zheng et al., 2023) 5.69 177.9 0.74 0.60 2.28 276.6 0.80 0.61
DiT (Peebles and Xie, 2023) 9.62 121.5 0.67 0.67 2.27 278.2 0.83 0.57
SiT (Ma et al., 2024) 8.61 131.7 0.68 0.67 2.06 270.3 0.82 0.59
FasterDiT (Yao et al., 2024) 7.91 131.3 0.67 0.69 2.03 264.0 0.81 0.60
MDT (Gao et al., 2023a) 6.23 143.0 0.71 0.65 1.79 283.0 0.81 0.61
MDTv2 (Gao et al., 2023b) – – – – 1.58 314.7 0.79 0.65
REPA (Yu et al., 2024) 5.90 – – – 1.42 305.7 0.80 0.65

LightningDiT (Yao et al., 2025) 2.17 205.6 0.77 0.65 1.35 295.3 0.79 0.65
+ reproduction 2.29 206.2 0.76 0.66 1.42 292.9 0.79 0.65
+ our schedule 2.08 220.8 0.77 0.66 1.30 301.3 0.79 0.66

(a) (b) (c)

Figure 4: Scaling law study using optimal loss on ImageNet-64. Training curves at log σ = 4.38
using various model sizes and their envelope are plotted showing (a) the actual loss and (b) the
gap between the actual and the optimal loss. Curves showing the gap for the total loss (covering
all diffusion steps) are plotted in (c). The total loss gap is the training loss gap multiplied by the
loss weight under the expectation of the noise schedule, i.e., the practical training loss. Correlation
coefficients ρ for the envelopes are marked.

training loss gap across noise scales using our schedule, and compare it with the schedule of the
original (Lipman et al., 2023) and of StableDiffusion 3 (SD3) (Esser et al., 2024). We find that our
schedule indeed further decreases the loss in the interval with positive correlation to performance,
aligning with the insight from Sec. 4.1.

ImageNet-256 Results. Finally, we evaluate our training schedule on the ImageNet-256 dataset
and compare the results with existing approaches. We use VA-VAE (Yao et al., 2025) as the to-
kenizer and employ a modified LightningDiT (Yao et al., 2025) architecture enhanced with QK-
Normalization (Dehghani et al., 2023) to improve training stability (details in Appx. H.5). As shown
in Table 3, our training schedule further improves generation performance over the original Light-
ningDiT training schedule.

5 PRINCIPLED SCALING LAW STUDY FOR DIFFUSION MODELS

Neural scaling law (Kaplan et al., 2020) has been the driving motivation for pursuing large mod-
els, which shows the consistent improvement of model performance with computational cost. The
conventional version takes the form of a power law (Kaplan et al., 2020; Henighan et al., 2020;
Hoffmann et al., 2022): J(F ) = βFα, where F denotes floating point operations (FLOPs) measur-
ing training budget, J(F ) denotes the minimal training loss attained by models in various sizes (the
envelope in Fig. 4), and α < 0 and β > 0 are power law parameters. The specialty of a scaling law
study for diffusion model is that, as the optimal loss sets a non-zero lower bound of the training loss,
not all the loss value in J(F ) can be reduced with the increase of F , questioning the form which
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converges to zero as F → ∞. Instead, the following modified power law is assumed:
J(F )− J⋆ = βFα, (13)

where J⋆ denotes the optimal loss value. It can be rephrased as that log(J(F ) − J⋆) is linear in
logF , so we can verify it through the linear correlation coefficient ρ. We conduct experiments using
current state-of-the-art diffusion models EDM2 (Karras et al., 2024) with parameter size ranging
from 120M to 1.5B.

We first compare the model training curves at a large noise scale, for which Fig. 4(a) and (b) assume
the original and the modified (Eq. (13)) scaling laws, respectively. We can observe that in the
modified version, the envelope is indeed closer to a line, and the improved correlation coefficient
ρ = 0.94 (vs. 0.82) validates this quantitatively. For the total loss, we use the optimized adaptive loss
weight by EDM2 (Karras et al., 2024). The result is shown in Fig. 4(c), which achieves ρ = 0.9917,
and the fitted scaling law is given by: J(F ) = 0.3675F−0.014 + 0.015. Appx. H.6 provides more
results on ImageNet-512. We hope this approach could lead to more profound future studies in the
scaling law for diffusion models.

6 CONCLUSION

In this work, we emphasize the central importance of optimal loss estimation to make the training
loss value meaningful for diagnosing and improving diffusion model training. To the best of our
knowledge, we are the first to notice and work on this issue. We develop analytical expressions and
practical estimators for diffusion optimal loss, particularly a scalable estimator applicable to large
datasets and has proper variance and bias control. With this tool, we revisit the training behavior of
mainstream diffusion models, and propose an optimal-loss-based approach for a principled design
of training schedules, which indeed improves performance in practice. Furthermore, we investigate
the scaling behavior w.r.t model size, in which accounting for the optimal loss value as an offset
better fulfills the power law.

Although the optimal loss estimation is not directly meant for analyzing inference performance, it
introduces a serious metric for data-fitting quality, which paves the way for future generalization
study. We believe our new approaches and insights could motivate future research on analyzing and
improving diffusion models, and advance the progress of generative modeling research.

7 ETHICS STATEMENT

This work adheres to the ICLR Code of Ethics. Our study does not involve human subjects, per-
sonal data, or sensitive demographic information. All experiments are conducted on publicly avail-
able benchmark datasets, which are widely used in the machine learning community. No new data
collection or human/animal experimentation was performed.

8 REPRODUCIBILITY STATEMENT

To facilitate the reproducibility of our research, we provide comprehensive details throughout the
paper and its supplementary materials. We begin by establishing the necessary backgrounds in
Sec. 2. For all theoretical claims in the main text, we offer detailed derivations in Appx. F. All our
experiments are thoroughly documented; the datasets, training procedures, and settings are carefully
described in Appx. H. Upon acceptance of this paper, we commit to making our full codebase and all
model checkpoints publicly available to ensure that the community can fully reproduce our results.

9 THE USE OF LARGE LANGUAGE MODELS (LLMS)

In the preparation of this manuscript, LLMs were employed as a writing assistant to refine the
language and improve the grammar. Following this process, all textual content was meticulously
reviewed, revised, and validated by the authors, who assume full responsibility for the final work
presented.
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APPENDIX

Organization of the Appendix The supplementary material is organized as follows. We first
review more related work in Appx. A and remark the relation between estimating optimal loss and
achieving generalization in Appx. B. In Appx. D, we provide a detailed derivation of the optimal
solution for diffusion models in various formulations. In Appx. E, we give the detailed derivation of
the conversion shown in Table 1. In Appx. F, we give the proofs of all theorems. In Appx. G, we
give a brief introduction to the important sampling methods. In Appx. H, we give the details of all
our experiments.

A RELATED WORK

Optimal loss and solution of diffusion model. A related work by Bao et al. (2022b;a) derived the
optimal ELBO loss under discrete Gaussian reverse process, and used it to determine the optimal
reverse Gaussian (co)variances and optimize the discrete diffusion steps. Gu et al. (2023) further
studied the memorization behavior of diffusion models. In contrast, we consider general cases and
develop effective training-free estimators for the optimal loss value, and emphasize its principled
role with important real examples in monitoring and diagnosing model training, designing training
schedule, and studying scaling law. There are also some other works that made efforts to estimate the
optimal solution (Xu et al., 2023) using importance sampling. Although more scalable methods are
proposed using fast KNN search (Niedoba et al., 2024), their viability for estimating the optimal loss
on large datasets remains unverified, as the optimal loss requires estimating two nested expectations.

Training design of diffusion model. Due to the stochastic nature, intensive research efforts are
paid to investigate diffusion model training in multiple directions such as noise schedules and loss
weight. Karras et al. (2022) presented a design space that clearly separates design choices, enabling
targeted explorations on training configurations. Kingma and Gao (2023) analyzed different diffu-
sion objectives in a unified way and connect them via ELBO. Esser et al. (2024) conduct large-scale
experiments to compare different training configurations and motivate scalable design choices for
billion-scale models. Most works require large-scale compute for trial and error, due to the lack of
a principled guideline for training schedule design based on the absolute data-fitting process.

Scaling law study for diffusion model. Model scaling behaviors are of great interest in deep
learning literature. In particular, the remarkable success of Large Language Models has been largely
credited to the establishment of scaling laws (Kaplan et al., 2020; Henighan et al., 2020; Hoffmann
et al., 2022), which help to predict the performance of models as they scale in parameters and data.
There also exist works that empirically investigate the scaling behavior of diffusion models (Peebles
and Xie, 2023; Li et al., 2024; Mei et al., 2025; Esser et al., 2024), and make attempts to explicitly
formulate scaling laws for diffusion transformers (Liang et al., 2024). However, training loss values
are typically used as the metric in these works, which are not corrected by the optimal loss to reflect
the true optimization gap, leading to biased analysis for scaling behaviors of diffusion models.

B DISCUSSIONS ON OPTIMAL LOSS ESTIMATION AND GENERALIZATION IN
DIFFUSION MODELS

We would like to emphasize that the motivation of estimating the optimal loss is not to optimize
the model to achieve the optimal loss on a dataset, but to fulfill the more fundamental need of
measuring the absolute fitness to a dataset. As an analogy, monitoring the supervision loss (e.g., the
mean squared error (MSE) between model prediction and data labels) does not meant to optimize
it to zero on the training set, but to evaluate the fitness to data. Particularly, one would use the
supervision loss on a test set to evaluate the performance, which is essentially to evaluate the fitness
to the test set. The specialty with diffusion loss is that its optimal value is unknown beforehand,
so the loss value does not readily reflect the absolute fitness to a dataset. Estimating the diffusion
optimal loss can hence provide a reference to interpret a real training loss value. This even enables
evaluating the generalization of a diffusion model using the loss value on a test set compared to
the optimal value on the dataset. This evaluation does not require the costly and tricky generation
process as is typically adopted.

For the design of the training schedule, we would like to mention that the design is not intended to
reduce the loss gap for every time step. As is shown in Fig. 3, there is a trade-off of loss optimization
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at different time steps, where the loss gap in some time-step intervals is positively correlated to in-
ference performance, while on some other intervals negatively correlated to inference performance.
Therefore, the design of the training schedule is rather putting more emphasis on the positively
correlated regions, even if this would sacrifice the loss in some other regions.

C ALTERNATIVE FORMULATIONS OF DIFFUSION MODELS

Besides the score prediction target introduced in Sec. 2, diffusion models also adopt other prediction
targets. The formulation of Eq. (2) motivates the noise prediction target (Ho et al., 2020). Let
ϵθ(xt, t) := −σtsθ(xt, t), the the loss becomes

J(θ) = Ep(t)w
(ϵ)
t Ep0(x0)Ep(ϵ)∥ϵθ(αtx0 + σtϵ, t)− ϵ∥2, where w

(ϵ)
t = w

(s)
t /σ2

t .

This formulation poses a friendly, bounded-scale learning target and avoids the artifact at t = 0 of
the denoising score matching loss. If formally solving x0 from Eq. (1) and let

x0θ(xt, t) :=
xt − σtϵθ(xt, t)

αt
=

xt + σ2
t sθ(xt, t)

αt
,

then we get the total loss becomes J(θ)=Ep(t)w
(x0)
t J

(x0)
t (θ), where:

J
(x0)
t (θ) := Ep(x0)Ep(ϵ)∥x0θ(αtx0 + σtϵ, t)− x0∥2 = (σ4

t /α
2
t )J

(s)
t (θ), w

(x0)
t = (α2

t /σ
4
t )w

(s)
t .

It holds the semantics of clean-data prediction (Kingma et al., 2021; Karras et al., 2022), and can
be viewed as denoising auto-encoders (Vincent et al., 2008; Alain and Bengio, 2014) with mul-
tiple noise scales. From the equivalent deterministic process, one can also derive the vector-field
prediction target by

vθ(xt, t) := atxt −
1

2
g2t sθ(xt, t),

an the loss function becomes J(θ) = Ep(t)w
(v)
t J

(v)
t (θ), where

J
(v)
t (θ) := Ep(x0)Ep(ϵ)∥vθ(αtx0+σtϵ, t)− (α′

tx0+σ′
tϵ)∥

2
, w

(v)
t = (4/g4t )w

(s)
t .

It coincides with velocity prediction (Salimans and Ho, 2022) and the flow matching formula-
tion (Lipman et al., 2023; Liu et al., 2023): v := α′

tx0+σ′
tϵ is the conditional vector field given

x0 and ϵ (same distribution as xT ). In particular, if we set αt = 1 − t, σt = t, T = 1, then
at =

1
t−1 ,

1
2g

2
t = t

1−t , and we have v = ϵ− x0, which corresponds to the Flow Matching (Lipman
et al., 2023; Liu et al., 2023) formulation that is also widely used in generative modeling recently
due to its simplicity.

D OPTIMAL SOLUTION OF DIFFUSION MODELS

In this section, we provide a detailed derivation of the optimal solution for diffusion models across
various formulations. We demonstrate that in every case the models’ learning targets are conditional
expectations, as discussed in Sec. 3.1. To this end, we begin by introducing a useful lemma that
outlines a key property of conditional expectations (Durrett, 2019).

Lemma 3. Let x,y be random vectors. Then the optimal approximation of y based on x is

f∗(x) = argmin
f :Rd→Rd

E∥y − f(x)∥2 = E[y|x].

Proof. We can compute E∥y − f(x)∥2 directly by

E∥y − f(x)∥2 = E∥y − E[y|x] + E[y|x]− f(x)∥2

= E∥y − E[y|x]∥2 + E
[
∥E[y|x]− f(x)∥2

]
+ 2E⟨y − E[y|x],E[y|x]− f(x)⟩.

Since
E⟨y − E[y|x],E[y|x]− f(x)⟩ = E [E⟨y − E[y|x],E[y|x]− f(x)⟩|x] = 0,

we have the following decomposition:
E∥y − f(x)∥2 = E∥y − E[y|x]∥2 + E

[
∥E[y|x]− f(x)∥2

]
.

Since E
[
∥E[y|x]− f(x)∥2

]
⩾ 0, we have

E∥y − f(x)∥2 = E∥y − E[y|x]∥2 + E
[
∥E[y|x]− f(x)∥2

]
16
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⩾ E∥y − E[y|x]∥2.
The inequality becomes equality if and only if f(x) = E[y|x]. So the the optimal approximation of
y based on x is E[y|x], i.e.

f∗(x) = argmin
f :Rd→Rd

E∥y − f(x)∥2 = E[y|x].

Score prediction target. The score prediction target of diffusion model is given by

J
(s)
t (θ) :=Ep(t)w

(s)
t Ep0(x0)Ep(xt|x0)∥sθ(xt, t)−∇xt

log p(xt | x0)∥2.

Then by Lemma 3, for any t satisfying w
(s)
t > 0, the optimal solution of the network sθ(·, t) : Rd →

Rd is given by
s∗θ(xt, t) = Ep(x0|xt)[∇xt

log p(xt | x0)].

Noise prediction target. The noise prediction target of diffusion model is given by

J
(ϵ)
t (θ) := Ep(t)w

(ϵ)
t Ep0(x0)Ep(ϵ)∥ϵθ(αtx0 + σtϵ, t)− ϵ∥2.

Then by Lemma 3, for any t satisfying w
(ϵ)
t > 0, the optimal solution of the network ϵθ(·, t) :

Rd → Rd is given by
ϵ∗
θ(xt, t) = Ep(ϵ|xt)[ϵ].

Clean-data prediction target. The clean-data prediction target of diffusion model is given by

J
(x0)
t (θ) := Ep(x0)Ep(ϵ)∥x0θ(αtx0 + σtϵ, t)− x0∥2.

Then by Lemma 3, for any t satisfying w
(x0)
t > 0, the optimal solution of the network x0θ(·, t) :

Rd → Rd is given by
x∗
0θ(xt, t) = Ep(x0|xt)[x0].

Vector-field prediction target. The vector field prediction target of diffusion model is given by

J
(v)
t (θ) := Ep(x0)Ep(ϵ)∥vθ(αtx0+σtϵ, t)− (α′

tx0+σ′
tϵ)∥

2
.

Then by Lemma 3, for any t satisfying w
(v)
t > 0, the optimal solution of the network vθ(·, t) :

Rd → Rd is given by
v∗
θ(xt, t) = Ep(x0,ϵ|xt)[α

′
tx0 + σ′

tϵ].

E DETAILS ON THE GENERAL DIFFUSION FORMULATION

In this section, we introduce the detailed conversion between different diffusion formulations. As we
have mentioned in Sec. 3.4, we can convert previous schedules to EDM formulation. The training
objective in EDM formulation is given by

J(θ) = Ep(σ)wσEp(x0),p(ϵ)∥x0θ(x0 + σϵ, σ)− x0∥2,
where the denoiser has precondition x0θ(x, σ) = cskipσ x+ coutσ Fθ(c

in
σ x, cnoiseσ ).

E.1 CONVERT VP SCHEDULES TO EDM FORMULATION

DDPM (VP), ϵ-pred training objective. The training objective in DDPM formulation (Ho et al.,
2020; Song et al., 2021b) is given by

J
(ϵ)
DDPM = EpDDPM(t)Ep(x0),p(ϵ) ∥ϵθ (αtx0 + σtϵ, (M − 1)t)− ϵ∥2 ,

where M = 1000, pDDPM(t) = U(εt, 1), εt = 10−5, and

σt =

√
1− exp(−(β0t+

1

2
(βmax − β0)t2)),

αt =
√
1− σ2 = exp(−(β0t+

1

2
(βmax − β0)t

2)).

17
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The diffusion process satisfying α2
t + σ2

t = 1 is also known as the variance preserving (VP) pro-
cess. In order to convert the DDPM formulation to the EDM formulation, we should transform the
diffusion process to VE. Dividing

√
1− σ2

t in both side of the equation xt =
√
1− σ2

t x0 + σtϵ,
we have

xt√
1− σ2

t

= x0 +
σt√
1− σ2

t

ϵ.

Let x̂t =
xt√
1−σ2

t

, σ̂t =
σt√
1−σ2

t

, then x̂t = x0+ σ̂tϵ, i.e. x̂t is a VE process. The inverse transform

is given by σt =
σ̂t√
1+σ̂2

t

. Under this transformation, the training obejective of DDPM becomes

J
(ϵ)
DDPM = EpDDPM(t)Ep(x0),p(ϵ)

∥∥∥∥ϵθ(
√

1− σ2
t x0 + σtϵ, (M − 1)t)− ϵ

∥∥∥∥2
= EpDDPM(t)Ep(x0),p(ϵ)

∥∥∥∥∥ϵθ(xt, (M − 1)t)− xt −
√

1− σ2
t x0

σt

∥∥∥∥∥
2

= EpDDPM(t)Ep(x0),p(ϵ)

(
1− σ2

t

σ2
t

)∥∥∥∥∥ xt√
1− σ2

t

− σt√
1− σ2

t

ϵθ(xt, (M − 1)t)− x0

∥∥∥∥∥
2

= EpDDPM(t)Ep(x0),p(ϵ)
1

σ̂2
t

∥∥∥∥∥x̂t − σ̂tϵθ

(
x̂t√
1 + σ̂2

t

, (M − 1)t

)
− x0

∥∥∥∥∥
2

,

where we use the relations x̂t =
xt√
1−σ2

t

, σt =
σ̂t√
1+σ̂2

t

to get the last equation. Compare the training

objective with the EDM’s general training objective

J
(ϵ)
DDPM = EpDDPM(σ̂)w

DDPM(σ̂)Ep(x0),p(ϵ)∥x0θ(x0 + σ̂ϵ, σ̂)− x0∥2,
where x0θ(x, σ̂) = cDDPM

skip (σ̂)x+ cDDPM
out (σ̂)ϵθ(c

DDPM
in (σ̂)x, cDDPM

noise (σ̂)).

we get
cDDPM

skip (σ̂t) = 1, cDDPM
out (σ̂t) = −σ̂t,

cDDPM
in (σ̂t) =

1√
1 + σ̂2

t

, cDDPM
noise (σ̂t) = (M − 1)t.

And the training schedule is given by

wDDPM
σ̂ =

1

σ̂2
,

pDDPM(σ̂) =

(
σ√

1− σ2

)
#

σt#U(εt, 1).

E.2 CONVERT VE SCHEDULES TO EDM FORMULATION

Review of EDM, F-pred training objective. EDM Karras et al. (2022) proposes the ”unit
variance principle” to derive the EDM precondition. Recall that the denoiser has precondition
x0θ(x, σ) = cskipσ x+ coutσ Fθ(c

in
σ x, cnoiseσ ), where Fθ is the neural network, then the effective train-

ing objective is given by

J
(F)
EDM(θ) = EpEDM(σ)w

EDM(σ)Ep(x0),p(ϵ)∥x0θ(x0 + σϵ, σ)− x0∥2

= EpEDM(σ)w
EDM(σ)coutσ

2Ep(x0),p(ϵ)∥Fθ(c
in
σ xσ, c

noise
σ )− x0 − cskipσ xσ

coutσ

∥2,

where xσ = x0 + σϵ. The unit variance principle is given by

Var(cinσ xσ) = 1,

Var
(
x0 − cskipσ xσ

coutσ

)
= 1,

wEDM(σ)coutσ
2
= 1.
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Then we get the explicit expression of the precondition as follows:

cEDM
skip (σ) =

σ2
data

σ2 + σ2
data

, cEDM
out (σ) =

σ · σdata√
σ2 + σ2

data

,

cEDM
in (σ) =

1√
σ2 + σ2

data

, cEDM
noise (σ) =

1

4
lnσ.

And the training schedule is given by

wEDM
σ =

σ2 + σ2
data

(σ · σdata)2
,

pEDM(σ) = exp# N (Pmean, P
2
std).

(Lu and Song, 2024) shows that when σt = sin(π2 t), the EDM training objective is equivalent to
v-pred of VP process.

NCSN (VE), ϵ-pred training objective. The training objective in NCSN(VE) formulation (Song
et al., 2021b) is given by

J
(ϵ)
NCSN = EpNCSN(σ)Ep(x0),p(ϵ)

∥∥∥ϵθ

(
x0 + σϵ, ln (

σ

2
)
)
+ ϵ

∥∥∥2 ,
where pNCSN(σ) = exp# U(lnσmin, lnσmax), i.e. lnσ ∼ U(lnσmin, lnσmax). Then we can convert it
to the EDM formulation:

J
(ϵ)
NCSN = EpNCSN(σ)Ep(x0),p(ϵ)

∥∥∥ϵθ

(
x0 + σϵ, ln (

σ

2
)
)
+ ϵ

∥∥∥2
= EpNCSN(σ)Ep(x0),p(ϵ)

∥∥∥∥ϵθ

(
x0 + σϵ, ln (

σ

2
)
)
+

xσ − x0

σ

∥∥∥∥2
= EpNCSN(σ)Ep(x0),p(ϵ)

1

σ2

∥∥∥xσ + σϵθ

(
x0 + σϵ, ln (

σ

2
)
)
− x0

∥∥∥2 .
Then we get the explicit expression of the precondition as follows:

cNCSN
skip (σ) = 1, cNCSN

out (σ) = σ,

cNCSN
in (σ) = 1, cNCSN

noise (σ) = ln (
σ

2
).

And the training schedule is given by

wNCSN
σ =

1

σ2
,

pNCSN(σ) = exp# U(lnσmin, lnσmax).

E.3 CONVERT FLOW MATCHING SCHEDULES TO EDM FORMULATION

Flow Matching, v-pred training objective. In original Flow Matching paperLipman et al.
(2023), pt(xt) is the noise distribution when t = 0 and becomes the data distribution when t = 1.
To align with the time line of diffusion models, we revert the original Flow Matching construction,
i.e. pt(xt) is the data distribution when t = 0 and becomes the noise distribution when t = 1. Then
the training objective in the Flow Matching formulation is given by

J
(v)
FM (θ) = EpFM(t)Ep(x0),p(ϵ) ∥vθ (αtx0 + σtϵ, t)− (ϵ− x0)∥2 ,

where αt = 1− t, σt = t, pFM(t) = U(0, 1). In order to convert the Flow Matching formulation to
the EDM formulation, we should transform the flow matching diffusion process to the VE diffusion
process. Dividing (1− σt) in both side of the equation xt = (1− σt)x0 + σtϵ, we have

xt

1− σt
= x0 +

σt

1− σt
ϵ.

Let x̂t =
xt

1−σt
, σ̂t =

σt

1−σt
, then x̂t satisfies x̂t = x0 + σ̂tϵ, i.e. x̂t is a VE process. The inverse

transform is given by σt =
σ̂t

1+σ̂t
. Under this transformation, the training objective of Flow Matching

becomes
J
(v)
FM (θ) = EpFM(σt)Ep(x0),p(ϵ)∥vθ(xt, σt)− (ϵ− x0)∥2
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= EpFM(σt)Ep(x0),p(ϵ)∥vθ(xt, σt)−
xt − x0

σt
∥2

= EpFM(σt)Ep(x0),p(ϵ)
1

σ2
t

∥xt − σtvθ(xt, σt)− x0∥2

= EpFM(σ̂)Ep(x0),p(ϵ)

(
1 + σ̂t

σ̂t

)2 ∥∥∥∥ x̂t

1 + σ̂t
− σ̂t

1 + σ̂t
vθ

(
x̂t

1 + σ̂t
,

σ̂t

1 + σ̂t

)
− x0

∥∥∥∥2 ,
where we use the relations x̂t = xt

1−σt
, σt = σ̂t

1+σ̂t
to get the last equation. Compare the training

objective with the EDM’s general training objective
J(θ) = Ep(σ)wσEp(x0),p(ϵ)∥x0θ(x0 + σϵ, σ)− x0∥2,

we get

cFM
skip(σ̂) =

1

1 + σ̂
, cFM

out (σ̂) = − σ̂

1 + σ̂
,

cFM
in (σ̂) =

1

1 + σ̂
, cFM

noise(σ̂) =
σ̂

1 + σ̂
.

And the training schedule is given by

wFM
σ̂ =

(1 + σ̂)2

σ̂2
,

pFM(σ̂) = (
σ

1− σ
)#U(0, 1).

Stable Diffusion 3, v-pred training objective. The Stable Diffusion 3 frameworkEsser et al.
(2024) also uses the Flow Matching(Rectified Flow) diffusion process and constructs v-pred training
objective. The difference is that SD3 proposes the logit-normal noise schedule, i.e.

pln(t;m, s) =
1

s
√
2π

1

t(1− t)
exp

(
−
(log t

1−t −m)2

2s2

)
.

(Esser et al., 2024) shows that m = 0, s = 1 consistently achieves good performance. Let pSD3(t) =
pln(t; 0, 1). Then the SD3 training objective is given by

J
(v)
SD3(θ) = EpSD3(t)Ep(x0),p(ϵ) ∥vθ (αtx0 + σtϵ, t)− (ϵ− x0)∥2 .

It’s obvious that the SD3 objective has the same precondition with FM, i.e.

cSD3
skip (σ̂) =

1

1 + σ̂
, cSD3

out (σ̂) = − σ̂

1 + σ̂
,

cSD3
in (σ̂) =

1

1 + σ̂
, cSD3

noise(σ̂) =
σ̂

1 + σ̂
.

Since σ̂t =
σt

1−σt
= t

1−t = logit(t), then pSD3(σ̂t) = N (0, 1). So the training schedule is given by

wSD3
σ̂ =

(1 + σ̂)2

σ̂2
,

pSD3(σ̂) = exp# N (0, 1).

F PROOFS

F.1 PROOF FOR THEOREM 1

Theorem 4. The optimal loss value for clean-data prediction defined in Eq. (4) is:

J
(x0)
t

∗
= Ep(x0)∥x0∥2︸ ︷︷ ︸

=:A

−Ep(xt)

∥∥Ep(x0|xt)[x0]
∥∥2︸ ︷︷ ︸

=:Bt

, J∗ = Ep(t)w
(x0)
t J

(x0)
t

∗
.

Proof. According to Appx. D, the optimal solution of the network for clean-data prediction is given
by x0θ(xt, t) = E[x0 | xt], where xt = αtx0 + σtϵ. And the objective is minimized if and only if
x0θ(xt, t) = E[x0 | xt], and the optimal loss value is given by Ep(x0),p(ϵ)∥E[x0 | xt]− x0∥2. So
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we have

J
(x0)
t

∗
= Ep(x0),p(ϵ)∥E[x0 | xt]− x0∥2

= Ep(x0)∥x0∥2 − Ep(xt)

∥∥Ep(x0|xt)[x0]
∥∥2,

and J∗ = Ep(t)w
(x0)
t J

(x0)
t

∗
.

F.2 PROOF FOR THEOREM 2

The following theorem is a detailed version of Theorem 2.

Theorem 5. For a given a subset {x(l)
0 }Ll=1, the B̂cDOL

t estimator given in Eq. (11) converges a.s.
to the following expression as M → ∞:

B̂cDOL
t → Ep(ϵ)

 1

L

L∑
i=1

∥∥∥∥∥∥∥∥∥
L∑
l ̸=i

x
(l)
0 Kt(αtx

(i)
0 + σtϵ,x

(l)
0 ) + 1

Cx
(i)
0 Kt(αtx

(i)
0 + σtϵ,x

(i)
0 )

L∑
l ̸=i

Kt(αtx
(i)
0 + σtϵ,x

(l)
0 ) + 1

CKt(αtx
(i)
0 + σtϵ,x

(i)
0 )

∥∥∥∥∥∥∥∥∥
2
 .

So B̂cDOL
t is a consistent estimator, ∀C > 0. Furthermore, the B̂cDOL

t estimator with subset size L

has the same expectation as the SNIS estimator B̂SNIS
t with subset size L− 1 when M → ∞, C →

∞.

Proof. The cDOL estimator is given by

B̂cDOL
t =

1

M

M∑
m̃=1

Xm̃, where Xm̃ :=

∥∥∥∥∥∥∥∥∥∥∥∥

L∑
l=1,
l ̸=lm̃

x
(l)
0 Kt(x

(m̃)
t ,x

(l)
0 ) + 1

Cx
(lm̃)
0 Kt(x

(m̃)
t ,x

(lm̃)
0 )

L∑
l′=1,
l′ ̸=lm̃

Kt(x
(m̃)
t ,x

(l′)
0 ) + 1

CKt(x
(m̃)
t ,x

(lm̃)
0 )

∥∥∥∥∥∥∥∥∥∥∥∥

2

.

Given a subset {x(l)
0 }Ll=1, since {lm̃}Mm̃=1 and {ϵm̃}Mm̃=1 are i.i.d. respectively, so {xm̃ = αtx

lm̃
0 +

σtϵm̃}Mm̃=1 are i.i.d. random vectors. Then {Xm̃}Mm̃=1 are i.i.d. random variables. By the strong
law of large number (Durrett, 2019), the estimator B̂cDOL

t converges almost surely to the following
expression as M → ∞:

B̂cDOL
t

M→∞,a.s.→ EX = El̃,ϵ

∥∥∥∥∥∥∥∥∥∥∥∥

L∑
l=1,

l ̸=l̃

x
(l)
0 Kt(αtx

(l̃)
0 + σtϵ,x

(l)
0 ) + 1

Cx
(l̃)
0 Kt(αtx

(l̃)
0 + σtϵ,x

(l̃)
0 )

L∑
l′=1,

l′ ̸=l̃

Kt(αtx
(l̃)
0 + σtϵ,x

(l′)
0 ) + 1

CKt(αtx
(l̃)
0 + σtϵ,x

(l̃)
0 )

∥∥∥∥∥∥∥∥∥∥∥∥

2

= Eϵ


1

L

L∑
i=1

∥∥∥∥∥∥∥∥∥∥∥∥

L∑
l=1,
l ̸=i

x
(l)
0 Kt(αtx

(i)
0 + σtϵ,x

(l)
0 ) + 1

Cx
(i)
0 Kt(αtx

(i)
0 + σtϵ,x

(i)
0 )

L∑
l′=1,
l′ ̸=i

Kt(αtx
(i)
0 + σtϵ,x

(l′)
0 ) + 1

CKt(αtx
(i)
0 + σtϵ,x

(i)
0 )

∥∥∥∥∥∥∥∥∥∥∥∥

2 .

This completes the first statement. Since

1

L− 1

L∑
l=1,
l ̸=lm̃

x
(l)
0 Kt(x

(m̃)
t ,x

(l)
0 )

L→∞,a.s→ Ep(x0)[x0Kt(x
(m̃)
t ,x0)],

1

L− 1

L∑
l=1,
l ̸=lm̃

Kt(x
(m̃)
t ,x

(l)
0 )

L→∞,a.s→ Ep(x0)[Kt(x
(m̃)
t ,x0)], ∀m̃,
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1

C(L− 1)
x
(i)
0 Kt(αtx

(i)
0 + σtϵ,x

(i)
0 )

L→∞,a.s→ 0,

1

C(L− 1)
Kt(αtx

(i)
0 + σtϵ,x

(i)
0 )

L→∞,a.s→ 0,

then Xm̃
L→∞,a.s→ E

p(x0|x(m̃)
t )

[x0] =
Ep(x0)[x0Kt(x

(m̃)
t ,x0)]

Ep(x0)[Kt(x
(m̃)
t ,x0)]

. So we have

B̂cDOL
t

M,L→∞,a.s→ Ep(xt)

∥∥Ep(x0|xt)[x0]
∥∥2, ∀C > 0.

Hence, B̂cDOL
t

M,L→∞,P→ Ep(xt)

∥∥Ep(x0|xt)[x0]
∥∥2, ∀C > 0, i.e. B̂cDOL

t is consistent.

The SNIS estimator with subset size L− 1 is given by

B̂SNIS
t :=

1

M

M∑
m=1

Ym, where Ym :=

∥∥∥∥∥
∑L−1

l=1 x
(l)
0 Kt(x

(m)
t ,x

(l)
0 )∑L−1

l′=1 Kt(x
(m)
t ,x

(l′)
0 )

∥∥∥∥∥
2

.

Notice that {x(m)
t }Mm=1 are i.i.d. random vectors, so {Ym}Mm=1 are i.i.d. random variables. So by

the strong law of large number, B̂SNIS
t converges to the following expressions almost surely:

B̂SNIS
t

M→∞,a.s→ EY = Ext

∥∥∥∥∥
∑L−1

l=1 x
(l)
0 Kt(xt,x

(l)
0 )∑L−1

l′=1 Kt(xt,x
(l′)
0 )

∥∥∥∥∥
2

.

Next, we take the expectation of the subset for the cDOL and the SNIS estimator, respectively. Since
{x(l)

0 }Ll=1 are i.i.d. random vectors, the expectation of the cDOL can be simplified as:

E{x(l)
0 }L

l=1

B̂cDOL
t = E

ϵ,{x(l)
0 }L

l=1

1

L

L∑
i=1

∥∥∥∥∥∥∥∥∥∥∥∥

L∑
l=1,
l ̸=i

x
(l)
0 Kt(αtx

(i)
0 + σtϵ,x

(l)
0 ) + 1

Cx
(i)
0 Kt(αtx

(i)
0 + σtϵ,x

(i)
0 )

L∑
l′=1,
l′ ̸=i

Kt(αtx
(i)
0 + σtϵ,x

(l′)
0 ) + 1

CKt(αtx
(i)
0 + σtϵ,x

(i)
0 )

∥∥∥∥∥∥∥∥∥∥∥∥

2

= E
ϵ,{x(l)

0 }L−1
l=1 ,x

(L)
0

∥∥∥∥∥∥∥∥∥
L−1∑
l=1

x
(l)
0 Kt(αtx

(L)
0 + σtϵ,x

(l)
0 ) + 1

Cx
(L)
0 Kt(αtx

(L)
0 + σtϵ,x

(L)
0 )

L−1∑
l′=1

Kt(αtx
(L)
0 + σtϵ,x

(l′)
0 ) + 1

CKt(αtx
(L)
0 + σtϵ,x

(L)
0 )

∥∥∥∥∥∥∥∥∥
2

.

Notice that xt = αtx0 + σtϵ, so when C → ∞:

E{x(l)
0 }L

l=1

B̂cDOL
t

C→∞→ E
ϵ,x

(L)
0 ,{xl

0}
L−1
l=1

∥∥∥∥∥∥∥∥∥
L−1∑
l=1

x
(l)
0 Kt(αtx

(L)
0 + σtϵ,x

(l)
0 )

L−1∑
l′=1

Kt(αtx
(L)
0 + σtϵ,x

(l′)
0 )

∥∥∥∥∥∥∥∥∥
2

= E
xt,{x(l)

0 }L−1
l=1

∥∥∥∥∥
∑L−1

l=1 x
(l)
0 Kt(xt,x

(l)
0 )∑L−1

l′=1 Kt(xt,x
(l′)
0 )

∥∥∥∥∥
2

.

The expectation of the SNIS estimator is given by

E{x(l)
0 }L

l=1

B̂SNIS
t = E{xl

0}
L−1
l=1

Ext
Y = E

xt,{x(l)
0 }L−1

l=1

∥∥∥∥∥
∑

l∈[L−1] x
(l)
0 Kt(xt,x

(l)
0 )∑

l′∈[L−1] Kt(xt,x
(l′)
0 )

∥∥∥∥∥
2

.

So we can conclude that the B̂cDOL
t estimator with subset size L has the same expectation as the

SNIS estimator B̂SNIS
t with subset size L− 1 when M → ∞, C → ∞.
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G BACKGROUND ON IMPORTANCE SAMPLING

Assume x is a random variable, f : Rd → Rd is a vector value function. Our goal is to estimate the
expectation of f(x) under a given probability density function π(x), that is,

I =

∫
f(x)π(x)dx.

However, if f(x) is significant primarily in regions where π(x) is low, the standard Monte Carlo
estimator may provide poor accuracy due to infrequent sampling of these regions—an issue often
referred to as the rare event problem. Importance sampling is designed to address this challenge.

Note that

I =

∫
f(x)

π(x)

q(x)
q(x)dx =

∫
f(x)w(x)q(x)dx,

where w(x) = π(x)
q(x) is the weight function and q(x) is the probability density function of the pro-

posal distribution. The importance sampling estimator is therefore given by

ÎIS =
1

N

N∑
i=1

f(xi)w(xi), xi
i.i.d.∼ q(x).

The IS estimator is a powerful tool when both π(x) and q(x) are known exactly. However, when the
densities are only known up to a normalizing constant (i.e., we can access only π̂(x) = π(x)

Zπ
and

q̂(x) = q(x)
Zq

), the standard importance sampling estimator cannot be applied directly. In this case,

self-normalized importance sampling (SNIS) is used. Define ŵ(x) := π̂(x)
q̂(x) ; then

I =

∫
f(x)ŵ(x)q(x)dx∫
ŵ(x)q(x)dx

.

The SNIS estimator is thus constructed as

ÎSNIS =

∑N
i=1 f(xi)ŵ(xi)∑N

i=1 ŵ(xi)
, xi

i.i.d.∼ q(x).

We can see that the IS estimator is unbiased:

EÎIS =
1

N

N∑
i=1

E[f(xi)w(xi)]

=
1

N

N∑
i=1

∫
f(xi)w(xi)q(xi) dxi

=

∫
f(x)π(x) dx = I.

Unfortunately, the SNIS estimator is biased, but it is asymptotically unbiased and remains a consis-
tent estimator Sanz-Alonso and Al-Ghattas (2024). The precise definitions are as follows.

Definition 6. Assume Î, {În} are estimators for I. Then we have the following definitions:

• Î is said to be unbiased if EÎ = I.

• {În} is said to be asymptotically unbiased if EÎn → I as n → ∞.

Definition 7. Assume În is the estimator for I, ∀n > 0. Then În is called consistent for I if În
P→ I

as n → ∞.
Proposition 8. Assume ∥f(x)∥ ⩽ 1, Eq(x)ŵ(x) < ∞,Eq(x)ŵ

2(x) < ∞, then the following holds:

1. E∥ÎSNIS − I∥2 ⩽ 4
N

Eq(x)[ŵ(x)2]

(Eq(x)[ŵ(x)])2 ;

2. ∥E[(ÎSNIS − I)]∥ ⩽ 2
N

Eq(x)[ŵ(x)2]

(Eq(x)[ŵ(x)])2 .
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So we can conclude that the SNIS estimator is asymptotically unbiased.

For completeness, we give the proof of the proposition. The proof is modified from Sanz-Alonso
and Al-Ghattas (2024).

Proof. To simplify our notation, let

ĴN =

N∑
i=1

f(xi)ŵ(xi) P̂N =

N∑
i=1

ŵ(xi), xi
i.i.d.∼ q(x).

Then ÎSNIS = ĴN/P̂N . Notice that

ÎSNIS − I = ÎSNIS −
Eq(x)[f(x)ŵ(x)]

Eq(x)[ŵ(x)]

=
ÎSNISEq(x)[ŵ(x)]− Eq(x)[f(x)ŵ(x)]

Eq(x)[ŵ(x)]

=
ÎSNIS

(
Eq(x)[ŵ(x)]− P̂N

)
−
(
Eq(x)[f(x)ŵ(x)]− ĴN

)
Eq(x)[ŵ(x)]

.

Since
∥x− y∥2 ⩽ (∥x∥+ ∥y∥)2 ⩽ 2(∥x∥2 + ∥y∥2),

then we can use the identity to bound the variance of ÎSNIS:

E∥ÎSNIS − I∥2 ⩽
2

(Eq(x)[ŵ(x)])2

(
E
[
∥ÎSNIS∥2(Eq(x)[ŵ(x)]− P̂N )2

]
+ E

[
(Eq(x)[f(x)ŵ(x)]− ĴN )2

])
⩽

2

(Eq(x)[ŵ(x)])2

(
E
[
(Eq(x)[ŵ(x)]− P̂N )2

]
+ E

[
(Eq(x)[f(x)ŵ(x)]− ĴN )2

])
=

2

(Eq(x)[ŵ(x)])2

(
Var(P̂N ) + Var(ĴN )

)
.

Since Var(P̂N ) = 1
N Var(ŵ(x)), Var(ĴN ) = 1

N Var(f(x)ŵ(x)), then we have

E∥ÎSNIS − I∥2 =
2

(Eq(x)[ŵ(x)])2N
(Var(ŵ(x)) + Var(f(x)ŵ(x)))

⩽
2

(Eq(x)[ŵ(x)])2N

(
Eq(x)[ŵ(x)

2] + Eq(x)[∥f(x)ŵ(x)∥2]
)

⩽
4

N

Eq(x)[ŵ(x)
2]

(Eq(x)[ŵ(x)])2
,

where we use ∥f∥ ⩽ 1 to get the last inequality. Hence, we have proved the first result. Similarly, we
can prove the result for the bias. Since E

[
ĴN − Eq(x)[f(x)ŵ(x)]

]
= 0,E

[
P̂N − Eq(x)[ŵ(x)]

]
=

0, we have:

∥E[(ÎSNIS − I)]∥ =
1

Eq(x)[ŵ(x)]

∥∥∥E [ÎSNIS

(
Eq(x)[ŵ(x)]− P̂N

)
−
(
Eq(x)[f(x)ŵ(x)]− ĴN

)]∥∥∥
=

1

Eq(x)[ŵ(x)]

∥∥∥E [(ÎSNIS − I
)(

Eq(x)[ŵ(x)]− P̂N

)]∥∥∥
⩽

1

Eq(x)[ŵ(x)]

(
E
[∥∥∥ÎSNIS − I

∥∥∥2]) 1
2
(
E
[(

Eq(x)[ŵ(x)]− P̂N

)2]) 1
2

⩽
1

Eq(x)[ŵ(x)]

(
E
[∥∥∥ÎSNIS − I

∥∥∥2]) 1
2
(Eq(x)[ŵ(x)

2]

N

) 1
2

.
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By our first result, E∥ÎSNIS − I∥2 ⩽ 4
N

Eq(x)[ŵ(x)2]

(Eq(x)[ŵ(x)])2 , then we have

∥E[(ÎSNIS − I)]∥ ⩽
1

Eq(x)[ŵ(x)]

(
4

N

Eq(x)[ŵ(x)
2]

(Eq(x)[ŵ(x)])2

) 1
2
(Eq(x)[ŵ(x)

2]

N

) 1
2

=
2

N

Eq(x)[ŵ(x)
2]

(Eq(x)[ŵ(x)])2
.

So we have prove the second result. When N → ∞, ∥E[(ÎSNIS − I)]∥ → 0, then the SNIS estimator
is asymptotically unbiased.

Assume the dataset {x(i)
0 }Ni=1

i.i.d.∼ pdata(x). Then then estimator∑
n∈[N ] x

(n)
0 Kt(xt,x

(n)
0 )∑

n′∈[N ] Kt(xt,x
(n′)
0 )

is the SNIS estimator of the posterior expectation E[x0 | xt]. By Prop. 8, the SNIS estimator is
asymptotically unbiased. Then the estimator is

B̂t =
1

M

∑
m∈[M ]

∥∥∥∥∥
∑

n∈[N ] x
(n)
0 Kt(x

(m)
t ,x

(n)
0 )∑

n′∈[N ] Kt(x
(m)
t ,x

(n′)
0 )

∥∥∥∥∥
2

is also asymptotically unbiased. For more details on importance sampling, see (Robert et al., 1999).

H EXPERIMENTAL DETAILS

H.1 OPTIMAL LOSS ESTIMATION

In this subsection, we show more experiments results of our cDOL estimator. Our cDOL estimator
is concluded in Alg. 1.

Algorithm 1 The corrected Diffusion Optimal Loss (cDOL) estimator

input Diffusion schedule αt and σt, diffusion step t, training dataset {x(n)
0 }n∈[N ]; number of re-

peats R, data sample x0 subset size L, xt sample size M , correction parameter C.
output Estimation of the diffusion optimal loss J (x0)

t

∗
at t.

1: for r ∈ [R] do
2: Sample a data subset {x(r,l)

0 }l∈[L] independently randomly from {x(n)
0 }n∈[N ];

3: for m̃ ∈ [M ] do
4: Sample an index lm̃ randomly from [L];
5: Construct x(r,m̃)

t = αtx
(r,lm̃)
0 + σtϵ

(m̃) with ϵ(m̃) ∼ N (0, I);
6: end for
7: Compute B̂cDOL(r)

t using Eq. (11) (where Kt is defined in Eq. (8));
8: end for
9: Compute B̂cDOL

t = 1
R

∑
r∈[R] B̂

cDOL(r)

t and Â using Eq. (7);

10: Return Â− B̂cDOL
t .

Convergence of cDOL estimator. Our cDOL estimator has four parameters (R,M,L,C). As
mentioned in Sec. 3.4, we empirically choose C = 4N/L, the subset size L can be taken to fully
utilize memory. The parameters R,M should be large enough to ensure that the estimator converges.
We perform a convergence analysis with respect to R,M in the CIFAR-10 dataset to justify our
choice of M,R. The results are summarized in Fig. 5 and Fig. 6. As shown in Fig. 5, our cDOL
estimator will converge when R is large enough and can approximate the ground truth optimal loss
accurately. Empirically, we find that R = 3N/L is enough for an accurate estimate. Next, we verify
that our cDOL estimator will converge when M is large enough. As shown in Fig. 6, we can see
that the cDOL estimator converges when M ≈ 4L.

Efficiency. The computational complexity of the naive estimator B̂t (Eq. (9)) is O(N2), where N
is the size of the dataset. The cDOL estimator reduces this complexity to O(L2 ×R). Based on the
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verifications the the previous paragraph, we set the subset size L to fully utilize memory, and is often
set to 2500 or 5000. We set R = 3N/L,M = 4L, then the total complexity becomes O(NL). With
this setting, the total running time is approximately 0.5 hour on CIFAR-10, 2.5 hours on FFHQ, and
about 1 day for the ImageNet dataset when using 2400 8G CPU cores.

Figure 5: Convergence of our estimator with respect to the number of subsets R on CIFAR-10. We
plot the estimated optimal loss v.s. R for several choices of C among different noise scales. For fair
comparison, we fix the subset size L = 5000.

Figure 6: Convergence of our estimator with respect to M (the number of xt samples) on CIFAR-
10. We plot the estimated optimal loss v.s. M for a fixed C = 40, L = 5000 among different noise
scales.
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H.2 DIRECT COMPARISONS WITH WORKS ON OPTIMAL SOLUTION

Xu et al. (2023) proposes an SNIS estimator for the inner expectation of the optimal loss in Eq. (6). If
xt is sampled independently from a batch separate from the x0 batch used for the inner expectation,
then the estimator reduces to the SNIS estimator described in Sec. 3.3. By contrast, if the same
x0 batch is used to sample xt and compute the outer expectation, this corresponds to our DOL
estimator. As shown in Fig. 1, the SNIS estimator suffers from high variance, leading to poor
empirical performance. Meanwhile, the DOL estimator introduces extra bias and also does not
achieve good performance.

Niedoba et al. (2024) proposes a nearest neighbor estimator of the optimal solution. Given a noisy
sample xt, the KNN estimator finds the K-nearest x0 samples in the dataset to estimate the optimal
solution. The KNN search method used in Niedoba et al. (2024) (Faiss with a flat index) has O(N)
complexity per query xt, leading to an overall complexity of O(N2), which matches that of the naive
estimator B̂t (Eq. (9)). Moreover, KNN search requires significantly more memory, as it needs to
generate an index of the entire dataset, which prevents effective multithreading parallelism.

For a direct comparison, we report the error rate of each estimator, defined as

e =
|Jestimated − Jground truth|

Jground truth
.

We consider the error rate more suitable than absolute error, since the scale of the optimal loss varies
significantly across noise levels. For a fair comparison, we tested L = 2500 for the cDOL estimator
and n = K = 2500 for the KNN estimator, the results are shown in Table 4. We can see from the
results that cDOL achieves comparable accuracy and variance to KNN, but with significantly lower
runtime: approximately 5× faster than KNN (n = 2500,K = 2500) due to its lower complexity
O(L×N) (with R ∝ N/L) versus O(N2) for KNN. Moreover, cDOL benefits from straightforward
multithreading parallelism since it only loads L samples into memory at a time, making it more
scalable for large, high-resolution datasets such as ImageNet.

Table 4: Comparison between different estimators on CIFAR-10 for an intermediate noise level
log σ = 1.25.

Methods DOL cDOL (L = 2500) KNN (n = 2500,K = 2500) SNIS

error rate 0.55 0.04 0.03 5.72
variance (per dimension) 0.0170 0.0182 0.0183 0.0210
run time 12 min ∼12 min ∼67 min –

H.3 DETAILED SETTINGS FOR FIG. 3

Following EDM (Karras et al., 2022), we configure our training settings as follows. We train all
models on CIFAR-10 until a total of 200 million images have been sampled from the training set.
The batch size is set to 512. For sampling, we employ the EDM deterministic sampler, consistently

setting the time steps according to σi = (σ
1
ρ̂
max + i

N−1 (σ
1
ρ̂

min − σ
1
ρ̂
max))ρ̂, where ρ̂ = 7, σmin =

0.002, σmax = 80, and the number of function evaluations (NFE) is set to 35 for all models.

For training loss calculation, we evaluate the clean-data prediction loss for fair comparisons. In
practice, we perform inference over three epochs to estimate the training loss across noise levels
and observe that these estimates exhibit good convergence. To justify the convergence of training
loss estimation, we present additional results using a model trained with the DDPM schedule (VP-
ϵ in Table 1) on CIFAR-10. We computed the mean, variance, and standard error of the mean
from 150,000 independent evaluations (corresponding to 3 epochs) of the training loss. The results
(Table 5) demonstrate that although the variance depends on the noise level, accurate estimates can
be obtained by increasing the number of model evaluations (the standard error of the mean is very
small).

We also investigate the effects of sampling methods. For a fair comparison, we use the EDM sam-
pler with identical parameters to evaluate different training methods in Fig. 3. Additionally, we
conducted experiments with the 250-step DDIM Song et al. (2021a) and Flow Matching (Lipman
et al., 2023) samplers, with the FID results presented inTable 6. These results show that while sam-
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Table 5: Training loss statistics across noise levels using a DDPM schedule on CIFAR-10.

Noise levels Mean Variance Standard Error of Mean

log σ = 4 0.230 0.015 3.95e-5
log σ = 2 0.130 0.0033 8.77e-6
log σ = 0 0.025 8.67e-5 2.23e-7
log σ = −2 0.0026 7.41e-7 1.91e-9

pling quality depends on the choice of sampler, a better-trained model consistently achieves higher
sample quality across different samplers.

Samplers EDM DDPM NCSN FM FM + our schedule

EDM sampler 1.94 1.97 2.72 2.36 1.79
DDIM sampler 2.14 2.23 2.91 2.27 1.99
FM sampler 2.19 2.25 3.07 2.28 2.04

Table 6: FID results across different samplers and training methods with 250 sampling steps.

H.4 COMPLEMENTARY RESULTS FOR FIG. 3

As we primarily evaluate the model by the FID metric in Fig. 3, we give some complementary results
for Fig. 3 in this subsection.

Precision and Recall metrics. As the FID metric is a mixture of the sample quality and diversity,
it cannot reflect the sample diversity and quality separately. The precision and recall metrics are
designed to test the sample quality and diversity, respectively. We evaluate our models trained by
different training schedule and formulations in Fig. 3 under these two metrics. The results are shown
in the following Table 7.

Training schedule Precision Recall

EDM (Karras et al., 2022) 0.615 0.682
DDPM(Ho et al., 2020) 0.608 0.683
FM (Lipman et al., 2023) 0.615 0.677
SD3 (Esser et al., 2024) 0.595 0.694
NCSN (Song et al., 2021b) 0.614 0.647
Ours schedule 0.626 0.667

Table 7: Precision and recall results for different training schedules.

Combining the results in Fig. 3(a,b) with the results shown in the table above, we observe that the
precision metric also has a stronger correlation to the training loss gap in the small noise regions.
Thus, our training schedule outperforms all other training schedules under this metric. In contrast,
the recall metric has a stronger correlation to the training performance in the larger noise levels
around the critical point σ⋆, thus the SD3 training schedule achieves the best performance. These
results justify the intuition that the image quality is related to training performance at small noise
scales, while recall or diversity is related to larger noise scales.

Memorization metrics. As shown in Fig. 3(a), the training loss gap is large for all mainstream
diffusion models. This implies that these diffusion models are still not overfit to the optimal solution.
To study the memorization behavior, we follow Gu et al. (2023) for the metric and the experimental
settings. We train a model using Flow Matching precondition and our training schedule on a subset
of CIFAR-10 with 5k data samples, and we train the same architecture with Flow Matching training
schedule on the same dataset as a baseline. We report the memorization rate, where a sample is
memorized if its L2 distance to the nearest neighbor is smaller than 1/3 of that to the second nearest
neighbor in the training data (Gu et al., 2023). Here the factor 1/3 is an empirical threshold proposed
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in Gu et al. (2023). The results are shown in the Table 8. We can observe that our schedule improves
the generation performance without leading to severe memorization.

Training schedule/Training Epochs 0.5k 1k 1.5k 2k 2.5k 3k 3.5k 4k

Flow Matching schedule 0.0 0.0 0.0 0.0 0.0001 0.0024 0.0102 0.0224
Our training schedule 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Table 8: Memorization rate across different training epochs.

Human preference study. We also conduct the human preference study to further evaluate the
generative performance of different methods. We randomly generated 24 image pairs (Baseline vs.
Ours) from the ImageNet-256 model. 19 independent evaluators were asked to select the image
with better visual quality. The results are summarized in Table 9 and show that our method was
preferred in 55.26% of the cases, while the baseline was preferred in 44.73%. This human evaluation
aligns with our FID improvements, confirming that the reduction in the ”Loss Gap” translates into
perceptibly better image quality.

Training schedule FID with guidance Human preference

LightningDiT (Yao et al., 2025) 1.42 44.74%
+Ours schedule 1.30 55.26%

Table 9: Human preference between baseline and our schedule.

H.5 IMAGE GENERATION

Following EDM (Karras et al., 2022), we configure our training settings as follows. We train all
models on CIFAR-10 until a total of 200 million images have been sampled from the training set.
The batch size is set to 512. Checkpoints are saved every 2.5 million images, and we report results
based on the checkpoint with the lowest FID. We adopt the DDPM++ network architecture used
in EDM, with our primary modifications being the incorporation of our loss weighting scheme and
adaptive noise distribution. All models are trained on 8 NVIDIA A100 GPUs. For sampling, we
employ the EDM deterministic sampler, consistently setting the discretization steps according to

σi = (σ
1
ρ̂
max + i

N−1 (σ
1
ρ̂

min − σ
1
ρ̂
max))ρ̂, where ρ̂ = 7, σmin = 0.002, σmax = 80, and the number of

function evaluations (NFE) is set to 35 for CIFAR-10 experiments.

For ImageNet-64, we follow a similar setup as EDM. We use the ADM architecture, which matches
that of EDM (Karras et al., 2022). The batch size is set to 2048, and our loss weighting and adaptive
noise distribution are applied as well. Training proceeds until 2.5 billion images have been sampled
from the training set. Checkpoints are saved every 10 million images, and we report the checkpoint
with the lowest FID. All ImageNet-64 models are trained on 32 NVIDIA A100 GPUs. In sampling,
we again use the EDM deterministic sampler with ρ̂ = 7 and NFE = 79.

For ImageNet-256, we adopt a setup similar to LightningDiT (Yao et al., 2025). Specifically, we uti-
lize VA-VAE (Yao et al., 2025) as the tokenizer and implement a modified LightningDiT (Yao et al.,
2025) architecture enhanced with QK-Normalization (Dehghani et al., 2023) to improve training sta-
bility. The batch size is set to 2048, and we apply the same loss weighting and adaptive noise distri-
bution strategies. Optimization is performed using AdamW with parameters (β1, β2) = (0.9, 0.95)
and a learning rate of 2 × 10−4. The model is trained for 1600 epochs (approximately 10 million
iterations), with checkpoints saved every 10,000 iterations. Again, we use 32 NVIDIA A100 GPUs
to train the model on ImageNet-256. Consistent with LightningDiT (Yao et al., 2025), we employ
the FM Euler ODE sampler with 250 function evaluations (NFE = 250).

Regarding our adaptive training schedule, we maintain a bin that records the training loss gap for
each noise scale. Inspired by the adaptive schedule proposed by Kingma and Gao (2023), we update
this bin using an exponential moving average (EMA) during training. Specifically, the bin is updated
every time 2 million images have been drawn, with a decay rate set to 0.9. The collected training
loss gap statistics are then used to construct a piecewise-linear probability density function, which
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Figure 7: Plot of our proposed noise schedule on the CIFAR-10 dataset. We plot the noise schedule
calculated by the model’s loss gap in the final optimization step of the training process.

Figure 8: The plot of the loss gap vs. FID and training loss vs. FID along the training process on
the CIFAR-10 dataset under the Flow Matching formulation using the EDM’s model architecture.

serves as the adaptive noise schedule. As mentioned, our loss weight is given by

wσ = a min{ 1

J∗
σ

, w⋆}+ f(σ) Iσ<σ⋆ .

Typically, w⋆ is set to be 20 and a = 1/50. f(σ) = N (log σ;µ, ς2) is an additional weighting
function to let us put more weight on the region σ < σ∗, which is simply set as a normal pdf. We set
µ = −7.5, ς = 2 for CIFAR-10, µ = −5.75, ς = 2 for ImageNet-64 and µ = −4.37, ς = 1.75 for
ImageNet-256. In Fig. 7, we plot our noise schedule calculated by the model’s loss gap in the final
optimization step of the training process. We can see from the result that our model allocates more
optimization steps on the positive region σ < σ⋆, as shown in Fig. 3. We also show some samples
generated by our model trained on the ImageNet-256 dataset in Fig. 9 and Fig. 10.

H.6 SCALING LAW

In this subsection, we provide a comprehensive account of our scaling law analysis. Our experi-
ments employ the state-of-the-art diffusion model EDM2 (Karras et al., 2024), with parameter counts
ranging from 120M to 1.5B. In accordance with the training protocols outlined in EDM2, models
are trained in the RGB space for ImageNet-64 and in the latent space derived from a pretrained VAE
for ImageNet-512.

We begin by reporting the results on ImageNet-64. As described in Sec. 5, we apply our modified
scaling law (Eq. (13)) to model performance. In Fig. 12, we present a detailed comparison between
the original and modified scaling laws across various noise scales. Our findings indicate that the
modified formulation yields a loss envelope that adheres more closely to a linear relationship, with
corresponding improvements in the correlation coefficient, especially at large noise scales. The
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Figure 9: Samples generated by our ImageNet-256 model.

Figure 10: Samples generated by our ImageNet-256 model.
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Figure 11: Scaling law fitting results using the modified power law in Eq. (13) for the total diffusion
loss on ImageNet-512.

enhancements at small noise scales are less pronounced, largely due to the relatively minor optimal
loss values compared to the models’ actual training losses.

Subsequently, we extend our analysis to ImageNet-512. Mirroring the experimental setup used for
ImageNet-64, we adopt the optimized adaptive loss weighting from EDM2 (Karras et al., 2024)
when calculating total loss. The results, shown in Fig. 11, achieve a correlation coefficient of ρ =
0.9857, with the fitted scaling law given by:

J(F ) = 0.9493F−0.014 + 0.001.

A thorough comparison between the original and modified scaling laws across multiple noise scales
is presented in Fig. 13. These results are consistent with those observed on ImageNet-64, once
again demonstrating that the modified scaling law yields a loss envelope that is closer to linearity,
with higher correlation coefficients, particularly at large noise scales. As before, improvements at
small noise scales remain limited due to the diminutive size of optimal loss relative to training loss.
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Figure 12: Scaling law study on ImageNet-64. Each row corresponds to a different noise scale.
The left column shows the raw training loss values, while the right column displays the training
loss gap relative to the optimal loss at each noise scale. We observe that in the modified version,
the envelope aligns more closely with a straight line, particularly at larger noise scales. For smaller
noise scales, the improvement is less pronounced, since the optimal loss is still very small compared
to the models’ training loss.
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Figure 13: Scaling law study on ImageNet-512. Each row corresponds to a different noise scale.
The left column shows the raw training loss values, while the right column presents the training loss
gap relative to the optimal loss at each noise scale. We observe that in the modified version, the
envelope aligns more closely with a linear trend, especially for larger noise scales. For smaller noise
scales, the improvement is less significant, as the optimal loss is still very small compared to the
models’ training loss.
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