

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 DIAGNOSING AND IMPROVING DIFFUSION MODELS BY ESTIMATING THE OPTIMAL LOSS VALUE

Anonymous authors

Paper under double-blind review

ABSTRACT

Diffusion models have achieved remarkable success in generative modeling. Despite more stable training, the loss of diffusion models is not indicative of absolute data-fitting quality, since its optimal value is typically not zero but unknown, leading to the confusion between large optimal loss and insufficient model capacity. In this work, we advocate the need to estimate the optimal loss value for diagnosing and improving diffusion models. We first derive the optimal loss in closed form under a unified formulation of diffusion models, and develop effective estimators for it, including a stochastic variant scalable to large datasets with proper control of variance and bias. With this tool, we unlock the inherent metric for diagnosing training quality of mainstream diffusion model variants, and develop a more performant training schedule based on the optimal loss. Moreover, using models with 120M to 1.5B parameters, we find that the power law is better demonstrated after subtracting the optimal loss from the actual training loss, suggesting a more principled setting for investigating the scaling law for diffusion models.

1 INTRODUCTION

Diffusion-based generative models (Sohl-Dickstein et al., 2015; Ho et al., 2020; Song et al., 2021b) have shown unprecedented capability in modeling high-dimensional distribution and have become the dominant choice in various domains. The attractive potential has incentivized advances in multiple dimensions, such as prediction targets (Kingma et al., 2021; Salimans and Ho, 2022; Lipman et al., 2023), diffusion process design (Karras et al., 2022; Liu et al., 2023), and training schedule design (Nichol and Dhariwal, 2021; Kingma and Gao, 2023; Esser et al., 2024).

The success is largely benefited from the more stable training process. Nevertheless, the diffusion loss only reflects the *relative* data-fitting quality for monitoring training process or comparing models under the same setting, while remains obscure for measuring the *absolute* fit to the training data. It is due to that the optimal loss of diffusion model, *i.e.*, the lowest possible loss value that can be attained by any model, is actually not zero but *unknown* beforehand. This introduces a series of inconveniences. After the training converges, one still does not know whether the model is already close to oracle, or the remaining loss can be further reduced by tuning the model. Practitioners have to rely on generating samples to evaluate diffusion models, which requires significant computational cost, and sampler configurations introduce distracting factors. The unknown optimal loss also makes it obscured to analyze and compare learning quality at different diffusion steps, impeding a principled design of training schedule. Moreover, as the actual loss value is not fully determined by model capacity but also the unknown optimal loss as the base value, it poses a question on using the actual loss value alone for monitoring the scaling law of diffusion models.

In this work, we highlight the importance of estimating the optimal loss value, and develop effective estimation methods applicable to large datasets. Using this tool, we unlock new observations of data-fitting quality of diffusion models under various formulation variants, and demonstrate how the optimal loss estimate leads to more principled analysis and performant designs. Specifically,

- We reveal the indefiniteness of the optimal loss from its expression, then develop estimators for the optimal loss based on the expression. For large datasets, we design a scalable estimator based on dataset sub-sampling, with a delicate design to properly balance variance and bias.
- Using the estimator, we reveal the patterns of the optimal loss across diffusion steps on diverse datasets, and by comparison with the losses of mainstream diffusion models under a unified for-

054 mulation, we find the characteristics of different diffusion formulation variants, and identify the
 055 diffusion-step region where the model still underfits compared to the optimal loss.
 056

057 • From the analysis, we designed a principled training schedule for diffusion models, based on the
 058 gap between the actual loss and the optimal loss. Our training schedule improves the FID by
 059 2%-14% (for EDM (Karras et al., 2022) / FM (Lipman et al., 2023)) on CIFAR-10, 7%-25% (for
 060 EDM / FM) on ImageNet-64, and 9% (for LightningDiT (Yao et al., 2025)) on ImageNet-256.
 061
 062 • We challenge the conventional formulation to study neural scaling law for diffusion models. We
 063 propose using the loss gap as the measure for data-fitting quality. Using state-of-the-art diffu-
 064 sion models (Karras et al., 2024) in various sizes from 120M to 1.5B on both ImageNet-64 and
 065 ImageNet-512, we find that our modification leads to better satisfaction of the power law.
 066

066 We would mention that estimating the optimal loss is not meant to achieve it, which may render
 067 overfitting, but to introduce a metric for measuring the absolute fitness to a dataset that reveals new
 068 observations (Appx. B). We review more related works in Appx. A.
 069

070 2 FORMULATION OF DIFFUSION MODEL

071 Diffusion models perform generative modeling by leveraging a step-by-step transformation from
 072 an arbitrary data distribution p_{data} to a Gaussian distribution. Sampling and density evaluation for
 073 the data distribution can be done by reversing this transformation process step by step from the
 074 Gaussian. In general, the transformation of distribution is constructed by:
 075

$$076 \mathbf{x}_t = \alpha_t \mathbf{x}_0 + \sigma_t \boldsymbol{\epsilon}, \quad t \in [0, T], \quad (1)$$

077 where $\mathbf{x}_0 \sim p_{\text{data}}$ is taken as a data sample, $\boldsymbol{\epsilon} \sim p(\boldsymbol{\epsilon}) := \mathcal{N}(\mathbf{0}, \mathbf{I})$ is a Gaussian noise sample, and
 078 \mathbf{x}_t is the constructed random variable that defines the intermediate distribution p_t . The coefficients
 079 α_t and σ_t satisfy $\alpha_0 = 1$, $\sigma_0 = 0$, and $\alpha_T \ll \sigma_T$, so that $p_0 = p_{\text{data}}$ and $p_T = \mathcal{N}(\mathbf{0}, \sigma_T^2 \mathbf{I})$
 080 yield the desired distributions. Eq. (1) gives $p(\mathbf{x}_t | \mathbf{x}_0) = \mathcal{N}(\mathbf{x}_t | \alpha_t \mathbf{x}_0, \sigma_t^2 \mathbf{I})$, which corresponds
 081 to a diffusion process expressed in the stochastic differential equation $d\mathbf{x}_t = a_t \mathbf{x}_t dt + g_t d\mathbf{w}_t$
 082 starting from $\mathbf{x}_0 \sim p_0$, where $a_t := (\log \alpha_t)'$, $g_t := \sigma_t \sqrt{(\log \alpha_t^2 / \alpha_t^2)'}^{'}$, and \mathbf{w}_t denotes the Wiener
 083 process. The blessing of the diffusion-process formulation is that the reverse process can be given
 084 explicitly (Anderson, 1982):
 085

$$084 d\mathbf{x}_s = -a_{T-s} \mathbf{x}_s ds + g_{T-s}^2 \nabla \log p_{T-s}(\mathbf{x}_s) ds + g_{T-s} d\mathbf{w}_s$$

086 from $\mathbf{x}_{s=0} \sim p_T$, where $s := T - t$ denotes the reverse time. Alternatively, the deterministic process
 087

$$087 d\mathbf{x}_s = -a_{T-s} \mathbf{x}_s ds + \frac{1}{2} g_{T-s}^2 \nabla \log p_{T-s}(\mathbf{x}_s) ds,$$

088 also recovers p_{data} at $s = T$ (Song et al., 2021b). The only obstacle to simulating the reverse process
 089 for generation is the unknown term $\nabla \log p_t(\mathbf{x}_t)$ called the score function. Noting that p_t is produced
 090 by perturbing data samples with Gaussian noise, diffusion models employ a neural network model
 091 $\mathbf{s}_\theta(\mathbf{x}_t, t)$ to learn the score function using the denoising score matching loss (Vincent, 2011; Song
 092 et al., 2021b): $J_t^{(s)}(\theta) :=$
 093

$$094 \mathbb{E}_{p_0(\mathbf{x}_0)p(\mathbf{x}_t|\mathbf{x}_0)} \|\mathbf{s}_\theta(\mathbf{x}_t, t) - \nabla_{\mathbf{x}_t} \log p(\mathbf{x}_t|\mathbf{x}_0)\|^2 \stackrel{\text{Eq. (1)}}{=} \mathbb{E}_{p_0(\mathbf{x}_0)p(\boldsymbol{\epsilon})} \|\mathbf{s}_\theta(\alpha_t \mathbf{x}_0 + \sigma_t \boldsymbol{\epsilon}, t) + \boldsymbol{\epsilon} / \sigma_t\|^2. \quad (2)$$

095 To cover the whole diffusion process, loss weight $w_t^{(s)}$ and noise schedule $p(t)$ are introduced to
 096 optimize over all diffusion steps using $J(\theta) := \mathbb{E}_{p(t)} w_t^{(s)} J_t^{(s)}(\theta)$.
 097

098 **Alternative prediction targets.** Besides the above *score prediction* target, diffusion models also
 099 adopt other prediction targets. Eq. (2) motivates the *noise prediction* ($\boldsymbol{\epsilon}$ -prediction) target (Ho
 100 et al., 2020) $\mathbf{e}_\theta(\mathbf{x}_t, t) := -\sigma_t \mathbf{s}_\theta(\mathbf{x}_t, t)$, which turns the loss into :

$$101 J_t^{(\boldsymbol{\epsilon})}(\theta) := \mathbb{E}_{p_0(\mathbf{x}_0)} \mathbb{E}_{p(\boldsymbol{\epsilon})} \|\mathbf{e}_\theta(\alpha_t \mathbf{x}_0 + \sigma_t \boldsymbol{\epsilon}, t) - \boldsymbol{\epsilon}\|^2. \quad (3)$$

103 If formally solving \mathbf{x}_0 from Eq. (1) and let $\mathbf{x}_{0\theta}(\mathbf{x}_t, t) := \frac{\mathbf{x}_t - \sigma_t \mathbf{e}_\theta(\mathbf{x}_t, t)}{\alpha_t}$, then we get the loss:

$$104 J_t^{(\mathbf{x}_0)}(\theta) := \mathbb{E}_{p_0(\mathbf{x}_0)} \mathbb{E}_{p(\boldsymbol{\epsilon})} \|\mathbf{x}_{0\theta}(\alpha_t \mathbf{x}_0 + \sigma_t \boldsymbol{\epsilon}, t) - \mathbf{x}_0\|^2. \quad (4)$$

106 It holds the semantics of *clean-data prediction* (\mathbf{x}_0 -prediction) (Kingma et al., 2021; Karras et al.,
 107 2022), and can be viewed as denoising auto-encoders (Vincent et al., 2008; Alain and Bengio, 2014)
 108 with multiple noise scales. From the equivalent deterministic process, one can also derive the *vector-*

108 *field prediction* (\mathbf{v} -prediction) target $\mathbf{v}_\theta(\mathbf{x}_t, t) := a_t \mathbf{x}_t - \frac{1}{2} g_t^2 \mathbf{s}_\theta(\mathbf{x}_t, t)$ with loss function
 109

$$110 J_t^{(\mathbf{v})}(\theta) := \mathbb{E}_{p_0(\mathbf{x}_0)} \mathbb{E}_{p(\epsilon)} \|\mathbf{v}_\theta(a_t \mathbf{x}_0 + \sigma_t \epsilon, t) - (\alpha'_t \mathbf{x}_0 + \sigma'_t \epsilon)\|^2 \quad (5)$$

111 It coincides with velocity prediction (Salimans and Ho, 2022) and the flow matching formulation
 112 (Lipman et al., 2023; Liu et al., 2023). Please refer to Appx. C for details.
 113

114 3 ESTIMATING THE OPTIMAL LOSS VALUE FOR DIFFUSION MODELS

116 The diffusion loss in various forms (Eqs. 2-5) allows effective and stable learning of intractable
 117 targets that would otherwise require diffusion simulation or posterior estimation. Nevertheless, as
 118 we will show from the expression of the optimal solution and loss (Sec. 3.1), the optimal loss value
 119 is typically non-zero but unknown, obscuring the diagnosis and design of diffusion training. We
 120 then develop practical estimators of the optimal loss value, starting from a standard one (Sec. 3.2) to
 121 stochastic but scalable estimators applicable to large datasets (Sec. 3.3). Using these tools, we investi-
 122 giate mainstream diffusion models against the optimal loss with a few new observations (Sec. 3.4).
 123

124 3.1 OPTIMAL SOLUTION AND LOSS VALUE OF DIFFUSION MODELS

125 Despite the intuition, the names of the prediction targets of diffusion model introduced in Sec. 2
 126 might be misleading. Taking the clean-data prediction formulation as an example, it is information-
 127 ally impossible to predict the exact clean data from its noised version (Daras et al., 2023). From the
 128 appearance of the loss functions (Eq. (2-5)), the actual learning targets of the models are *conditional*
 129 *expectations* (De Bortoli et al., 2021; Bao et al., 2022b;a):
 130

$$131 \begin{aligned} \mathbf{s}_\theta^*(\mathbf{x}_t, t) &= \mathbb{E}_{p(\mathbf{x}_0 | \mathbf{x}_t)} [\nabla_{\mathbf{x}_t} \log p(\mathbf{x}_t | \mathbf{x}_0)], & \mathbf{\epsilon}_\theta^*(\mathbf{x}_t, t) &= \mathbb{E}_{p(\epsilon | \mathbf{x}_t)} [\epsilon], \\ \mathbf{x}_{0\theta}^*(\mathbf{x}_t, t) &= \mathbb{E}_{p(\mathbf{x}_0 | \mathbf{x}_t)} [\mathbf{x}_0], & \mathbf{v}_\theta^*(\mathbf{x}_t, t) &= \mathbb{E}_{p(\mathbf{x}_0, \epsilon | \mathbf{x}_t)} [\alpha'_t \mathbf{x}_0 + \sigma'_t \epsilon], \end{aligned}$$

132 where the conditional distributions are induced from $p(\mathbf{x}_0, \mathbf{x}_t, \epsilon) := p_0(\mathbf{x}_0) p(\epsilon) \delta_{\alpha_t \mathbf{x}_0 + \sigma_t \epsilon}(\mathbf{x}_t)$. For
 133 completeness, we detail the derivation in Appx. D.

134 Looking back into the loss functions, the model learns the conditional expectations over random
 135 samples from the joint distribution. Hence even at optimality, the loss still holds a conditional
 136 variance value. Noting that the joint distribution hence the conditional variance depends on the data
 137 distribution, it would be more direct to write down the optimal loss value in the clean-data prediction
 138 formulation, which we formally present below:

139 **Theorem 1.** *The optimal loss value for clean-data prediction defined in Eq. (4) is:*

$$141 J_t^{(\mathbf{x}_0)} = \underbrace{\mathbb{E}_{p_0(\mathbf{x}_0)} \|\mathbf{x}_0\|^2}_{=:A} - \underbrace{\mathbb{E}_{p(\mathbf{x}_t)} \|\mathbb{E}_{p(\mathbf{x}_0 | \mathbf{x}_t)} [\mathbf{x}_0]\|^2}_{=:B_t}, \quad J^* = \mathbb{E}_{p(t)} w_t^{(\mathbf{x}_0)} J_t^{(\mathbf{x}_0)}^*. \quad (6)$$

144 See Appx. F.1 for proof. For other prediction targets, the optimal loss value can be calculated based
 145 on their relations in Eqs. (3, 4, 5). The expression is derived from

$$146 J_t^{(\mathbf{x}_0)} = \mathbb{E}_{p(\mathbf{x}_t)} [\mathbb{E}_{p(\mathbf{x}_0 | \mathbf{x}_t)} \|\mathbf{x}_0 - \mathbb{E}_{p(\mathbf{x}'_0 | \mathbf{x}_t)} [\mathbf{x}'_0]\|^2],$$

148 which is indeed an averaged conditional variance of $p(\mathbf{x}_0 | \mathbf{x}_t)$, and takes a positive value unless
 149 at $t = 0$ or when $p_0(\mathbf{x}_0)$ concentrates only on a single point. For sufficiently large t , \mathbf{x}_t becomes
 150 dominated by the noise (see Eq. (1)) hence has diminishing correlation with \mathbf{x}_0 . This means
 151 $p(\mathbf{x}_0 | \mathbf{x}_t) \approx p_{\text{data}}(\mathbf{x}_0)$, hence $J_t^{(\mathbf{x}_0)} \approx \mathbb{E}_{p_{\text{data}}(\mathbf{x}_0)} \|\mathbf{x}_0 - \mathbb{E}_{p_{\text{data}}(\mathbf{x}'_0)} [\mathbf{x}'_0]\|^2$ approaches the data
 152 variance. Note that this optimal loss only depends on dataset and diffusion settings, but not on
 153 model architectures and parameterization.

154 3.2 EMPIRICAL ESTIMATOR FOR THE OPTIMAL LOSS VALUE

156 To estimate the optimal loss value using Eq. (6) on a dataset $\{\mathbf{x}_0^{(n)}\}_{n \in [N]}$, where $[N] :=$
 157 $\{1, \dots, N\}$, the first term $A := \mathbb{E}_{p_0(\mathbf{x}_0)} \|\mathbf{x}_0\|^2$ can be directly estimated through one pass:

$$159 \hat{A} = \frac{1}{N} \sum_{n \in [N]} \|\mathbf{x}_0^{(n)}\|^2. \quad (7)$$

161 However, the second term $B_t := \mathbb{E}_{p(\mathbf{x}_t)} \|\mathbb{E}_{p(\mathbf{x}_0 | \mathbf{x}_t)} [\mathbf{x}_0]\|^2$ requires estimating two nested expec-
 162 tations that cannot be reduced. The inner expectation is taken under the posterior distribution

162 $p(\mathbf{x}_0 \mid \mathbf{x}_t)$ which cannot be sampled directly. By expanding the distribution using tractable ones
 163 (Bayes rule), the term can be reformulated as

$$165 \quad \mathbb{E}_{p(\mathbf{x}_0 \mid \mathbf{x}_t)}[\mathbf{x}_0] = \frac{\int \mathbf{x}_0 p(\mathbf{x}_0, \mathbf{x}_t) d\mathbf{x}_0}{\int p(\mathbf{x}_0, \mathbf{x}_t) d\mathbf{x}_0} = \frac{\mathbb{E}_{p(\mathbf{x}_0)}[\mathbf{x}_0 p(\mathbf{x}_t \mid \mathbf{x}_0)]}{\mathbb{E}_{p(\mathbf{x}_0)}[p(\mathbf{x}_t \mid \mathbf{x}_0)]}.$$

167 Using Eq. (1) further reduces it as:¹

$$169 \quad \mathbb{E}_{p(\mathbf{x}_0 \mid \mathbf{x}_t)}[\mathbf{x}_0] = \frac{\mathbb{E}_{p(\mathbf{x}_0)}[\mathbf{x}_0 K_t(\mathbf{x}_t, \mathbf{x}_0)]}{\mathbb{E}_{p(\mathbf{x}_0)}[K_t(\mathbf{x}_t, \mathbf{x}_0)]}, \quad \text{where } K_t(\mathbf{x}_t, \mathbf{x}_0) := \exp\left\{-\frac{\|\mathbf{x}_t - \alpha_t \mathbf{x}_0\|^2}{2\sigma_t^2}\right\}, \quad (8)$$

171 whose numerator and denominator can then be estimated on the dataset. The outer expectation
 172 can be estimated by averaging over a set of independent and identically distributed (IID) samples
 173 $\{\mathbf{x}_t^{(m)}\}_{m \in [M]}$ following Eq. (1), where each sample is produced by an independently (*i.e.*, with
 174 replacement) randomly selected data sample \mathbf{x}_0 and a randomly drawn noise sample $\epsilon \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$.
 175 The estimator for the second term is then:

$$176 \quad \hat{B}_t = \frac{1}{M} \sum_{m \in [M]} \left\| \frac{\sum_{n \in [N]} \mathbf{x}_0^{(n)} K_t(\mathbf{x}_t^{(m)}, \mathbf{x}_0^{(n)})}{\sum_{n' \in [N]} K_t(\mathbf{x}_t^{(m)}, \mathbf{x}_0^{(n')})} \right\|^2. \quad (9)$$

179 The outer expectation can be conducted sequentially until the estimation converges. This typically
 180 takes M up to two to three times of N . The estimator in Eq. (9) performs the most accurate analysis
 181 using the given dataset, thus its results serve as the ground truth value in our following developments.
 182 See Appx. H.1 for details.

183 3.3 SCALABLE ESTIMATORS FOR LARGE DATASETS

185 Although asymptotically unbiased (Appx. G), the \hat{B} estimator in Eq. (9) incurs a quadratic com-
 186 plexity in dataset size N , which is unaffordably costly for large datasets which are ubiquitous in
 187 modern machine learning tasks. For a scalable estimator, dataset sub-sampling is an effective strat-
 188 egy. This strategy inspires us to estimate Eq. (9) using a subset of the dataset, which helps to
 189 reduce the computation complexity. Instead of using independent random subsets to estimate the
 190 numerator and denominator separately, we adopt the self-normalized importance sampling (SNIS)
 191 estimator (Robert et al., 1999; Kroese and Rubinstein, 2012) (see Appx. G for background):

$$192 \quad \hat{B}_t^{\text{SNIS}} := \frac{1}{M} \sum_{m \in [M]} \left\| \frac{\sum_{l \in [L]} \mathbf{x}_0^{(l)} K_t(\mathbf{x}_t^{(m)}, \mathbf{x}_0^{(l)})}{\sum_{l' \in [L]} K_t(\mathbf{x}_t^{(m)}, \mathbf{x}_0^{(l')})} \right\|^2.$$

195 It uses the same randomly selected (with replacement) subset $\{\mathbf{x}_0^{(l)}\}_{l \in [L]}$, where $L \ll N$, for both
 196 the numerator and denominator, which leads to more stable estimates. One can repeat drawing the
 197 random data subset $\{\mathbf{x}_0^{(l)}\}_{l \in [L]}$ and calculate the estimate until convergence.

198 A specialty for estimating the diffusion optimal loss is that, for a given $\mathbf{x}_t^{(m)}$ sample, when σ_t is
 199 small, the weight term $K_t(\mathbf{x}_t^{(m)}, \mathbf{x}_0^{(l)})$ is dominated by the \mathbf{x}_0 sample closest to $\mathbf{x}_t^{(m)} / \alpha_t$ (see Eq. (8)),
 200 which could be missed in the randomly selected subset $\{\mathbf{x}_0^{(l)}\}_{l \in [L]}$, thus incurring a large variance.
 201 Fortunately, we know that by construction (Eq. (1)), each $\mathbf{x}_t^{(m)}$ sample is produced from a data
 202 sample $\mathbf{x}_0^{(n)}$ and a noise sample $\epsilon^{(m)}$ using $\mathbf{x}_t^{(m)} = \alpha_t \mathbf{x}_0^{(n)} + \sigma_t \epsilon^{(m)}$, and when σ_t is small,
 203 α_t is also close to 1 (Sec. 2), indicating that $\mathbf{x}_0^{(n)}$ is likely the most dominant \mathbf{x}_0 sample and
 204 should be included in the subset $\{\mathbf{x}_0^{(l)}\}_{l \in [L]}$. This can be simply implemented by constructing the
 205 $\{\mathbf{x}_0^{(\tilde{m})}\}_{\tilde{m} \in [M]}$ samples by independently (*i.e.*, with replacement) drawing a sample $\mathbf{x}_0^{(\tilde{m})}$ from the
 206 subset $\{\mathbf{x}_0^{(l)}\}_{l \in [L]}$ and setting $\mathbf{x}_t^{(\tilde{m})} = \alpha_t \mathbf{x}_0^{(\tilde{m})} + \sigma_t \epsilon^{(\tilde{m})}$ with $\epsilon^{(\tilde{m})} \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$. We call it the Diffusion
 207 Optimal Loss (DOL) estimator:²

$$208 \quad \hat{B}_t^{\text{DOL}} := \frac{1}{M} \sum_{\tilde{m} \in [M]} \left\| \frac{\sum_{l \in [L]} \mathbf{x}_0^{(l)} K_t(\mathbf{x}_t^{(\tilde{m})}, \mathbf{x}_0^{(l)})}{\sum_{l' \in [L]} K_t(\mathbf{x}_t^{(\tilde{m})}, \mathbf{x}_0^{(l')})} \right\|^2. \quad (10)$$

213 ¹Similar derivations to Eq. (8) have been presented in prior works (Karras et al., 2022; Xu et al., 2023;
 214 Niedoba et al., 2024). Here we use it for deriving the estimator for the optimal loss.

215 ²Prior works (Xu et al., 2023; Niedoba et al., 2024) also used important sampling for estimating the optimal
 216 solution, which has a similar form to the inner summation of DOL. See Appx. H.2 for details.

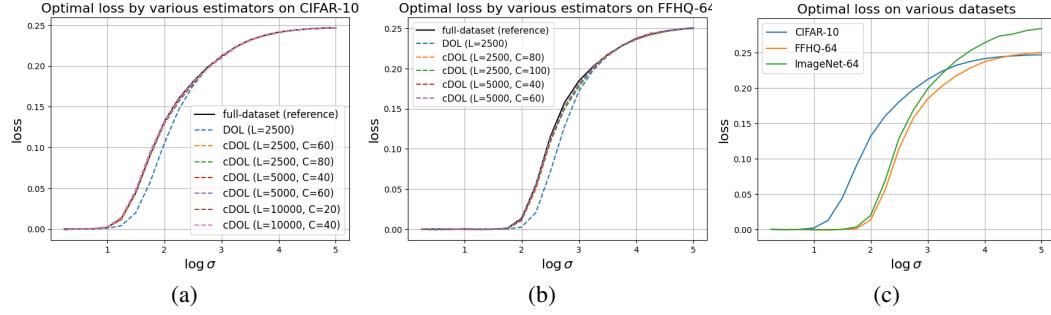


Figure 1: Estimation results of optimal loss value. (a,b) Stepwise optimal loss estimates by the DOL (Eqs. 7, 10) and the corrected DOL (cDOL) (Eqs. 7, 11) estimators, with the full-dataset estimate (Eqs. 7, 9) as reference, on the (a) CIFAR-10 and (b) FFHQ-64 datasets. (c) Stepwise optimal loss on various datasets in different scales. Figures are plotted for the x_0 prediction loss of the VE process.

Nevertheless, this introduces an artificial correlation between x_t and x_0 samples: it becomes more probable to calculate K_t for (x_t, x_0) pairs where x_t is constructed from x_0 . Such pairs have larger K_t values, hence over-estimating B_t and under-estimating the optimal loss $J_t^{(x_0)*}$. This pair introduces bias for the DOL estimator and leads to poor practical performance. We introduce a simple correction by down-weighting such pairs with a coefficient C , and call it the corrected DOL (cDOL) estimator:

$$\hat{B}_t^{\text{cDOL}} := \frac{1}{M} \sum_{\tilde{m} \in [M]} \left\| \frac{\sum_{l \in [L], l \neq \tilde{m}} \mathbf{x}_0^{(l)} K_t(\mathbf{x}_t^{(\tilde{m})}, \mathbf{x}_0^{(l)}) + \frac{1}{C} \mathbf{x}_0^{(\tilde{m})} K_t(\mathbf{x}_t^{(\tilde{m})}, \mathbf{x}_0^{(\tilde{m})})}{\sum_{l' \in [L], l' \neq \tilde{m}} K_t(\mathbf{x}_t^{(\tilde{m})}, \mathbf{x}_0^{(l')}) + \frac{1}{C} K_t(\mathbf{x}_t^{(\tilde{m})}, \mathbf{x}_0^{(\tilde{m})})} \right\|^2, \quad (11)$$

where \tilde{m} indexes the sample in $\{\mathbf{x}_0^{(l)}\}_{l \in [L]}$ that is used to construct $\mathbf{x}_t^{(\tilde{m})}$. To formalize the effectiveness, we provide the following theoretical result on the cDOL estimator:

Theorem 2. *The \hat{B}_t^{cDOL} estimator with subset size L has the same expectation as the \hat{B}_t^{SNIS} estimator with subset size $L - 1$ when $M \rightarrow \infty, C \rightarrow \infty$, hence is a consistent estimator.*

See Appx. F.2 for proof. Note that the first terms in the numerator and denominator are unbiased, but the second terms introduce biases due to the artificial correlation between x_t and x_0 samples. The DOL estimator in Eq. (10) amounts to using $C = 1$, which suffers from the biases. The bias can be reduced using $C > 1$ in the cDOL estimator. On the other hand, the second terms become the dominant components at small t for estimating the numerator and denominator, respectively. Always including them using a finite C hence reduces estimation variance. The complete process of the cDOL estimator is concluded in Alg. 1 in Appx. H.1.

3.4 ESTIMATION RESULTS OF OPTIMAL LOSS VALUES

We now provide empirical results of diffusion optimal loss estimates on popular datasets. We first compare the scalable estimators on CIFAR-10 (Krizhevsky et al., 2009) and FFHQ-64 (Karras, 2019) (Fig. 1(a,b)), whose relatively small sizes allow the full-dataset estimate by Eqs. (7, 9), providing a reference for the scalable estimators. With the best scalable estimator identified (from Fig. 2), we apply it to the much larger ImageNet-64 (Krizhevsky et al., 2012) dataset, and analyze the optimal loss pattern (Fig. 1(c)).

As different prediction targets (Sec. 2) and diffusion processes (Sec. 4.1 below) can be converted to each other, we choose the clean-data prediction target and variance exploding (VE) process ($\alpha_t \equiv 1$) (Song and Ermon, 2019; Song et al., 2021b) to present the diffusion optimal loss. We plot the optimal loss for each diffusion step, which is marked by $\log \sigma$ to decouple the arbitrariness in the time schedule σ_t (as advocated by (Karras et al., 2022); the same σ indicates the same distribution at that step of diffusion). All the scalable

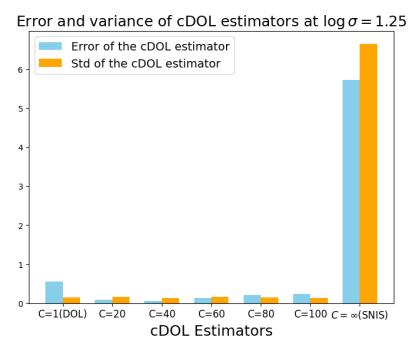


Figure 2: Error and variance of cDOL estimators using various C values (including DOL and SNIS as extreme cases) for the optimal loss at $\log \sigma = 1.25$ on CIFAR-10.

270 estimators repeat data subset sampling until the estimate converges. See Appx. H.1 for settings and
271 discussions on efficiency.

272 **Comparison among the scalable estimators.** From Fig. 1(a,b), we can see that the DOL estimator
273 indeed under-estimates the optimal loss as we pointed out, especially at intermediate diffusion steps.
274 The cDOL estimator can effectively mitigate the bias, and stays very close to the reference under
275 diverse choices of C . The insensitivity of the cDOL estimator w.r.t C can be understood as that,
276 for small t (equivalently, σ), both the numerator and denominator are dominated by the C -corrected
277 terms, in which C cancels out, and for large t , the $K_t(\mathbf{x}_t^{(\tilde{m})}, \mathbf{x}_0^{(l_{\tilde{m}})})$ term is in the same scale as other
278 terms hence is overwhelmed when compared with the summation.

280 To better analyze the behavior of the estimators, we zoom in on their estimation error and standard
281 deviation. Fig. 2 presents the results at an intermediate $\log \sigma$ where the estimation is more chal-
282 lenging. The result confirms that the variance increases with C . Particularly, at $C = \infty$ which
283 corresponds to the SNIS estimator (Thm. 2), it is hard to sample the dominating cases for the esti-
284 mate, leading to a large variance, and a significantly large estimation error. At the $C = 1$ end which
285 corresponds to the DOL estimator, although the variance is smaller, its bias still leads it to a large
286 estimation error. The cDOL estimator with C in between achieves consistently low estimation error.
287 Empirically, a preferred C is around $4N/L$. The subset size L can be taken to fully utilize memory.
288 We also compare our cDOL estimators with prior estimators for optimal *solution*, see Appx. H.2.

289 **The pattern of optimal loss.** From Fig. 1(c), we observe that the optimal loss $J_{\sigma}^{(\mathbf{x}_0)}{}^*$ increases
290 monotonically with the noise scale σ on all the three datasets. The optimal loss is close to zero
291 only when the noise scale σ is less than a *critical point* σ^* , in which situation the noisy samples
292 stay so close to their corresponding clean sources that they are unlikely to intersect with each other,
293 hence preserve the information of the clean samples, allowing the model to perform a nearly perfect
294 denoising. We can see that the critical point σ^* depends on the dataset. CIFAR-10 achieves the
295 minimal σ^* , since it has the lowest image resolution (32×32), *i.e.*, the lowest data-space dimension,
296 where the data samples appear less sparse hence easier to overlap after isotropic noise perturbation.
297 Both FFHQ-64 and ImageNet-64 have 64×64 resolution, but ImageNet-64 is larger, hence data
298 samples are easier to overlap, leading to a smaller σ^* .

299 Beyond the critical point, the optimal loss takes off quickly. The positive value indicates the intrinsic
300 difficulty of the denoising task, where even an oracle denoiser would be confused. The increase trend
301 converges for sufficiently large noise scale σ , which meets our analysis under Thm. 1 that $J_{\sigma}^{(\mathbf{x}_0)}{}^*$
302 converges to the data variance. As ImageNet-64 contains more diverse samples (images from more
303 classes), it has a larger data variance, hence converges to a higher value than the other two.

304 4 ANALYZING AND IMPROVING DIFFUSION TRAINING SCHEDULE WITH 305 OPTIMAL LOSS

306 From the training losses in Sec. 2, the degree of freedom for the training strategy of diffusion models
307 is the *noise schedule* $p(t)$ and the *loss weight* w_t , collectively called the training schedule. In the
308 literature, extensive works (Ho et al., 2020; Song et al., 2021b; Karras et al., 2022; Kingma and
309 Gao, 2023; Esser et al., 2024) have designed training schedules for various prediction targets and
310 diffusion processes individually, based on the analysis on the loss scale over diffusion steps. Here,
311 we argue that analyzing the *gap* between the loss and the optimal loss would be a more principled
312 approach, since it is the gap but not the loss itself that reflects the data-fitting insufficiency and the
313 potential for improvement. Under this view, we first analyze and compare the loss gap of mainstream
314 diffusion works on the same ground (Sec. 4.1), identifying new patterns that are related to generation
315 performance. We then develop a new training schedule based on the observation (Sec. 4.2).

316 4.1 ANALYZING TRAINING SCHEDULES THROUGH OPTIMAL LOSS

317 Existing training schedules are developed under different diffusion processes and prediction targets.
318 For a unified comparison on the same ground, we start with the equivalence among the formulations
319 and convert them to the same formulation. As explained in Sec. 3.4, we use the noise scale σ in
320 place of t to mark the diffusion step to decouple the choice of time schedule σ_t .

323

324
 325 Table 1: Viewing mainstream diffusion models under the same formulation as \mathbf{x}_0 prediction un-
 326 der the VE process, following Eq. (12). Each diffusion model is labeled by “diffusion process”-
 327 “prediction target” (“common name”).

328 Formulations	c_σ^{skip}	c_σ^{out}	c_σ^{in}	c_σ^{noise}	w_σ	$p(\sigma)$
329 VP- ϵ (DDPM) (Ho et al., 2020)	1	$-\sigma$	$\frac{1}{\sqrt{1+\sigma^2}}$	$999 t(\sigma)$	$\frac{1}{\sigma^2}$	$t \sim \mathcal{U}(10^{-5}, 1),$ $\sigma = \sqrt{e^{\beta_{\min} t + \frac{1}{2}(\beta_{\max} - \beta_{\min})t^2} - 1}$
330 VE- \mathbf{F} (EDM) (Karras et al., 2022)	$\frac{\sigma_{\text{data}}^2}{\sigma^2 + \sigma_{\text{data}}^2}$	$\frac{\sigma_{\text{data}} \sigma}{\sqrt{\sigma^2 + \sigma_{\text{data}}^2}}$	$\frac{1}{\sqrt{\sigma^2 + \sigma_{\text{data}}^2}}$	$\frac{1}{4} \log \sigma$	$\frac{\sigma^2 + \sigma_{\text{data}}^2}{\sigma^2 \sigma_{\text{data}}^2}$	$\log \sigma \sim \mathcal{N}(P_{\text{mean}}, P_{\text{std}}^2)$
331 VE- ϵ (NCSN) (Song et al., 2021a)	1	σ	1	$\log \frac{\sigma}{2}$	$\frac{1}{\sigma^2}$	$\log \sigma \sim \mathcal{U}(\log \sigma_{\min}, \log \sigma_{\max})$
332 FM- \mathbf{v} (FM) (Lipman et al., 2023)	$\frac{1}{1+\sigma}$	$-\frac{\sigma}{1+\sigma}$	$\frac{1}{1+\sigma}$	$\frac{\sigma}{1+\sigma}$	$(\frac{1+\sigma}{\sigma})^2$	$t \sim \mathcal{U}(0, 1), \sigma = \frac{t}{1-t}$
333 FM- \mathbf{v} (SD3) (Esser et al., 2024)	$\frac{1}{1+\sigma}$	$-\frac{\sigma}{1+\sigma}$	$\frac{1}{1+\sigma}$	$\frac{1}{1+\sigma}$	$(\frac{1+\sigma}{\sigma})^2$	$\log \sigma \sim \mathcal{N}(0, 1)$

334
 335
 336
 337 **Equivalent conversion among diffusion formulations.** Sec. 2 has shown the equivalence and
 338 conversion among prediction targets. We note that different diffusion processes in the form of Eq. (1)
 339 can also be equivalently converted to each other. Particularly, the variance preserving (VP) process
 340 ($\alpha_\sigma = \sqrt{1 - \sigma^2}$) (Sohl-Dickstein et al., 2015; Ho et al., 2020) and the flow matching (FM) process
 341 ($\alpha_\sigma = 1 - \sigma$) (Lipman et al., 2023; Liu et al., 2023) can be converted to the variance exploding (VE)
 342 process ($\alpha_\sigma \equiv 1$) (Song and Ermon, 2019; Song et al., 2021b) by $\mathbf{x}_\sigma^{\text{VE}} := \frac{\mathbf{x}_\sigma}{\alpha_\sigma}$, since $\mathbf{x}_\sigma^{\text{VE}} = \mathbf{x}_0 + \frac{\sigma}{\alpha_\sigma} \mathbf{\epsilon}$
 343 by Eq. (1), and $\mathbf{x}_0 = \mathbf{x}_0^{\text{VE}}$. The correspondence of diffusion step is given by $\sigma^{\text{VE}} = \frac{\sigma}{\alpha_\sigma}$. With this
 344 fact, various diffusion models can be viewed as different parameterizations of the \mathbf{x}_0 prediction
 345 under the VE process (Karras et al., 2022), where the parameterization is formulated by:

$$\mathbf{x}_{0\theta}(\mathbf{x}, \sigma) = c_\sigma^{\text{skip}} \mathbf{x} + c_\sigma^{\text{out}} \mathbf{F}_\theta(c_\sigma^{\text{in}} \mathbf{x}, c_\sigma^{\text{noise}}), \quad (12)$$

346 where $\mathbf{x}_{0\theta}$, \mathbf{x} , and σ are the \mathbf{x}_0 prediction model, the diffusion variable, and the noise scale under the
 347 VE process, and $\mathbf{F}_\theta(\cdot, \cdot)$ represents the bare neural network used for the original prediction target
 348 and diffusion process. The precondition coefficients c_σ are responsible for the conversion. Their
 349 instances for reproducing mainstream diffusion models are listed in Table 1, where the converted w_σ
 350 and $p(\sigma)$ from the original works are also listed. See Appx. E for details. For EDM (Karras et al.,
 351 2022), the precondition coefficients are not derived from a conversion but directly set to satisfy the
 352 input-output unit variance principle. This leads to a new prediction target we call the \mathbf{F} prediction.

353
 354 **Comparison between optimal loss gaps.** Under the above convention, we convert the actual training
 355 loss of various diffusion models to the \mathbf{x}_0 prediction loss under the VE process, which serves as
 356 a unified metric on the same ground. In the following development of the paper, we consider the \mathbf{x}_0
 357 prediction loss under the VE process of the diffusion model without loss of generality. We conduct
 358 the comparison on the CIFAR-10 dataset, and compare the gap between their actual loss and the
 359 optimal loss, which has been estimated and presented in Fig. 1(a; the full-dataset curve). The results
 360 are shown in Fig. 3(a), which reveals some new observations. The optimal loss gap across different
 361 diffusion steps is not even: most of the representative diffusion models leave a large loss gap in
 362 the intermediate diffusion steps around $\log \sigma \in [-2, 2]$, indicating room to improve. In addition, ϵ
 363 prediction models incur a large error for large σ , revealing a difficulty in learning such models.

364
 365 **Loss gap vs. generation performance.** We now use the gap to the optimal loss as the fundamental
 366 data-fitting measure to analyze which region is more critical for the generation performance,
 367 measured in Fréchet Inception Distance (FID) (Heusel et al., 2017) also marked in Fig. 3(a). All
 368 diffusion models use the same deterministic ODE sampler with NFE = 35 following Karras et al.
 369 (2022). We can see that an erroneous fit at large noise scales of ϵ prediction models leads to a
 370 deficiency in generation quality, e.g., NCSN vs EDM in Fig. 3(a). Among methods with a good fit
 371 for large σ , the intermediate noise scale region $\log \sigma \in [-2.0, 2.0]$ becomes more relevant to the
 372 generation performance. We then zoom into the intermediate region and compare these methods
 373 using the normalized training loss gap, taken by dividing the value on each curve by the average
 374 value over the four curves, as shown in Fig. 3(b) (“VE- ϵ ” is omitted due to its significant deviation
 375 from other curves). Counter-intuitively, around the critical point σ^* defined as the largest σ whose
 376 optimal loss J_σ^* becomes positive, although the gap is around the largest over noise scales, the loss
 377 gap turns out to negatively correlate with FID. The correlation becomes positive only in the region
 378 further left to σ^* . This reveals that there is a trade-off in learning a diffusion model at different noise
 379 scales, and sacrificing the fit in the region around σ^* for a better fit in the noise scale interval further
 380 left to σ^* leads to a better inference performance.

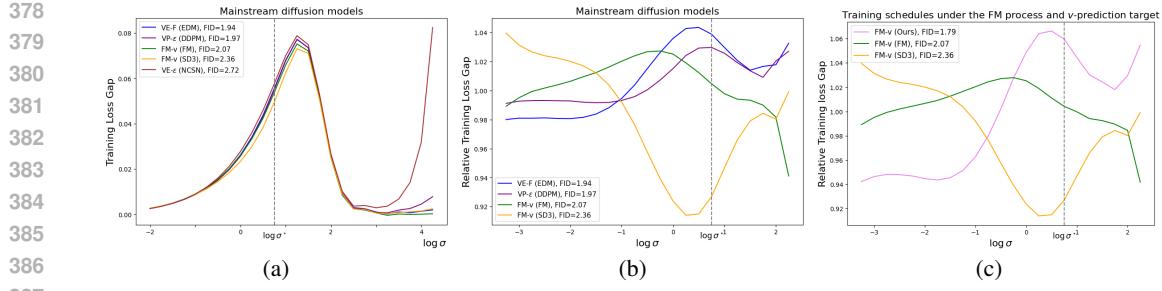


Figure 3: Actual and relative training loss gap across noise scales by various diffusion models on CIFAR-10. **(a)** Actual training loss gap of mainstream diffusion models. **(b)** Normalized training loss gap, taken by dividing the value on each curve by the average value over the four curves, for a clearer comparison over mainstream diffusion models (“VE- ϵ ” is omitted for its salient difference). **(c)** Normalized training loss gap for comparing existing training schedules and our schedule (Sec. 4.2) under the FM process with the v prediction target. Curves of different diffusion models are plotted together by viewing them as parameterizations of the x_0 prediction under the variance exploding (VE) process (Eq. (12); Table 1). See Appx. H.3 for detailed settings.

4.2 PRINCIPLED DESIGN OF TRAINING SCHEDULE

From the observation above, the training schedule plays a crucial role in optimizing diffusion models, due to the trade-off over different noise scales. We hence design a principled training schedule based on conclusions from the representative optimal loss estimates.

The loss weight. w_σ calibrates the error resolution across different noise scales. For this, the optimal loss J_σ^* provides a perfect reference scale for the loss at each diffusion step σ , so $w_\sigma = a/J_\sigma^*$ with a scale factor a is a natural choice to align the loss at various σ to the same scale. Although it downweights the loss for large noise scales, the above observation suggests that the model can still achieve a good fit if using **v-prediction** and **F-prediction** (Table 1). For smaller noise scales, a cutoff w^* is needed to avoid divergence, which stops the increase of w_σ before σ runs smaller than the critical point σ^* . As observed in Sec. 4.1, the interval where the loss gap has a positive correlation to inference performance is on the left of (vs. around) σ^* . We hence introduce an additional weight function $f(\sigma) = \mathcal{N}(\log \sigma; \mu, \varsigma^2)$, whose parameters μ and ς are chosen to put the major weight over the left interval. The resulting loss weight is finally given by: $w_\sigma = a \min\{\frac{1}{J_\sigma^*}, w^*\} + f(\sigma) \mathbb{I}_{\sigma < \sigma^*}$.

The noise schedule. $p(\sigma)$ allocates the optimization frequency to each noise level. A desired $p(\sigma)$ should favor noise steps on which the optimization task has not yet been done well, which can be measured by the difference from $w_\sigma J_\sigma(\Theta)$ to $w_\sigma J_\sigma^*$. This provides a principled measure for optimization insufficiency, which leads to an adaptive noise schedule: $p(\sigma) \propto w_\sigma (J_\sigma(\Theta) - J_\sigma^*)$.

Note that applying the loss weight and noise schedule in training a model only requires estimating the optimal loss J_σ^* on the training dataset, which does not require training a model beforehand.

CIFAR-10 & ImageNet-64 Results. We evaluate the designed training schedule in training two advanced diffusion models EDM (Karras et al., 2022) and Flow Matching (FM) (Lipman et al., 2023) on the CIFAR-10 and ImageNet-64 datasets (details in Appx. H.5). As shown in Table 2, our training schedule significantly improves generation performance upon the original for both the EDM and FM settings on both datasets, demonstrating the value of new insights from our analysis using the optimal loss. For a closer look at how our schedule works, in Fig. 3(c) we plot the relative

Table 2: Generation FID (\downarrow) by existing training schedules and ours on CIFAR-10 and ImageNet-64.

	CIFAR-10	ImageNet-64	
	Conditional	Unconditional	Conditional
StyleGAN (Karras, 2019)	2.42	2.92	-
ScoreSDE (deep) (Song et al., 2021b)	-	2.20	-
Improved DDPM (Nichol and Dhariwal, 2021)	-	2.94	3.54
2-Rectified Flow (Liu et al., 2023)	-	4.85	2.92
VDM (Kingma et al., 2021)	-	2.49	3.40
EDM (Karras et al., 2022)	1.79	1.98	2.44
+ EDM2 (Karras et al., 2024) schedule	1.94	2.09	-
+ our schedule	1.75	1.94	2.25
FM (Lipman et al., 2023)	-	6.35	14.45
+ EDM sampler	2.07	2.24	3.06
+ our schedule	1.77	2.03	2.29

Table 3: Comparison between existing training schedules and ours on ImageNet-256 dataset.

Method	Generation w/o CFG				Generation w/ CFG			
	FID(\downarrow)	IS(\uparrow)	Pre.(\uparrow)	Rec.(\uparrow)	FID(\downarrow)	IS(\uparrow)	Pre.(\uparrow)	Rec.(\uparrow)
<i>Pixel-space Diffusion Models</i>								
ADM (Dhariwal and Nichol, 2021)	10.94	—	0.69	0.63	3.94	215.9	0.83	0.53
RIN (Jabri et al., 2022)	3.42	182.0	—	—	—	—	—	—
Simple Diffusion (Hoogeboom et al., 2023)	2.77	211.8	—	—	2.12	256.3	—	—
VDM++ (Kingma and Gao, 2023)	2.40	225.3	—	—	2.12	267.7	—	—
SiD2 (Hoogeboom et al., 2024)	—	—	—	—	1.38	—	—	—
<i>Latent Diffusion Models</i>								
MaskDiT (Zheng et al., 2023)	5.69	177.9	0.74	0.60	2.28	276.6	0.80	0.61
DiT (Peebles and Xie, 2023)	9.62	121.5	0.67	0.67	2.27	278.2	0.83	0.57
SiT (Ma et al., 2024)	8.61	131.7	0.68	0.67	2.06	270.3	0.82	0.59
FasterDiT (Yao et al., 2024)	7.91	131.3	0.67	0.69	2.03	264.0	0.81	0.60
MDT (Gao et al., 2023a)	6.23	143.0	0.71	0.65	1.79	283.0	0.81	0.61
MDTv2 (Gao et al., 2023b)	—	—	—	—	1.58	314.7	0.79	0.65
REPA (Yu et al., 2024)	5.90	—	—	—	1.42	305.7	0.80	0.65
LightningDiT (Yao et al., 2025)	2.17	205.6	0.77	0.65	1.35	295.3	0.79	0.65
+ reproduction	2.29	206.2	0.76	0.66	1.42	292.9	0.79	0.65
+ our schedule	2.08	220.8	0.77	0.66	1.30	301.3	0.79	0.66

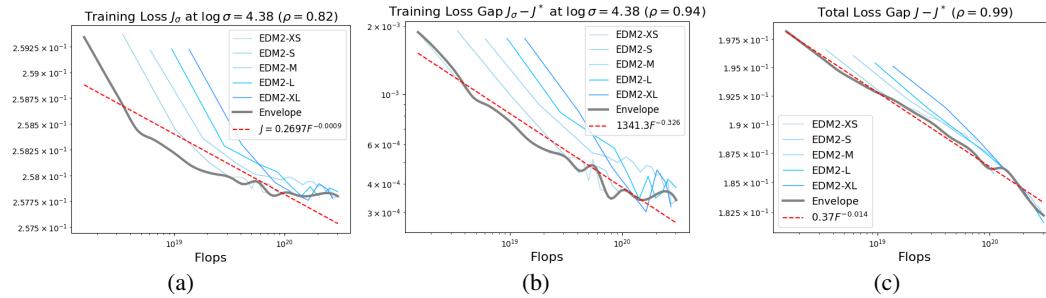


Figure 4: Scaling law study using optimal loss on ImageNet-64. Training curves at $\log \sigma = 4.38$ using various model sizes and their envelope are plotted showing (a) the actual loss and (b) the gap between the actual and the optimal loss. Curves showing the gap for the total loss (covering all diffusion steps) are plotted in (c). The total loss gap is the training loss gap multiplied by the loss weight under the expectation of the noise schedule, i.e., the practical training loss. Correlation coefficients ρ for the envelopes are marked.

training loss gap across noise scales using our schedule, and compare it with the schedule of the original (Lipman et al., 2023) and of StableDiffusion 3 (SD3) (Esser et al., 2024). We find that our schedule indeed further decreases the loss in the interval with positive correlation to performance, aligning with the insight from Sec. 4.1.

ImageNet-256 Results. Finally, we evaluate our training schedule on the ImageNet-256 dataset and compare the results with existing approaches. We use VA-VAE (Yao et al., 2025) as the tokenizer and employ a modified LightningDiT (Yao et al., 2025) architecture enhanced with QK-Normalization (Dehghani et al., 2023) to improve training stability (details in Appx. H.5). As shown in Table 3, our training schedule further improves generation performance over the original LightningDiT training schedule.

5 PRINCIPLED SCALING LAW STUDY FOR DIFFUSION MODELS

Neural scaling law (Kaplan et al., 2020) has been the driving motivation for pursuing large models, which shows the consistent improvement of model performance with computational cost. The conventional version takes the form of a power law (Kaplan et al., 2020; Henighan et al., 2020; Hoffmann et al., 2022): $J(F) = \beta F^\alpha$, where F denotes floating point operations (FLOPs) measuring training budget, $J(F)$ denotes the minimal training loss attained by models in various sizes (the envelope in Fig. 4), and $\alpha < 0$ and $\beta > 0$ are power law parameters. The specialty of a scaling law study for diffusion model is that, as the optimal loss sets a non-zero lower bound of the training loss, not all the loss value in $J(F)$ can be reduced with the increase of F , questioning the form which

486 converges to zero as $F \rightarrow \infty$. Instead, the following modified power law is assumed:
 487
 488

$$J(F) - J^* = \beta F^\alpha, \quad (13)$$

489 where J^* denotes the optimal loss value. It can be rephrased as that $\log(J(F) - J^*)$ is linear in
 490 $\log F$, so we can verify it through the linear correlation coefficient ρ . We conduct experiments using
 491 current state-of-the-art diffusion models EDM2 (Karras et al., 2024) with parameter size ranging
 492 from 120M to 1.5B.

493 We first compare the model training curves at a large noise scale, for which Fig. 4(a) and (b) assume
 494 the original and the modified (Eq. (13)) scaling laws, respectively. We can observe that in the
 495 modified version, the envelope is indeed closer to a line, and the improved correlation coefficient
 496 $\rho = 0.94$ (vs. 0.82) validates this quantitatively. For the total loss, we use the optimized adaptive loss
 497 weight by EDM2 (Karras et al., 2024). The result is shown in Fig. 4(c), which achieves $\rho = 0.9917$,
 498 and the fitted scaling law is given by: $J(F) = 0.3675 F^{-0.014} + 0.015$. Appx. H.6 provides more
 499 results on ImageNet-512. We hope this approach could lead to more profound future studies in the
 500 scaling law for diffusion models.

501 6 CONCLUSION

502 In this work, we emphasize the central importance of optimal loss estimation to make the training
 503 loss value meaningful for diagnosing and improving diffusion model training. To the best of our
 504 knowledge, we are the first to notice and work on this issue. We develop analytical expressions and
 505 practical estimators for diffusion optimal loss, particularly a scalable estimator applicable to large
 506 datasets and has proper variance and bias control. With this tool, we revisit the training behavior of
 507 mainstream diffusion models, and propose an optimal-loss-based approach for a principled design
 508 of training schedules, which indeed improves performance in practice. Furthermore, we investigate
 509 the scaling behavior w.r.t model size, in which accounting for the optimal loss value as an offset
 510 better fulfills the power law.

511 Although the optimal loss estimation is not directly meant for analyzing inference performance, it
 512 introduces a serious metric for data-fitting quality, which paves the way for future generalization
 513 study. We believe our new approaches and insights could motivate future research on analyzing and
 514 improving diffusion models, and advance the progress of generative modeling research.

516 7 ETHICS STATEMENT

517 This work adheres to the ICLR Code of Ethics. Our study does not involve human subjects, per-
 518 sonal data, or sensitive demographic information. All experiments are conducted on publicly avail-
 519 able benchmark datasets, which are widely used in the machine learning community. No new data
 520 collection or human/animal experimentation was performed.

523 8 REPRODUCIBILITY STATEMENT

524 To facilitate the reproducibility of our research, we provide comprehensive details throughout the
 525 paper and its supplementary materials. We begin by establishing the necessary backgrounds in
 526 Sec. 2. For all theoretical claims in the main text, we offer detailed derivations in Appx. F. All our
 527 experiments are thoroughly documented; the datasets, training procedures, and settings are carefully
 528 described in Appx. H. Upon acceptance of this paper, we commit to making our full codebase and all
 529 model checkpoints publicly available to ensure that the community can fully reproduce our results.

531 9 THE USE OF LARGE LANGUAGE MODELS (LLMs)

532 In the preparation of this manuscript, LLMs were employed as a writing assistant to refine the
 533 language and improve the grammar. Following this process, all textual content was meticulously
 534 reviewed, revised, and validated by the authors, who assume full responsibility for the final work
 535 presented.

540 REFERENCES
541

542 Guillaume Alain and Yoshua Bengio. What regularized auto-encoders learn from the data-generating
543 distribution. *The Journal of Machine Learning Research*, 15(1):3563–3593, 2014.

544 Brian DO Anderson. Reverse-time diffusion equation models. *Stochastic Processes and their Ap-*
545 *plications*, 12(3):313–326, 1982.

546 Fan Bao, Chongxuan Li, Jiacheng Sun, Jun Zhu, and Bo Zhang. Estimating the optimal covariance
547 with imperfect mean in diffusion probabilistic models. In *International Conference on Machine*
548 *Learning*, pages 1555–1584. PMLR, 2022a.

549 Fan Bao, Chongxuan Li, Jun Zhu, and Bo Zhang. Analytic-DPM: an analytic estimate of the opti-
550 mal reverse variance in diffusion probabilistic models. In *International Conference on Learning*
551 *Representations*, 2022b.

552 Giannis Daras, Kulin Shah, Yuval Dagan, Aravind Gollakota, Alex Dimakis, and Adam Klivans.
553 Ambient diffusion: Learning clean distributions from corrupted data. In *Thirty-seventh Confer-*
554 *ence on Neural Information Processing Systems*, 2023. URL [https://openreview.net/](https://openreview.net/forum?id=wBJBLy9kBY)
555 [forum?id=wBJBLy9kBY](https://openreview.net/forum?id=wBJBLy9kBY).

556 Valentin De Bortoli, James Thornton, Jeremy Heng, and Arnaud Doucet. Diffusion schrödinger
557 bridge with applications to score-based generative modeling. *Advances in Neural Information*
558 *Processing Systems*, 34:17695–17709, 2021.

559 Mostafa Dehghani, Josip Djolonga, Basil Mustafa, Piotr Padlewski, Jonathan Heek, Justin Gilmer,
560 Andreas Peter Steiner, Mathilde Caron, Robert Geirhos, Ibrahim Alabdulmohsin, et al. Scaling
561 vision transformers to 22 billion parameters. In *International Conference on Machine Learning*,
562 pages 7480–7512. PMLR, 2023.

563 Prafulla Dhariwal and Alexander Nichol. Diffusion models beat GANs on image synthesis. *Ad-*
564 *vances in Neural Information Processing Systems*, 34:8780–8794, 2021.

565 Rick Durrett. *Probability: theory and examples*, volume 49. Cambridge university press, 2019.

566 Patrick Esser, Sumith Kulal, Andreas Blattmann, Rahim Entezari, Jonas Müller, Harry Saini, Yam
567 Levi, Dominik Lorenz, Axel Sauer, Frederic Boesel, et al. Scaling rectified flow transformers for
568 high-resolution image synthesis. In *Forty-first International Conference on Machine Learning*,
569 2024.

570 Shanghua Gao, Pan Zhou, Ming-Ming Cheng, and Shuicheng Yan. Masked diffusion transformer
571 is a strong image synthesizer. In *Proceedings of the IEEE/CVF international conference on com-*
572 *puter vision*, pages 23164–23173, 2023a.

573 Shanghua Gao, Pan Zhou, Ming-Ming Cheng, and Shuicheng Yan. Mdtv2: Masked diffusion trans-
574 former is a strong image synthesizer. *arXiv preprint arXiv:2303.14389*, 2023b.

575 Xiangming Gu, Chao Du, Tianyu Pang, Chongxuan Li, Min Lin, and Ye Wang. On memorization
576 in diffusion models. *arXiv preprint arXiv:2310.02664*, 2023.

577 Tom Henighan, Jared Kaplan, Mor Katz, Mark Chen, Christopher Hesse, Jacob Jackson, Heewoo
578 Jun, Tom B. Brown, Prafulla Dhariwal, Scott Gray, Chris Hallacy, Benjamin Mann, Alec Rad-
579 ford, Aditya Ramesh, Nick Ryder, Daniel M. Ziegler, John Schulman, Dario Amodei, and Sam
580 McCandlish. Scaling laws for autoregressive generative modeling, 2020.

581 Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter.
582 Gans trained by a two time-scale update rule converge to a local nash equilibrium. *Advances in*
583 *neural information processing systems*, 30, 2017.

584 Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. In *Advances*
585 *in Neural Information Processing Systems*, volume 33, pages 6840–6851, 2020.

594 Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza
 595 Rutherford, Diego de las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, Tom Hen-
 596 nigan, Eric Noland, Katherine Millican, George van den Driessche, Bogdan Damoc, Aurelia
 597 Guy, Simon Osindero, Karen Simonyan, Erich Elsen, Oriol Vinyals, Jack William Rae, and
 598 Laurent Sifre. An empirical analysis of compute-optimal large language model training. In
 599 Alice H. Oh, Alekh Agarwal, Danielle Belgrave, and Kyunghyun Cho, editors, *Advances in Neu-
 600 ral Information Processing Systems*, 2022. URL <https://openreview.net/forum?id=iBBCRU1OAPR>.

601

602 Emiel Hoogeboom, Jonathan Heek, and Tim Salimans. simple diffusion: End-to-end diffusion for
 603 high resolution images. In *International Conference on Machine Learning*, pages 13213–13232.
 604 PMLR, 2023.

605

606 Emiel Hoogeboom, Thomas Mensink, Jonathan Heek, Kay Lamerigts, Ruiqi Gao, and Tim Salimans.
 607 Simpler diffusion (sid2): 1.5 fid on imagenet512 with pixel-space diffusion. *arXiv preprint
 608 arXiv:2410.19324*, 2024.

609 Allan Jabri, David Fleet, and Ting Chen. Scalable adaptive computation for iterative generation.
 610 *arXiv preprint arXiv:2212.11972*, 2022.

611

612 Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B. Brown, Benjamin Chess, Rewon Child,
 613 Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language
 614 models, 2020.

615

616 Tero Karras. A style-based generator architecture for generative adversarial networks. *arXiv preprint
 617 arXiv:1812.04948*, 2019.

618

619 Tero Karras, Miika Aittala, Timo Aila, and Samuli Laine. Elucidating the design space of diffusion-
 620 based generative models. *Advances in neural information processing systems*, 35:26565–26577,
 621 2022.

622

623 Tero Karras, Miika Aittala, Jaakko Lehtinen, Janne Hellsten, Timo Aila, and Samuli Laine. Analyz-
 624 ing and improving the training dynamics of diffusion models. In *Proceedings of the IEEE/CVF
 Conference on Computer Vision and Pattern Recognition*, pages 24174–24184, 2024.

625

626 Diederik Kingma, Tim Salimans, Ben Poole, and Jonathan Ho. Variational diffusion models. *Ad-
 627 vances in neural information processing systems*, 34:21696–21707, 2021.

628

629 Diederik P Kingma and Ruiqi Gao. Understanding diffusion objectives as the ELBO with simple
 630 data augmentation. In *Thirty-seventh Conference on Neural Information Processing Systems*,
 631 2023. URL <https://openreview.net/forum?id=NnMEadcdyD>.

632

633 Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
 634 2009.

635

636 Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convo-
 637 lutional neural networks. *Advances in neural information processing systems*, 25, 2012.

638

639 Dirk P Kroese and Reuven Y Rubinstein. Monte carlo methods. *Wiley Interdisciplinary Reviews:
 640 Computational Statistics*, 4(1):48–58, 2012.

641

642 Hao Li, Yang Zou, Ying Wang, Orchid Majumder, Yusheng Xie, R Manmatha, Ashwin Swami-
 643 nathan, Zhuowen Tu, Stefano Ermon, and Stefano Soatto. On the scalability of diffusion-based
 644 text-to-image generation. In *Proceedings of the IEEE/CVF Conference on Computer Vision and
 645 Pattern Recognition*, pages 9400–9409, 2024.

646

647 Zhengyang Liang, Hao He, Ceyuan Yang, and Bo Dai. Scaling laws for diffusion transformers.
 648 *arXiv preprint arXiv:2410.08184*, 2024.

649

650 Yaron Lipman, Ricky T. Q. Chen, Heli Ben-Hamu, Maximilian Nickel, and Matthew Le. Flow
 651 matching for generative modeling. In *The Eleventh International Conference on Learning Repre-
 652 sentations*, 2023. URL <https://openreview.net/forum?id=PqvMRDCJT9t>.

648 Xingchao Liu, Chengyue Gong, and Qiang Liu. Flow straight and fast: Learning to generate and
 649 transfer data with rectified flow. In *The Eleventh International Conference on Learning Repre-*
 650 *sentations*, 2023. URL <https://openreview.net/forum?id=XVjTT1nw5z>.

651

652 Cheng Lu and Yang Song. Simplifying, stabilizing and scaling continuous-time consistency models.
 653 *arXiv preprint arXiv:2410.11081*, 2024.

654

655 Nanye Ma, Mark Goldstein, Michael S Albergo, Nicholas M Boffi, Eric Vanden-Eijnden, and Sain-
 656 ing Xie. Sit: Exploring flow and diffusion-based generative models with scalable interpolant
 657 transformers. In *European Conference on Computer Vision*, pages 23–40. Springer, 2024.

658

659 Kangfu Mei, Zhengzhong Tu, Mauricio Delbracio, Hossein Talebi, Vishal M. Patel, and Peyman
 660 Milanfar. Bigger is not always better: Scaling properties of latent diffusion models. *Transactions*
 661 *on Machine Learning Research*, 2025. ISSN 2835-8856. URL <https://openreview.net/forum?id=0u7pWfjri5>.

662

663 Alexander Quinn Nichol and Prafulla Dhariwal. Improved denoising diffusion probabilistic models.
 664 In *International Conference on Machine Learning*, pages 8162–8171. PMLR, 2021.

665

666 Matthew Niedoba, Dylan Green, Saeid Naderiparizi, Vasileios Lioutas, Jonathan Wilder Lavington,
 667 Xiaoxuan Liang, Yunpeng Liu, Ke Zhang, Setareh Dabiri, Adam Ścibior, et al. Nearest neighbour
 668 score estimators for diffusion generative models. *arXiv preprint arXiv:2402.08018*, 2024.

669

670 William Peebles and Saining Xie. Scalable diffusion models with transformers. In *Proceedings of*
 671 *the IEEE/CVF International Conference on Computer Vision*, pages 4195–4205, 2023.

672

673 Christian P Robert, George Casella, and George Casella. *Monte Carlo statistical methods*, volume 2.
 674 Springer, 1999.

675

676 Tim Salimans and Jonathan Ho. Progressive distillation for fast sampling of diffusion models. In
 677 *International Conference on Learning Representations*, 2022. URL <https://openreview.net/forum?id=TIdIXIpzhoI>.

678

679 Daniel Sanz-Alonso and Omar Al-Ghattas. A first course in monte carlo methods. *arXiv preprint*
 680 *arXiv:2405.16359*, 2024.

681

682 Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsupervised
 683 learning using nonequilibrium thermodynamics. In *International Conference on Machine Learn-*
 684 *ing*, pages 2256–2265. PMLR, 2015.

685

686 Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. In *Inter-
 687 national Conference on Learning Representations*, 2021a.

688

689 Yang Song and Stefano Ermon. Generative modeling by estimating gradients of the data distribution.
 690 In *Advances in Neural Information Processing Systems*, volume 32, 2019.

691

692 Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben
 693 Poole. Score-based generative modeling through stochastic differential equations. In *Inter-
 694 national Conference on Learning Representations*, 2021b.

695

696 Pascal Vincent. A connection between score matching and denoising autoencoders. *Neural computa-*
 697 *tion*, 23(7):1661–1674, 2011.

698

699 Pascal Vincent, Hugo Larochelle, Yoshua Bengio, and Pierre-Antoine Manzagol. Extracting and
 700 composing robust features with denoising autoencoders. In *Proceedings of the 25th international
 701 conference on Machine learning*, pages 1096–1103, 2008.

702

703 Yilun Xu, Shangyuan Tong, and Tommi Jaakkola. Stable target field for reduced variance score
 704 estimation in diffusion models. *arXiv preprint arXiv:2302.00670*, 2023.

705

706 Jingfeng Yao, Cheng Wang, Wenyu Liu, and Xinggang Wang. Fasterdit: Towards faster diffusion
 707 transformers training without architecture modification. *Advances in Neural Information Pro-*
 708 *cessing Systems*, 37:56166–56189, 2024.

702 Jingfeng Yao, Bin Yang, and Xinggang Wang. Reconstruction vs. generation: Taming optimization
703 dilemma in latent diffusion models. In *Proceedings of the IEEE/CVF Conference on Computer*
704 *Vision and Pattern Recognition*, 2025.

705 Sihyun Yu, Sangkyung Kwak, Huiwon Jang, Jongheon Jeong, Jonathan Huang, Jinwoo Shin, and
706 Saining Xie. Representation alignment for generation: Training diffusion transformers is easier
707 than you think. *arXiv preprint arXiv:2410.06940*, 2024.

709 Hongkai Zheng, Weili Nie, Arash Vahdat, and Anima Anandkumar. Fast training of diffusion models
710 with masked transformers. *arXiv preprint arXiv:2306.09305*, 2023.

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756 APPENDIX
757

758 **Organization of the Appendix** The supplementary material is organized as follows. We first
759 review more related work in Appx. A and remark the relation between estimating optimal loss and
760 achieving generalization in Appx. B. In Appx. D, we provide a detailed derivation of the optimal
761 solution for diffusion models in various formulations. In Appx. E, we give the detailed derivation of
762 the conversion shown in Table 1. In Appx. F, we give the proofs of all theorems. In Appx. G, we
763 give a brief introduction to the important sampling methods. In Appx. H, we give the details of all
764 our experiments.

765 A RELATED WORK
766

767 **Optimal loss and solution of diffusion model.** A related work by Bao et al. (2022b;a) derived the
768 optimal ELBO loss under discrete Gaussian reverse process, and used it to determine the optimal
769 reverse Gaussian (co)variances and optimize the discrete diffusion steps. Gu et al. (2023) further
770 studied the memorization behavior of diffusion models. In contrast, we consider general cases and
771 develop effective training-free estimators for the optimal loss value, and emphasize its principled
772 role with important real examples in monitoring and diagnosing model training, designing training
773 schedule, and studying scaling law. There are also some other works that made efforts to estimate the
774 optimal solution (Xu et al., 2023) using importance sampling. Although more scalable methods are
775 proposed using fast KNN search (Niedoba et al., 2024), their viability for estimating the optimal loss
776 on large datasets remains unverified, as the optimal loss requires estimating two nested expectations.

777 **Training design of diffusion model.** Due to the stochastic nature, intensive research efforts are
778 paid to investigate diffusion model training in multiple directions such as noise schedules and loss
779 weight. Karras et al. (2022) presented a design space that clearly separates design choices, enabling
780 targeted explorations on training configurations. Kingma and Gao (2023) analyzed different diffu-
781 sion objectives in a unified way and connect them via ELBO. Esser et al. (2024) conduct large-scale
782 experiments to compare different training configurations and motivate scalable design choices for
783 billion-scale models. Most works require large-scale compute for trial and error, due to the lack of
784 a principled guideline for training schedule design based on the absolute data-fitting process.

785 **Scaling law study for diffusion model.** Model scaling behaviors are of great interest in deep
786 learning literature. In particular, the remarkable success of Large Language Models has been largely
787 credited to the establishment of scaling laws (Kaplan et al., 2020; Henighan et al., 2020; Hoffmann
788 et al., 2022), which help to predict the performance of models as they scale in parameters and data.
789 There also exist works that empirically investigate the scaling behavior of diffusion models (Peebles
790 and Xie, 2023; Li et al., 2024; Mei et al., 2025; Esser et al., 2024), and make attempts to explicitly
791 formulate scaling laws for diffusion transformers (Liang et al., 2024). However, training loss values
792 are typically used as the metric in these works, which are not corrected by the optimal loss to reflect
793 the true optimization gap, leading to biased analysis for scaling behaviors of diffusion models.

794 B DISCUSSIONS ON OPTIMAL LOSS ESTIMATION AND GENERALIZATION IN
795 DIFFUSION MODELS
796

797 We would like to emphasize that the motivation of estimating the optimal loss is *not* to optimize
798 the model to achieve the optimal loss on a dataset, but to fulfill the more fundamental need of
799 measuring the absolute fitness to a dataset. As an analogy, monitoring the supervision loss (e.g., the
800 mean squared error (MSE) between model prediction and data labels) does not mean to optimize
801 it to zero on the training set, but to evaluate the fitness to data. Particularly, one would use the
802 supervision loss on a test set to evaluate the performance, which is essentially to evaluate the fitness
803 to the test set. The specialty with diffusion loss is that its optimal value is unknown beforehand,
804 so the loss value does not readily reflect the absolute fitness to a dataset. Estimating the diffusion
805 optimal loss can hence provide a reference to interpret a real training loss value. This even enables
806 evaluating the generalization of a diffusion model using the loss value on a test set compared to
807 the optimal value on the dataset. This evaluation does not require the costly and tricky generation
808 process as is typically adopted.

809 For the design of the training schedule, we would like to mention that the design is not intended to
reduce the loss gap for every time step. As is shown in Fig. 3, there is a trade-off of loss optimization

810 at different time steps, where the loss gap in some time-step intervals is positively correlated to inference performance, while on some other intervals negatively correlated to inference performance.
 811 Therefore, the design of the training schedule is rather putting more emphasis on the positively
 812 correlated regions, even if this would sacrifice the loss in some other regions.
 813

815 C ALTERNATIVE FORMULATIONS OF DIFFUSION MODELS

817 Besides the *score prediction* target introduced in Sec. 2, diffusion models also adopt other prediction
 818 targets. The formulation of Eq. (2) motivates the *noise prediction* target (Ho et al., 2020). Let
 819 $\epsilon_\theta(\mathbf{x}_t, t) := -\sigma_t \mathbf{s}_\theta(\mathbf{x}_t, t)$, the the loss becomes

$$820 J(\theta) = \mathbb{E}_{p(t)} w_t^{(\epsilon)} \mathbb{E}_{p_0(\mathbf{x}_0)} \mathbb{E}_{p(\epsilon)} \|\epsilon_\theta(\alpha_t \mathbf{x}_0 + \sigma_t \epsilon, t) - \epsilon\|^2, \quad \text{where } w_t^{(\epsilon)} = w_t^{(s)} / \sigma_t^2.$$

821 This formulation poses a friendly, bounded-scale learning target and avoids the artifact at $t = 0$ of
 822 the denoising score matching loss. If formally solving \mathbf{x}_0 from Eq. (1) and let

$$824 \mathbf{x}_{0\theta}(\mathbf{x}_t, t) := \frac{\mathbf{x}_t - \sigma_t \epsilon_\theta(\mathbf{x}_t, t)}{\alpha_t} = \frac{\mathbf{x}_t + \sigma_t^2 \mathbf{s}_\theta(\mathbf{x}_t, t)}{\alpha_t},$$

826 then we get the total loss becomes $J(\theta) = \mathbb{E}_{p(t)} w_t^{(\mathbf{x}_0)} J_t^{(\mathbf{x}_0)}(\theta)$, where:

$$827 J_t^{(\mathbf{x}_0)}(\theta) := \mathbb{E}_{p(\mathbf{x}_0)} \mathbb{E}_{p(\epsilon)} \|\mathbf{x}_{0\theta}(\alpha_t \mathbf{x}_0 + \sigma_t \epsilon, t) - \mathbf{x}_0\|^2 = (\sigma_t^4 / \alpha_t^2) J_t^{(s)}(\theta), \quad w_t^{(\mathbf{x}_0)} = (\alpha_t^2 / \sigma_t^4) w_t^{(s)}.$$

828 It holds the semantics of *clean-data prediction* (Kingma et al., 2021; Karras et al., 2022), and can
 829 be viewed as denoising auto-encoders (Vincent et al., 2008; Alain and Bengio, 2014) with mul-
 830 tiple noise scales. From the equivalent deterministic process, one can also derive the *vector-field*
 831 *prediction* target by

$$832 \mathbf{v}_\theta(\mathbf{x}_t, t) := a_t \mathbf{x}_t - \frac{1}{2} g_t^2 \mathbf{s}_\theta(\mathbf{x}_t, t),$$

834 an the loss function becomes $J(\theta) = \mathbb{E}_{p(t)} w_t^{(\mathbf{v})} J_t^{(\mathbf{v})}(\theta)$, where

$$836 J_t^{(\mathbf{v})}(\theta) := \mathbb{E}_{p(\mathbf{x}_0)} \mathbb{E}_{p(\epsilon)} \|\mathbf{v}_\theta(\alpha_t \mathbf{x}_0 + \sigma_t \epsilon, t) - (\alpha_t' \mathbf{x}_0 + \sigma_t' \epsilon)\|^2, \quad w_t^{(\mathbf{v})} = (4/g_t^4) w_t^{(s)}.$$

837 It coincides with velocity prediction (Salimans and Ho, 2022) and the flow matching formula-
 838 tion (Lipman et al., 2023; Liu et al., 2023): $\mathbf{v} := \alpha_t' \mathbf{x}_0 + \sigma_t' \epsilon$ is the conditional vector field given
 839 \mathbf{x}_0 and ϵ (same distribution as \mathbf{x}_T). In particular, if we set $\alpha_t = 1 - t$, $\sigma_t = t$, $T = 1$, then
 840 $a_t = \frac{1}{t-1}$, $\frac{1}{2} g_t^2 = \frac{t}{1-t}$, and we have $\mathbf{v} = \epsilon - \mathbf{x}_0$, which corresponds to the Flow Matching (Lipman
 841 et al., 2023; Liu et al., 2023) formulation that is also widely used in generative modeling recently
 842 due to its simplicity.

843 D OPTIMAL SOLUTION OF DIFFUSION MODELS

844 In this section, we provide a detailed derivation of the optimal solution for diffusion models across
 845 various formulations. We demonstrate that in every case the models' learning targets are conditional
 846 expectations, as discussed in Sec. 3.1. To this end, we begin by introducing a useful lemma that
 847 outlines a key property of conditional expectations (Durrett, 2019).

848 **Lemma 3.** *Let \mathbf{x}, \mathbf{y} be random vectors. Then the optimal approximation of \mathbf{y} based on \mathbf{x} is*

$$849 \mathbf{f}^*(\mathbf{x}) = \arg \min_{\mathbf{f}: \mathbb{R}^d \rightarrow \mathbb{R}^d} \mathbb{E} \|\mathbf{y} - \mathbf{f}(\mathbf{x})\|^2 = \mathbb{E}[\mathbf{y}|\mathbf{x}].$$

850 **Proof.** We can compute $\mathbb{E} \|\mathbf{y} - \mathbf{f}(\mathbf{x})\|^2$ directly by

$$851 \mathbb{E} \|\mathbf{y} - \mathbf{f}(\mathbf{x})\|^2 = \mathbb{E} \|\mathbf{y} - \mathbb{E}[\mathbf{y}|\mathbf{x}] + \mathbb{E}[\mathbf{y}|\mathbf{x}] - \mathbf{f}(\mathbf{x})\|^2 \\ 852 = \mathbb{E} \|\mathbf{y} - \mathbb{E}[\mathbf{y}|\mathbf{x}]\|^2 + \mathbb{E} [\|\mathbb{E}[\mathbf{y}|\mathbf{x}] - \mathbf{f}(\mathbf{x})\|^2] + 2\mathbb{E} \langle \mathbf{y} - \mathbb{E}[\mathbf{y}|\mathbf{x}], \mathbb{E}[\mathbf{y}|\mathbf{x}] - \mathbf{f}(\mathbf{x}) \rangle.$$

853 Since

$$854 \mathbb{E} \langle \mathbf{y} - \mathbb{E}[\mathbf{y}|\mathbf{x}], \mathbb{E}[\mathbf{y}|\mathbf{x}] - \mathbf{f}(\mathbf{x}) \rangle = \mathbb{E} [\mathbb{E} \langle \mathbf{y} - \mathbb{E}[\mathbf{y}|\mathbf{x}], \mathbb{E}[\mathbf{y}|\mathbf{x}] - \mathbf{f}(\mathbf{x}) \rangle | \mathbf{x}] = 0,$$

855 we have the following decomposition:

$$856 \mathbb{E} \|\mathbf{y} - \mathbf{f}(\mathbf{x})\|^2 = \mathbb{E} \|\mathbf{y} - \mathbb{E}[\mathbf{y}|\mathbf{x}]\|^2 + \mathbb{E} [\|\mathbb{E}[\mathbf{y}|\mathbf{x}] - \mathbf{f}(\mathbf{x})\|^2].$$

857 Since $\mathbb{E} [\|\mathbb{E}[\mathbf{y}|\mathbf{x}] - \mathbf{f}(\mathbf{x})\|^2] \geq 0$, we have

$$858 \mathbb{E} \|\mathbf{y} - \mathbf{f}(\mathbf{x})\|^2 = \mathbb{E} \|\mathbf{y} - \mathbb{E}[\mathbf{y}|\mathbf{x}]\|^2 + \mathbb{E} [\|\mathbb{E}[\mathbf{y}|\mathbf{x}] - \mathbf{f}(\mathbf{x})\|^2]$$

$$\geq \mathbb{E}\|\mathbf{y} - \mathbb{E}[\mathbf{y}|\mathbf{x}]\|^2.$$

The inequality becomes equality if and only if $\mathbf{f}(\mathbf{x}) = \mathbb{E}[\mathbf{y}|\mathbf{x}]$. So the the optimal approximation of \mathbf{y} based on \mathbf{x} is $\mathbb{E}[\mathbf{y}|\mathbf{x}]$, i.e.

$$\mathbf{f}^*(\mathbf{x}) = \arg \min_{\mathbf{f}: \mathbb{R}^d \rightarrow \mathbb{R}^d} \mathbb{E}\|\mathbf{y} - \mathbf{f}(\mathbf{x})\|^2 = \mathbb{E}[\mathbf{y}|\mathbf{x}].$$

□

Score prediction target. The score prediction target of diffusion model is given by

$$J_t^{(\mathbf{s})}(\boldsymbol{\theta}) := \mathbb{E}_{p(t)} w_t^{(\mathbf{s})} \mathbb{E}_{p_0(\mathbf{x}_0)} \mathbb{E}_{p(\mathbf{x}_t|\mathbf{x}_0)} \|\mathbf{s}_{\boldsymbol{\theta}}(\mathbf{x}_t, t) - \nabla_{\mathbf{x}_t} \log p(\mathbf{x}_t | \mathbf{x}_0)\|^2.$$

Then by Lemma 3, for any t satisfying $w_t^{(\mathbf{s})} > 0$, the optimal solution of the network $\mathbf{s}_{\boldsymbol{\theta}}(\cdot, t) : \mathbb{R}^d \rightarrow \mathbb{R}^d$ is given by

$$\mathbf{s}_{\boldsymbol{\theta}}^*(\mathbf{x}_t, t) = \mathbb{E}_{p(\mathbf{x}_0|\mathbf{x}_t)} [\nabla_{\mathbf{x}_t} \log p(\mathbf{x}_t | \mathbf{x}_0)].$$

Noise prediction target. The noise prediction target of diffusion model is given by

$$J_t^{(\boldsymbol{\epsilon})}(\boldsymbol{\theta}) := \mathbb{E}_{p(t)} w_t^{(\boldsymbol{\epsilon})} \mathbb{E}_{p_0(\mathbf{x}_0)} \mathbb{E}_{p(\boldsymbol{\epsilon})} \|\boldsymbol{\epsilon}_{\boldsymbol{\theta}}(\alpha_t \mathbf{x}_0 + \sigma_t \boldsymbol{\epsilon}, t) - \boldsymbol{\epsilon}\|^2.$$

Then by Lemma 3, for any t satisfying $w_t^{(\boldsymbol{\epsilon})} > 0$, the optimal solution of the network $\boldsymbol{\epsilon}_{\boldsymbol{\theta}}(\cdot, t) : \mathbb{R}^d \rightarrow \mathbb{R}^d$ is given by

$$\boldsymbol{\epsilon}_{\boldsymbol{\theta}}^*(\mathbf{x}_t, t) = \mathbb{E}_{p(\boldsymbol{\epsilon}|\mathbf{x}_t)} [\boldsymbol{\epsilon}].$$

Clean-data prediction target. The clean-data prediction target of diffusion model is given by

$$J_t^{(\mathbf{x}_0)}(\boldsymbol{\theta}) := \mathbb{E}_{p(\mathbf{x}_0)} \mathbb{E}_{p(\boldsymbol{\epsilon})} \|\mathbf{x}_{0\boldsymbol{\theta}}(\alpha_t \mathbf{x}_0 + \sigma_t \boldsymbol{\epsilon}, t) - \mathbf{x}_0\|^2.$$

Then by Lemma 3, for any t satisfying $w_t^{(\mathbf{x}_0)} > 0$, the optimal solution of the network $\mathbf{x}_{0\boldsymbol{\theta}}(\cdot, t) : \mathbb{R}^d \rightarrow \mathbb{R}^d$ is given by

$$\mathbf{x}_{0\boldsymbol{\theta}}^*(\mathbf{x}_t, t) = \mathbb{E}_{p(\mathbf{x}_0|\mathbf{x}_t)} [\mathbf{x}_0].$$

Vector-field prediction target. The vector field prediction target of diffusion model is given by

$$J_t^{(\mathbf{v})}(\boldsymbol{\theta}) := \mathbb{E}_{p(\mathbf{x}_0)} \mathbb{E}_{p(\boldsymbol{\epsilon})} \|\mathbf{v}_{\boldsymbol{\theta}}(\alpha_t \mathbf{x}_0 + \sigma_t \boldsymbol{\epsilon}, t) - (\alpha'_t \mathbf{x}_0 + \sigma'_t \boldsymbol{\epsilon})\|^2.$$

Then by Lemma 3, for any t satisfying $w_t^{(\mathbf{v})} > 0$, the optimal solution of the network $\mathbf{v}_{\boldsymbol{\theta}}(\cdot, t) : \mathbb{R}^d \rightarrow \mathbb{R}^d$ is given by

$$\mathbf{v}_{\boldsymbol{\theta}}^*(\mathbf{x}_t, t) = \mathbb{E}_{p(\mathbf{x}_0, \boldsymbol{\epsilon}|\mathbf{x}_t)} [\alpha'_t \mathbf{x}_0 + \sigma'_t \boldsymbol{\epsilon}].$$

E DETAILS ON THE GENERAL DIFFUSION FORMULATION

In this section, we introduce the detailed conversion between different diffusion formulations. As we have mentioned in Sec. 3.4, we can convert previous schedules to EDM formulation. The training objective in EDM formulation is given by

$$J(\theta) = \mathbb{E}_{p(\sigma)} w_{\sigma} \mathbb{E}_{p(\mathbf{x}_0), p(\boldsymbol{\epsilon})} \|\mathbf{x}_{0\theta}(\mathbf{x}_0 + \sigma \boldsymbol{\epsilon}, \sigma) - \mathbf{x}_0\|^2,$$

where the denoiser has precondition $\mathbf{x}_{0\theta}(\mathbf{x}, \sigma) = c_{\sigma}^{\text{skip}} \mathbf{x} + c_{\sigma}^{\text{out}} \mathbf{F}_{\theta}(c_{\sigma}^{\text{in}} \mathbf{x}, c_{\sigma}^{\text{noise}})$.

E.1 CONVERT VP SCHEDULES TO EDM FORMULATION

DDPM (VP), $\boldsymbol{\epsilon}$ -pred training objective. The training objective in DDPM formulation (Ho et al., 2020; Song et al., 2021b) is given by

$$J_{\text{DDPM}}^{(\boldsymbol{\epsilon})} = \mathbb{E}_{p^{\text{DDPM}}(t)} \mathbb{E}_{p(\mathbf{x}_0), p(\boldsymbol{\epsilon})} \|\boldsymbol{\epsilon}_{\theta}(\alpha_t \mathbf{x}_0 + \sigma_t \boldsymbol{\epsilon}, (M-1)t) - \boldsymbol{\epsilon}\|^2,$$

where $M = 1000$, $p^{\text{DDPM}}(t) = \mathcal{U}(\varepsilon_t, 1)$, $\varepsilon_t = 10^{-5}$, and

$$\sigma_t = \sqrt{1 - \exp(-(\beta_0 t + \frac{1}{2}(\beta_{\max} - \beta_0)t^2))},$$

$$\alpha_t = \sqrt{1 - \sigma^2} = \exp(-(\beta_0 t + \frac{1}{2}(\beta_{\max} - \beta_0)t^2)).$$

918 The diffusion process satisfying $\alpha_t^2 + \sigma_t^2 = 1$ is also known as the variance preserving (VP) process.
 919 In order to convert the DDPM formulation to the EDM formulation, we should transform the
 920 diffusion process to VE. Dividing $\sqrt{1 - \sigma_t^2}$ in both side of the equation $\mathbf{x}_t = \sqrt{1 - \sigma_t^2} \mathbf{x}_0 + \sigma_t \boldsymbol{\epsilon}$,
 921 we have

$$\frac{\mathbf{x}_t}{\sqrt{1 - \sigma_t^2}} = \mathbf{x}_0 + \frac{\sigma_t}{\sqrt{1 - \sigma_t^2}} \boldsymbol{\epsilon}.$$

922 Let $\hat{\mathbf{x}}_t = \frac{\mathbf{x}_t}{\sqrt{1 - \sigma_t^2}}$, $\hat{\sigma}_t = \frac{\sigma_t}{\sqrt{1 - \sigma_t^2}}$, then $\hat{\mathbf{x}}_t = \mathbf{x}_0 + \hat{\sigma}_t \boldsymbol{\epsilon}$, i.e. $\hat{\mathbf{x}}_t$ is a VE process. The inverse transform
 923 is given by $\sigma_t = \frac{\hat{\sigma}_t}{\sqrt{1 + \hat{\sigma}_t^2}}$. Under this transformation, the training objective of DDPM becomes
 924

$$\begin{aligned} J_{\text{DDPM}}^{(\boldsymbol{\epsilon})} &= \mathbb{E}_{p^{\text{DDPM}}(t)} \mathbb{E}_{p(\mathbf{x}_0), p(\boldsymbol{\epsilon})} \left\| \boldsymbol{\epsilon}_\theta(\sqrt{1 - \sigma_t^2} \mathbf{x}_0 + \sigma_t \boldsymbol{\epsilon}, (M-1)t) - \boldsymbol{\epsilon} \right\|^2 \\ &= \mathbb{E}_{p^{\text{DDPM}}(t)} \mathbb{E}_{p(\mathbf{x}_0), p(\boldsymbol{\epsilon})} \left\| \boldsymbol{\epsilon}_\theta(\mathbf{x}_t, (M-1)t) - \frac{\mathbf{x}_t - \sqrt{1 - \sigma_t^2} \mathbf{x}_0}{\sigma_t} \right\|^2 \\ &= \mathbb{E}_{p^{\text{DDPM}}(t)} \mathbb{E}_{p(\mathbf{x}_0), p(\boldsymbol{\epsilon})} \left(\frac{1 - \sigma_t^2}{\sigma_t^2} \right) \left\| \frac{\mathbf{x}_t}{\sqrt{1 - \sigma_t^2}} - \frac{\sigma_t}{\sqrt{1 - \sigma_t^2}} \boldsymbol{\epsilon}_\theta(\mathbf{x}_t, (M-1)t) - \mathbf{x}_0 \right\|^2 \\ &= \mathbb{E}_{p^{\text{DDPM}}(t)} \mathbb{E}_{p(\mathbf{x}_0), p(\boldsymbol{\epsilon})} \frac{1}{\hat{\sigma}_t^2} \left\| \hat{\mathbf{x}}_t - \hat{\sigma}_t \boldsymbol{\epsilon}_\theta \left(\frac{\hat{\mathbf{x}}_t}{\sqrt{1 + \hat{\sigma}_t^2}}, (M-1)t \right) - \mathbf{x}_0 \right\|^2, \end{aligned}$$

925 where we use the relations $\hat{\mathbf{x}}_t = \frac{\mathbf{x}_t}{\sqrt{1 - \sigma_t^2}}$, $\sigma_t = \frac{\hat{\sigma}_t}{\sqrt{1 + \hat{\sigma}_t^2}}$ to get the last equation. Compare the training
 926 objective with the EDM's general training objective
 927

$$\begin{aligned} J_{\text{DDPM}}^{(\boldsymbol{\epsilon})} &= \mathbb{E}_{p^{\text{DDPM}}(\hat{\sigma})} w^{\text{DDPM}}(\hat{\sigma}) \mathbb{E}_{p(\mathbf{x}_0), p(\boldsymbol{\epsilon})} \|\mathbf{x}_{0\theta}(\mathbf{x}_0 + \hat{\sigma} \boldsymbol{\epsilon}, \hat{\sigma}) - \mathbf{x}_0\|^2, \\ \text{where } \mathbf{x}_{0\theta}(\mathbf{x}, \hat{\sigma}) &= c_{\text{skip}}^{\text{DDPM}}(\hat{\sigma}) \mathbf{x} + c_{\text{out}}^{\text{DDPM}}(\hat{\sigma}) \boldsymbol{\epsilon}_\theta(c_{\text{in}}^{\text{DDPM}}(\hat{\sigma}) \mathbf{x}, c_{\text{noise}}^{\text{DDPM}}(\hat{\sigma})). \end{aligned}$$

928 we get

$$\begin{aligned} c_{\text{skip}}^{\text{DDPM}}(\hat{\sigma}_t) &= 1, & c_{\text{out}}^{\text{DDPM}}(\hat{\sigma}_t) &= -\hat{\sigma}_t, \\ c_{\text{in}}^{\text{DDPM}}(\hat{\sigma}_t) &= \frac{1}{\sqrt{1 + \hat{\sigma}_t^2}}, & c_{\text{noise}}^{\text{DDPM}}(\hat{\sigma}_t) &= (M-1)t. \end{aligned}$$

929 And the training schedule is given by

$$\begin{aligned} w_{\hat{\sigma}}^{\text{DDPM}} &= \frac{1}{\hat{\sigma}^2}, \\ p^{\text{DDPM}}(\hat{\sigma}) &= \left(\frac{\sigma}{\sqrt{1 - \sigma^2}} \right)_{\#} \sigma_{t\#} \mathcal{U}(\varepsilon_t, 1). \end{aligned}$$

930 E.2 CONVERT VE SCHEDULES TO EDM FORMULATION

931 **Review of EDM, F-pred training objective.** EDM Karras et al. (2022) proposes the "unit
 932 variance principle" to derive the EDM precondition. Recall that the denoiser has precondition
 933 $\mathbf{x}_{0\theta}(\mathbf{x}, \sigma) = c_\sigma^{\text{skip}} \mathbf{x} + c_\sigma^{\text{out}} \mathbf{F}_\theta(c_\sigma^{\text{in}} \mathbf{x}, c_\sigma^{\text{noise}})$, where \mathbf{F}_θ is the neural network, then the effective training
 934 objective is given by

$$\begin{aligned} J_{\text{EDM}}^{(\mathbf{F})}(\theta) &= \mathbb{E}_{p^{\text{EDM}}(\sigma)} w^{\text{EDM}}(\sigma) \mathbb{E}_{p(\mathbf{x}_0), p(\boldsymbol{\epsilon})} \|\mathbf{x}_{0\theta}(\mathbf{x}_0 + \sigma \boldsymbol{\epsilon}, \sigma) - \mathbf{x}_0\|^2 \\ &= \mathbb{E}_{p^{\text{EDM}}(\sigma)} w^{\text{EDM}}(\sigma) c_\sigma^{\text{out}} \mathbb{E}_{p(\mathbf{x}_0), p(\boldsymbol{\epsilon})} \|\mathbf{F}_\theta(c_\sigma^{\text{in}} \mathbf{x}_\sigma, c_\sigma^{\text{noise}}) - \frac{\mathbf{x}_0 - c_\sigma^{\text{skip}} \mathbf{x}_\sigma}{c_\sigma^{\text{out}}} \|^2, \end{aligned}$$

935 where $\mathbf{x}_\sigma = \mathbf{x}_0 + \sigma \boldsymbol{\epsilon}$. The unit variance principle is given by

$$\begin{aligned} \text{Var}(c_\sigma^{\text{in}} \mathbf{x}_\sigma) &= 1, \\ \text{Var} \left(\frac{\mathbf{x}_0 - c_\sigma^{\text{skip}} \mathbf{x}_\sigma}{c_\sigma^{\text{out}}} \right) &= 1, \\ w^{\text{EDM}}(\sigma) c_\sigma^{\text{out}} &= 1. \end{aligned}$$

972 Then we get the explicit expression of the precondition as follows:
 973

$$974 \quad c_{\text{skip}}^{\text{EDM}}(\sigma) = \frac{\sigma_{\text{data}}^2}{\sigma^2 + \sigma_{\text{data}}^2}, \quad c_{\text{out}}^{\text{EDM}}(\sigma) = \frac{\sigma \cdot \sigma_{\text{data}}}{\sqrt{\sigma^2 + \sigma_{\text{data}}^2}},
 975
 976 \quad c_{\text{in}}^{\text{EDM}}(\sigma) = \frac{1}{\sqrt{\sigma^2 + \sigma_{\text{data}}^2}}, \quad c_{\text{noise}}^{\text{EDM}}(\sigma) = \frac{1}{4} \ln \sigma.
 977$$

978 And the training schedule is given by
 979

$$980 \quad w_{\sigma}^{\text{EDM}} = \frac{\sigma^2 + \sigma_{\text{data}}^2}{(\sigma \cdot \sigma_{\text{data}})^2},
 981
 982 \quad p^{\text{EDM}}(\sigma) = \exp_{\#} \mathcal{N}(P_{\text{mean}}, P_{\text{std}}^2).
 983$$

984 (Lu and Song, 2024) shows that when $\sigma_t = \sin(\frac{\pi}{2}t)$, the EDM training objective is equivalent to
 985 v-pred of VP process.
 986

987 **NCSN (VE), ϵ -pred training objective.** The training objective in NCSN(VE) formulation (Song
 988 et al., 2021b) is given by
 989

$$989 \quad J_{\text{NCSN}}^{(\epsilon)} = \mathbb{E}_{p^{\text{NCSN}}(\sigma)} \mathbb{E}_{p(\mathbf{x}_0), p(\epsilon)} \left\| \epsilon_{\theta} \left(\mathbf{x}_0 + \sigma \epsilon, \ln \left(\frac{\sigma}{2} \right) \right) + \epsilon \right\|^2,$$

990 where $p^{\text{NCSN}}(\sigma) = \exp_{\#} \mathcal{U}(\ln \sigma_{\min}, \ln \sigma_{\max})$, i.e. $\ln \sigma \sim \mathcal{U}(\ln \sigma_{\min}, \ln \sigma_{\max})$. Then we can convert it
 991 to the EDM formulation:
 992

$$993 \quad J_{\text{NCSN}}^{(\epsilon)} = \mathbb{E}_{p^{\text{NCSN}}(\sigma)} \mathbb{E}_{p(\mathbf{x}_0), p(\epsilon)} \left\| \epsilon_{\theta} \left(\mathbf{x}_0 + \sigma \epsilon, \ln \left(\frac{\sigma}{2} \right) \right) + \epsilon \right\|^2
 994
 995 \quad = \mathbb{E}_{p^{\text{NCSN}}(\sigma)} \mathbb{E}_{p(\mathbf{x}_0), p(\epsilon)} \left\| \epsilon_{\theta} \left(\mathbf{x}_0 + \sigma \epsilon, \ln \left(\frac{\sigma}{2} \right) \right) + \frac{\mathbf{x}_{\sigma} - \mathbf{x}_0}{\sigma} \right\|^2
 996
 997 \quad = \mathbb{E}_{p^{\text{NCSN}}(\sigma)} \mathbb{E}_{p(\mathbf{x}_0), p(\epsilon)} \frac{1}{\sigma^2} \left\| \mathbf{x}_{\sigma} + \sigma \epsilon_{\theta} \left(\mathbf{x}_0 + \sigma \epsilon, \ln \left(\frac{\sigma}{2} \right) \right) - \mathbf{x}_0 \right\|^2.
 998$$

999 Then we get the explicit expression of the precondition as follows:
 1000

$$1001 \quad c_{\text{skip}}^{\text{NCSN}}(\sigma) = 1, \quad c_{\text{out}}^{\text{NCSN}}(\sigma) = \sigma,
 1002 \quad c_{\text{in}}^{\text{NCSN}}(\sigma) = 1, \quad c_{\text{noise}}^{\text{NCSN}}(\sigma) = \ln \left(\frac{\sigma}{2} \right).
 1003$$

1004 And the training schedule is given by
 1005

$$1005 \quad w_{\sigma}^{\text{NCSN}} = \frac{1}{\sigma^2},
 1006
 1007 \quad p^{\text{NCSN}}(\sigma) = \exp_{\#} \mathcal{U}(\ln \sigma_{\min}, \ln \sigma_{\max}).
 1008$$

1009 E.3 CONVERT FLOW MATCHING SCHEDULES TO EDM FORMULATION

1010 **Flow Matching, v-pred training objective.** In original Flow Matching paper Lipman et al.
 1011 (2023), $p_t(\mathbf{x}_t)$ is the noise distribution when $t = 0$ and becomes the data distribution when $t = 1$.
 1012 To align with the time line of diffusion models, we revert the original Flow Matching construction,
 1013 i.e. $p_t(\mathbf{x}_t)$ is the data distribution when $t = 0$ and becomes the noise distribution when $t = 1$. Then
 1014 the training objective in the Flow Matching formulation is given by
 1015

$$1016 \quad J_{\text{FM}}^{(\mathbf{v})}(\theta) = \mathbb{E}_{p^{\text{FM}}(t)} \mathbb{E}_{p(\mathbf{x}_0), p(\epsilon)} \left\| \mathbf{v}_{\theta}(\alpha_t \mathbf{x}_0 + \sigma_t \epsilon, t) - (\epsilon - \mathbf{x}_0) \right\|^2,$$

1017 where $\alpha_t = 1 - t$, $\sigma_t = t$, $p^{\text{FM}}(t) = \mathcal{U}(0, 1)$. In order to convert the Flow Matching formulation to
 1018 the EDM formulation, we should transform the flow matching diffusion process to the VE diffusion
 1019 process. Dividing $(1 - \sigma_t)$ in both side of the equation $\mathbf{x}_t = (1 - \sigma_t) \mathbf{x}_0 + \sigma_t \epsilon$, we have
 1020

$$1021 \quad \frac{\mathbf{x}_t}{1 - \sigma_t} = \mathbf{x}_0 + \frac{\sigma_t}{1 - \sigma_t} \epsilon.$$

1022 Let $\hat{\mathbf{x}}_t = \frac{\mathbf{x}_t}{1 - \sigma_t}$, $\hat{\sigma}_t = \frac{\sigma_t}{1 - \sigma_t}$, then $\hat{\mathbf{x}}_t$ satisfies $\hat{\mathbf{x}}_t = \mathbf{x}_0 + \hat{\sigma}_t \epsilon$, i.e. $\hat{\mathbf{x}}_t$ is a VE process. The inverse
 1023 transform is given by $\sigma_t = \frac{\hat{\sigma}_t}{1 + \hat{\sigma}_t}$. Under this transformation, the training objective of Flow Matching
 1024 becomes
 1025

$$J_{\text{FM}}^{(\mathbf{v})}(\theta) = \mathbb{E}_{p^{\text{FM}}(\sigma_t)} \mathbb{E}_{p(\mathbf{x}_0), p(\epsilon)} \left\| \mathbf{v}_{\theta}(\mathbf{x}_t, \sigma_t) - (\epsilon - \mathbf{x}_0) \right\|^2$$

$$\begin{aligned}
&= \mathbb{E}_{p^{\text{FM}}(\sigma_t)} \mathbb{E}_{p(\mathbf{x}_0), p(\epsilon)} \left\| \mathbf{v}_\theta(\mathbf{x}_t, \sigma_t) - \frac{\mathbf{x}_t - \mathbf{x}_0}{\sigma_t} \right\|^2 \\
&= \mathbb{E}_{p^{\text{FM}}(\sigma_t)} \mathbb{E}_{p(\mathbf{x}_0), p(\epsilon)} \frac{1}{\sigma_t^2} \left\| \mathbf{x}_t - \sigma_t \mathbf{v}_\theta(\mathbf{x}_t, \sigma_t) - \mathbf{x}_0 \right\|^2 \\
&= \mathbb{E}_{p^{\text{FM}}(\hat{\sigma})} \mathbb{E}_{p(\mathbf{x}_0), p(\epsilon)} \left(\frac{1 + \hat{\sigma}_t}{\hat{\sigma}_t} \right)^2 \left\| \frac{\hat{\mathbf{x}}_t}{1 + \hat{\sigma}_t} - \frac{\hat{\sigma}_t}{1 + \hat{\sigma}_t} \mathbf{v}_\theta \left(\frac{\hat{\mathbf{x}}_t}{1 + \hat{\sigma}_t}, \frac{\hat{\sigma}_t}{1 + \hat{\sigma}_t} \right) - \mathbf{x}_0 \right\|^2,
\end{aligned}$$

where we use the relations $\hat{\mathbf{x}}_t = \frac{\mathbf{x}_t}{1 - \sigma_t}$, $\sigma_t = \frac{\hat{\sigma}_t}{1 + \hat{\sigma}_t}$ to get the last equation. Compare the training objective with the EDM's general training objective

$$J(\theta) = \mathbb{E}_{p(\sigma)} w_\sigma \mathbb{E}_{p(\mathbf{x}_0), p(\epsilon)} \left\| \mathbf{x}_{0\theta}(\mathbf{x}_0 + \sigma \epsilon, \sigma) - \mathbf{x}_0 \right\|^2,$$

we get

$$\begin{aligned}
c_{\text{skip}}^{\text{FM}}(\hat{\sigma}) &= \frac{1}{1 + \hat{\sigma}}, & c_{\text{out}}^{\text{FM}}(\hat{\sigma}) &= -\frac{\hat{\sigma}}{1 + \hat{\sigma}}, \\
c_{\text{in}}^{\text{FM}}(\hat{\sigma}) &= \frac{1}{1 + \hat{\sigma}}, & c_{\text{noise}}^{\text{FM}}(\hat{\sigma}) &= \frac{\hat{\sigma}}{1 + \hat{\sigma}}.
\end{aligned}$$

And the training schedule is given by

$$\begin{aligned}
w_{\hat{\sigma}}^{\text{FM}} &= \frac{(1 + \hat{\sigma})^2}{\hat{\sigma}^2}, \\
p^{\text{FM}}(\hat{\sigma}) &= \left(\frac{\sigma}{1 - \sigma} \right) \# \mathcal{U}(0, 1).
\end{aligned}$$

Stable Diffusion 3, v-pred training objective. The Stable Diffusion 3 framework [Esser et al. \(2024\)](#) also uses the Flow Matching (Rectified Flow) diffusion process and constructs v-pred training objective. The difference is that SD3 proposes the logit-normal noise schedule, i.e.

$$p_{\text{ln}}(t; m, s) = \frac{1}{s\sqrt{2\pi}} \frac{1}{t(1-t)} \exp \left(-\frac{(\log \frac{t}{1-t} - m)^2}{2s^2} \right).$$

[\(Esser et al., 2024\)](#) shows that $m = 0, s = 1$ consistently achieves good performance. Let $p^{\text{SD3}}(t) = p_{\text{ln}}(t; 0, 1)$. Then the SD3 training objective is given by

$$J_{\text{SD3}}^{(\mathbf{v})}(\theta) = \mathbb{E}_{p^{\text{SD3}}(t)} \mathbb{E}_{p(\mathbf{x}_0), p(\epsilon)} \left\| \mathbf{v}_\theta(\alpha_t \mathbf{x}_0 + \sigma_t \epsilon, t) - (\epsilon - \mathbf{x}_0) \right\|^2.$$

It's obvious that the SD3 objective has the same precondition with FM, i.e.

$$\begin{aligned}
c_{\text{skip}}^{\text{SD3}}(\hat{\sigma}) &= \frac{1}{1 + \hat{\sigma}}, & c_{\text{out}}^{\text{SD3}}(\hat{\sigma}) &= -\frac{\hat{\sigma}}{1 + \hat{\sigma}}, \\
c_{\text{in}}^{\text{SD3}}(\hat{\sigma}) &= \frac{1}{1 + \hat{\sigma}}, & c_{\text{noise}}^{\text{SD3}}(\hat{\sigma}) &= \frac{\hat{\sigma}}{1 + \hat{\sigma}}.
\end{aligned}$$

Since $\hat{\sigma}_t = \frac{\sigma_t}{1 - \sigma_t} = \frac{t}{1 - t} = \text{logit}(t)$, then $p^{\text{SD3}}(\hat{\sigma}_t) = \mathcal{N}(0, 1)$. So the training schedule is given by

$$\begin{aligned}
w_{\hat{\sigma}}^{\text{SD3}} &= \frac{(1 + \hat{\sigma})^2}{\hat{\sigma}^2}, \\
p^{\text{SD3}}(\hat{\sigma}) &= \exp_{\#} \mathcal{N}(0, 1).
\end{aligned}$$

F PROOFS

F.1 PROOF FOR THEOREM 1

Theorem 4. *The optimal loss value for clean-data prediction defined in Eq. (4) is:*

$$J_t^{(\mathbf{x}_0)*} = \underbrace{\mathbb{E}_{p(\mathbf{x}_0)} \|\mathbf{x}_0\|^2}_{=:A} - \underbrace{\mathbb{E}_{p(\mathbf{x}_t)} \|\mathbb{E}_{p(\mathbf{x}_0|\mathbf{x}_t)}[\mathbf{x}_0]\|^2}_{=:B_t}, \quad J^* = \mathbb{E}_{p(t)} w_t^{(\mathbf{x}_0)} J_t^{(\mathbf{x}_0)*}.$$

Proof. According to Appx. D, the optimal solution of the network for clean-data prediction is given by $\mathbf{x}_{0\theta}(\mathbf{x}_t, t) = \mathbb{E}[\mathbf{x}_0 | \mathbf{x}_t]$, where $\mathbf{x}_t = \alpha_t \mathbf{x}_0 + \sigma_t \epsilon$. And the objective is minimized if and only if $\mathbf{x}_{0\theta}(\mathbf{x}_t, t) = \mathbb{E}[\mathbf{x}_0 | \mathbf{x}_t]$, and the optimal loss value is given by $\mathbb{E}_{p(\mathbf{x}_0), p(\epsilon)} \|\mathbb{E}[\mathbf{x}_0 | \mathbf{x}_t] - \mathbf{x}_0\|^2$. So

1080 we have

$$\begin{aligned} J_t^{(\mathbf{x}_0)*} &= \mathbb{E}_{p(\mathbf{x}_0), p(\epsilon)} \|\mathbb{E}[\mathbf{x}_0 \mid \mathbf{x}_t] - \mathbf{x}_0\|^2 \\ &= \mathbb{E}_{p(\mathbf{x}_0)} \|\mathbf{x}_0\|^2 - \mathbb{E}_{p(\mathbf{x}_t)} \|\mathbb{E}_{p(\mathbf{x}_0 \mid \mathbf{x}_t)}[\mathbf{x}_0]\|^2, \end{aligned}$$

1085 and $J^* = \mathbb{E}_{p(t)} w_t^{(\mathbf{x}_0)} J_t^{(\mathbf{x}_0)*}$. □

1086 F.2 PROOF FOR THEOREM 2

1088 The following theorem is a detailed version of Theorem 2.

1089 **Theorem 5.** For a given a subset $\{\mathbf{x}_0^{(l)}\}_{l=1}^L$, the \hat{B}_t^{cDOL} estimator given in Eq. (11) converges a.s. to the following expression as $M \rightarrow \infty$:

$$\hat{B}_t^{\text{cDOL}} \rightarrow \mathbb{E}_{p(\epsilon)} \left[\frac{1}{L} \sum_{i=1}^L \left\| \frac{\sum_{l \neq i}^L \mathbf{x}_0^{(l)} K_t(\alpha_t \mathbf{x}_0^{(i)} + \sigma_t \epsilon, \mathbf{x}_0^{(l)}) + \frac{1}{C} \mathbf{x}_0^{(i)} K_t(\alpha_t \mathbf{x}_0^{(i)} + \sigma_t \epsilon, \mathbf{x}_0^{(i)})}{\sum_{l \neq i}^L K_t(\alpha_t \mathbf{x}_0^{(i)} + \sigma_t \epsilon, \mathbf{x}_0^{(l)}) + \frac{1}{C} K_t(\alpha_t \mathbf{x}_0^{(i)} + \sigma_t \epsilon, \mathbf{x}_0^{(i)})} \right\|^2 \right].$$

1097 So \hat{B}_t^{cDOL} is a consistent estimator, $\forall C > 0$. Furthermore, the \hat{B}_t^{cDOL} estimator with subset size L has the same expectation as the SNIS estimator \hat{B}_t^{SNIS} with subset size $L - 1$ when $M \rightarrow \infty, C \rightarrow \infty$.

1100 **Proof.** The cDOL estimator is given by

$$\hat{B}_t^{\text{cDOL}} = \frac{1}{M} \sum_{\tilde{m}=1}^M X_{\tilde{m}}, \quad \text{where } X_{\tilde{m}} := \left\| \frac{\sum_{\substack{l=1, \\ l \neq \tilde{m}}}^L \mathbf{x}_0^{(l)} K_t(\mathbf{x}_t^{(\tilde{m})}, \mathbf{x}_0^{(l)}) + \frac{1}{C} \mathbf{x}_0^{(\tilde{m})} K_t(\mathbf{x}_t^{(\tilde{m})}, \mathbf{x}_0^{(\tilde{m})})}{\sum_{\substack{l'=1, \\ l' \neq \tilde{m}}}^L K_t(\mathbf{x}_t^{(\tilde{m})}, \mathbf{x}_0^{(l')}) + \frac{1}{C} K_t(\mathbf{x}_t^{(\tilde{m})}, \mathbf{x}_0^{(\tilde{m})})} \right\|^2.$$

1109 Given a subset $\{\mathbf{x}_0^{(l)}\}_{l=1}^L$, since $\{\mathbf{x}_0^{(l)}\}_{l=1}^M$ and $\{\epsilon_{\tilde{m}}\}_{\tilde{m}=1}^M$ are i.i.d. respectively, so $\{\mathbf{x}_{\tilde{m}} = \alpha_t \mathbf{x}_0^{l_{\tilde{m}}} + \sigma_t \epsilon_{\tilde{m}}\}_{\tilde{m}=1}^M$ are i.i.d. random vectors. Then $\{X_{\tilde{m}}\}_{\tilde{m}=1}^M$ are i.i.d. random variables. By the strong 1111 law of large number (Durrett, 2019), the estimator \hat{B}_t^{cDOL} converges almost surely to the following 1112 expression as $M \rightarrow \infty$:

$$\begin{aligned} \hat{B}_t^{\text{cDOL}} &\xrightarrow{M \rightarrow \infty, \text{a.s.}} \mathbb{E}X = \mathbb{E}_{\tilde{l}, \epsilon} \left[\frac{\sum_{\substack{l=1, \\ l \neq \tilde{l}}}^L \mathbf{x}_0^{(l)} K_t(\alpha_t \mathbf{x}_0^{(\tilde{l})} + \sigma_t \epsilon, \mathbf{x}_0^{(l)}) + \frac{1}{C} \mathbf{x}_0^{(\tilde{l})} K_t(\alpha_t \mathbf{x}_0^{(\tilde{l})} + \sigma_t \epsilon, \mathbf{x}_0^{(\tilde{l})})}{\sum_{\substack{l'=1, \\ l' \neq \tilde{l}}}^L K_t(\alpha_t \mathbf{x}_0^{(\tilde{l})} + \sigma_t \epsilon, \mathbf{x}_0^{(l')}) + \frac{1}{C} K_t(\alpha_t \mathbf{x}_0^{(\tilde{l})} + \sigma_t \epsilon, \mathbf{x}_0^{(\tilde{l})})} \right]^2 \\ &= \mathbb{E}_{\epsilon} \left[\frac{1}{L} \sum_{i=1}^L \left\| \frac{\sum_{\substack{l=1, \\ l \neq i}}^L \mathbf{x}_0^{(l)} K_t(\alpha_t \mathbf{x}_0^{(i)} + \sigma_t \epsilon, \mathbf{x}_0^{(l)}) + \frac{1}{C} \mathbf{x}_0^{(i)} K_t(\alpha_t \mathbf{x}_0^{(i)} + \sigma_t \epsilon, \mathbf{x}_0^{(i)})}{\sum_{\substack{l'=1, \\ l' \neq i}}^L K_t(\alpha_t \mathbf{x}_0^{(i)} + \sigma_t \epsilon, \mathbf{x}_0^{(l')}) + \frac{1}{C} K_t(\alpha_t \mathbf{x}_0^{(i)} + \sigma_t \epsilon, \mathbf{x}_0^{(i)})} \right\|^2 \right]. \end{aligned}$$

1126 This completes the first statement. Since

$$\begin{aligned} \frac{1}{L-1} \sum_{\substack{l=1, \\ l \neq l_{\tilde{m}}}}^L \mathbf{x}_0^{(l)} K_t(\mathbf{x}_t^{(\tilde{m})}, \mathbf{x}_0^{(l)}) &\xrightarrow{L \rightarrow \infty, \text{a.s.}} \mathbb{E}_{p(\mathbf{x}_0)} [\mathbf{x}_0 K_t(\mathbf{x}_t^{(\tilde{m})}, \mathbf{x}_0)], \\ \frac{1}{L-1} \sum_{\substack{l=1, \\ l \neq l_{\tilde{m}}}}^L K_t(\mathbf{x}_t^{(\tilde{m})}, \mathbf{x}_0^{(l)}) &\xrightarrow{L \rightarrow \infty, \text{a.s.}} \mathbb{E}_{p(\mathbf{x}_0)} [K_t(\mathbf{x}_t^{(\tilde{m})}, \mathbf{x}_0)], \forall \tilde{m}, \end{aligned}$$

$$\frac{1}{C(L-1)} \mathbf{x}_0^{(i)} K_t(\alpha_t \mathbf{x}_0^{(i)} + \sigma_t \boldsymbol{\epsilon}, \mathbf{x}_0^{(i)}) \xrightarrow{L \rightarrow \infty, \text{a.s.}} 0,$$

$$\frac{1}{C(L-1)} K_t(\alpha_t \mathbf{x}_0^{(i)} + \sigma_t \boldsymbol{\epsilon}, \mathbf{x}_0^{(i)}) \xrightarrow{L \rightarrow \infty, \text{a.s.}} 0,$$

1139 then $X_{\tilde{m}} \xrightarrow{L \rightarrow \infty, \text{a.s.}} \mathbb{E}_{p(\mathbf{x}_0 | \mathbf{x}_t^{(\tilde{m})})} [\mathbf{x}_0] = \frac{\mathbb{E}_{p(\mathbf{x}_0)} [\mathbf{x}_0 K_t(\mathbf{x}_t^{(\tilde{m})}, \mathbf{x}_0)]}{\mathbb{E}_{p(\mathbf{x}_0)} [K_t(\mathbf{x}_t^{(\tilde{m})}, \mathbf{x}_0)]}$. So we have

$$1141 \hat{B}_t^{\text{cDOL}} \xrightarrow{M, L \rightarrow \infty, \text{a.s.}} \mathbb{E}_{p(\mathbf{x}_t)} \left\| \mathbb{E}_{p(\mathbf{x}_0 | \mathbf{x}_t)} [\mathbf{x}_0] \right\|^2, \quad \forall C > 0.$$

1143 Hence, $\hat{B}_t^{\text{cDOL}} \xrightarrow{M, L \rightarrow \infty, \mathbb{P}} \mathbb{E}_{p(\mathbf{x}_t)} \left\| \mathbb{E}_{p(\mathbf{x}_0 | \mathbf{x}_t)} [\mathbf{x}_0] \right\|^2, \forall C > 0$, i.e. \hat{B}_t^{cDOL} is consistent.

1144 The SNIS estimator with subset size $L-1$ is given by

$$1146 \hat{B}_t^{\text{SNIS}} := \frac{1}{M} \sum_{m=1}^M Y_m, \quad \text{where } Y_m := \left\| \frac{\sum_{l=1}^{L-1} \mathbf{x}_0^{(l)} K_t(\mathbf{x}_t^{(m)}, \mathbf{x}_0^{(l)})}{\sum_{l'=1}^{L-1} K_t(\mathbf{x}_t^{(m)}, \mathbf{x}_0^{(l')})} \right\|^2.$$

1149 Notice that $\{\mathbf{x}_t^{(m)}\}_{m=1}^M$ are i.i.d. random vectors, so $\{Y_m\}_{m=1}^M$ are i.i.d. random variables. So by
1150 the strong law of large number, \hat{B}_t^{SNIS} converges to the following expressions almost surely:

$$1152 \hat{B}_t^{\text{SNIS}} \xrightarrow{M \rightarrow \infty, \text{a.s.}} \mathbb{E} Y = \mathbb{E}_{\mathbf{x}_t} \left\| \frac{\sum_{l=1}^{L-1} \mathbf{x}_0^{(l)} K_t(\mathbf{x}_t, \mathbf{x}_0^{(l)})}{\sum_{l'=1}^{L-1} K_t(\mathbf{x}_t, \mathbf{x}_0^{(l')})} \right\|^2.$$

1154 Next, we take the expectation of the subset for the cDOL and the SNIS estimator, respectively. Since
1155 $\{\mathbf{x}_0^{(l)}\}_{l=1}^L$ are i.i.d. random vectors, the expectation of the cDOL can be simplified as:

$$\begin{aligned} 1158 \mathbb{E}_{\{\mathbf{x}_0^{(l)}\}_{l=1}^L} \hat{B}_t^{\text{cDOL}} &= \mathbb{E}_{\boldsymbol{\epsilon}, \{\mathbf{x}_0^{(l)}\}_{l=1}^L} \frac{1}{L} \sum_{i=1}^L \left\| \frac{\sum_{\substack{l=1 \\ l \neq i}}^L \mathbf{x}_0^{(l)} K_t(\alpha_t \mathbf{x}_0^{(i)} + \sigma_t \boldsymbol{\epsilon}, \mathbf{x}_0^{(l)}) + \frac{1}{C} \mathbf{x}_0^{(i)} K_t(\alpha_t \mathbf{x}_0^{(i)} + \sigma_t \boldsymbol{\epsilon}, \mathbf{x}_0^{(i)})}{\sum_{\substack{l'=1 \\ l' \neq i}}^L K_t(\alpha_t \mathbf{x}_0^{(i)} + \sigma_t \boldsymbol{\epsilon}, \mathbf{x}_0^{(l')}) + \frac{1}{C} K_t(\alpha_t \mathbf{x}_0^{(i)} + \sigma_t \boldsymbol{\epsilon}, \mathbf{x}_0^{(i)})} \right\|^2 \\ 1165 &= \mathbb{E}_{\boldsymbol{\epsilon}, \{\mathbf{x}_0^{(l)}\}_{l=1}^{L-1}, \mathbf{x}_0^{(L)}} \left\| \frac{\sum_{l=1}^{L-1} \mathbf{x}_0^{(l)} K_t(\alpha_t \mathbf{x}_0^{(L)} + \sigma_t \boldsymbol{\epsilon}, \mathbf{x}_0^{(l)}) + \frac{1}{C} \mathbf{x}_0^{(L)} K_t(\alpha_t \mathbf{x}_0^{(L)} + \sigma_t \boldsymbol{\epsilon}, \mathbf{x}_0^{(L)})}{\sum_{l'=1}^{L-1} K_t(\alpha_t \mathbf{x}_0^{(L)} + \sigma_t \boldsymbol{\epsilon}, \mathbf{x}_0^{(l')}) + \frac{1}{C} K_t(\alpha_t \mathbf{x}_0^{(L)} + \sigma_t \boldsymbol{\epsilon}, \mathbf{x}_0^{(L)})} \right\|^2. \end{aligned}$$

1169 Notice that $\mathbf{x}_t = \alpha_t \mathbf{x}_0 + \sigma_t \boldsymbol{\epsilon}$, so when $C \rightarrow \infty$:

$$\begin{aligned} 1171 \mathbb{E}_{\{\mathbf{x}_0^{(l)}\}_{l=1}^L} \hat{B}_t^{\text{cDOL}} &\xrightarrow{C \rightarrow \infty} \mathbb{E}_{\boldsymbol{\epsilon}, \mathbf{x}_0^{(L)}, \{\mathbf{x}_0^{(l)}\}_{l=1}^{L-1}} \left\| \frac{\sum_{l=1}^{L-1} \mathbf{x}_0^{(l)} K_t(\alpha_t \mathbf{x}_0^{(L)} + \sigma_t \boldsymbol{\epsilon}, \mathbf{x}_0^{(l)})}{\sum_{l'=1}^{L-1} K_t(\alpha_t \mathbf{x}_0^{(L)} + \sigma_t \boldsymbol{\epsilon}, \mathbf{x}_0^{(l')})} \right\|^2 \\ 1176 &= \mathbb{E}_{\mathbf{x}_t, \{\mathbf{x}_0^{(l)}\}_{l=1}^{L-1}} \left\| \frac{\sum_{l=1}^{L-1} \mathbf{x}_0^{(l)} K_t(\mathbf{x}_t, \mathbf{x}_0^{(l)})}{\sum_{l'=1}^{L-1} K_t(\mathbf{x}_t, \mathbf{x}_0^{(l')})} \right\|^2. \end{aligned}$$

1179 The expectation of the SNIS estimator is given by

$$1180 \mathbb{E}_{\{\mathbf{x}_0^{(l)}\}_{l=1}^L} \hat{B}_t^{\text{SNIS}} = \mathbb{E}_{\{\mathbf{x}_0^l\}_{l=1}^{L-1}} \mathbb{E}_{\mathbf{x}_t} Y = \mathbb{E}_{\mathbf{x}_t, \{\mathbf{x}_0^{(l)}\}_{l=1}^{L-1}} \left\| \frac{\sum_{l \in [L-1]} \mathbf{x}_0^{(l)} K_t(\mathbf{x}_t, \mathbf{x}_0^{(l)})}{\sum_{l' \in [L-1]} K_t(\mathbf{x}_t, \mathbf{x}_0^{(l')})} \right\|^2.$$

1183 So we can conclude that the \hat{B}_t^{cDOL} estimator with subset size L has the same expectation as the
1184 SNIS estimator \hat{B}_t^{SNIS} with subset size $L-1$ when $M \rightarrow \infty, C \rightarrow \infty$. \square

1188 **G BACKGROUND ON IMPORTANCE SAMPLING**

1190 Assume \mathbf{x} is a random variable, $\mathbf{f} : \mathbb{R}^d \rightarrow \mathbb{R}^d$ is a vector value function. Our goal is to estimate the
 1191 expectation of $\mathbf{f}(\mathbf{x})$ under a given probability density function $\pi(\mathbf{x})$, that is,

1192
$$\mathbf{I} = \int \mathbf{f}(\mathbf{x})\pi(\mathbf{x})d\mathbf{x}.$$

1193 However, if $\mathbf{f}(\mathbf{x})$ is significant primarily in regions where $\pi(\mathbf{x})$ is low, the standard Monte Carlo
 1194 estimator may provide poor accuracy due to infrequent sampling of these regions—an issue often
 1195 referred to as the rare event problem. Importance sampling is designed to address this challenge.
 1196

1197 Note that

1198
$$\mathbf{I} = \int \mathbf{f}(\mathbf{x})\frac{\pi(\mathbf{x})}{q(\mathbf{x})}q(\mathbf{x})d\mathbf{x} = \int \mathbf{f}(\mathbf{x})w(\mathbf{x})q(\mathbf{x})d\mathbf{x},$$

1199 where $w(\mathbf{x}) = \frac{\pi(\mathbf{x})}{q(\mathbf{x})}$ is the weight function and $q(\mathbf{x})$ is the probability density function of the pro-
 1200 posal distribution. The importance sampling estimator is therefore given by
 1201

1202
$$\hat{\mathbf{I}}_{\text{IS}} = \frac{1}{N} \sum_{i=1}^N \mathbf{f}(\mathbf{x}_i)w(\mathbf{x}_i), \quad \mathbf{x}_i \stackrel{\text{i.i.d.}}{\sim} q(\mathbf{x}).$$

1203 The IS estimator is a powerful tool when both $\pi(x)$ and $q(x)$ are known exactly. However, when the
 1204 densities are only known up to a normalizing constant (i.e., we can access only $\hat{\pi}(\mathbf{x}) = \frac{\pi(\mathbf{x})}{Z_\pi}$ and
 1205 $\hat{q}(\mathbf{x}) = \frac{q(\mathbf{x})}{Z_q}$), the standard importance sampling estimator cannot be applied directly. In this case,
 1206 self-normalized importance sampling (SNIS) is used. Define $\hat{w}(\mathbf{x}) := \frac{\hat{\pi}(\mathbf{x})}{\hat{q}(\mathbf{x})}$; then
 1207

1208
$$\mathbf{I} = \frac{\int \mathbf{f}(\mathbf{x})\hat{w}(\mathbf{x})q(\mathbf{x})d\mathbf{x}}{\int \hat{w}(\mathbf{x})q(\mathbf{x})d\mathbf{x}}.$$

1209 The SNIS estimator is thus constructed as

1210
$$\hat{\mathbf{I}}_{\text{SNIS}} = \frac{\sum_{i=1}^N \mathbf{f}(\mathbf{x}_i)\hat{w}(\mathbf{x}_i)}{\sum_{i=1}^N \hat{w}(\mathbf{x}_i)}, \quad \mathbf{x}_i \stackrel{\text{i.i.d.}}{\sim} q(\mathbf{x}).$$

1211 We can see that the IS estimator is unbiased:

1212
$$\begin{aligned} \mathbb{E}\hat{\mathbf{I}}_{\text{IS}} &= \frac{1}{N} \sum_{i=1}^N \mathbb{E}[\mathbf{f}(\mathbf{x}_i)w(\mathbf{x}_i)] \\ 1213 &= \frac{1}{N} \sum_{i=1}^N \int \mathbf{f}(\mathbf{x}_i)w(\mathbf{x}_i)q(\mathbf{x}_i) d\mathbf{x}_i \\ 1214 &= \int \mathbf{f}(\mathbf{x})\pi(\mathbf{x}) d\mathbf{x} = \mathbf{I}. \end{aligned}$$

1215 Unfortunately, the SNIS estimator is biased, but it is asymptotically unbiased and remains a consis-
 1216 tent estimator [Sanz-Alonso and Al-Ghattas \(2024\)](#). The precise definitions are as follows.

1217 **Definition 6.** Assume $\hat{\mathbf{I}}$, $\{\hat{\mathbf{I}}_n\}$ are estimators for \mathbf{I} . Then we have the following definitions:

1218

- 1219 • $\hat{\mathbf{I}}$ is said to be *unbiased* if $\mathbb{E}\hat{\mathbf{I}} = \mathbf{I}$.
- 1220 • $\{\hat{\mathbf{I}}_n\}$ is said to be *asymptotically unbiased* if $\mathbb{E}\hat{\mathbf{I}}_n \rightarrow \mathbf{I}$ as $n \rightarrow \infty$.

1221 **Definition 7.** Assume $\hat{\mathbf{I}}_n$ is the estimator for \mathbf{I} , $\forall n > 0$. Then $\hat{\mathbf{I}}_n$ is called *consistent* for \mathbf{I} if $\hat{\mathbf{I}}_n \xrightarrow{\mathbb{P}} \mathbf{I}$
 1222 as $n \rightarrow \infty$.

1223 **Proposition 8.** Assume $\|\mathbf{f}(\mathbf{x})\| \leq 1$, $\mathbb{E}_{q(\mathbf{x})}\hat{w}(\mathbf{x}) < \infty$, $\mathbb{E}_{q(\mathbf{x})}\hat{w}^2(\mathbf{x}) < \infty$, then the following holds:

1224

- 1225 1. $\mathbb{E}\|\hat{\mathbf{I}}_{\text{SNIS}} - \mathbf{I}\|^2 \leq \frac{4}{N} \frac{\mathbb{E}_{q(\mathbf{x})}[\hat{w}(\mathbf{x})^2]}{(\mathbb{E}_{q(\mathbf{x})}[\hat{w}(\mathbf{x})])^2},$
- 1226 2. $\|\mathbb{E}[(\hat{\mathbf{I}}_{\text{SNIS}} - \mathbf{I})]\| \leq \frac{2}{N} \frac{\mathbb{E}_{q(\mathbf{x})}[\hat{w}(\mathbf{x})^2]}{(\mathbb{E}_{q(\mathbf{x})}[\hat{w}(\mathbf{x})])^2}.$

1242 So we can conclude that the SNIS estimator is asymptotically unbiased.
 1243
 1244
 1245
 1246

1247 For completeness, we give the proof of the proposition. The proof is modified from [Sanz-Alonso](#)
 1248 and [Al-Ghattas \(2024\)](#).

1249 **Proof.** To simplify our notation, let
 1250

$$1251 \hat{\mathbf{J}}_N = \sum_{i=1}^N \mathbf{f}(\mathbf{x}_i) \hat{w}(\mathbf{x}_i) \quad \hat{P}_N = \sum_{i=1}^N \hat{w}(\mathbf{x}_i), \quad \mathbf{x}_i \stackrel{\text{i.i.d.}}{\sim} q(\mathbf{x}).$$

1254 Then $\hat{\mathbf{I}}_{\text{SNIS}} = \hat{\mathbf{J}}_N / \hat{P}_N$. Notice that

$$\begin{aligned} 1255 \hat{\mathbf{I}}_{\text{SNIS}} - \mathbf{I} &= \hat{\mathbf{I}}_{\text{SNIS}} - \frac{\mathbb{E}_{q(\mathbf{x})}[\mathbf{f}(\mathbf{x}) \hat{w}(\mathbf{x})]}{\mathbb{E}_{q(\mathbf{x})}[\hat{w}(\mathbf{x})]} \\ 1256 &= \frac{\hat{\mathbf{I}}_{\text{SNIS}} \mathbb{E}_{q(\mathbf{x})}[\hat{w}(\mathbf{x})] - \mathbb{E}_{q(\mathbf{x})}[\mathbf{f}(\mathbf{x}) \hat{w}(\mathbf{x})]}{\mathbb{E}_{q(\mathbf{x})}[\hat{w}(\mathbf{x})]} \\ 1257 &= \frac{\hat{\mathbf{I}}_{\text{SNIS}} (\mathbb{E}_{q(\mathbf{x})}[\hat{w}(\mathbf{x})] - \hat{P}_N) - (\mathbb{E}_{q(\mathbf{x})}[\mathbf{f}(\mathbf{x}) \hat{w}(\mathbf{x})] - \hat{\mathbf{J}}_N)}{\mathbb{E}_{q(\mathbf{x})}[\hat{w}(\mathbf{x})]}. \end{aligned}$$

1263 Since

$$1264 \|\mathbf{x} - \mathbf{y}\|^2 \leq (\|\mathbf{x}\| + \|\mathbf{y}\|)^2 \leq 2(\|\mathbf{x}\|^2 + \|\mathbf{y}\|^2),$$

1266 then we can use the identity to bound the variance of $\hat{\mathbf{I}}_{\text{SNIS}}$:

$$\begin{aligned} 1267 \mathbb{E}\|\hat{\mathbf{I}}_{\text{SNIS}} - \mathbf{I}\|^2 &\leq \frac{2}{(\mathbb{E}_{q(\mathbf{x})}[\hat{w}(\mathbf{x})])^2} \left(\mathbb{E} \left[\|\hat{\mathbf{I}}_{\text{SNIS}}\|^2 (\mathbb{E}_{q(\mathbf{x})}[\hat{w}(\mathbf{x})] - \hat{P}_N)^2 \right] + \mathbb{E} \left[(\mathbb{E}_{q(\mathbf{x})}[\mathbf{f}(\mathbf{x}) \hat{w}(\mathbf{x})] - \hat{\mathbf{J}}_N)^2 \right] \right) \\ 1268 &\leq \frac{2}{(\mathbb{E}_{q(\mathbf{x})}[\hat{w}(\mathbf{x})])^2} \left(\mathbb{E} \left[(\mathbb{E}_{q(\mathbf{x})}[\hat{w}(\mathbf{x})] - \hat{P}_N)^2 \right] + \mathbb{E} \left[(\mathbb{E}_{q(\mathbf{x})}[\mathbf{f}(\mathbf{x}) \hat{w}(\mathbf{x})] - \hat{\mathbf{J}}_N)^2 \right] \right) \\ 1269 &= \frac{2}{(\mathbb{E}_{q(\mathbf{x})}[\hat{w}(\mathbf{x})])^2} (\text{Var}(\hat{P}_N) + \text{Var}(\hat{\mathbf{J}}_N)). \end{aligned}$$

1274 Since $\text{Var}(\hat{P}_N) = \frac{1}{N} \text{Var}(\hat{w}(\mathbf{x}))$, $\text{Var}(\hat{\mathbf{J}}_N) = \frac{1}{N} \text{Var}(\mathbf{f}(\mathbf{x}) \hat{w}(\mathbf{x}))$, then we have

$$\begin{aligned} 1275 \mathbb{E}\|\hat{\mathbf{I}}_{\text{SNIS}} - \mathbf{I}\|^2 &= \frac{2}{(\mathbb{E}_{q(\mathbf{x})}[\hat{w}(\mathbf{x})])^2 N} (\text{Var}(\hat{w}(\mathbf{x})) + \text{Var}(\mathbf{f}(\mathbf{x}) \hat{w}(\mathbf{x}))) \\ 1276 &\leq \frac{2}{(\mathbb{E}_{q(\mathbf{x})}[\hat{w}(\mathbf{x})])^2 N} (\mathbb{E}_{q(\mathbf{x})}[\hat{w}(\mathbf{x})^2] + \mathbb{E}_{q(\mathbf{x})}[\|\mathbf{f}(\mathbf{x}) \hat{w}(\mathbf{x})\|^2]) \\ 1277 &\leq \frac{4}{N} \frac{\mathbb{E}_{q(\mathbf{x})}[\hat{w}(\mathbf{x})^2]}{(\mathbb{E}_{q(\mathbf{x})}[\hat{w}(\mathbf{x})])^2}, \end{aligned}$$

1283 where we use $\|\mathbf{f}\| \leq 1$ to get the last inequality. Hence, we have proved the first result. Similarly, we
 1284 can prove the result for the bias. Since $\mathbb{E}[\hat{\mathbf{J}}_N - \mathbb{E}_{q(\mathbf{x})}[\mathbf{f}(\mathbf{x}) \hat{w}(\mathbf{x})]] = 0$, $\mathbb{E}[\hat{P}_N - \mathbb{E}_{q(\mathbf{x})}[\hat{w}(\mathbf{x})]] =$
 1285 0, we have:

$$\begin{aligned} 1286 \|\mathbb{E}[(\hat{\mathbf{I}}_{\text{SNIS}} - \mathbf{I})]\| &= \frac{1}{\mathbb{E}_{q(\mathbf{x})}[\hat{w}(\mathbf{x})]} \left\| \mathbb{E} \left[\hat{\mathbf{I}}_{\text{SNIS}} (\mathbb{E}_{q(\mathbf{x})}[\hat{w}(\mathbf{x})] - \hat{P}_N) - (\mathbb{E}_{q(\mathbf{x})}[\mathbf{f}(\mathbf{x}) \hat{w}(\mathbf{x})] - \hat{\mathbf{J}}_N) \right] \right\| \\ 1287 &= \frac{1}{\mathbb{E}_{q(\mathbf{x})}[\hat{w}(\mathbf{x})]} \left\| \mathbb{E} \left[(\hat{\mathbf{I}}_{\text{SNIS}} - \mathbf{I}) (\mathbb{E}_{q(\mathbf{x})}[\hat{w}(\mathbf{x})] - \hat{P}_N) \right] \right\| \\ 1288 &\leq \frac{1}{\mathbb{E}_{q(\mathbf{x})}[\hat{w}(\mathbf{x})]} \left(\mathbb{E} \left[\|\hat{\mathbf{I}}_{\text{SNIS}} - \mathbf{I}\|^2 \right] \right)^{\frac{1}{2}} \left(\mathbb{E} \left[(\mathbb{E}_{q(\mathbf{x})}[\hat{w}(\mathbf{x})] - \hat{P}_N)^2 \right] \right)^{\frac{1}{2}} \\ 1289 &\leq \frac{1}{\mathbb{E}_{q(\mathbf{x})}[\hat{w}(\mathbf{x})]} \left(\mathbb{E} \left[\|\hat{\mathbf{I}}_{\text{SNIS}} - \mathbf{I}\|^2 \right] \right)^{\frac{1}{2}} \left(\frac{\mathbb{E}_{q(\mathbf{x})}[\hat{w}(\mathbf{x})^2]}{N} \right)^{\frac{1}{2}}. \end{aligned}$$

1296 By our first result, $\mathbb{E}\|\hat{\mathbf{I}}_{\text{SNIS}} - \mathbf{I}\|^2 \leq \frac{4}{N} \frac{\mathbb{E}_{q(\mathbf{x})}[\hat{w}(\mathbf{x})^2]}{(\mathbb{E}_{q(\mathbf{x})}[\hat{w}(\mathbf{x})])^2}$, then we have
1297 $\|\mathbb{E}[(\hat{\mathbf{I}}_{\text{SNIS}} - \mathbf{I})]\| \leq \frac{1}{\mathbb{E}_{q(\mathbf{x})}[\hat{w}(\mathbf{x})]} \left(\frac{4}{N} \frac{\mathbb{E}_{q(\mathbf{x})}[\hat{w}(\mathbf{x})^2]}{(\mathbb{E}_{q(\mathbf{x})}[\hat{w}(\mathbf{x})])^2} \right)^{\frac{1}{2}} \left(\frac{\mathbb{E}_{q(\mathbf{x})}[\hat{w}(\mathbf{x})^2]}{N} \right)^{\frac{1}{2}} = \frac{2}{N} \frac{\mathbb{E}_{q(\mathbf{x})}[\hat{w}(\mathbf{x})^2]}{(\mathbb{E}_{q(\mathbf{x})}[\hat{w}(\mathbf{x})])^2}$.

1300
1301 So we have prove the second result. When $N \rightarrow \infty$, $\|\mathbb{E}[(\hat{\mathbf{I}}_{\text{SNIS}} - \mathbf{I})]\| \rightarrow 0$, then the SNIS estimator
1302 is asymptotically unbiased. \square

1303
1304 Assume the dataset $\{\mathbf{x}_0^{(i)}\}_{i=1}^N \stackrel{\text{i.i.d.}}{\sim} p_{\text{data}}(\mathbf{x})$. Then then estimator

$$\frac{\sum_{n \in [N]} \mathbf{x}_0^{(n)} K_t(\mathbf{x}_t, \mathbf{x}_0^{(n)})}{\sum_{n' \in [N]} K_t(\mathbf{x}_t, \mathbf{x}_0^{(n')})}$$

1305
1306
1307 is the SNIS estimator of the posterior expectation $\mathbb{E}[\mathbf{x}_0 \mid \mathbf{x}_t]$. By Prop. 8, the SNIS estimator is
1308 asymptotically unbiased. Then the estimator is

$$\hat{B}_t = \frac{1}{M} \sum_{m \in [M]} \left\| \frac{\sum_{n \in [N]} \mathbf{x}_0^{(n)} K_t(\mathbf{x}_t^{(m)}, \mathbf{x}_0^{(n)})}{\sum_{n' \in [N]} K_t(\mathbf{x}_t^{(m)}, \mathbf{x}_0^{(n')})} \right\|^2$$

1309 is also asymptotically unbiased. For more details on importance sampling, see (Robert et al., 1999).

H EXPERIMENTAL DETAILS

H.1 OPTIMAL LOSS ESTIMATION

1310
1311 In this subsection, we show more experiments results of our cDOL estimator. Our cDOL estimator
1312 is concluded in Alg. 1.

Algorithm 1 The corrected Diffusion Optimal Loss (cDOL) estimator

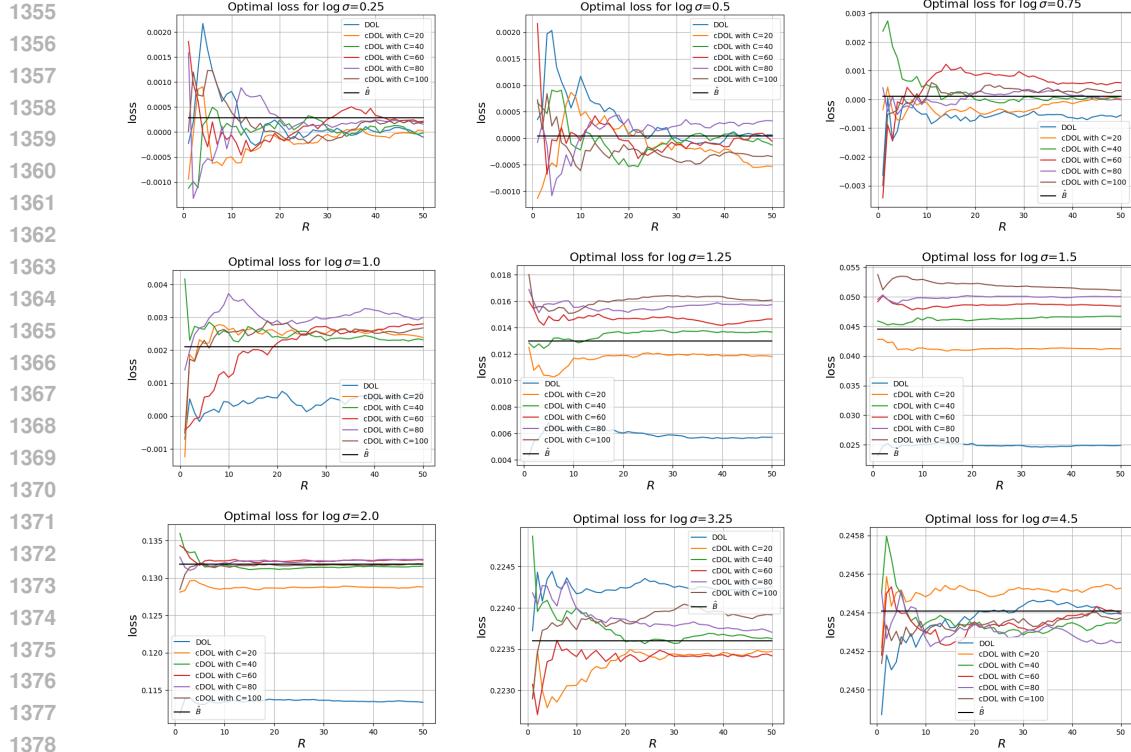
1313
1314 **input** Diffusion schedule α_t and σ_t , diffusion step t , training dataset $\{\mathbf{x}_0^{(n)}\}_{n \in [N]}$; number of re-
1315 peats R , data sample \mathbf{x}_0 subset size L , \mathbf{x}_t sample size M , correction parameter C .
1316
1317 **output** Estimation of the diffusion optimal loss $J_t^{(\mathbf{x}_0)^*}$ at t .
1318
1319 1: **for** $r \in [R]$ **do**
1320 2: Sample a data subset $\{\mathbf{x}_0^{(r,l)}\}_{l \in [L]}$ independently randomly from $\{\mathbf{x}_0^{(n)}\}_{n \in [N]}$;
1321 3: **for** $\tilde{m} \in [M]$ **do**
1322 4: Sample an index $l_{\tilde{m}}$ randomly from $[L]$;
1323 5: Construct $\mathbf{x}_t^{(r,\tilde{m})} = \alpha_t \mathbf{x}_0^{(r,l_{\tilde{m}})} + \sigma_t \mathbf{\epsilon}^{(\tilde{m})}$ with $\mathbf{\epsilon}^{(\tilde{m})} \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$;
1324 6: **end for**
1325 7: Compute $\hat{B}_t^{\text{cDOL}^{(r)}}$ using Eq. (11) (where K_t is defined in Eq. (8));
1326 8: **end for**
1327 9: Compute $\hat{B}_t^{\text{cDOL}} = \frac{1}{R} \sum_{r \in [R]} \hat{B}_t^{\text{cDOL}^{(r)}}$ and \hat{A} using Eq. (7);
1328 10: **Return** $\hat{A} - \hat{B}_t^{\text{cDOL}}$.

1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
Convergence of cDOL estimator. Our cDOL estimator has four parameters (R, M, L, C) . As
1340 mentioned in Sec. 3.4, we empirically choose $C = 4N/L$, the subset size L can be taken to fully
1341 utilize memory. The parameters R, M should be large enough to ensure that the estimator converges.
1342 We perform a convergence analysis with respect to R, M in the CIFAR-10 dataset to justify our
1343 choice of M, R . The results are summarized in Fig. 5 and Fig. 6. As shown in Fig. 5, our cDOL
1344 estimator will converge when R is large enough and can approximate the ground truth optimal loss
1345 accurately. Empirically, we find that $R = 3N/L$ is enough for an accurate estimate. Next, we verify
1346 that our cDOL estimator will converge when M is large enough. As shown in Fig. 6, we can see
1347 that the cDOL estimator converges when $M \approx 4L$.

Efficiency. The computational complexity of the naive estimator \hat{B}_t (Eq. (9)) is $\mathcal{O}(N^2)$, where N is the size of the dataset. The cDOL estimator reduces this complexity to $\mathcal{O}(L^2 \times R)$. Based on the

1350 verifications the the previous paragraph, we set the subset size L to fully utilize memory, and is often
 1351 set to 2500 or 5000. We set $R = 3N/L$, $M = 4L$, then the total complexity becomes $\mathcal{O}(NL)$. With
 1352 this setting, the total running time is approximately 0.5 hour on CIFAR-10, 2.5 hours on FFHQ, and
 1353 about 1 day for the ImageNet dataset when using 2400 8G CPU cores.

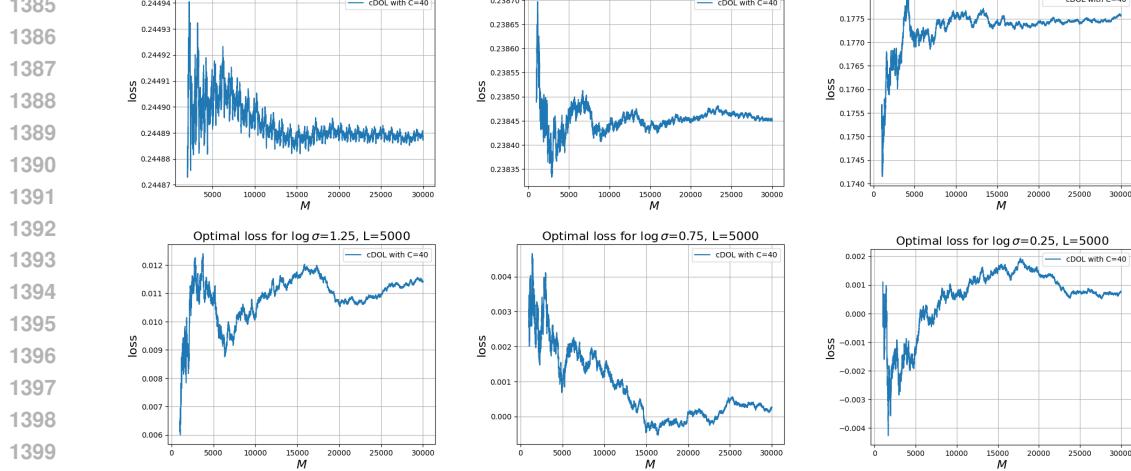
1354



1380 Figure 5: Convergence of our estimator with respect to the number of subsets R on CIFAR-10. We
 1381 plot the estimated optimal loss v.s. R for several choices of C among different noise scales. For fair
 1382 comparison, we fix the subset size $L = 5000$.

1383

1384



1400

1401

1402

1403

1401 Figure 6: Convergence of our estimator with respect to M (the number of \mathbf{x}_t samples) on CIFAR-10.
 1402 We plot the estimated optimal loss v.s. M for a fixed $C = 40$, $L = 5000$ among different noise
 1403 scales.

1404
1405 H.2 DIRECT COMPARISONS WITH WORKS ON OPTIMAL SOLUTION

1406 Xu et al. (2023) proposes an SNIS estimator for the inner expectation of the optimal loss in Eq. (6). If
 1407 \mathbf{x}_t is sampled independently from a batch separate from the \mathbf{x}_0 batch used for the inner expectation,
 1408 then the estimator reduces to the SNIS estimator described in Sec. 3.3. By contrast, if the same
 1409 \mathbf{x}_0 batch is used to sample \mathbf{x}_t and compute the outer expectation, this corresponds to our DOL
 1410 estimator. As shown in Fig. 1, the SNIS estimator suffers from high variance, leading to poor
 1411 empirical performance. Meanwhile, the DOL estimator introduces extra bias and also does not
 1412 achieve good performance.

1413 Niedoba et al. (2024) proposes a nearest neighbor estimator of the optimal solution. Given a noisy
 1414 sample \mathbf{x}_t , the KNN estimator finds the K -nearest \mathbf{x}_0 samples in the dataset to estimate the optimal
 1415 solution. The KNN search method used in Niedoba et al. (2024) (Faiss with a flat index) has $\mathcal{O}(N)$
 1416 complexity per query \mathbf{x}_t , leading to an overall complexity of $\mathcal{O}(N^2)$, which matches that of the naive
 1417 estimator \hat{B}_t (Eq. (9)). Moreover, KNN search requires significantly more memory, as it needs to
 1418 generate an index of the entire dataset, which prevents effective multithreading parallelism.

1419 For a direct comparison, we report the error rate of each estimator, defined as

$$1420 \quad 1421 \quad e = \frac{|J_{\text{estimated}} - J_{\text{ground truth}}|}{J_{\text{ground truth}}}.$$

1422 We consider the error rate more suitable than absolute error, since the scale of the optimal loss varies
 1423 significantly across noise levels. For a fair comparison, we tested $L = 2500$ for the cDOL estimator
 1424 and $n = K = 2500$ for the KNN estimator, the results are shown in Table 4. We can see from the
 1425 results that cDOL achieves comparable accuracy and variance to KNN, but with significantly lower
 1426 runtime: approximately $5 \times$ faster than KNN ($n = 2500, K = 2500$) due to its lower complexity
 1427 $\mathcal{O}(L \times N)$ (with $R \propto N/L$) versus $\mathcal{O}(N^2)$ for KNN. Moreover, cDOL benefits from straightforward
 1428 multithreading parallelism since it only loads L samples into memory at a time, making it more
 1429 scalable for large, high-resolution datasets such as ImageNet.

1430
1431 Table 4: Comparison between different estimators on CIFAR-10 for an intermediate noise level
1432 $\log \sigma = 1.25$.

1433 1434 Methods	1435 DOL	1436 cDOL ($L = 2500$)	1437 KNN ($n = 2500, K = 2500$)	1438 SNIS
1435 error rate	0.55	0.04	0.03	5.72
1436 variance (per dimension)	0.0170	0.0182	0.0183	0.0210
1437 run time	12 min	~12 min	~67 min	–

1439 H.3 DETAILED SETTINGS FOR FIG. 3

1440 Following EDM (Karras et al., 2022), we configure our training settings as follows. We train all
 1441 models on CIFAR-10 until a total of 200 million images have been sampled from the training set.
 1442 The batch size is set to 512. For sampling, we employ the EDM deterministic sampler, consistently
 1443 setting the time steps according to $\sigma_i = (\sigma_{\max}^{\frac{1}{\hat{\rho}}} + \frac{i}{N-1}(\sigma_{\min}^{\frac{1}{\hat{\rho}}} - \sigma_{\max}^{\frac{1}{\hat{\rho}}}))^{\hat{\rho}}$, where $\hat{\rho} = 7$, $\sigma_{\min} =$
 1444 0.002 , $\sigma_{\max} = 80$, and the number of function evaluations (NFE) is set to 35 for all models.

1445 For training loss calculation, we evaluate the clean-data prediction loss for fair comparisons. In
 1446 practice, we perform inference over three epochs to estimate the training loss across noise levels
 1447 and observe that these estimates exhibit good convergence. To justify the convergence of training
 1448 loss estimation, we present additional results using a model trained with the DDPM schedule (VP-
 1449 ϵ in Table 1) on CIFAR-10. We computed the mean, variance, and standard error of the mean
 1450 from 150,000 independent evaluations (corresponding to 3 epochs) of the training loss. The results
 1451 (Table 5) demonstrate that although the variance depends on the noise level, accurate estimates can
 1452 be obtained by increasing the number of model evaluations (the standard error of the mean is very
 1453 small).

1454 We also investigate the effects of sampling methods. For a fair comparison, we use the EDM sam-
 1455 pler with identical parameters to evaluate different training methods in Fig. 3. Additionally, we
 1456 conducted experiments with the 250-step DDIM Song et al. (2021a) and Flow Matching (Lipman
 1457 et al., 2023) samplers, with the FID results presented in Table 6. These results show that while sam-

1458 Table 5: Training loss statistics across noise levels using a DDPM schedule on CIFAR-10.
1459

1460	Noise levels	Mean	Variance	Standard Error of Mean
1461	$\log \sigma = 4$	0.230	0.015	3.95e-5
1462	$\log \sigma = 2$	0.130	0.0033	8.77e-6
1463	$\log \sigma = 0$	0.025	8.67e-5	2.23e-7
1464	$\log \sigma = -2$	0.0026	7.41e-7	1.91e-9

1466
1467 pling quality depends on the choice of sampler, a better-trained model consistently achieves higher
1468 sample quality across different samplers.
1469

1470	Samplers	EDM	DDPM	NCSN	FM	FM + our schedule
1471	EDM sampler	1.94	1.97	2.72	2.36	1.79
1472	DDIM sampler	2.14	2.23	2.91	2.27	1.99
1473	FM sampler	2.19	2.25	3.07	2.28	2.04

1475 Table 6: FID results across different samplers and training methods with 250 sampling steps.
14761477

H.4 COMPLEMENTARY RESULTS FOR FIG. 3

1479 As we primarily evaluate the model by the FID metric in Fig. 3, we give some complementary results
1480 for Fig. 3 in this subsection.
1481

1482 **Precision and Recall metrics.** As the FID metric is a mixture of the sample quality and diversity,
1483 it cannot reflect the sample diversity and quality separately. The precision and recall metrics are
1484 designed to test the sample quality and diversity, respectively. We evaluate our models trained by
1485 different training schedule and formulations in Fig. 3 under these two metrics. The results are shown
1486 in the following Table 7.

1487	Training schedule	Precision	Recall
1489	EDM (Karras et al., 2022)	0.615	0.682
1490	DDPM(Ho et al., 2020)	0.608	0.683
1491	FM (Lipman et al., 2023)	0.615	0.677
1492	SD3 (Esser et al., 2024)	0.595	0.694
1493	NCSN (Song et al., 2021b)	0.614	0.647
1494	Ours schedule	0.626	0.667

1495 Table 7: Precision and recall results for different training schedules.
1496

1498 Combining the results in Fig. 3(a,b) with the results shown in the table above, we observe that the
1499 precision metric also has a stronger correlation to the training loss gap in the small noise regions.
1500 Thus, our training schedule outperforms all other training schedules under this metric. In contrast,
1501 the recall metric has a stronger correlation to the training performance in the larger noise levels
1502 around the critical point σ^* , thus the SD3 training schedule achieves the best performance. These
1503 results justify the intuition that the image quality is related to training performance at small noise
1504 scales, while recall or diversity is related to larger noise scales.
1505

1506 **Memorization metrics.** As shown in Fig. 3(a), the training loss gap is large for all mainstream
1507 diffusion models. This implies that these diffusion models are still not overfit to the optimal solution.
1508 To study the memorization behavior, we follow Gu et al. (2023) for the metric and the experimental
1509 settings. We train a model using Flow Matching precondition and our training schedule on a subset
1510 of CIFAR-10 with 5k data samples, and we train the same architecture with Flow Matching training
1511 schedule on the same dataset as a baseline. We report the memorization rate, where a sample is
memorized if its L^2 distance to the nearest neighbor is smaller than 1/3 of that to the second nearest
neighbor in the training data (Gu et al., 2023). Here the factor 1/3 is an empirical threshold proposed

1512 in Gu et al. (2023). The results are shown in the Table 8. We can observe that our schedule improves
 1513 the generation performance without leading to severe memorization.
 1514

Training schedule/Training Epochs	0.5k	1k	1.5k	2k	2.5k	3k	3.5k	4k
Flow Matching schedule	0.0	0.0	0.0	0.0	0.0001	0.0024	0.0102	0.0224
Our training schedule	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0

1519
 1520 Table 8: Memorization rate across different training epochs.
 1521

1522 **Human preference study.** We also conduct the human preference study to further evaluate the
 1523 generative performance of different methods. We randomly generated 24 image pairs (Baseline vs.
 1524 Ours) from the ImageNet-256 model. 19 independent evaluators were asked to select the image
 1525 with better visual quality. The results are summarized in Table 9 and show that our method was
 1526 preferred in 55.26% of the cases, while the baseline was preferred in 44.73%. This human evaluation
 1527 aligns with our FID improvements, confirming that the reduction in the "Loss Gap" translates into
 1528 perceptibly better image quality.

Training schedule	FID with guidance	Human preference
LightningDiT (Yao et al., 2025)	1.42	44.74%
+Ours schedule	1.30	55.26%

1534
 1535 Table 9: Human preference between baseline and our schedule.
 1536

H.5 IMAGE GENERATION

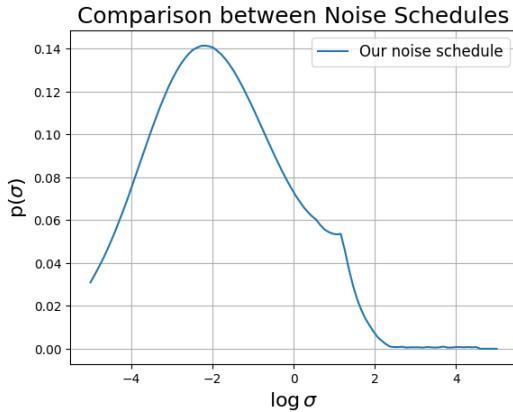
1538 Following EDM (Karras et al., 2022), we configure our training settings as follows. We train all
 1539 models on CIFAR-10 until a total of 200 million images have been sampled from the training set.
 1540 The batch size is set to 512. Checkpoints are saved every 2.5 million images, and we report results
 1541 based on the checkpoint with the lowest FID. We adopt the DDPM++ network architecture used
 1542 in EDM, with our primary modifications being the incorporation of our loss weighting scheme and
 1543 adaptive noise distribution. All models are trained on 8 NVIDIA A100 GPUs. For sampling, we
 1544 employ the EDM deterministic sampler, consistently setting the discretization steps according to
 1545 $\sigma_i = (\sigma_{\max}^{\frac{1}{\hat{\rho}}} + \frac{i}{N-1}(\sigma_{\min}^{\frac{1}{\hat{\rho}}} - \sigma_{\max}^{\frac{1}{\hat{\rho}}}))^{\hat{\rho}}$, where $\hat{\rho} = 7$, $\sigma_{\min} = 0.002$, $\sigma_{\max} = 80$, and the number of
 1546 function evaluations (NFE) is set to 35 for CIFAR-10 experiments.

1547 For ImageNet-64, we follow a similar setup as EDM. We use the ADM architecture, which matches
 1548 that of EDM (Karras et al., 2022). The batch size is set to 2048, and our loss weighting and adaptive
 1549 noise distribution are applied as well. Training proceeds until 2.5 billion images have been sampled
 1550 from the training set. Checkpoints are saved every 10 million images, and we report the checkpoint
 1551 with the lowest FID. All ImageNet-64 models are trained on 32 NVIDIA A100 GPUs. In sampling,
 1552 we again use the EDM deterministic sampler with $\hat{\rho} = 7$ and NFE = 79.

1553 For ImageNet-256, we adopt a setup similar to LightningDiT (Yao et al., 2025). Specifically, we util-
 1554 ize VA-VAE (Yao et al., 2025) as the tokenizer and implement a modified LightningDiT (Yao et al.,
 1555 2025) architecture enhanced with QK-Normalization (Dehghani et al., 2023) to improve training sta-
 1556 bility. The batch size is set to 2048, and we apply the same loss weighting and adaptive noise distri-
 1557 bution strategies. Optimization is performed using AdamW with parameters $(\beta_1, \beta_2) = (0.9, 0.95)$
 1558 and a learning rate of 2×10^{-4} . The model is trained for 1600 epochs (approximately 10 million
 1559 iterations), with checkpoints saved every 10,000 iterations. Again, we use 32 NVIDIA A100 GPUs
 1560 to train the model on ImageNet-256. Consistent with LightningDiT (Yao et al., 2025), we employ
 1561 the FM Euler ODE sampler with 250 function evaluations (NFE = 250).

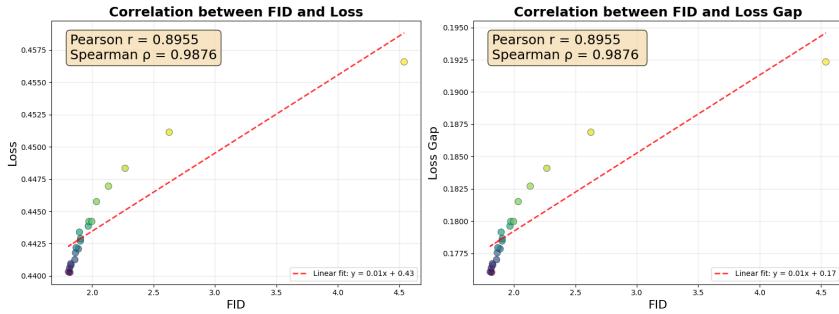
1562 Regarding our adaptive training schedule, we maintain a bin that records the training loss gap for
 1563 each noise scale. Inspired by the adaptive schedule proposed by Kingma and Gao (2023), we update
 1564 this bin using an exponential moving average (EMA) during training. Specifically, the bin is updated
 1565 every time 2 million images have been drawn, with a decay rate set to 0.9. The collected training
 loss gap statistics are then used to construct a piecewise-linear probability density function, which

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579



1580
1581
1582
1583
Figure 7: Plot of our proposed noise schedule on the CIFAR-10 dataset. We plot the noise schedule
calculated by the model’s loss gap in the final optimization step of the training process.

1584
1585
1586
1587
1588
1589
1590
1591
1592
1593



1594
1595
1596
1597
1598
1599
Figure 8: The plot of the loss gap vs. FID and training loss vs. FID along the training process on
the CIFAR-10 dataset under the Flow Matching formulation using the EDM’s model architecture.

1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
serves as the adaptive noise schedule. As mentioned, our loss weight is given by

$$w_\sigma = a \min\left\{\frac{1}{J_\sigma^*}, w^*\right\} + f(\sigma) \mathbb{I}_{\sigma < \sigma^*}.$$

1611
1612
1613
1614
1615
1616
1617
1618
1619
Typically, w^* is set to be 20 and $a = 1/50$. $f(\sigma) = \mathcal{N}(\log \sigma; \mu, \varsigma^2)$ is an additional weighting function to let us put more weight on the region $\sigma < \sigma^*$, which is simply set as a normal pdf. We set $\mu = -7.5, \varsigma = 2$ for CIFAR-10, $\mu = -5.75, \varsigma = 2$ for ImageNet-64 and $\mu = -4.37, \varsigma = 1.75$ for ImageNet-256. In Fig. 7, we plot our noise schedule calculated by the model’s loss gap in the final optimization step of the training process. We can see from the result that our model allocates more optimization steps on the positive region $\sigma < \sigma^*$, as shown in Fig. 3. We also show some samples generated by our model trained on the ImageNet-256 dataset in Fig. 9 and Fig. 10.

H.6 SCALING LAW

1611
1612
1613
1614
1615
1616
1617
1618
1619
In this subsection, we provide a comprehensive account of our scaling law analysis. Our experiments employ the state-of-the-art diffusion model EDM2 (Karras et al., 2024), with parameter counts ranging from 120M to 1.5B. In accordance with the training protocols outlined in EDM2, models are trained in the RGB space for ImageNet-64 and in the latent space derived from a pretrained VAE for ImageNet-512.

We begin by reporting the results on ImageNet-64. As described in Sec. 5, we apply our modified scaling law (Eq. (13)) to model performance. In Fig. 12, we present a detailed comparison between the original and modified scaling laws across various noise scales. Our findings indicate that the modified formulation yields a loss envelope that adheres more closely to a linear relationship, with corresponding improvements in the correlation coefficient, especially at large noise scales. The

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638

Figure 9: Samples generated by our ImageNet-256 model.

1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666

Figure 10: Samples generated by our ImageNet-256 model.

1667
1668
1669
1670
1671
1672
1673

1674

1675

1676

1677

1678

1679

1680

1681

1682

1683

1684

1685

1686

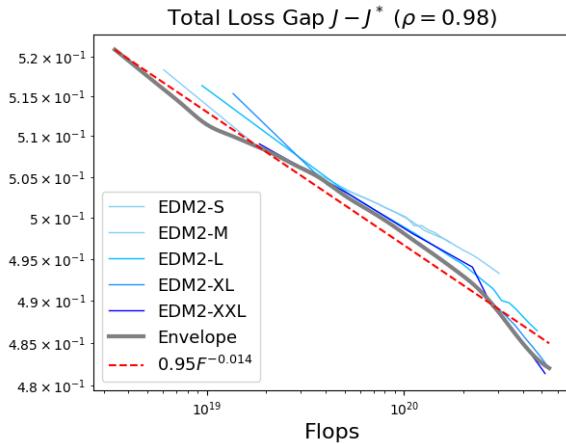
1687

1688

1689

1690

Figure 11: Scaling law fitting results using the modified power law in Eq. (13) for the total diffusion loss on ImageNet-512.



1691

1692

enhancements at small noise scales are less pronounced, largely due to the relatively minor optimal loss values compared to the models' actual training losses.

1693

1694

Subsequently, we extend our analysis to ImageNet-512. Mirroring the experimental setup used for ImageNet-64, we adopt the optimized adaptive loss weighting from EDM2 (Karras et al., 2024) when calculating total loss. The results, shown in Fig. 11, achieve a correlation coefficient of $\rho = 0.9857$, with the fitted scaling law given by:

$$J(F) = 0.9493F^{-0.014} + 0.001.$$

1695

1696

A thorough comparison between the original and modified scaling laws across multiple noise scales is presented in Fig. 13. These results are consistent with those observed on ImageNet-64, once again demonstrating that the modified scaling law yields a loss envelope that is closer to linearity, with higher correlation coefficients, particularly at large noise scales. As before, improvements at small noise scales remain limited due to the diminutive size of optimal loss relative to training loss.

1697

1698

1699

1700

1701

1702

1703

1704

1705

1706

1707

1708

1709

1710

1711

1712

1713

1714

1715

1716

1717

1718

1719

1720

1721

1722

1723

1724

1725

1726

1727

1728

1729

1730

1731

1732

1733

1734

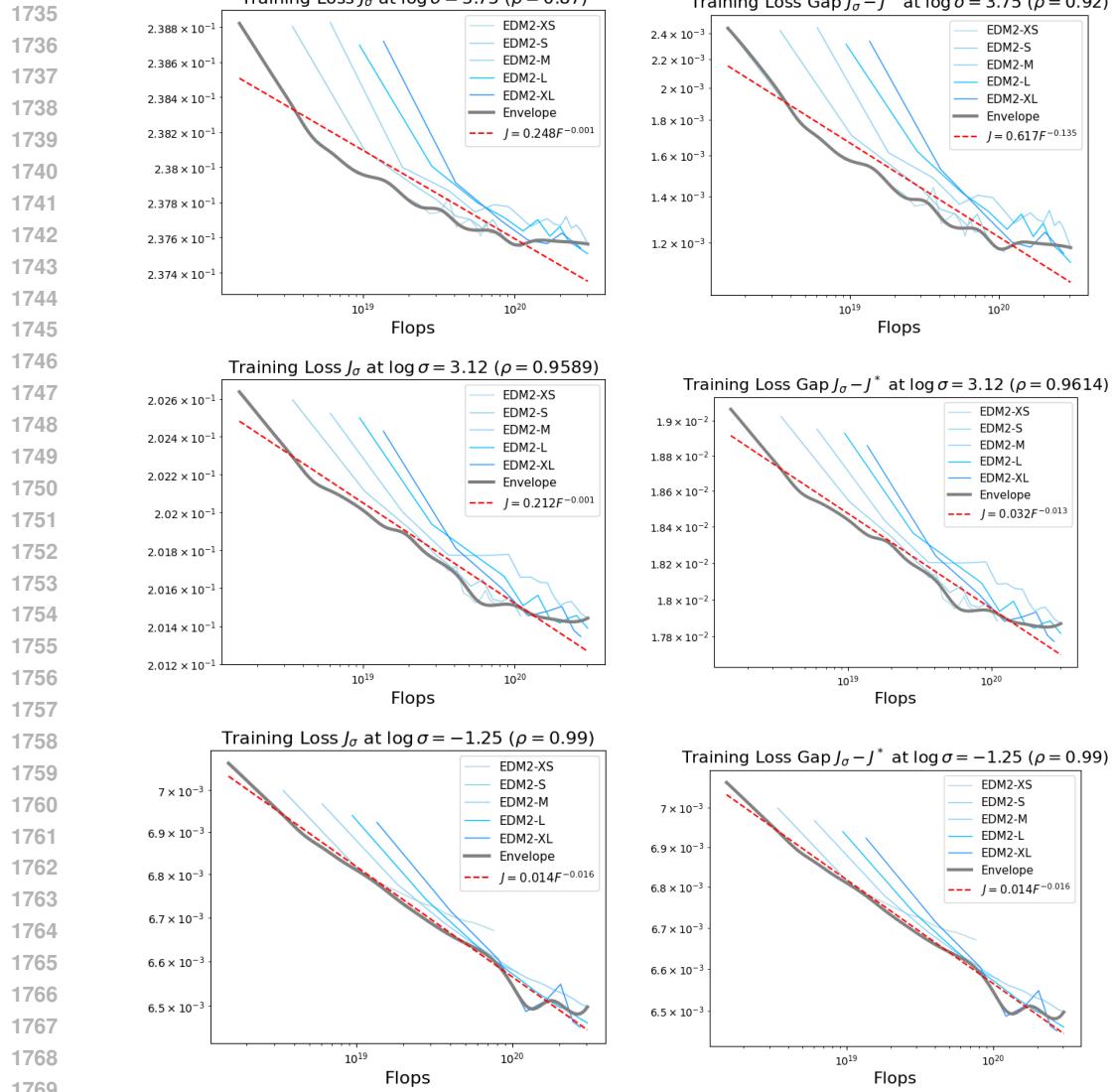


Figure 12: Scaling law study on ImageNet-64. Each row corresponds to a different noise scale. The left column shows the raw training loss values, while the right column displays the training loss gap relative to the optimal loss at each noise scale. We observe that in the modified version, the envelope aligns more closely with a straight line, particularly at larger noise scales. For smaller noise scales, the improvement is less pronounced, since the optimal loss is still very small compared to the models' training loss.

1776

1777

1778

1779

1780

1781

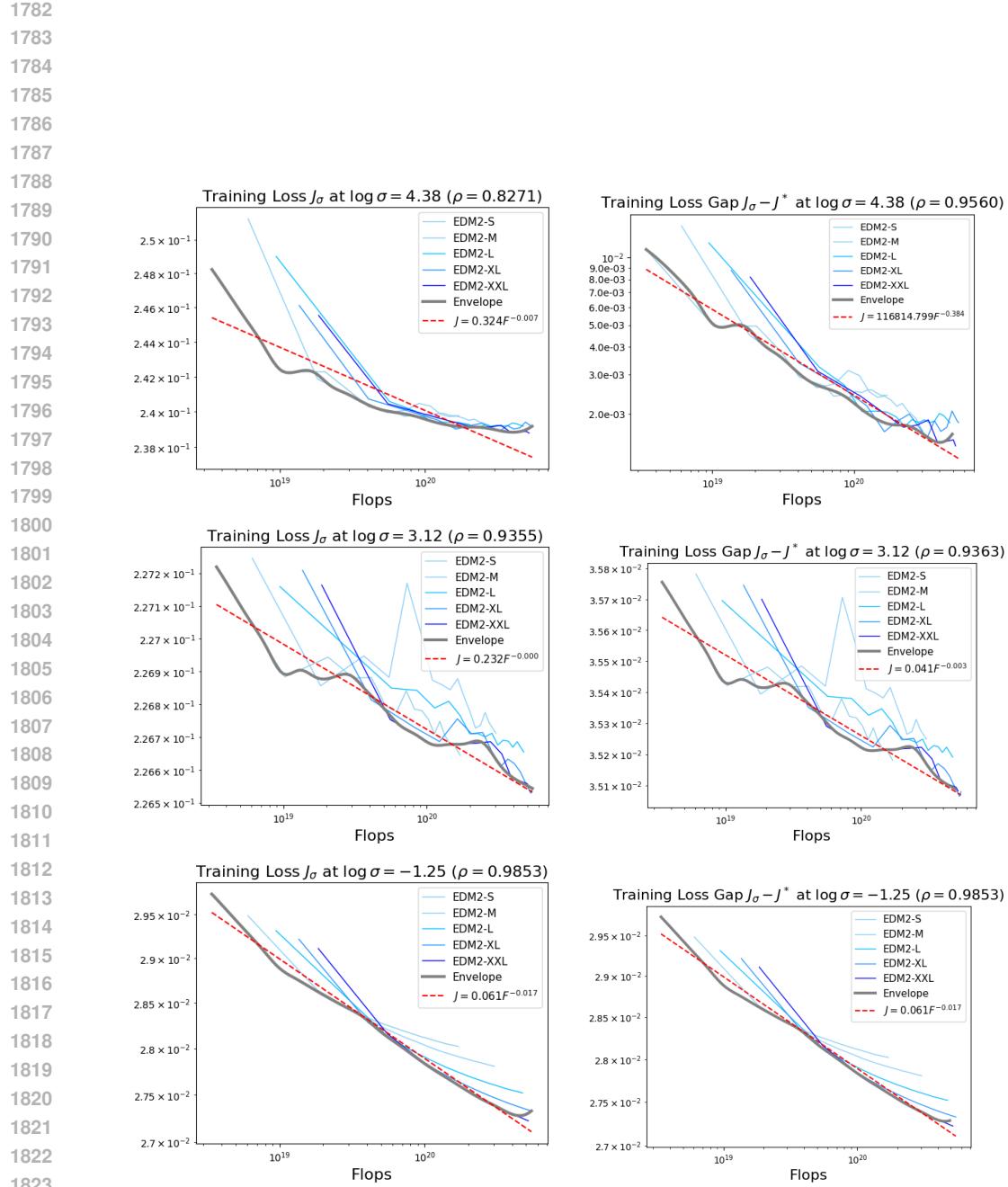


Figure 13: Scaling law study on ImageNet-512. Each row corresponds to a different noise scale. The left column shows the raw training loss values, while the right column presents the training loss gap relative to the optimal loss at each noise scale. We observe that in the modified version, the envelope aligns more closely with a linear trend, especially for larger noise scales. For smaller noise scales, the improvement is less significant, as the optimal loss is still very small compared to the models' training loss.