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Abstract

The inference phase of Large Language Mod-001
els (LLMs) is very expensive. An ideal infer-002
ence stage of LLMs could utilize fewer com-003
putational resources while still maintaining its004
capabilities (e.g., generalization and in-context005
learning ability). In this paper, we try to answer006
the question, “During LLM inference, can we007
use shallow layers for easy instances; and deep008
layers for hard ones?” To answer this ques-009
tion, we first indicate that Not all Layers are010
Necessary during Inference by statistically ana-011
lyzing the activated layers across tasks. Then,012
we propose a simple algorithm named AdaInfer013
to determine the inference termination moment014
based on the input instance adaptively. More015
importantly, AdaInfer does not alter LLM pa-016
rameters and maintains generalizability across017
tasks. Experiments on well-known LLMs (i.e.,018
Llama2 series and OPT) show that AdaInfer019
can achieve an average of 17.8% pruning ratio,020
even up to 43% on sentiment tasks while main-021
taining comparable performance with minimal022
loss (<1%). Additionally, this method is orthog-023
onal to other model acceleration techniques, po-024
tentially boosting inference efficiency further.025

1 Introduction026

LLMs have demonstrated impressive performance027

on various downstream tasks (e.g., text genera-028

tion, question & answering, and sentiment analysis)029

using various evaluation protocols such as zero-030

shot, few-shot, and fine-tuning (Todd et al., 2024;031

Chan et al., 2022; Kossen et al., 2023; Wang et al.,032

2023, 2022). Notably, In-context learning ability033

allows LLMs to adapt to tasks using input-output034

examples without parameter updates (Kossen et al.,035

2023; Todd et al., 2024). However, their inference036

phases are very expensive (Pope et al., 2023; Liu037

et al., 2023). For example, the inference time com-038

plexity for typical large models with Transformer039

structure is LSd(d+S) per single inference, where040

*Corresponding authors.

d, S, and L represent the hidden size, sequence 041

length, and layer number, respectively. An ideal 042

inference LLM should utilize fewer computational 043

resources while still maintaining its capabilities in 044

generalization and in-context learning ability (Liu 045

et al., 2023). The popular methods for achieving 046

efficient inference in LLMs include model pruning 047

(Kim et al., 2024; Yang et al., 2024; Song et al., 048

2024; Men et al., 2024) and sparse models (LeCun 049

et al., 1989; Liu et al., 2023). However, altering 050

LLM parameters may risk compromising its gen- 051

eralization ability, which is challenging to detect. 052

Meanwhile, different LLM designs pose compati- 053

bility challenges with other acceleration methods. 054

In this paper, we consider dynamically reduc- 055

ing the number of activated neurons as an ap- 056

proach to accelerate LLM inference. Inspired 057

by the human thinking process (Salthouse, 1996; 058

Deary et al., 2001), where quick answers are often 059

provided for simple questions while more time is 060

spent on thoughtful reasoning for complex ones, 061

e.g., knowledge-related questions. Previous stud- 062

ies (Teerapittayanon et al., 2016; Huang et al., 063

2017) show that “Easy” tasks activate at shallower 064

layers while “hard” ones at deeper layers. Addition- 065

ally, growth strategy (Li et al., 2023) is proposed 066

to lower the training cost of LLMs by adding pa- 067

rameters in stages. It inspires us that reducing the 068

computing parameters during inference may be an 069

effective way besides existing typical accumula- 070

tion methods. Statistical LLMs results on various 071

tasks (see Section 3.2 for detail) show that reducing 072

parameters is feasible during LLM inference. 073

Therefore, a natural approach to achieve LLM 074

efficient inference is to decide when to stop the 075

inference process based on the input instance adap- 076

tively. For instance, allocating fewer computational 077

resources for processing “simple” samples to en- 078

hance operational efficiency. Furthermore, explor- 079

ing adaptive inference may bridge LLMs with the 080

brain’s information processing (Hubel and Wiesel, 081
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1962; Murata et al., 2000), aiding in the analysis of082

activated network modules during sample process-083

ing (Han et al., 2021) and identifying crucial input084

components affecting the final prediction.085

Specifically, we present AdaInfer, a simple but086

effective algorithm for instance-aware adaptive in-087

ference. The core of AdaInfer lies in data-driven088

decision-making. Generally, there are two ap-089

proaches to getting decision-making signals: (1)090

updating LLM parameters requires training, in-091

volves high costs, and might decrease the model’s092

generalizability (Gu et al., 2024), and (2) keeping093

parameters unchanged, a more desirable and cost-094

effective approach that preserves the model’s innate095

ability (Yao et al., 2023). In this work, we adopt096

an Early Exit (EE) strategy, optimizing efficiency097

without altering the model’s parameters. EE was098

utilized in accelerating the inference of encoder-099

only architectures in BERT by (Li et al., 2021;100

Kong et al., 2022). Our proposed AdaInfer closely101

aligns with this EE concept. In particular, we be-102

gin by performing statistical analysis on LLM for103

each block feature (e.g., logits, hidden state, mlp,104

and attention activation value). Subsequently, we105

choose logits to construct features and employ clas-106

sical statistical classifiers (i.e., SVM and CRF) to107

facilitate the early exit strategy (Section 4).108

Experiments on well-known LLMs (i.e., Llama2109

series and OPT) show that AdaInfer can achieve110

an average of 17.8% pruning ratio, even up to 43%111

on sentiment tasks while maintaining comparable112

performance with minimal loss (<1% ). More im-113

portantly, AdaInfer is orthogonal to other model114

acceleration techniques, offering the potential for115

further enhancing inference efficiency (Section 5).116

2 Related Work117

Adaptive Inference. A straightforward approach118

to achieve adaptive inference involves dynamic119

depth neural networks (Han et al., 2021; Huang120

et al., 2017; Bolukbasi et al., 2017). Dynamic depth121

involves two methods: Early Exit (EE) and Skip122

layer. EE first appeared in CNN/DNN networks123

for visual tasks (Bolukbasi et al., 2017; Huang124

et al., 2017; Teerapittayanon et al., 2016). Subse-125

quently, it was utilized in accelerating the inference126

of encoder-only architectures in BERT by (Li et al.,127

2020; Liu et al., 2020; Li et al., 2021; Kong et al.,128

2022). Recently, (Schuster et al., 2022; Varshney129

et al., 2023) discuss confidence-based EE for LM130

adaptive inference. Our proposed AdaInfer closely131

aligns with EE concept. Specifically, we apply EE 132

to mainstream decoder-only LLMs, which adhere 133

to the scaling law but suffer from high inference 134

costs due to their large parameter count. Mean- 135

while, skip-layer dynamically omits the execution 136

of middle layers (or modules) for any input token, 137

facilitated by a gate function (Wang et al., 2018) 138

or a binary router (Zeng et al., 2023; Raposo et al., 139

2024). The main difference between our method 140

and theirs is that we achieve instance-wise infer- 141

ence without altering the model parameters, which 142

is crucial for current LLMs. To the best of our 143

knowledge, this is the first attempt to discover that 144

each block’s logits are crucial elements for EE clas- 145

sifiers in LLMs, and we incorporate it as a funda- 146

mental design choice in AdaInfer. 147

Model Compression. Techniques like Quantiza- 148

tion (Xiao et al., 2023; Xing et al., 2023), Sparsity 149

(Liu et al., 2023; Frantar and Alistarh, 2023), Distil- 150

lation (Touvron et al., 2021; Tang et al., 2019) has 151

been developed to improve the inference efficiency 152

of LLMs. Another line of work in model compres- 153

sion is network pruning (Kim et al., 2024; Yang 154

et al., 2024; Song et al., 2024; Men et al., 2024; 155

Ma et al., 2023). Depth pruning (Ma et al., 2023) 156

is often considered less effective in performance 157

compared to width pruning (Xia et al., 2024) be- 158

cause it involves eliminating larger and more coarse 159

units (Kim et al., 2024). Our method aligns with 160

depth pruning techniques and achieves comparable 161

performance to dense implementations. The key 162

distinction of our approach is its dynamic pruning 163

ratio tailored to specific tasks. 164

3 Efficiency Analysis of LLM Inference 165

This section aims to prove that Not all Layers are 166

Necessary during Inference by analyzing the num- 167

ber of activated layers across various tasks. We first 168

briefly review LLM’s critical components. Then, 169

we present our statistical observations and insights. 170

3.1 Preliminary: LLM Building Blocks 171

Modern LLMs, rooted in the Transformer architec- 172

ture (Vaswani et al., 2017), are trained with differ- 173

ent unsupervised training objectives. For instance, 174

mainstream LLMs (e.g., GPT, Llama series) are 175

pre-trained with a full language modeling objective 176

with a decoder-only structure, computing loss on 177

all tokens. The key components of LLMs can be 178

broken down into the following blocks: 179
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Figure 1: LLama2-7B model zero/few-shot perfor-
mance across all decoder layers: solid line for sentiment
analysis while dashed line for MMLU tasks.

Tokenizer and Embedding Layer. This block to-180

kenizes input text into numerical vectors, enabling181

effective processing and analysis of textual data.182

Decoder Block. This block processes numeri-183

cal vectors through self-attention and feedforward184

neural networks, enabling the model to focus on185

(attend to) the most relevant input parts.186

Classification Layer. The LM head layer con-187

verts decoder logits into a vocabulary-wide proba-188

bility distribution to facilitate word prediction.189

These blocks facilitate LLMs in efficiently han-190

dling NLP downstream tasks, with a primary em-191

phasis on decoder blocks within multi-layer Trans-192

formers. For typical large Transformer models,193

inference complexity is linearly related to the num-194

ber of decoder layers L and is given by LSd(d+S)195

per single inference. Consequently, to explore the196

possibility of skipping intermediate layers in LLMs197

during inference, we do the following statistics.198

3.2 Not all Layers are Necessary199

Earlier Transformer models typically comprise 6200

decoder layers, while current open-source mod-201

els, such as Llama2-13B (Touvron et al., 2023),202

feature 40 decoder layers. However, during infer-203

ence, each input instance for different tasks passes204

through every block layer by layer until the last205

layer, prompting us to question: “Can we allocate206

fewer computational resources per input instance207

instead of the same substantial budget?” To in-208

vestigate this, we conduct a statistical analysis to209

examine the correlation between accuracy and the210

activation of layers across various tasks. The statis-211

tical results are depicted in Figure 1.212

Observation 1: Not all Layers of LLMs are Nec- 213

essary during Inference: Early Stopping works. In 214

sentiment analysis using the Llama2-13B (40 lay- 215

ers) model, the average activated layer count per 216

input is 21, with a variance of 5.1. This observation 217

is intuitive. For instance, simpler inputs like “I like 218

Camera A” activate 16 layers, while more complex 219

inputs like “Camera A is better than Camera B in 220

picture quality” activate 24 layers. The latter sen- 221

tence introduces a comparative sentiment about the 222

“quality” aspect between Camera A and Camera B, 223

which embodies more complex features, suggest- 224

ing deeper layers for such complex instances. 225

Observation 2: Varying Task Difficulties, Differ- 226

ent Activation Layers: Stop Simpler Tasks Sooner, 227

Let Complex Ones Go Deeper. Tasks in the LLM ac- 228

tivate different layers, with simpler ones usually at 229

shallower layers and more complex ones at deeper 230

layers. This is shown in Figure 1, which demon- 231

strates the performance of a Llama2-7B model 232

across 32 layers in sentiment analysis (Socher et al., 233

2013) and MMLU (Hendrycks et al., 2021). For 234

simple tasks like sentiment classification, accuracy 235

matches that of the final layer by the 24th layer. 236

Conversely, for complex tasks like MMLU, accu- 237

racy tends to improve with deeper layers. 238

Insight. The observations mentioned above are 239

intuitive. By exploiting this phenomenon, we 240

can perform instance-aware adaptive inference 241

for LLMs, dynamically adjusting their struc- 242

ture/parameters for different test samples, thereby 243

achieving superior advantages in inference effi- 244

ciency and adaptability. Moving forward, we will 245

leverage this observation to implement adaptive 246

inference. 247

4 AdaInfer 248

The workflow of AdaInfer and the computational 249

efficiencies gained through this method are de- 250

picted in Figures 2a and 2b, respectively. The 251

key of AdaInfer is how to find the early stop sig- 252

nal while keeping the original abilities of LLMs. 253

AdaInfer dynamically computes the stopping sig- 254

nal by evaluating critical features (i.e., “gap” and 255

“top prob”). This process involves two main compo- 256

nents: a Feature Selection module and a Classifier 257

module. At each layer, the Feature Selection crafts 258

a feature vector for the current input instance. Sub- 259

sequently, the Classifier (often SVM or CRF for 260

their effectiveness) assesses the stopping signal’s 261
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I like Camera A.

Camera A is better than 
Camera B in picture quality.

STOP

Simplify and write the result 
with a rational denominator:

!
729

STOP

forward statistic
classifier

feature vector embedding
layer

decoder block skipped block classification
layer

Sentiment task

MMLU task

STOP

(a) A workflow of AdaInfer processing three input instances,
involving two for sentiment analysis and one for a knowledge-
based question answering task. It shows that the early-exit
moment varies across the instances.

stop avg. layer:19.3 
variance: 1.7 
51.2% FLOPs

Sentiment task

MMLU task

Llama2-13B 40 layers, 100% FLOPs

stop avg. layer: 32.4  
variance: 16.7 
84.1% FLOPs

(b) After implementing AdaInfer, LLMs can re-
duce computational costs through adaptive early-
exit strategies.

Figure 2: An illustration of AdaInfer’s processing and
computational savings.

strength. A strong enough signal triggers an early262

process termination, allowing for the bypass of sub-263

sequent decoder layers.264

4.1 Feature Selection265

As we mentioned before, modifying LLM parame-266

ters requires training and incurs high costs. More267

importantly, it may pose a potential risk of compro-268

mising the model’s generalization capabilities and269

detecting these issues can be challenging (Gu et al.,270

2024). Hence, we embrace a more desirable and271

cost-effective approach that preserves the model’s272

innate abilities without altering parameters. AdaIn-273

fer utilizes specially designed features (e.g., “gap”274

and “top prob”), leveraging a statistical classifier275

for evaluation stopping signal.276

Problem: The lack of features for decision-277

making. LLMs capture coarse-grained features278

in their initial layers and develop more detailed,279

fine-grained representations in subsequent, deeper280

layers, facilitated by repeated application of multi-281

head attention mechanisms and the use of residual282

connections. However, there is a lack of universal-283

level features to demonstrate that shallow-level rep-284

resentation is sufficient for the current task. Further-285
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(b) Llama2 on MMLU

Figure 3: Statistics of features within LLMs that vary
with the forward layer.

more, these features need to be inherently universal 286

to ensure compatibility across various LLMs. 287

Solution: Logits reflect mutation. To address 288

this, we conducted a visual analysis of diverse fea- 289

tures across the layers within each block of LLMs. 290

Our examination focused specifically on: 291

• Gap: Measures the current block’s predic- 292

tion confidence for the next token, defined 293

as gap = P (top token) − P (second token), 294

where P represents the probability distribu- 295

tion generated by the current block. 296

• Top Prob: Indicates P (top token), the proba- 297

bility estimation by the current block for the 298

most likely next token. 299

• Cosine Similarity: Calculated to evaluate the 300

similarity between the features of current and 301

previous block, including attention activation 302

value (attn), multi-layer perceptron outputs 303

(mlp), and hidden states. 304

These analyses are showcased in Figure 3. In 305

this figure, we observe the following trends: (1) For 306

Llama2-13B with 40 layers (Touvron et al., 2023) 307

across sentiment and MMLU tasks, the “gap” and 308

“top prob” gradually increase during the inference 309

phase, stabilizing in the deeper layers. (2) The 310

activation of “gap” and “top prob” varies across 311

layers for different tasks. These phenomenons are 312

also evident in the Llama2-7B, OPT-13B (Zhang 313

et al., 2022), and GPT-J (Wang and Komatsuzaki, 314

2021) (See Appendix C). This demonstrates “gap” 315

and “top prob” can serve as universal features, 316

indicating the stopping signal. Notably, these two 317

values remain consistent across diverse tasks, sug- 318

gesting a versatile classifier applicable to various 319

tasks. Factor study in subsequent experiments also 320

shows that other features (e.g., Cosine Similarity) 321

exhibit subtle differences across layers. 322
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4.2 Classifier323

The Classifier determines if the signal is com-324

pelling enough to warrant an early termination325

of the process. The rule-based approach heavily326

relies on rules, and the cost of individually con-327

structing domain-specific features is high (Huang328

et al., 2017; Yang et al., 2020; Wang et al., 2022).329

Conversely, the plug-and-play nature of the gating330

function (Lin et al., 2017; Bejnordi et al., 2019)331

provides greater universality. Nonetheless, discrete332

decision functions, lacking gradient information,333

often require specialized training methods.334

The trend in Figure 3 indicates classical statis-335

tical classification methods can address discrete336

decision-making problems. We can connect block337

features to decision-making via a statistical clas-338

sifier. By classifying general features (i.e., “gap”339

and “top prob”), we simplify decision-making into340

binary classification, enabling an early exit strategy.341

If the classifier considers the current layer’s fea-342

tures stoppable, subsequent layers’ computations343

can be discarded; otherwise, continue to the final344

layer. This process is also illustrated in Figure 2a.345

4.3 Classifier Objective346

Here we detail the training process of the classifier347

through their objectives, respectively. Given one348

instance, we calculate the feature vector xd using349

the feature selection module. This feature vector350

serves as the input for the classifier module. If the351

current layer’s output ŷ provides the correct answer352

y, the associated label yc is a positive example;353

otherwise, it’s a negative example.354

yc =

{
1 if ŷ = y,

0 otherwise.
(1)355

Thus, for an L−layer LLM, each input instance x356

yields L pairs of < xd, yc >. The details of cre-357

ating training data for classifier are in Appendix358

B. We consider two types of classifiers, Support359

Vector Machines (SVM) (Hearst et al., 1998) and360

Conditional Random Fields (CRF) (Lafferty et al.,361

2001). The first one does not rely on the context of362

sequences, while the second one takes into account363

that the features of layer-by-layer blocks might im-364

plicitly incorporate concepts of sequence modeling.365

SVM Objective. SVM aims to find an optimal366

hyperplane that separates classes by minimizing367

classification errors and maximizing the margin368

between support vectors.369

Table 1: LLMs statistics using AdaInfer.

Model Params Tokens Layer Num.
Meta/OPT 13B 0.18T 40
Meta/Llama 2 7B 2T 32
Meta/Llama 2 13B 2T 40
Meta/Llama 2 70B 2T 80

CRF Objective. CRF is used to capture sequence 370

feature dependencies and make decisions based on 371

neighboring element states in sequence labeling 372

tasks, with the training objective of maximizing the 373

conditional likelihood of the true label sequence 374

given the input sequence. 375

5 Experiments 376

We now conduct experiments with AdaInfer on 377

well-known LLMs across various tasks. 378

5.1 Evaluation Tasks 379

To evaluate the zero/few-shot learning capabilities 380

of AdaInfer, we utilize two primary types of tasks. 381

Question Answering Tasks. (1) MMLU 382

(Hendrycks et al., 2021) encompasses 57 tasks 383

across humanities, social sciences, STEM, and 384

more, requiring world knowledge and problem- 385

solving capabilities. (2) CommonsenseQA (Talmor 386

et al., 2019) tests for commonsense knowledge 387

through multiple-choice questions. (3) SQuAD 388

(Rajpurkar et al., 2016) serves as a reading 389

comprehension benchmark, with questions based 390

on Wikipedia articles and answers either segments 391

of passage or marked as unanswerable. 392

Text Classification Tasks. (1) SST-2 (Socher 393

et al., 2013) involves sentiment analysis of movie 394

reviews with binary “positive” or “negative” labels. 395

(2) AG News (Zhang et al., 2015) classifies news 396

headlines and article sentences into Business, Sci- 397

ence/Technology, Sports, and World categories. 398

5.2 Experiment Settings 399

Large Language Models. For AdaInfer’s back- 400

bone, we choose widely recognized LLMs, detailed 401

in Table 1. These models vary in terms of the num- 402

ber of parameters, ranging from 7 billion to 70 403

billion, and the number of layers, ranging from 32 404

layers to 80 layers. Specifically, our selections en- 405

compass OPT (Zhang et al., 2022) and the Llama 406

2 series (Touvron et al., 2023). These models ex- 407

hibit subtle differences in architectural design and 408
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Table 2: Performance and computational efficiency in multi-tasks, with accuracy (%) denoted by ‘Acc’. Results
include few-shot learning with sample sizes of 5, 10, 15, and 20, showcasing the average values.

Tasks P. Ratio(%)
MMLU CommonsenseQA SQuAD Sentiment AG News

Acc #Avg. L Var Acc #Avg. L Var Acc #Avg. L Var Acc #Avg. L Var Acc #Avg. L Var

Llama 7B Total 32 layers
Dense 0.00 43.05 32.00 0.00 53.50 32.00 0.00 20.40 32.00 0.00 95.20 32.00 0.00 79.65 32.00 0.00
ShortGPT 28.13 21.52 23.00 0.00 33.52 23.00 0.00 10.60 23.00 0.00 93.48 23.00 0.00 56.90 23.00 0.00
ShortGPT 15.63 29.95 27.00 0.00 41.90 27.00 0.00 12.97 27.00 0.00 90.4 27.00 0.00 53.25 27.00 0.00
ShortGPT 9.38 37.39 29.00 0.00 53.22 29.00 0.00 14.32 29.00 0.00 94.17 29.00 0.00 71.28 29.00 0.00
AdaInfer 9.66 → 35.71 43.73 28.91 4.97 53.00 27.90 5.93 45.82 26.77 11.88 95.30 20.57 5.10 79.72 29.20 2.70

Llama 13B Total 40 layers
Dense 0.00 53.31 40.00 0.00 64.92 40.00 0.00 52.90 40.00 0.00 95.90 40.00 0.00 77.53 40.00 0.00
ShortGPT 25.00 45.12 30.00 0.00 65.00 30.00 0.00 13.32 30.00 0.00 84.38 30.00 0.00 55.90 30.00 0.00
ShortGPT 12.50 46.64 35.00 0.00 64.45 35.00 0.00 16.35 35.00 0.00 89.8 35.00 0.00 70.17 35.00 0.00
ShortGPT 7.50 47.22 37.00 0.00 64.47 37.00 0.00 17.25 37.00 0.00 95.90 37.00 0.00 75.47 37.00 0.00
AdaInfer 9.13 → 43.33 52.44 36.35 8.15 62.48 34.60 10.20 48.35 31.18 31.75 92.65 22.67 8.10 76.43 34.02 24.18

OPT 13B Total 40 layers
Dense 0.00 23.60 40.00 0.00 21.45 40.00 0.00 26.12 40.00 0.00 92.58 40.00 0.00 72.83 40.00 0.00
ShortGPT 25.00 10.17 30.00 0.00 11.5 30.00 0.00 0.65 30.00 0.00 14.72 30.00 0.00 2.27 30.00 0.00
ShortGPT 12.50 22.92 35.00 0.00 19.12 35.00 0.00 22.12 35.00 0.00 86.33 35.00 0.00 49.42 35.00 0.00
ShortGPT 7.50 23.05 37.00 0.00 19.68 37.00 0.00 24.65 37.00 0.00 91.35 37.00 0.00 66.62 37.00 0.00
AdaInfer 9.75 → 22.63 22.59 32.37 7.92 21.62 33.33 12.12 25.95 34.20 13.50 92.97 30.95 5.77 72.83 39.00 0.00

training data volume.409

In-Context learning setting. We evaluate our410

approach under zero-shot and few-shot scenarios,411

using sample sizes of 5, 10, 15, and 20. For zero-412

shot, the input is the test set’s xq. For few-shot,413

training set examples are added to xq. For in-414

context learning prompts, we use a default template:415

Q : {xk} \nA : {yk} \n\n, concatenating random416

xk and yk samples from task-specific training sets.417

Metrics. For performance evaluation, we report418

the top-1 accuracy score on the test set following419

function vectors (Todd et al., 2024) (HELM imple-420

mentation)1. To evaluate computational efficiency,421

we follow previous works (Ma et al., 2023; Schus-422

ter et al., 2022; Elbayad et al., 2019) and report the423

pruning ratio (P. Ratio) and the average number of424

activated layers (#Avg. L) for each task, along with425

their variance (Var). These metrics directly mea-426

sures complexity reduction, avoiding conflation427

with implementation or infrastructure-specific de-428

tails (Dehghani et al., 2021). For reference, we also429

translated them into FLOPs reduction ratios in the430

Appendix D. Considering the conditional checks431

and classifier computation involved in AdaInfer,432

we also compared the actual speed of AdaInfer in433

real-world scenarios with Dense implementation,434

reporting wall-clock time (Dehghani et al., 2021).435

Comparison methods. We compared our436

method with the structured pruning method Short-437

1https://huggingface.co/blog/open-llm-leaderboard-
mmlu

GPT (Men et al., 2024), which prunes redundant 438

layers in LLMs based on similarity scores. For 439

the OPT model, we calculated redundant layers 440

as outlined in the paper. For the LLama model, 441

we used the same layers reported. Note that these 442

model pruning methods apply a static pruning ratio 443

across all tasks, whereas our AdaInfer adaptively 444

performs model pruning based on input. 445

5.3 Main Results 446

The main results of AdaInfer are presented in Table 447

2. Conducted in few-shot settings, these experi- 448

ments show the Top-1 accuracy, pruning ratios, av- 449

erage active layers for each task, and their variance 450

compared to the baseline. From the perspective of 451

performance and computational efficiency, we can 452

draw the following experimental conclusions. 453

Performance is Comparable with Minimal Loss 454

(<1%). Tables 2 shows that Top-1 accuracy re- 455

mains within a narrow margin of <1% for all tasks 456

when compared to dense models. Since AdaIn- 457

fer adaptively reduces model parameters, with the 458

pruning ratio determined based on the task, we con- 459

ducted experiments on ShortGPT (Men et al., 2024) 460

to match the adaptive pruning range of AdaInfer. 461

This allows for a more comprehensive compari- 462

son with methods that use a fixed pruning ratio 463

(Yang et al., 2024; Ma et al., 2023). The results 464

are shown in Table 2, demonstrating that AdaInfer 465

surpasses the baseline method with stable perfor- 466

mance. It achieves adaptive inference while main- 467

taining LLM capabilities and in-context learning 468
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Table 3: Wall-clock time (s) and actual speedup for 358
test samples from MMLU and 245 test samples from
Sentiment Tasks.

Task
Llama2 7B (FP32) Llama2 13B (FP16)

Dense Ours Speed up Dense Ours Speed up

MMLU 796.53 781.31 1.02x 339.19 320.46 1.05x
Sentiment 41.18 39.69 1.04x 28.18 21.76 1.30x

abilities 2 without modifying model parameters.469

This finding is promising, especially in light of470

our observation1 in Section 3.2, where we demon-471

strate the feasibility of implementing early exit472

strategies within LLM middle layers while pre-473

serving performance. For certain tasks, AdaInfer474

surpasses the last layer accuracy. This hints at a ten-475

dency for deep layers to potentially over-represent476

certain tasks, which could impede performance dur-477

ing LLM inference.478

Pruning ratio from 9% to 43%, average 17.8%.479

We report the average and variance of activated lay-480

ers for each task and convert them to pruning ratios481

in Table 2. It can be observed that the pruning ra-482

tios vary for different types of tasks, ranging from483

9% to 43%. This variation is because AdaInfer as-484

sesses different early exit layer configurations for485

different task inputs. Even for the same task with486

different inputs, AdaInfer may recommend differ-487

ent early exit layer settings. For instance, in the488

sentiment analysis task, a 43% reduction in com-489

putational cost can be achieved using Llama2-13B,490

while for the knowledge-based question answer-491

ing MMLU and Commonsense question answering492

CommonSenseQA, the savings range from 9% to493

20%. This aligns with our observation2 outlined in494

Section 3.2, where we argue that at LLM inference495

scenario, Not all Layers are Necessary, and allo-496

cating fewer computational resources for “simple”497

samples can improve computational efficiency.498

Wall-clock time. Next, we study the end-to-end499

runtime of AdaInfer. Table 3 compares the run-500

time of AdaInfer with a dense implementation on501

MMLU and Sentiment tasks (5-shot, batch size set502

to 1), using 6 × V 100 (32GB) hardware. We ob-503

served a 1.03x speed up on MMLU and 1.17x speed504

up on Sentiment when applying AdaInfer. This505

indicates that despite AdaInfer converting hidden506

states to logits at each block through the LM head507

2We noted a decline in the performance of the reproduced
ShortGPT on the SQuAD dataset when the prompts increased
to 10, 15, and 20 shots.

Table 4: Comparative analysis of GAP and CRF on
performance and computational efficiency.

Task Setting
AdaInfer w. Rule AdaInfer w. CRF

Acc↑ FLOPs↓ Acc↑ FLOPs↓

MMLU
Zero-shot 5.35 90.84 4.77 97.40
Few-shot 47.09 84.10 52.72 97.15

CommonsenseQA
Zero-shot 1.10 92.78 1.40 97.28
Few-shot 55.33 79.57 65.72 96.40

SQuAD
Zero-shot 24.60 73.17 23.10 93.03
Few-shot 43.43 71.19 51.75 89.94

Sentiment
Zero-shot 0.00 88.25 0.00 97.27
Few-shot 91.45 51.25 95.60 73.07

AG News
Zero-shot 0.10 77.82 0.10 94.04
Few-shot 69.17 70.65 76.77 93.08

layer, it only utilizes the last token’s hidden state 508

even with longer sequences. Consequently, this 509

computation is minimal (0.03% of the total FLOPs 510

for transformer inference). Further computational 511

details on this process can be found in Appendix A. 512

Meanwhile, statistical classifiers (e.g., SVM) have 513

significantly lower computational costs compared 514

to LLM inference, as detailed in Appendix A, high- 515

lighting the computational efficiency potential of 516

AdaInfer. 517

5.4 Evaluation on Different Exit Strategy 518

In the main experiments Table 2 , we employ SVM 519

as the classifier for AdaInfer. To explore the im- 520

pact of different classification strategies, Table 4 521

compares the effects of implementing an early-exit 522

strategy with a GAP threshold set at 0.8 (stopping 523

computation when the current block’s GAP feature 524

exceeds 0.8) against using CRF as a classifier. The 525

results indicate that both GAP and CRF can reduce 526

computational costs from 3% to 50% and maintain 527

comparable LLM performance. Notably, in the 528

zero-shot setting, GAP outperforms CRF, suggest- 529

ing a relatively weak dependency between block 530

features. 531

5.5 Evaluation across Scaling Law 532

In our main experiments in Table 2, we employ 533

7B/13B sized Llama2 and OPT models. In exper- 534

iments with the Llama2 70B version, we observe 535

that in a zero-shot setting, AdaInfer matches or 536

slightly exceeds the baseline model while reducing 537

computational costs by 10% to 50%. However, in 538

the few-shot setting, despite similar reductions in 539

computation, AdaInfer’s accuracy shows a 1% to 540

25% drop across different tasks compared to the 541

baseline. This suggests that for larger models, such 542

as the 70B or even larger scales, AdaInfer may 543
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need to more precisely identify and utilize features544

at different levels. Improving AdaInfer to adapt545

to these larger models is a direction for our future546

research. The results of all LLMs using different547

classifiers are summarized in Table 7 and Table 8 in548

the Appendix D and we have highlighted the best549

results for each task in the current setting.550

5.6 Generalization Study551

In Tables 2, we randomly select 6 training datasets552

from the entire pool of task training sets, which alto-553

gether contain 71 sub-datasets, to train the AdaInfer554

classifier. Furthermore, to assess the generalization555

performance of the statistical classifiers, we con-556

duct the following tests.557

• Intra-Task Generalization. Evaluating the558

sentiment task using a classifier trained on the559

sentiment training dataset.560

• Inter-Task Generalization. Testing senti-561

ment using a classifier trained on the knowl-562

edge question-answering task’s dataset.563

• Inter-Model Generalization. Assessing the564

sentiment task on Llama2-13B using a classi-565

fier trained on Llama2-7B.566

The results are presented in Table 5. The SVM567

classifier exhibits satisfactory intra-task and inter-568

task generalization capabilities, consistent with the569

results presented in the main results. However, for570

the CRF classifier, training in an intra-task manner571

leads to premature termination of the LLM at very572

shallow layers, resulting in subpar performance.573

This could be attributed to insufficient feature se-574

lection, causing the CRF to overfit noise or local575

features in the training data. Additionally, due to576

variations in the logits distribution characteristics577

among different models, the inter-model classifier’s578

performance shows moderate accuracy. In conclu-579

sion, based on the results from Table 2 and Table580

5, when using AdaInfer, we recommend utilizing581

SVM as the classifier.582

5.7 Factor Study583

In response to the features mentioned in Section584

4.1, we conduct cross-validation. Given that the585

classifiers in the main results utilized basic features586

(i.e., “gap”, “top prob”), we explore the impact of587

features such as the cosine similarity between the588

current block and the previous block, which en-589

compasses the attention values (attn), multi-layer590

Table 5: Generalization performance of statistic classi-
fier on sentiment task on Llama2-7B (32 layers), Inter-
Model refers to Llama2-13B (40 layers).

Classifier Generalization Acc Layers Variance FLOPs

SVM
Intra-Task

94.90 18.15 0.45 60.58
CRF 0.00 0.00 0.00 0.00

SVM
Inter-Task

95.50 19.20 4.40 63.80
CRF 94.90 20.20 4.55 66.87

SVM
Inter-Model

90.70 20.60 3.70 54.55
CRF 87.75 19.20 2.75 51.09

Table 6: Comparative analysis of SVM performance
with incremental feature addition in sentiment and
MMLU/anatomy tasks.

Feature Sentiment MMLU

Base Features (gap, top prob) 94.90 41.13
+attn 94.90 41.13

+hidden state 67.53 41.13
+mlp 67.88 41.93

perceptron (mlp), and hidden states. The results 591

are presented in Table 6. The attention values have 592

no discernible impact on the results, while other 593

features like mlp and hidden states have an ad- 594

verse effect. This result is consistent with the trend 595

shown in Figure 3, indicating that logits can mea- 596

sure whether the model’s current forward progress 597

is sufficient, while changes in other features may 598

involve various factors. 599

6 Conclusion 600

In this paper, we first give evidence of that Not 601

all Layers are Necessary during Inference and pro- 602

vide statistical evidence to support this. Then, we 603

present AdaInfer, a simple yet effective algorithm 604

that determines the appropriate moment to cease in- 605

ference based on the input instance, thus enhancing 606

inference efficiency and adaptability without modi- 607

fying the model’s parameters. Experiments on well- 608

known LLMs (i.e., Llama2 series and OPT) show 609

that AdaInfer can achieve an average of 17.8% 610

pruning ratio, even up to 43% on sentiment tasks 611

while maintaining comparable performance with 612

minimal loss (<1% ). More importantly, AdaInfer 613

is compatible with other model acceleration tech- 614

niques, potentially offering further improvements 615

in inference efficiency. We argue that AdaInfer 616

establishes a new paradigm for efficient inference 617

besides effective existing methods. 618

8



Limitations619

In this paper, we make the first attempt to discover620

that the logits of each block are critical for early-621

exit classifiers in LLMs, incorporating this insight622

as a key design choice in AdaInfer. However, since623

AdaInfer relies on a single forward pass, it has not624

yet been extended to sequential generative tasks,625

offering significant avenues for future research.626

Ethics Statement627

Our research aims to optimize large-scale model in-628

ference without modifying parameters, promising629

efficiency gains and reduced energy consumption.630

However, we must address potential misuse con-631

cerns, as enhanced inference capabilities may also632

enable malicious actors to exploit large neural lan-633

guage systems by injecting or amplifying logits as634

features, leading to undesirable behavior.635
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A Computation Cost. 890

Classifier Computation Cost. We utilized the 891

sklearn library for training SVM3 and CRF4, adher- 892

ing to default configurations. For SVM and CRF 893

training, we used the sklearn library with default 894

settings. Given a training dataset with N training 895

examples, the time complexity for SVM training 896

typically ranges from O(N2 × d) to O(N3 × d), 897

where d is the feature dimension. SVM prediction 898

time complexity is O(d) per single inference. For 899

standard linear-chain CRF, the training time com- 900

plexity is approximately O(N × S ×M), where 901

S is the average sequence length, M is the label 902

count. The prediction time complexity for CRF is 903

O(S × M) per single inference. In contrast, the 904

inference time complexity for large models like 905

llama2 is LSd(d+ S) per single inference, where 906

d is the hidden size, S is the sequence length, and 907

L represents the number of layers. Comparatively, 908

the computational load of SVM and CRF is negli- 909

gible when compared to large models. 910

Transformer Computation Cost. Given a lan- 911

guage model with l transformer layers, hidden 912

size h, sequence length s, vocabulary size V , 913

and batch size B. Each transformer block needs 914

24Bsh2+4Bs2h FLOPs for the forward pass. The 915

other main contributor to the FLOPs count is the 916

classification layer in the language model head, 917

which transforms features of dimension h to the 918

vocabulary dimension V . The required FLOPs 919

for this operation is 2BshV in the forward pass. 920

While AdaInfer does convert hidden states to logits 921

at each block through classification layer, it only 922

utilizes the hidden state from the last token for con- 923

version, even when the sequence length is 2048 924

or longer. In the case of Llama2 7/13/70B, this 925

computation accounts for only 0.000288, 0.000236, 926

and 0.000152 of the total number of FLOPs for 927

transformer inference. Similarly, for OPT 13B, 928

it amounts to 0.000367. Consequently, the com- 929

putational burden associated with this aspect can 930

be disregarded. Summing these together, a trans- 931

former model with l transformer layers, the total 932

number of floating-point operations for inference 933

3https://scikit-learn.org/stable/modules/svm.html
4https://sklearn-crfsuite.readthedocs.io/en/latest/
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(a) GPT-J 6B on sentiment
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(b) GPT-J 6B on MMLU
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(c) Llama2-7B on sentiment
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(d) Llama2-7B on MMLU
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(e) OPT-13B on sentiment
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(f) OPT-13B on MMLU

Figure 4: Visual analysis of diverse features across mainstream LLMs.
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is 4Bshl(6h + s) + 2BshV . Thus, the ratio of934

inference cost in FLOPs can be calculated as935

2l′(6h+ s) + V

2l(6h+ s) + V
(2)936

B Details of Creating Training Data for937

Classifier938

Considering a training input instance x and its cor-939

responding label y from Dtrain. Once x is pro-940

cessed through a decoder layer of LLM, we can941

extract a general feature vector xd (d is the number942

of features). Additionally, we obtain the probability943

distribution P over the vocabulary V of the current944

layer’s hidden state after passing through the clas-945

sification layer (as depicted in Section 3.1). This946

can be represented as: P = softmax(WH + b),947

where H is the hidden state of the current layer,948

W and b are the weights and bias of the classi-949

fication layer, respectively. Function softmax is950

applied to convert logits to probabilities. Let the951

highest-ranked token in this distribution be denoted952

as ŷ = argmax(P ), where argmax(P ) finds the953

token with the highest probability. If ŷ matches954

the label y, the associated label yc for the feature955

vector xd is designated as positive; otherwise, it is956

labeled as negative. Thus, for an L−layer LLM,957

each input instance x yields L pairs of < xd, yc >.958

C More Observation of LLMs959

Figure 4 depicts a visual analysis of features across960

the layers within each block of mainstream LLMs.961

It shows that the “gap” and “top prob” exhibit a962

gradual increase during the inference phase, reach-963

ing stability in the deeper layers. Additionally, the964

activation of “gap” and “top prob” varies across965

layers for different tasks. These observed trends966

align with the findings discussed in Section 4.1.967

D Comprehensive Summary of Results968

The results of all LLMs using different classifiers969

are summarized in Table 7 and 8. We have high-970

lighted the best results for each task in the current971

setting. The experimental results indicate that (i)972

early exits are feasible for different tasks, (ii) the973

timing of early exits varies depending on the in-974

stance, and (iii) in both zero-shot and few-shot set-975

tings, accuracy is comparable with baseline models.976

It’s worth noting that for individual tasks, AdaIn-977

fer even outperforms the baseline in zero-shot or978

few-shot accuracy. This suggests that in inference979

scenarios, deep layers may tend to over-represent 980

some tasks, potentially impairing performance. 981
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Table 7: Performance and computational efficiency in question answering tasks, with accuracy (%) denoted by ‘acc’.
Results include few-shot learning with sample sizes of 5, 10, 15, and 20, showcasing the average values.

Setting Model
MMLU CommonsenseQA SQuAD Avg

Acc↑ FLOPs↓ Acc↑ FLOPs↓ Acc↑ FLOPs↓ Acc↑ FLOPs↓

Zero-shot

OPT-13B 7.95 100 8.20 100 20.00 100 12.05 100
AdaInfer w. Rule 3.21 89.58 0.60 85.17 20.72 87.98 8.18 87.58
AdaInfer w. CRF 7.14 96.57 4.60 93.26 24.36 93.22 12.03 94.35

AdaInfer 8.67 97.55 2.80 97.55 23.00 97.55 11.49 97.55

Few-shot

OPT-13B 23.60 100 21.45 100 26.12 100 23.72 100
AdaInfer w. Rule 20.99 79.54 20.72 80.00 24.20 82.93 21.97 80.82
AdaInfer w. CRF 24.44 97.43 21.18 97.55 25.98 97.11 24.81 97.37

AdaInfer 22.59 83.94 21.62 86.05 25.95 88.31 23.39 86.10

Zero-shot

Llama2-7B 4.19 100 5.30 100 20.40 100 9.96 100
AdaInfer w. Rule 4.69 95.69 4.60 94.90 23.90 89.48 11.06 93.36
AdaInfer w. CRF 4.86 95.32 2.00 95.01 18.80 91.17 8.55 93.83

AdaInfer 4.63 96.13 4.80 95.26 23.80 89.98 11.08 93.79

Few-shot

Llama-2-7B 43.05 100 53.50 100 48.08 100 48.21 100
AdaInfer w. Rule 44.03 93.69 52.83 90.23 45.68 86.72 47.51 90.21
AdaInfer w. CRF 41.38 94.23 53.6 91.61 43.62 88.10 46.20 91.31

AdaInfer 43.73 93.76 53.00 90.46 45.82 87.06 47.52 90.43

Zero-shot

Llama2-13B 2.54 100 1.00 100 19.20 100 7.58 100
AdaInfer w. Rule 5.35 90.84 1.10 92.78 24.60 73.17 10.35 85.60
AdaInfer w.CRF 4.77 97.40 1.40 97.28 23.10 93.03 9.76 95.90

AdaInfer 2.48 98.14 0.70 98.37 25.90 85.34 9.69 93.95

Few-shot

Llama-2-13B 53.31 100 64.92 100 52.9 100 57.04 100
AdaInfer w. Rule 47.09 84.10 55.33 79.57 43.43 71.19 48.62 78.29
AdaInfer w.CRF 52.72 97.15 65.72 96.40 51.75 89.94 56.73 94.50

AdaInfer 52.44 93.55 62.48 89.10 48.35 80.66 54.42 87.77

Table 8: Performance and computational efficiency in text classification and rule understanding tasks, with accuracy
(%) denoted by ‘acc’. Results include few-shot learning with sample sizes of 5, 10, 15, and 20, showcasing the
average values.

Setting Model
Sentiment AG News Avg Rule Understanding

Acc↑ FLOPs↓ Acc ↑ FLOPs↓ Acc↑ FLOPs↓ Acc↑ FLOPs↓

Zero-shot

OPT-13B 0.00 100 0.10 100 0.05 100 3.38 100
AdaInfer w. Rule 0.00 90.61 0.10 92.03 0.05 91.32 3.64 87.55
AdaInfer w. CRF 0.00 97.55 0.10 97.55 0.05 97.55 4.11 97.55

AdaInfer 0.00 96.87 0.10 100 0.05 98.44 3.86 92.52

Few-shot

OPT-13B 92.58 100 72.83 100 82.71 100 58.48 100
AdaInfer w. Rule 94.20 78.30 12.95 82.54 53.58 80.42 48.20 85.50
AdaInfer w. CRF 92.88 97.50 71.27 97.55 82.08 97.53 55.33 97.50

AdaInfer 92.97 80.28 72.83 100 82.90 90.14 52.83 89.74

Zero-shot

Llama2-7B 0.00 100 0.10 100 0.05 100 5.47 100
AdaInfer w. Rule 0.00 96.08 0.10 91.05 0.05 93.57 5.41 91.20
AdaInfer w. CRF 0.00 96.07 0.10 92.20 0.05 94.14 3.62 92.08

AdaInfer 0.00 96.37 0.10 91.36 0.05 93.87 5.32 91.55

Few-shot

Llama-2-7B 95.20 100 79.65 100 87.43 100 66.80 100
AdaInfer w. Rule 95.30 67.78 79.72 94.38 87.51 81.08 66.80 87.99
AdaInfer w. CRF 94.90 69.91 61.62 96.38 78.26 83.15 62.36 89.60

AdaInfer 95.30 68.05 79.72 94.51 87.51 81.28 66.92 88.41

Zero-shot

Llama2-13B 0.00 100 0.10 100 0.05 100 2.32 100
AdaInfer w. Rule 0.00 88.25 0.10 77.82 0.05 83.04 9.9 74.80
AdaInfer w. CRF 0.00 97.27 0.10 94.04 0.05 95.66 3.43 90.29

AdaInfer 0.00 97.43 0.10 88.37 0.05 92.90 6.14 85.76

Few-shot

Llama-2-13B 95.90 100 77.53 100 86.72 100 69.36 100
AdaInfer w. Rule 91.45 51.25 69.17 70.65 80.31 60.95 53.78 70.38
AdaInfer w. CRF 95.60 73.07 76.77 93.08 86.19 83.08 65.82 90.29

AdaInfer 92.65 59.70 76.43 87.69 84.54 73.70 61.87 80.61
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