
Online-LoRA: Task-free Online Continual Learning
via Low Rank Adaptation

Xiwen Wei
The University of Texas at Austin

xiwenwei@utexas.edu

Guihong Li
AMD

liguihong1995@gmail.com

Radu Marculescu
The University of Texas at Austin

radum@utexas.edu

Abstract
Catastrophic forgetting is a significant challenge in online continual learning (OCL),
especially for non-stationary data streams that do not have well-defined task bound-
aries. This challenge is exacerbated by the memory constraints and privacy con-
cerns inherent in rehearsal buffers. To tackle catastrophic forgetting, in this paper,
we introduce Online-LoRA, a novel framework for task-free OCL. Online-LoRA
allows to finetune pre-trained Vision Transformer (ViT) models in real-time to
address the limitations of rehearsal buffers and leverage pre-trained models’ per-
formance benefits. As the main contribution, our approach features a novel online
weight regularization strategy to identify and consolidate important model param-
eters. Moreover, Online-LoRA leverages the training dynamics of loss values to
enable the automatic recognition of the data distribution shifts. Extensive experi-
ments across many task-free OCL scenarios and benchmark datasets demonstrate
that Online-LoRA can be robustly adapted to various ViT architectures, while
achieving better performance compared to SOTA methods.

1 Introduction
Continual learning (CL) enables machine learning systems to learn new concepts while retaining
previously learned knowledge, a crucial requirement for real-time applications such as robotics,
healthcare, and autonomous driving (50; 27). However, a significant challenge in CL is catastrophic
forgetting, where new learning disrupts previously acquired knowledge. Existing CL methods are
categorized as either task-based or task-free, depending on the knowledge of task boundaries, and
as either online or offline, depending on whether data is processed in a single pass or multiple
iterations (44; 59; 19; 5; 53; 17). Offline task-based CL assumes stationary data distributions and
known task boundaries, but these assumptions rarely align with real-world scenarios where data flows
continuously and lacks clear task boundaries (29; 13; 58; 37; 3).
To address these limitations, we focus on task-free online CL (task-free OCL), where data is seen only
once, and task identities and boundaries are unknown during training and inference (28; 11; 20; 57).
Pre-trained Vision Transformers (ViTs) have shown strong performance across various tasks and offer
robust transfer learning capabilities, particularly in data-scarce environments (12; 60; 54; 15; 16; 61).
Recent methods using parameter-efficient fine-tuning (PEFT), such as prompt tuning and Low-Rank
Adaptation (LoRA), have shown promise for offline task-based CL (30; 23; 10; 55; 48), but their
potential in task-free OCL remains unexplored.
We propose Online-LoRA, a novel approach that integrates pre-trained ViTs and LoRA for task-free
OCL. Online-LoRA detects shifts in data distribution by monitoring loss plateaus and introduces
new LoRA parameters to adapt incrementally. Additionally, we introduce an online regularization
mechanism that mitigates forgetting by dynamically estimating the importance of LoRA parameters
with minimal memory overhead, reducing computational demands compared to EWC++ (6).
We summarize our main contributions as follows:
1. We propose Online-LoRA, an innovative approach that enables efficient learning from changing
data in an online, task-free manner by detecting data distribution shifts through loss plateaus and
incorporating an online weight regularization mechanism.

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

0 50 100 150 200 250 300 350
#Samples (Data Stream)

0

10

20

30

40

50

Lo
ss

Weights
of the

pretrained
model

Plateaus of the loss surface

B1

A1

×+

B2

A2

×+

B3

A3

×+

B4

A4

×+

Frozen weights are merged
Trainable
weights

Q VK

Online LoRA

Multi-head Attention

Vision Transformer

Classification: dogs, boats, vehicles, etc.Classification: dogs, boats, vehicles, etc.

Task 1

Task 2

Task 3

Data Stream

Task 4

Task 1 Task 2 Task 3 Task 4

Time
Time(a)

(b)

(c)

Figure 1: The overview of Online-LoRA. As the data is continuously streamed (a), a new pair of
trainable LoRA parameters (A4, B4) is added (b) every time the loss surface encounters a plateau (c).
Subsequently, the previous LoRA parameters (A1, B1;A2, B2;A3, B3) are frozen (the lock sign in
(b)) and merged to the weights of the pre-trained ViT model.

2. Our evaluations across various ViT architectures and multiple task-free OCL benchmarks, including
class and domain incremental learning settings, show that Online-LoRA consistently outperforms
existing SOTA methods and maintains robust performance across diverse scenarios.

2 Related work
2.1 Continual learning
Many existing CL methods, including architecture-based, regularization-based, rehearsal-based, and
prompt-based approaches, face challenges when adapted to task-free OCL. While some methods,
like rehearsal-based approaches (8; 2; 42) and instance-wise prompt-based methods such as L2P
(54) and MVP (40), can be transferred to task-free OCL, others, like architecture-based methods
(46; 45; 14; 43) and certain regularization-based methods (24; 58), require task identity and are not
suitable. Although L2P (54) employs a trick that masks out irrelevant classes during training, which
contradicts the task-free OCL setting), we ensure a fair comparison by evaluating against L2P (54)
and MVP (40) under the Stochastic Incremental Blurry (Si-blurry) scenario proposed by (40), where
task boundaries are not explicitly defined.

2.2 Parameter efficient fine-tuning
PEFT is a transfer learning approach that fine-tunes specific sub-modules within a pre-trained network,
reducing computation while maintaining performance comparable to full fine-tuning (22). LoRA
(23), a notable example, has been used in CL but is limited to task-based offline settings due to its
reliance on explicit task boundaries (9; 31; 47; 33). To our knowledge, Online-LoRA is the first to
extend LoRA to a task-free OCL scenario for transformer-based vision models.

3 Online-LoRA
3.1 Problem formulation
We define a data stream of unknown distributions D = {D1, ..., DN} over X × Y , where X and Y
are input and output space respectively (38). At each time step s, the system receives a batch of non
i.i.d samples xt

k, y
t
k from the current distribution Dt of task t; the system sees this batch only once.

Moreover, at any moment s, the distribution Dt can itself experience sudden or gradual changes from
Dt to Dt+1. The system is unaware of when and how these distribution changes happen.
For simplicity, we assume that Dt is the data distribution of task t, and any shift from Dt to Dt+1 is
sudden. Of note, this remains a task-free setting, since gradual transitions from Dt to Dt+1 can still
be modeled by adding intermediate tasks and making these distributions increasingly similar, thus

2

effectively blurring the explicit boundaries between tasks. Our Online-LoRA does not assume any
task boundaries at any time.

3.2 Loss-guided model adaptation
In LoRA, for a pre-trained weight matrix Winit ∈ Rd×k, the update ∆W in W ← Winit + ∆W
is reformulated as a low-rank decomposition: ∆W = BA, where A ∈ Rr×k and B ∈ Rd×r, and
the rank r ≪ min(d, k). Winit remains fixed during training and does not receive gradient updates,
while A and B contain trainable parameters. In existing LoRA-based CL methods (47; 55), new
LoRA parameters are added for each new task t′, resulting in a set of LoRA parameters denoted as
{At′ , Bt′}, where At′ ∈ Rd×r , Bt′ ∈ Rr×k , d and k are the input and output dimensions of the
attention layer, and rank r ≪ min(d, k). When learning task t, if the initial ViT weights are denoted
as Winit, then for an input sample X , the model output Y becomes:

Y = (Winit +

t∑
t′=0

Bt′At′)X (1)

This incremental model mitigates catastrophic forgetting by minimizing interference between old
and new tasks (see Figure 1) and applies LoRA only to the query and value projection matrices in
attention layers. As data from previous tasks is unavailable when training on future tasks, old LoRA
parameters are frozen and merged with pre-trained weights to reduce memory overhead. However,
existing LoRA-based methods require explicit task boundaries to initialize new parameters, which is
not feasible in task-free OCL with continuous data flow.
To address this, we use the concept of the loss surface (3). A decreasing loss indicates effective
learning, while an increasing loss suggests a shift in data distribution. We assume convergence before
shifts, with loss plateaus indicating stable phases (see Appendix D). At these plateaus, we consolidate
learning by freezing current LoRA weights and initializing new ones, merging frozen weights with
pre-trained attention weights to prevent parameter accumulation.

3.3 Online parameter importance estimation
Many studies have shown the effectiveness of weight regularization in reducing catastrophic forget-
ting by estimating parameter importance (1; 24; 6). However, in an online scenario with shifting
data distributions, parameter importance varies dynamically, making static estimation unsuitable.
Additionally, with pre-trained ViT models, traditional methods like calculating the Fisher information
matrix for importance estimation (24) are computationally inefficient.
We draw on Bayesian principles similar to EWC (24), treating model parameters as random variables
and updating prior knowledge using Bayes’ rule. Given data D:

log p(θ|D) = log p(D|θ) + log p(θ)− log p(D) (2)

Splitting D into current sample x and past data Dprev , this becomes:

log p(θ|D) = log p(x|θ) + log p(θ|Dprev)− log p(x) (3)

We approximate the posterior as a Gaussian centered at the MAP solution θMAP using a Laplace
approximation, with the empirical Fisher information matrix for covariance. Treating the LoRA
adapter

∑
t′ Bt′At′X as two separate linear layers (56), we use two smaller importance weight

matrices, ΩA,l ∈ Rd×r and ΩB,l ∈ Rr×k, for each attention layer, allowing efficient online updates
(see Appendix L.1 for details).
To estimate parameter importance efficiently, we focus on the sensitivity of loss relative to LoRA
parameters. The importance weight matrices match the dimensions of LoRA parameters:

ΩA,l
ij =

1

N

N∑
k=1

∇WA,l
ij

log p(xk|θ) ◦ ∇WA,l
ij

log p(xk|θ) (4)

ΩB,l
ij =

1

N

N∑
k=1

∇WB,l
ij

log p(xk|θ) ◦ ∇WB,l
ij

log p(xk|θ) (5)

Here, WA,l and WB,l are new trainable LoRA parameters added to the lth attention layer, and xk

are samples from a small hard buffer containing high-loss samples. After updating the importance

3

Split-CIFAR-100 Split-ImageNet-R Split-ImageNet-S Split-CUB-200

AFinal (↑) Forgetting (↓) AFinal (↑) Forgetting (↓) AFinal (↑) Forgetting (↓) AFinal (↑) Forgetting (↓)

ViT-B/16

AGEM (7) 12.67±1.87 82.51±2.27 5.60±2.74 53.97±1.97 0.16±0.04 9.42±0.17 10.84±1.57 47.79±0.04

ER (8) 44.85±1.83 44.67±4.29 40.99±3.96 32.38±0.89 30.21±0.70 37.14±1.83 31.66±0.83 14.23±0.07

EWC++ (6) 10.61±0.74 84.10±1.11 3.86±2.02 56.95±1.46 0.32±0.28 22.46±4.69 26.14±3.46 47.69±0.07

MIR (2) 48.36±3.11 43.41±1.02 41.51±2.99 31.32±5.17 30.33±3.81 35.92±1.75 31.64±2.97 23.43±0.05

GDumb (42) 41.00±19.97 - 8.87±1.36 - 1.65±0.22 - 9.09±1.03 -
PCR (34) 48.48±0.15 46.23±1.29 46.11±3.03 25.50±0.41 38.75±0.22 35.01±2.12 41.11±1.43 29.64±1.20

DER++ (4) 36.64±6.11 56.94±7.55 30.90±8.04 24.26±4.14 6.47±0.06 15.34±0.15 26.61±1.27 32.16±0.55

LODE (DER++) (32) 44.29±1.48 45.54±3.32 42.20±6.46 31.83±1.05 9.97±2.29 8.48±1.24 39.20±4.25 41.64±3.59

EMA (DER++) (49) 42.28±4.36 55.59±1.48 41.75±1.98 32.65±1.55 16.88±2.23 36.28±1.09 35.26±3.31 25.55±3.35

EMA (RAR) (49) 47.10±0.82 50.01±0.35 30.04±0.33 39.36±0.04 14.06±0.37 36.28±1.09 33.34±1.11 28.68±0.56

Ours 49.40±1.36 41.74±2.58 48.18±0.63 23.85±1.48 47.06±0.24 28.09±3.25 41.46±0.31 13.64±0.68
UB 89.50±0.04 - 76.78±0.44 - 63.82±0.02 - 82.81±1.07 -

ViT-S/16

AGEM (7) 7.43±2.15 82.45±5.46 2.35±0.87 48.01±0.05 2.75±2.86 18.81±0.44 1.40±0.17 27.06±1.39

ER (8) 31.91±2.06 52.21±6.41 32.73±0.20 45.37±1.72 19.53±1.44 45.10±0.48 21.81±3.02 24.52±2.98

EWC++ (6) 6.80±2.13 81.59±7.43 1.32±0.83 53.54±0.19 4.08±3.24 21.28±0.46 2.07±0.54 28.44±0.83

MIR (2) 29.08±1.14 39.42±1.60 34.73±0.29 48.66±0.69 13.96±1.95 42.61±0.08 22.95±1.12 32.54±0.88

GDumb (42) 10.87±4.94 - 5.33±1.09 - 2.09±0.32 - 3.28±0.99 -
PCR (34) 32.89±1.47 39.90±2.51 21.96±0.27 45.12±0.08 14.37±0.95 43.96±0.48 22.28±2.73 29.87±0.04

DER++ (4) 17.67±4.04 51.65±3.67 22.17±4.27 54.79±0.89 18.15±0.66 46.22±0.95 29.53±2.37 21.49±1.16

LODE (DER++) (32) 28.65±3.06 40.42±1.58 31.65±0.72 43.72±0.09 17.59±0.84 47.85±0.23 26.81±0.89 21.86±2.30

EMA (DER++) (49) 12.76±0.65 41.17±1.75 20.89±3.05 48.03±1.79 12.93±0.13 22.59±0.16 35.79±5.27 24.85±4.20

EMA (RAR) (49) 19.21±2.16 41.99±1.73 16.11±0.35 50.58±0.83 14.50±2.71 23.79±2.91 34.53±1.04 30.19±0.36

Ours 32.16±0.24 38.64±0.65 33.21±0.50 42.76±0.18 22.45±0.43 44.56±0.24 37.41±0.16 20.78±2.54
UB 86.55±0.01 - 69.94±0.34 - 59.28±0.11 - 73.91±1.16 -

Table 1: Results of disjoint class-incremental learning. ‘↑’ means higher is better and ‘↓’ means
lower is better. Regularization-based methods (EWC++, AGEM, and LODE) yield low accuracy and
low forgetting on Split ImageNet-S. This is because their overly rigid constraints on model updates
hinder effective learning. The best results are noted by bold. UB is the upper-bound performance.

weights, the model penalizes changes to important parameters, with θMAP being the model weights at
the last loss plateau. Our final objective is:

min
WA,WB

L(F (X; θ), Y) + L(F (XB ; θ), YB) + LLoRA(W
A,WB) (6)

LLoRA(W
A,WB) =

λ

2

∑
l∈|Attn|

((ΩA,l ◦ (WA,l) ◦ (WA,l)) + (ΩB,l ◦ (WB,l) ◦ (WB,l))) (7)

where Attn is the set of attention layers, L(F (X; θ), Y) is the loss of current samples, and
L(F (XB ; θ), YB) is the loss of hard buffer samples.

4 Experiments

4.1 Experimental Setup

Benchmarks: Datasets (CIFAR-100, Imagenet-R, Imagenet-S, CUB-200, and CORe50) under three
scenarios (disjoint class-incremental, Si-Blurry class-incremental, and domain-incremental). See
Appendix B for details. Baselines: the Upper-bound (UB) baseline refers to supervised fine-tuning
on the entire dataset of i.i.d. data, representing the optimal performance. See Appendix J for
details of other SOTA methods. Metrics: AAUC, AFinal (higher values indicate better accuracy), and
Forgetting (lower values indicate lower forgetting). See Appendix A for the detailed definitions.
Hyper-parameters: For Online-LoRA, see Appendix C; for baselines, see Appendix J; and for
results with other buffer sizes, see Appendix K. Training epoch: Given our focus on online CL, the
training epoch is set to 1 for all experiments.

4.2 Experimental Results

Table 1 summarizes the results on the disjoint class-incremental benchmarks Split CIFAR-100,
Split ImageNet-R, Split ImageNet-S, and Split CUB-200. Our Online-LoRA, outperforms all other
compared methods consistently across the ViT-B/16 and ViT-S/16. On Split ImageNet-S, Online-
LoRA exhibits standout performance, significantly outperforming all other methods, and notably
reducing the gap to the upper bound. As shown in Table 1, Online-LoRA consistently performs well
across various dataset sizes, while GDumb (42) struggles with smaller datasets like Split CIFAR-100
and performs poorly on larger datasets like Split-ImageNet-R and Split ImageNet-S. GDumb’s
reliance on a replay buffer leads to class imbalance with larger datasets due to limited representation.
In contrast, Online-LoRA uses a small, targeted ‘hard buffer’ of high-loss samples, effectively
addressing these challenges without depending heavily on memory size.

4

For results on additional scenarios (Si-Blurry class-incremental in Appendix F and domain-
incremental in Appendix E), different task sequence lengths (Appendix H), and the ablation study
(Appendix I), please see the Appendix.

5 Conclusion
In this paper, we introduced Online-LoRA, a novel method for task-free online CL that adapts
to changing data distributions by dynamically analyzing the loss surface and using online weight
regularization to prevent catastrophic forgetting. Our experiments demonstrate that Online-LoRA out-
performs state-of-the-art methods, particularly in scenarios with long task sequences, and approaches
the upper bound in domain-incremental settings. With the increasing use of pre-trained models in CL,
Online-LoRA provides a solid foundation for practical task-free online CL systems.

References
[1] Aljundi, R. et al.: Memory aware synapses: Learning what (not) to forget. In: Proceedings of the European

conference on computer vision (ECCV). pp. 139–154 (2018)

[2] Aljundi, R. et al.: Online continual learning with maximal interfered retrieval. Advances in neural
information processing systems 32 (2019)

[3] Aljundi, R. et al.: Task-free continual learning. In: Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition. pp. 11254–11263 (2019)

[4] Buzzega, P. et al.: Dark experience for general continual learning: a strong, simple baseline. Advances in
neural information processing systems 33, 15920–15930 (2020)

[5] Cai, Z. et al.: Online continual learning with natural distribution shifts: An empirical study with visual data.
In: Proceedings of the IEEE/CVF international conference on computer vision. pp. 8281–8290 (2021)

[6] Chaudhry, A. et al.: Riemannian walk for incremental learning: Understanding forgetting and intransigence.
In: Proceedings of the European conference on computer vision (ECCV). pp. 532–547 (2018)

[7] Chaudhry, A. et al.: Efficient lifelong learning with a-gem. arXiv preprint arXiv:1812.00420 (2018)

[8] Chaudhry, A. et al.: Continual learning with tiny episodic memories. In: Workshop on Multi-Task and
Lifelong Reinforcement Learning (2019)

[9] Chen, S. et al.: Adaptformer: Adapting vision transformers for scalable visual recognition. arXiv preprint
arXiv:2205.13535 (2022)

[10] Chitale, R. et al.: Task arithmetic with lora for continual learning. arXiv preprint arXiv:2311.02428 (2023)

[11] De Lange, M. et al.: Continual prototype evolution: Learning online from non-stationary data streams.
In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV). pp. 8250–8259
(October 2021)

[12] Dosovitskiy, A. et al.: An image is worth 16x16 words: Transformers for image recognition at scale. arXiv
preprint arXiv:2010.11929 (2020)

[13] Farquhar, S. et al.: Towards robust evaluations of continual learning. arXiv preprint arXiv:1805.09733
(2018)

[14] Fernando, C. et al.: Pathnet: Evolution channels gradient descent in super neural networks. arXiv preprint
arXiv:1701.08734 (2017)

[15] Gao, Q. et al.: A unified continual learning framework with general parameter-efficient tuning. In:
Proceedings of the IEEE/CVF International Conference on Computer Vision. pp. 11483–11493 (2023)

[16] Han, X. et al.: Pre-trained models: Past, present and future. AI Open 2, 225–250 (2021)

[17] He, J. et al.: Online continual learning for visual food classification. In: Proceedings of the IEEE/CVF
international conference on computer vision. pp. 2337–2346 (2021)

[18] He, K. et al.: Deep residual learning for image recognition. In: Proceedings of the IEEE conference on
computer vision and pattern recognition. pp. 770–778 (2016)

[19] He, X. et al.: Task agnostic continual learning via meta learning. arXiv preprint arXiv:1906.05201 (2019)

5

[20] He, Y. et al.: Dyson: Dynamic feature space self-organization for online task-free class incremental
learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR) (June 2024)

[21] Hendrycks, D. et al.: The many faces of robustness: A critical analysis of out-of-distribution generalization.
ICCV (2021)

[22] Houlsby, N. et al.: Parameter-efficient transfer learning for nlp. In: International conference on machine
learning. pp. 2790–2799. PMLR (2019)

[23] Hu, E.J. et al.: Lora: Low-rank adaptation of large language models. arXiv preprint arXiv:2106.09685
(2021)

[24] Kirkpatrick, J. et al.: Overcoming catastrophic forgetting in neural networks. Proceedings of the national
academy of sciences 114(13), 3521–3526 (2017)

[25] woo Koh, H. et al.: Online continual learning on class incremental blurry task configuration with anytime in-
ference. ArXiv abs/2110.10031 (2021), https://api.semanticscholar.org/CorpusID:239024453

[26] Krizhevsky, A. et al.: Learning multiple layers of features from tiny images (2009)

[27] Lee, C.S. et al.: Clinical applications of continual learning machine learning. The Lancet Digital Health
2(6), e279–e281 (2020)

[28] Lee, S. et al.: A neural dirichlet process mixture model for task-free continual learning. arXiv preprint
arXiv:2001.00689 (2020)

[29] Lesort, T. et al.: Understanding continual learning settings with data distribution drift analysis. arXiv
preprint arXiv:2104.01678 (2021)

[30] Lester, B. et al.: The power of scale for parameter-efficient prompt tuning. arXiv preprint arXiv:2104.08691
(2021)

[31] Lian, D. et al.: Scaling & shifting your features: A new baseline for efficient model tuning. In: Advances
in Neural Information Processing Systems (NeurIPS) (2022)

[32] Liang, Y.S. et al.: Loss decoupling for task-agnostic continual learning. Advances in Neural Information
Processing Systems 36 (2023)

[33] Liang, Y.S. et al.: Inflora: Interference-free low-rank adaptation for continual learning. In: Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 23638–23647 (2024)

[34] Lin, H. et al.: Pcr: Proxy-based contrastive replay for online class-incremental continual learning. In:
CVPR. pp. 24246–24255 (2023)

[35] Liu, Z. et al.: Swin transformer: Hierarchical vision transformer using shifted windows. In: ICCV. pp.
10012–10022 (2021)

[36] Lomonaco, V. et al.: Core50: a new dataset and benchmark for continuous object recognition. In: Proceed-
ings of the 1st Annual Conference on Robot Learning. vol. 78, pp. 17–26 (2017)

[37] Lopez-Paz, D. et al.: Gradient episodic memory for continual learning. Advances in neural information
processing systems 30 (2017)

[38] Mai, Z. et al.: Online continual learning in image classification: An empirical survey. Neurocomputing
469, 28–51 (2022)

[39] Microsoft: Deepspeed: A deep learning optimization library. https://github.com/microsoft/
DeepSpeed (2024), accessed: 2024-09-05

[40] Moon, J.Y. et al.: Online class incremental learning on stochastic blurry task boundary via mask and visual
prompt tuning. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (2023)

[41] Moon, J.Y. et al.: Online class incremental learning on stochastic blurry task boundary via mask and visual
prompt tuning. In: ICCV (2023)

[42] Prabhu, A. et al.: Gdumb: A simple approach that questions our progress in continual learning. In: The
European Conference on Computer Vision (ECCV) (August 2020)

6

https://api.semanticscholar.org/CorpusID:239024453
https://github.com/microsoft/DeepSpeed
https://github.com/microsoft/DeepSpeed

[43] Rajasegaran, J. et al.: Random path selection for continual learning. Advances in Neural Information
Processing Systems 32 (2019)

[44] Rao, D. et al.: Continual unsupervised representation learning. Advances in neural information processing
systems 32 (2019)

[45] Rusu, A.A. et al.: Progressive neural networks. ArXiv abs/1606.04671 (2016), https://api.
semanticscholar.org/CorpusID:15350923

[46] Shanahan, M. et al.: Encoders and ensembles for task-free continual learning. arXiv preprint
arXiv:2105.13327 (2021)

[47] Smith, J. et al.: Continual diffusion: Continual customization of text-to-image diffusion with c-lora. ArXiv
abs/2304.06027 (2023), https://api.semanticscholar.org/CorpusID:258078844

[48] Smith, J.S. et al.: Coda-prompt: Continual decomposed attention-based prompting for rehearsal-free con-
tinual learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.
pp. 11909–11919 (2023)

[49] Soutif-Cormerais, A. et al.: Improving online continual learning performance and stability with temporal
ensembles. In: Conference on Lifelong Learning Agents. pp. 828–845. PMLR (2023)

[50] Verwimp, E. et al.: Continual learning: Applications and the road forward. arXiv preprint arXiv:2311.11908
(2023)

[51] Wah, C. et al.: Caltech-ucsd birds 200. Tech. Rep. CNS-TR-2011-001, California Institute of Technology
(2011)

[52] Wang, H. et al.: Learning robust global representations by penalizing local predictive power. In: Advances
in Neural Information Processing Systems. pp. 10506–10518 (2019)

[53] Wang, Z. et al.: Online continual learning with contrastive vision transformer. In: European Conference on
Computer Vision. pp. 631–650. Springer (2022)

[54] Wang, Z. et al.: Learning to prompt for continual learning. In: Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition. pp. 139–149 (2022)

[55] Wistuba, M. et al.: Continual learning with low rank adaptation. In: NeurIPS 2023 Work-
shop on Distribution Shifts (DistShifts) (2023), https://www.amazon.science/publications/
continual-learning-with-low-rank-adaptation

[56] Yang, A.X. et al.: Bayesian low-rank adaptation for large language models. ArXiv abs/2308.13111 (2023),
https://api.semanticscholar.org/CorpusID:261214713

[57] Ye, F. et al.: Online task-free continual generative and discriminative learning via dynamic cluster memory.
In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 26202–
26212 (2024)

[58] Zenke, F. et al.: Continual learning through synaptic intelligence. In: International conference on machine
learning. pp. 3987–3995. PMLR (2017)

[59] Zeno, C. et al.: Task agnostic continual learning using online variational bayes. arXiv preprint
arXiv:1803.10123 (2018)

[60] Zhang, G. et al.: Slca: Slow learner with classifier alignment for continual learning on a pre-trained model.
In: Proceedings of the IEEE/CVF International Conference on Computer Vision. pp. 19148–19158 (2023)

[61] Zhou, D.W. et al.: Deep class-incremental learning: A survey. arXiv preprint arXiv:2302.03648 (2023)

A Evaluation Metrics

In this section, we present the definitions of the three evaluation metrics we used in our experiments,
supplementing Section ?? in the main paper.
Let ai,j be the testing accuracy on the ith task after training on jth task. The total number of tasks is
denoted by T .

7

https://api.semanticscholar.org/CorpusID:15350923
https://api.semanticscholar.org/CorpusID:15350923
https://api.semanticscholar.org/CorpusID:258078844
https://www.amazon.science/publications/continual-learning-with-low-rank-adaptation
https://www.amazon.science/publications/continual-learning-with-low-rank-adaptation
https://api.semanticscholar.org/CorpusID:261214713

Final Accuracy The final accuracy AFinal is calculated as the average accuracy across all tasks after
training on the final task:

AFinal =
1

T

T∑
i=1

ai,T (8)

Area Under the Curve of Accuracy The AAUC (Area Under the Curve of Accuracy) is defined
as the area under the curve (AUC) of the accuracy-to-# of samples curve (25). To construct the
curve, the accuracy is measure after each sample is observed. AAUC measures the any time inference
accuracy of the model:

AAUC =

k∑
i=1

f(i ·∆n) ·∆n, (9)

where the step size ∆n is defined as ∆n = 1, representing the number of samples observed between
inference queries, and f(·) denotes the curve in the accuracy-to-{number of samples} plot. A high
AAUC indicates that the method consistently maintains high accuracy throughout training.

Forgetting Forgetting is defined as the averaged differences between the historical maximum
accuracy of task k and the accuracy of task k after all tasks finish training:

Forgetting =
1

T − 1

T−1∑
k=1

max
t=1,2,...,T−1

(ak,t − ak,T) (10)

The last task T is excluded because the forgetting of the last task is always 0.

B Evaluation Benchmarks

We evaluate our approach under three different scenarios: disjoint class-incremental, Si-Blurry
class-incremental, and domain-incremental.
Disjoint class-incremental setting is when the datasets are split into disjoint tasks, each consisting of
a unique set of classes. We conduct experiments with three datasets under this setting: Split-CIFAR-
100 splits the CIFAR-100 dataset (26) into 10 tasks with 10 classes per task. Split-ImageNet-R
splits the ImageNet-R dataset (21) into 10 tasks with 20 classes per task. Split-ImageNet-S splits the
ImageNet-Sketch dataset (52) randomly into 10 tasks with 100 classes per task or into 20 tasks with
50 classes per task. Split-CUB-200 splits the CUB-200-2011 dataset (51) into 5 tasks with 40 classes
per task.
Stochastic incremental-Blurry (Si-Blurry) (41) class-incremental setting is when the class distri-
butions change in a stochastic manner, with classes overlapping across tasks and the task boundaries
being dynamic and not clearly defined. We randomly select 50% of the entire classes to be "disjoint
classes" (newly encountered classes that never appeared before), and 10% to be "blurry classes"
(classes that do not belong to a fixed task and may appear in multiple learning tasks over time).
Domain-incremental setting is when the input distribution shifts over time, but the classes remain
consistent. We use the CORe50 dataset (36) for this setting; it has 11 distinct domains (8 for training,
3 for testing). The samples from the training domains arrive sequentially.

C Experimental Details

In this section, we provide details of the experiments we reported in the paper, supplementing
Section 4 in the main paper. All experiments are run on a single NVIDIA A-100 GPU.

Data preprocessing Because we focus on the ViT architectures ViT-B/16 and ViT-S/16, all input
images are resized to 224×224 and normalized to [0, 1].

Hyperparameters For tuning the threshold values for each dataset (CIFAR-100 (26), ImageNet-R
(21), ImageNet-S (52), CUB-200 (51), and CORe50 (36)), we conducted a grid search following the
protocol in (38). The threshold grid is shown in Table 2. Table 3 shows the threshold values we used

8

Threshold CIFAR-100 ImageNet-R ImageNet-S CUB-200 CORe50

Mean [2.2, 2.6, 2.8,
3.0]

[5.2, 5.4, 5.6, 5.8, 6.0] [18.0, 24.0,
30.0]

Variance [0.02, 0.03, 0.04, 0.06, 0.08, 0.1] [0.6, 0.8, 1.0,
1.2]

Table 2: Hyperparameter grid for the mean and variance threshold values of the loss window in our
Online-LoRA.

in our experiments. For CIFAR-100, ImageNet-R, and ImageNet-S, these threshold values remain
consistent in both disjoint and Si-blurry class-incremental scenarios.
We set the regularization factor λ=2000.0 (see Equation 7 in the main paper) for all experiments.

Threshold CIFAR-100 ImageNet-R ImageNet-S CORe50 CUB-200

Mean 2.6 5.2 5.6 6.0 24.0
Variance 0.03 0.02 0.06 0.1 1.0

Table 3: Mean and variance thresholds of the loss window for different datasets.

D Loss Surface

Figure 2 shows more qualitative examples of how the loss surface recognizes data distribution
shifts, supplementing Section 3.2 in the main paper. MAS (3) introduces the loss surface to derive
information about incoming streaming data in the task-free scenario. As shown in Figure 2, the
peaks on the loss surface indicate shifts in the input data distribution. And the stable regions, namely
plateaus, signal the convergence of the model. For instance, the Split CIFAR-100 dataset has 10
distinct tasks, with the data distribution remaining constant within each task. As a result, during the
learning process of Split CIFAR-100, there are 9 shifts in data distribution, corresponding to 9 peaks
in the loss surface, as illustrated in Figure 2.
To identify plateaus on the loss surface, we employ a loss window, which is a sliding window that
moves across consecutive training losses. Within this window, we closely observe both the mean and
variance of the losses. A plateau is identified when both metrics fall below a predefined threshold (see
Appendix C for details). Upon detecting a plateau, we proceed to introduce new LoRA parameters
and update the estimation of the model parameter importance. Our goal in identifying plateaus is to
mark periods of stable prediction following shifts in data distribution. Therefore, we only classify a
phase as a plateau if it follows a peak. A peak is recognized when the loss window’s mean increases
by an amount exceeding the standard deviation of the window within a single batch.

E Results of Domain-incremental Learning

Table 4 summarizes the results on the domain-incremental setting. Our proposed method, Online-
LoRA, not only significantly outperforms other SOTA methods, but also closes a substantial portion
of the gap with the upper-bound (UB) performance.
To summarize, the Online-LoRA consistently achieves superior performance under various setups.
These results indicate its robustness and adaptability, not only in different ViT setups, but also for
dynamically evolving data. In addition to effectively mitigating forgetting, Online-LoRA shows good
plasticity.

F Results of Si-blurry Class-incremental Learning

Results on Si-blurry class-incremental setting. Table 5 summarizes the results on the Si-blurry
class-incremental benchmarks with datasets CIFAR-100, ImageNet-R, and ImageNet-S. In the Si-
blurry scenario, Online-LoRA consistently outperforms all the considered methods by significant
margins across both metrics, AAUC and AFinal. The superior performance in anytime inference can be
largely attributed to Online-LoRA strategic utilization of loss surface plateaus, which consolidates the

9

 0 100 200 300 400 500 600 700 800
#Batch

0

10

20

30

40

50

60

Lo
ss

Peak

Plateau

Peak

Plateau

Figure 2: Loss surface of Online-LoRA on Split CIFAR-100 using ViT-B/16 model. Note that other
peaks and plateaus exist but are not marked.

ViT-B/16 ViT-S/16

AFinal (↑) Forgetting (↓) AFinal (↑) Forgetting (↓)
AGEM (7) 80.15±2.97 2.23±0.81 78.22±3.51 3.19±0.09

ER (8) 85.85±1.35 0.72±0.03 78.99±3.85 5.04±0.10

EWC++ (6) 78.65±6.51 2.31±0.17 79.03±4.54 4.80±0.69

MIR (2) 74.35±4.07 11.01±1.05 86.49±0.81 2.53±0.84

GDumb (42) 77.20±3.49 - 75.64±2.92 -
PCR (34) 87.16±0.73 0.78±0.03 75.20±1.48 0.61±0.02

DER++ (4) 81.88±7.06 10.13±7.00 89.33±0.62 0.42±0.57

LODE (DER++) (32) 77.02±2.22 17.30±2.82 83.48±5.84 24.54±0.94

L2P (54) 87.97±0.37 0.00±0.00 86.47±0.23 0.00±0.00
MVP (40) 84.82±0.54 0.00±0.00 79.85±0.33 3.55±0.39

Ours 93.71±0.01 0.00±0.00 90.96±0.02 0.00±0.00
Upper Bound (UB) 95.6±0.01 - 93.56±0.01 -

Table 4: Results of domain-incremental learning on CORe50 (36). ‘↑’ means higher is better and ‘↓’
means lower is better. Online-LoRA not only achieves the highest final accuracy but also demonstrates
the lowest forgetting.

knowledge precisely when needed. Online-LoRA is also more flexible than EWC (24) which does so
only at specific discrete moments; Online-LoRA also avoids the excessive frequency of updates that
introduce noise as seen in EWC++ (6).
Figure 3 displays the trend of accuracy as more samples are provided, highlighting the consistent
performance of Online-LoRA across two different ViT architectures. Compared to other methods,
Online-LoRA effectively learns new knowledge from incoming samples, which leads to an increase
in accuracy.

G Results of Swin Transformer

In this section, we present the results for the disjoint class-incremental and domain-incremental
settings (for details on these settings, see Section ?? in the main paper) using the Swin Transformer
architecture (35). For a fair comparison, the hyperparameters for the baseline methods are set

10

CIFAR-100 (26) ImageNet-R (21) ImageNet-S (52)
AAUC (↑) AFinal (↑) AAUC (↑) AFinal (↑) AAUC (↑) AFinal (↑)

ViT-B/16

L2P 43.01±9.37 39.86±2.28 22.71±1.86 27.08±2.49 10.02±0.42 13.58±4.04

MVP 47.52±9.74 44.49±0.93 27.79±0.62 31.64±1.77 10.68±0.45 13.99±1.73

Ours 60.12±5.79 61.70±6.29 45.05±1.59 48.00±6.01 30.81±2.09 30.22±4.36
UB 89.50±0.04 76.78±0.44 63.82±0.02

ViT-S/16

L2P 37.82±12.19 30.88±1.39 24.31±1.83 21.83±2.13 2.00±0.12 3.61±1.08

MVP 40.31±9.52 35.55±2.11 27.04±1.09 26.67±3.70 2.27±0.14 3.72±0.77

Ours 52.84±7.97 58.72±1.44 39.47±1.93 36.61±4.63 15.35±0.92 20.18±1.84
UB 86.55±0.01 69.94±0.34 59.28±0.11

Table 5: Results of Si-blurry class-incremental learning. ‘↑’ means higher is better and ‘↓’ means
lower is better. All datasets are split into 5 blurry tasks. To ensure a fair comparison with L2P (54)
and MVP (40), we exclude the loss from hard buffer samples in Online-LoRA. The best results are
noted by bold.

0K 10K 20K 30K 40K 50K
#Sample

0

10

20

30

40

50

60

Ac
cu

ra
cy

 [%
]

L2P
MVP
Ours

(a) CIFAR-100 with ViT-B/16

0K 5K 10K 15K 20K 25K
#Sample

10

20

30

40

50

Ac
cu

ra
cy

 [%
]

L2P
MVP
Ours

(b) ImageNet-R with ViT-B/16

0K 5K 10K 15K 20K 25K 30K 35K 40K
#Sample

5
10
15
20
25
30
35
40

Ac
cu

ra
cy

 [%
]

L2P
MVP
Ours

(c) ImageNet-S with ViT-B/16

0K 10K 20K 30K 40K 50K
#Sample

10

20

30

40

50

60

70

Ac
cu

ra
cy

 [%
]

L2P
MVP
Ours

(d) CIFAR-100 with ViT-S/16

0K 5K 10K 15K 20K 25K
#Sample

10

20

30

40

50

60

Ac
cu

ra
cy

 [%
]

L2P
MVP
Ours

(e) ImageNet-R with ViT-S/16

0K 5K 10K 15K 20K 25K 30K 35K 40K
#Sample

0

5

10

15

20

25

Ac
cu

ra
cy

 [%
]

L2P
MVP
Ours

(f) ImageNet-S with ViT-S/16

Figure 3: Average accuracy versus number of samples for Si-Blurry CIFAR-100, ImageNet-R, and
ImageNet-S scenarios. As shown, the Online-LoRA consistently outperforms competing methods,
maintaining high accuracy throughout.

according to the descriptions in Appendix J.3. For our method, we use a learning rate of 0.0003 for
the Swin Transformer.
As shown in Table 6, our approach consistently outperforms other baseline methods in both disjoint
class-incremental and domain-incremental learning settings. This demonstrates that our method
remains effective across various ViT architectures, extending beyond the ViT-B/16 and ViT-S/16
models reported in Section 4.2 of the main paper.

H Exploration with length of task sequence

Table 7 summarizes the results on Split ImageNet-S dataset across varying task sequence lengths;
Table 8 summarizes the results on Si-blurry ImageNet-S. As the task sequence is longer, all methods
experience a decline in performance. However, Online-LoRA exhibits the smallest reduction in
performance, showcasing its robustness against longer task sequences. This can be attributed to its
utilization of loss surface plateaus, which effectively captures and adapts to shifts in data distribution
at instance level.
In contrast, for prompt-based learning methods such as L2P, longer task sequences challenge the
capacity of prompt pool as more task-specific information needs to be encoded. Similarly, for
replay-based methods, the strategy of selecting informative samples from the buffer is prone to biases

11

Method Split-ImageNet-S CORe50

AFinal (↑) Forgetting (↓) AFinal (↑) Forgetting (↓)
AGEM (7) 31.67±0.96 50.12±0.27 90.15±1.31 1.16±0.05

ER (8) 42.60±0.75 38.68±0.26 88.93±2.99 4.16±0.09

EWC++ (6) 29.57±1.57 51.87±0.04 90.91±1.28 0.04±0.02

MIR (2) 42.90±0.19 38.49±0.15 87.47±0.65 5.67±0.14

GDumb (42) 14.76±1.13 - 79.52±3.00 -
Ours 53.75±0.29 32.86±0.89 95.29±0.06 0.00±0.00

UB 71.98±0.23 - 97.56±0.02 -
Table 6: Results of disjoint class-incremental learning and domain-incremental learning using Swin
Transformer. ‘↑’ means higher is better and ‘↓’ means lower is better. The best results are noted
by bold. UB is the upper-bound performance. With Swin Transformer, our Online-LoRA method
consistently outperforms other baseline methods across various settings, demonstrating its adaptability
and effectiveness across different ViT architectures.

Method 10 tasks 20 tasks

AFinal (↑) Forgetting (↓) AFinal (↑) Forgetting (↓)
AGEM (7) 0.16±0.04 9.42±0.17 0.11±0.05 7.96±0.10

ER (8) 30.21±0.70 37.14±1.83 22.81±0.30 43.61±0.16

EWC++ (6) 0.32±0.28 22.46±4.69 0.11±0.05 5.26±0.45
MIR (2) 30.33±3.81 35.92±1.75 22.04±0.41 39.17±0.13

GDumb (42) 1.65±0.22 - 1.97±0.79 -
PCR (34) 38.75±0.22 35.01±2.12 17.87±2.18 45.46±0.07

DER++ (4) 6.47±0.06 15.34±0.15 2.29±0.23 23.14±0.06

LODE (DER++) (32) 9.97±2.29 8.48±1.24 13.47±0.66 35.89±1.63

EMA (DER++) (49) 16.88±2.23 36.28±1.09 11.55±0.66 38.56±0.22

EMA (RAR) (49) 14.06±0.37 36.28±1.09 9.05±0.60 29.77±1.70

Ours 47.06±0.24 28.09±3.25 44.19±2.09 28.48±0.24

Upper Bound (UB) 63.82±0.02

Table 7: Comparison with other methods on Split ImageNet-S for different lengths of task sequences.
‘↑’ means higher is better and ‘↓’ means lower is better. ViT-B/16 model is used.

in longer task sequences. This bias may result in an inadequate representation of earlier tasks or an
overemphasis on more recent tasks, hurting the methods overall performance.
Furthermore, Figure 4 shows the accuracy on the validation set for four tasks at the time they are first
encountered and after each subsequent task is learned (see Appendix M for results of other tasks).
As shown in Figure 4, Online-LoRA consistently outperforms the other SOTA methods in terms of

0 3 6 9 12 15 18
Learning Task

0

10

20

30

40

50

60

Ac
cu

ra
cy

 [%
]

AGEM
ER
EWC++
GDumb
MIR
PCR
Ours

(a) Task #5

0 3 6 9 12 15 18
Learning Task

0

10

20

30

40

50

60

Ac
cu

ra
cy

 [%
]

AGEM
ER
EWC++
GDumb
MIR
PCR
Ours

(b) Task #7

0 3 6 9 12 15 18
Learning Task

0

20

40

60

80

Ac
cu

ra
cy

 [%
]

AGEM
ER
EWC++
GDumb
MIR
PCR
Ours

(c) Task #10

Figure 4: Test accuracy of three tasks versus the number of learning tasks. ViT-B/16 model is used
on Split ImageNet-S with 20 tasks. The accuracy for each task prior to the model being trained on
it is recorded as zero, since no measurements are taken at that stage, as the model has not yet been
exposed to the corresponding task.

12

Method Task sequence ImageNet-S
AAUC (↑) AFinal (↑)

L2P (54)
5 tasks

10.02±0.42 13.58±4.04

MVP (40) 10.68±0.45 13.99±1.73

Ours 30.81±2.09 30.22±4.36

L2P (54)
10 tasks

9.06±0.43 12.49±3.39

MVP (40) 9.50±0.29 12.24±2.16

Ours 30.69±0.59 31.44±4.39

L2P (54)
20 tasks

6.57±0.54 7.13±0.89

MVP (40) 7.87±0.24 8.98±1.49

Ours 26.91±0.25 25.73±6.15

Table 8: Comparison with prompt-based methods on Si-blurry ImageNet-S at different length of task
sequence. ViT-B/16 is used.

Incremental LoRA Hard loss AFinal (↑) Forgetting (↓)
- - 28.68±0.13 53.45±0.04

✓ - 34.74±0.31 34.37±1.15

- ✓ 36.08±0.19 35.75±0.33

✓ ✓ 48.23±0.74 23.85±1.08

Table 9: Ablation results of ViT-B/16 model on Split ImageNet-R dataset. ‘↑’ means higher is
better and ‘↓’ means lower is better. "Incremental LoRA": introducing new, trainable LoRA at
each loss plateau with the model parameter regularization in Equation 7. . "Hard loss": including
L(F (XB ; θ), YB) (the loss from hard buffer samples) in the final learning objective in Equation 6. ✓
indicates the presence of the component, − indicates its absence.

preserving the performance of previously learned tasks, which underscores the effectiveness of our
online parameter regularization in mitigating catastrophic forgetting.

I Ablation Study

I.1 Ablation study on Imagenet-R dataset

Table 9 shows the ablation study on the effectiveness of each component (“incremental LoRA” and
“hard loss”) of Online-LoRA on Split ImageNet-R (10 tasks). The results demonstrate the crucial role
of each component of Online-LoRA in overall performance. More results in Appendix I.
Simply fine-tuning a single set of LoRA parameters (i.e. without incorporating any components of
Online-LoRA) results in significantly worse performance compared to our approach, with a 20% drop
in accuracy (from 48.23% to 28.68%). Additionally, excluding the loss from hard buffer samples
within the Online-LoRA framework leads to a substantial performance decline from 48.23% to
34.74% (a 13.5% decrease). This emphasizes the crucial role of maintaining a minimal buffer with
only the four most challenging samples in mitigating forgetting.
Furthermore, the absence of new LoRA initialized at plateaus of the loss surface and model parameter
regularization results in a significant performance decline of 12%, from 48.23% to 36.08%. This
highlights the importance of continuously adding new LoRA parameters to minimize task interference
and implementing online weight regularization to prevent catastrophic forgetting.

I.2 Ablation Study on Imagenet-S Dataset

In addition to the ablation results on Split Imagenet-R presented in Section ?? of the main paper,
this section provides further ablation results on the Split Imagenet-Sketch dataset with varying task
lengths. As shown in Table 10, our Online-LoRA consistently outperforms other variants that lack
certain components. These results demonstrate that both the hard buffer loss and incremental LoRA,
along with online parameter regularization, are crucial for the performance of our approach.

13

Incremental LoRA Hard loss 10 tasks 20 tasks

AFinal (↑) Forgetting (↓) AFinal (↑) Forgetting (↓)
- - 30.66±0.25 38.70±0.40 24.49±2.61 39.29±2.57

✓ - 31.11±2.60 34.62±2.98 32.47±0.29 33.14±1.39

- ✓ 36.26±0.12 39.29±2.57 35.43±4.99 32.56±2.72

✓ ✓ 47.06±0.24 28.09±3.25 44.19±2.09 28.48±0.24

Table 10: Ablation results of ViT-B/16 model on Split ImageNet-Sketch dataset. ‘↑’ means higher is
better and ‘↓’ means lower is better. "Incremental LoRA": introducing new, trainable LoRA at each
loss plateau with the model parameter regularization in Equation 7 in paper. "Hard loss": including
L(F (XB ; θ), YB) (the loss from hard buffer samples) in the final learning objective in Equation 6 in
paper. A check mark (✓) indicates the presence of the component, while a dash (—) indicates its
absence.

The baseline involves continuous fine-tuning of a single set of LoRA parameters. In contrast,
Online-LoRA introduces an incremental LoRA architecture coupled with parameter importance-
based regularization, and preserves a hard buffer along with its loss computations. Individually, each
component improves performance and reduces forgetting. However, integrating both components into
the baseline achieves the optimal performance, demonstrating the efficacy of our complete approach.

I.3 Impact of Pre-trained Weights

In this section, we demonstrate that our experimental settings do not provide any unfair advantage to
our Online-LoRA approach through the use of pre-trained ViT models.
First, it is important to note that all baseline methods in our experiments utilize the same pre-
trained ViT models as their backbones, just like Online-LoRA. Consequently, all methods benefit
from the pre-training to varying extents, particularly those originally implemented with ResNet18
backbones (Table 12). For detailed information on the backbones used by each baseline, please refer
to Appendix J.2.
Second, we show that simply using pre-trained models without applying any CL methods or strategies
fails to yield competitive performance. To illustrate this, we introduce three simple baselines:

• Frozen FT: This baseline freezes the pre-trained backbone (feature extractor). Only the
classification head (the final layer used for classification) is continuously fine-tuned on the
data stream. Given that the model is pre-trained on the ImageNet-21K dataset, if any unfair
advantage exists due to data leakage or other factors, it should be evident here by showing
strong performance.

• Continual FT: This baseline fully fine-tunes the pre-trained model, including both the
backbone and the classification head, on each new data batch. This is consistent with our
OCL setting where the model encounters each data batch only once. If the pre-trained
weights alone brings any unfair advantage, this baseline should perform competitively,
similar to methods specifically designed for CL.

• Random Head: This baseline uses the pre-trained model’s backbone with a newly initialized
classifier head and performs only inference without any fine-tuning. Since the classifier head
is randomly initialized, it should provide a clear lower bound for performance, demonstrating
that without any adaptation or learning, the model’s performance is essentially at chance
level.

As shown in Table 11, Random Head baseline achieves near-zero accuracy, confirming that merely
using pre-trained weights without adaptation to the test dataset does not have an advantage. Although
the Frozen FT and Continual FT baselines outperform some CL methods (which also use the same
pre-trained models), they still suffer from severe forgetting and exhibit a significant performance gap
compared to other methods, particularly our Online-LoRA, with nearly a 20% difference in final
accuracy and a 30% difference in forgetting.
These results demonstrate that the performance advantages of our Online-LoRA method over the
baseline CL methods are not simply due to the use of pre-trained models. Instead, they arise from the

14

Method Accuracy (↑) Forgetting (↓)

Random Head 0.08±0.00 -
Frozen FT 27.98±0.29 55.12±0.43

Continual FT 28.49±0.21 53.49±0.07

AGEM (7) 5.60±2.74 53.97±1.97

ER (8) 40.99±3.96 32.38±0.89

EWC++ (6) 3.86±2.02 56.95±1.46

MIR (2) 41.51±2.99 31.32±5.17

GDumb (42) 1.65±0.22 -
PCR (34) 46.11±3.03 25.50±0.41

DER++ (4) 30.90±8.04 24.26±4.14

LODE (DER++) (32) 42.20±6.46 31.83±1.05

EMA (DER++) (49) 41.75±1.98 32.65±1.55

EMA (RAR) (49) 30.04±0.33 39.36±0.04

Online-LoRA (ours) 48.18±0.63 23.85±1.48

UB 63.82±0.02 -
Table 11: Performance comparison between pre-trained models without CL strategies and pre-trained
models with CL strategies on Split ImageNet-R (online class-incremental learning setting). ViT-B/16
backbone is used. While some methods do not outperform simple fine-tuning on a continuous data
stream, other CL methods provide significant performance improvements to the pre-trained model.
This demonstrates that the advantages of CL methods, including Online-LoRA, are not solely due to
the use of pre-trained weights but also stem from the effectiveness of the methods themselves. UB is
the upper-bound baseline trained on the i.i.d. data of the datasets. The best results are noted by bold.

effectiveness of our approach. The pre-trained weights provide a common foundation for all methods,
but it is our approach that leads to superior performance.

J Baseline Settings

In this section, we provide the experimental settings for the baseline methods used in our experiments1.

J.1 Overview of Baselines

• AGEM (7): Averaged Gradient Episodic Memory, utilizes samples in the memory buffer to
constrain parameter updates.

• ER (8): Experience replay, a rehearsal-based method with random sampling in memory
retrieval and reservoir sampling in memory update.

• EWC++ (6): An online version of EWC (24), a regularization method that limits the update
of parameters crucial to past tasks.

• MIR (2): Maximally Interfered Retrieval, a rehearsal-based method that retrieves memory
samples with loss increases given the estimated parameter update based on the current batch.

• GDumb (42): Greedy Sampler and Dumb Learner, a strong baseline that greedily updates the
memory buffer from the data stream with the constraint to keep a balanced class distribution.

• PCR (34): Proxy-based contrastive replay, a rehearsal-based method that replaces the
samples for anchor with proxies in a contrastive-based loss.

• DER++ (4): Dark Experience Replay++, a rehearsal-based method using knowledge distil-
lation from past experiences.

• LODE (32): Loss Decoupling, a rehearsal-based method that decouples the learning objec-
tives of old and new tasks to minimize interference.

1Codebases used: https://github.com/AlbinSou/online_ema.git, https://github.com/liangyanshuo/Loss-
Decoupling-for-Task-Agnostic-Continual-Learning.git, https://github.com/FelixHuiweiLin/PCR.git,
https://github.com/RaptorMai/online-continual-learning.git

15

https://github.com/AlbinSou/online_ema.git
https://github.com/liangyanshuo/Loss-Decoupling-for-Task-Agnostic-Continual-Learning.git
https://github.com/liangyanshuo/Loss-Decoupling-for-Task-Agnostic-Continual-Learning.git
https://github.com/FelixHuiweiLin/PCR.git
https://github.com/RaptorMai/online-continual-learning.git

Method Acc. w/ ResNet18 Acc. w/ ViT-B/16 Performance Gain (%)

AGEM (7) 5.4±0.6 12.67±1.87 134.63
ER (8) 14.5±0.8 44.85±1.83 209.31
EWC++ (6) 4.8±0.2 10.61±0.74 121.04
MIR (2) 14.8±0.7 48.36±3.11 226.76
GDumb (42) 24.8±0.7 41.00±19.97 65.32
PCR (34) 21.8±0.9 48.48±0.15 122.39
DER++ (4) 15.5±1.0 36.64±6.11 136.39
LODE (DER++) (32) 37.8±1.1 44.29±1.48 17.17
EMA (DER++) (49) 23.2±1.2 42.28±4.36 82.24
EMA (RAR) (49) 35.4±1.2 47.10±0.82 33.05

Table 12: Performance comparison on CIFAR-100 between ResNet18 and pre-trained ViT-B/16
in an online class-incremental learning scenario. Acc. stands for Accuracy. All rehearsal-based
methods use a buffer size of 500 for fair comparison. The results demonstrate that there is no unfair
comparison in our experiments, as all methods benefit from the pre-trained ViT-B/16 model. The
performance gain is computed as the percentage increase from the ResNet18 accuracy to the ViT-B/16
accuracy for each method.

• EMA (49): Exponential Moving Average, a model ensemble method that combines models
from various training tasks.

• L2P (54): Learning to Prompt, a prompt-based method that prepends learnable prompts
selected from a prompt pool to the embeddings of a pre-trained transformer.

• MVP (40): Mask and Visual Prompt tuning, a prompt-based method that uses instance-wise
feature space masking.

J.2 Backbone

Among the baseline methods we compare, L2P (54) and MVP (40) originally reported results using
a ViT-B/16 model (12) pre-trained on ImageNet21k, while the other baselines (AGEM (7), ER (8),
EWC++ (6), MIR (2), GDumb (42), DER++ (4), PCR (34), LODE (32), EMA (49)) reported results
using a ResNet18 (18) architecture.
To ensure a fair comparison, we standardized our experimental setup by evaluating all baselines using
the same pre-trained ViT model (ViT-B/16 and ViT-S/16). For methods originally implemented with
ResNet18, we reimplemented them with ViT to match the experimental conditions of L2P and MVP.
As shown in Table 12, all methods perform better with the pre-trained ViT-B/16 than with ResNet18,
supporting our argument that using a pre-trained ViT provides a more consistent and stronger baseline
for performance comparisons.

J.3 Training Settings

The following settings are shared by the baseline methods (and our Online-LoRA) in the experiments:

• Buffer Size: 500. Methods using a buffer include AGEM (7), ER (8), MIR (2), GDumb
(42), PCR (34), DER++ (4), LODE (32), and EMA (49).

• Optimizer: Adam.
• Batch Size: 64.

In Table 13, we summarize the hyperparameters used for all baseline methods in our experiments. To
ensure a fair comparison, we adopted these hyperparameters from their original codebases. However,
because the baseline methods used different backbones and batch sizes in their original experiments,
we adjusted the learning rates for some baselines to standardize the comparison across all methods.
For tuning the learning rates, we followed the protocol outlined in (38) and conducted a grid search
on a small cross-validation set. The hyperparameter grid for the baselines is detailed in Table 14.

K Exploration with Buffer Size
Table 15 we show more results of the impact of buffer sizes on the performance of replay-based
methods (AGEM (7), ER (8), GDumb (42), MIR (2)).

16

Method CIFAR-100 ImageNet-R ImageNet-S CUB-200 CORe50

AGEM (7) LR=0.0001, WD=0.0001

ER (8) LR=0.0001, WD=0.0001, Episode memory per batch=10

EWC++ (6) LR=0.0001, WD=0.0001, λ=100, α=0.9
Number of training batches after which the Fisher information will be updated: 50

MIR (2) LR=0.0001, WD=0.0001, Number of subsample=50

GDumb (42) LR=0.001, WD=0.0001, Minimal learning rate: 0.0005,
Gradient clipping=10, Epochs to train for memory=30

PCR (34) LR=0.0001, WD=0.0001, Episode memory per batch=10,
Temperature=0.09, Warmup of buffer before retrieve=4

DER++ (4) LR=0.0003, α=0.2, β=0.5

LODE (32) LR=0.0003, C=1.0, ρ=0.1

EMA (49) LR=0.0002, λ for warm-up: 0.9, λ=0.99

L2P (54) LR=0.003, Size of the prompt pool=10, Length of a single prompt=10, Number of prepended prompt=4

MVP (40) LR=0.005, γ=2.0, m=0.5, α=0.5
Table 13: Hyperparameters for the baseline methods on ViT-B/16. LR: learning rate. WD: weight
decay.

Method CIFAR-100 ImageNet-R ImageNet-S CUB-200 CORe50

AGEM (7) LR: [0.0001, 0.0003, 0.001, 0.003, 0.01, 0.03, 0.1]
WD: [0.0001, 0.001, 0.01, 0.1]

ER (8) LR: [0.0001, 0.0003, 0.001, 0.003]
WD: [0.0001, 0.001, 0.01, 0.1]

EWC++ (6) LR: [0.0001, 0.001, 0.01, 0.1]
WD: [0.0001, 0.001]

MIR (2) LR: [0.0001, 0.001, 0.01, 0.1]
WD: [0.0001, 0.001]

GDumb (42) LR: [0.001, 0.01, 0.1
WD: [0.0001, 0.000001]

PCR (34) LR: [0.0001, 0.001, 0.01, 0.1]
WD: [0.0001, 0.001]

DER++ (4) LR: [0.0003, 0.003, 0.03]

LODE (32) LR: [0.0003, 0.003, 0.03]

EMA (49) LR: [0.0001, 0.0002, 0.0003, 0.0004, 0.0005]

Table 14: Hyperparameter grid for the baseline methods using the ViT-B/16 backbone. LR: learning
rate; WD: weight decay. Since L2P (54) and MVP (40) use the same backbone and batch size as in
our experiments, their learning rates were not adjusted.

As shown in Table 15, when the buffer size increases, all replay-based methods see improvements
in their performance across the benchmarks. Notably, when the buffer size hits 5000 (a large
capacity; 20% of the ImageNet-R training set, 12.5% of the ImageNet-S training set), the difference
in performance between GDumb and other replay-based methods narrows. This suggests that the
sophisticated memory retrieval strategies employed by these other methods do not significantly
outperform GDumb’s simple approach of training directly on the buffered data. Moreover, the
performance of rehearsal-based methods drops when the buffer size shrinks. This highlights the

17

Buffer size Method Split-ImageNet-R Split-ImageNet-S Core50

500

AGEM (7) 5.60±2.74 0.16±0.04 80.15±2.97

ER (8) 40.99±3.96 30.21±0.70 85.85±1.35

MIR (2) 41.51±2.99 30.33±3.81 74.35±4.07

GDumb (42) 8.87±1.36 1.65±0.22 77.20±3.49

1000

AGEM (7) 7.16±1.56 0.23±0.04 78.73±3.87

ER (8) 44.71±2.63 34.32±0.53 84.27±4.11

MIR (2) 46.65±5.63 33.99±1.72 82.64±1.12

GDumb (42) 19.19±1.36 2.71±0.12 78.09±3.75

5000

AGEM (7) 7.21±0.34 0.12±0.02 77.57±3.56

ER (8) 47.23±2.71 37.65±0.23 81.32±2.19

MIR (2) 49.33±3.49 35.90±2.35 81.18±3.20

GDumb (42) 46.08±0.64 9.68±0.28 69.42±1.06

Ours 48.18±0.63 47.06±0.24 93.71±0.01
UB 76.78±0.44 63.82±0.02 95.60±0.01

Table 15: Results of replay-based methods with different buffer size. AFinal metric and ViT-B/16
model is used. Each dataset has 10 disjoint tasks. UB is the upper-bound baseline trained on the i.i.d.
data of the datasets. The best results are noted by bold.

Method #params (M) FLOPs (×1015) Training time (s)

AGEM (7) 85.88 140.52 828.39
ER (8) 85.88 140.05 849.43
EWC++ (6) 85.88 214.36 1076.53
GDumb (42) 85.88 18.44 2078.59
MIR (2) 85.88 161.04 1069.29
Ours 86.47 151.20 864.60

Table 16: Computational statistics for Online-LoRA and baseline methods on CIFAR-100 in the
online class-incremental learning scenario using the ViT-B/16 backbone. FLOPs are measured as
’forward FLOPs per GPU’ using the DeepSpeed FLOPS Profiler (39). All experiments are conducted
on a single NVIDIA A100 GPU.

efficiency of our Online-LoRA, which achieves high performance using just a minimal buffer size of
4.

L Computation Analysis

L.1 Efficiency via Separate LoRA Adapters

In this section, we explain how our online parameter importance estimation achieves greater efficiency
compared to EWC (24) and EWC++ (6) by treating the LoRA adapter

∑
t′ Bt′At′X as two separate

linear layers.
In EWC (24), the size of the importance weight matrix equals to the number of parameters squared.
For instance, to employ EWC in ViT-B/16, the model needs to store and update a 86.6M×86.6M
matrix, representing a significant memory an computational overhead. By handling the LoRA adapter
as two distinct layers, our Online-LoRA approach employs two smaller importance weight matrices,
ΩA,l ∈ Rd×r and ΩB,l ∈ Rr×k, for each attention layer. The combined size of these matrices is
proportional to the total number of LoRA parameters, calculated as follows: #attention heads × 2
(for Q and V projection matrices) × input size × rank × 2. For a ViT-B/16 model with a LoRA
rank of 4, this equates to a total of: 12 heads × 2 × 768 input size × 4 rank × 2 = 147,456. This
additional memory footprint is negligible (∼0.17% of the total parameters of the ViT-B/16 model),
which enables the online updates of the importance weights.

18

L.2 Training Statistics

In this section, we present the model parameter size, training FLOPs, and training time for our
Online-LoRA and the baseline methods.
As shown in Table L.2, our Online-LoRA model introduces approximately 0.6M additional parameters
due to the inclusion of LoRA parameters, which represents a negligible increase (0.69%) compared
to the original size of the ViT-B/16 model. Notably, our memory buffer contains only 4 data samples,
whereas other baselines (except EWC++) require at least 500 samples in their buffers to achieve
comparable performance (see Appendix K for more details). Regarding computational consumption
measured by FLOPs during training, Online-LoRA demonstrates advantages over EWC++ (6), thanks
to our efficient computation of the importance weight matrix, as explained in Section 3.3 of the main
paper. The extremely low FLOPs of GDumb (42) can be attributed to its design, which involves
greedily updating the memory buffer without employing additional strategies. However, its training
time is relatively high because retraining is triggered frequently to maintain a balanced memory
buffer, which adds overhead despite the low FLOPs.

M Task Accuracy

In this section, Figure 5 and Figure 6 show task accuracy as a function of the number of learning
tasks as described in Section H in the main paper. The ViT-B/16 model is employed on the Split
ImageNet-S dataset with 20 tasks. These results demonstrate that our Online-LoRA consistently
outperforms the other methods in mitigating the forgetting of previously learned tasks.
Figure 5a shows that AGEM (7) begins with an initial accuracy of ∼10%. However, this accuracy
drastically decreases for subsequent tasks, eventually dropping to zero. Given that the Split ImageNet-
S dataset consists of 20 tasks with 500 classes per task, AGEM’s performance is no better than that of
a random model, which would have an expected accuracy of 0.2%. This dramatic decline is primarily
due to the increasingly restrictive constraints placed on gradient updates as the number of tasks
increases. Such constraints significantly hurt the model’s ability to learn from new tasks, showing a
fundamental weakness of AGEM in handling long sequences of diverse tasks. A similar issue was
observed with EWC++ (6), another regularization-based approach.
In contrast, our Online-LoRA model does not encounter this problem even though an online weight
regularization is used. This is because our model is continuously expanded by adding new LoRA
parameters (see Section 3.2 in the main paper). This strategy allows the model to adapt to new
information more flexibly, bypassing the learning limitations encountered by traditional regularization
methods like AGEM and EWC++.

19

0 3 6 9 12 15 18
Learning Task

0

10

20

30

40

50

60

Ac
cu

ra
cy

 [%
]

AGEM
ER
EWC++

GDumb
MIR

PCR
Ours

(a) Task accuracy of task #2

0 3 6 9 12 15 18
Learning Task

0

10

20

30

40

50

Ac
cu

ra
cy

 [%
]

AGEM
ER
EWC++

GDumb
MIR

PCR
Ours

(b) Task accuracy of task #3

0 3 6 9 12 15 18
Learning Task

0

10

20

30

40

50

60

Ac
cu

ra
cy

 [%
]

AGEM
ER
EWC++
GDumb
MIR
PCR
Ours

(c) Task accuracy of task #5

0 3 6 9 12 15 18
Learning Task

0
10
20
30
40
50
60
70

Ac
cu

ra
cy

 [%
]

AGEM
ER
EWC++
GDumb
MIR
PCR
Ours

(d) Task accuracy of task #6

0 3 6 9 12 15 18
Learning Task

0

20

40

60

80

Ac
cu

ra
cy

 [%
]

AGEM
ER
EWC++
GDumb
MIR
PCR
Ours

(e) Task accuracy of task #8

0 3 6 9 12 15 18
Learning Task

0

20

40

60

80

Ac
cu

ra
cy

 [%
]

AGEM
ER
EWC++
GDumb
MIR
PCR
Ours

(f) Task accuracy of task #9

Figure 5: Task accuracy versus the number of learning tasks of task #2 to task #9. Our Online-LoRA
consistently outperforms all the other methods in maintaining accuracy on previously learned tasks.
Note that the recorded accuracy for initial tasks is zero, not due to poor model performance, but
because our evaluation prioritizes mitigating forgetting in tasks the model has already encountered.

20

0 3 6 9 12 15 18
Learning Task

0

20

40

60

80

Ac
cu

ra
cy

 [%
]

AGEM
ER
EWC++
GDumb
MIR
PCR
Ours

(a) Task accuracy of task #11

0 3 6 9 12 15 18
Learning Task

0

20

40

60

80

Ac
cu

ra
cy

 [%
]

AGEM
ER
EWC++
GDumb
MIR
PCR
Ours

(b) Task accuracy of task #12

0 3 6 9 12 15 18
Learning Task

0

20

40

60

80

Ac
cu

ra
cy

 [%
]

AGEM
ER
EWC++
GDumb
MIR
PCR
Ours

(c) Task accuracy of task #14

0 3 6 9 12 15 18
Learning Task

0

20

40

60

80
Ac

cu
ra

cy
 [%

]
AGEM
ER
EWC++
GDumb
MIR
PCR
Ours

(d) Task accuracy of task #15

0 3 6 9 12 15 18
Learning Task

0

20

40

60

80

Ac
cu

ra
cy

 [%
]

AGEM
ER
EWC++
GDumb
MIR
PCR
Ours

(e) Task accuracy of task #16

0 3 6 9 12 15 18
Learning Task

0

20

40

60

80

Ac
cu

ra
cy

 [%
]

AGEM
ER
EWC++
GDumb
MIR
PCR
Ours

(f) Task accuracy of task #17

Figure 6: Task accuracy versus the number of learning tasks of task #11 to task #17. Compared
to the results of task #2 to task #9 in Figure 5, our Online-LoRA has greater advantages over the
other methods for these newer tasks #11 to task #17. Zero accuracy for initial tasks results from not
measuring them at the time the specific task had not been learned yet.

21

	Introduction
	Related work
	Continual learning
	Parameter efficient fine-tuning

	Online-LoRA
	Problem formulation
	Loss-guided model adaptation
	Online parameter importance estimation

	Experiments
	Experimental Setup
	Experimental Results

	Conclusion
	Evaluation Metrics
	Evaluation Benchmarks
	Experimental Details
	Loss Surface
	Results of Domain-incremental Learning
	Results of Si-blurry Class-incremental Learning
	Results of Swin Transformer
	Exploration with length of task sequence
	Ablation Study
	Ablation study on Imagenet-R dataset
	Ablation Study on Imagenet-S Dataset
	Impact of Pre-trained Weights

	Baseline Settings
	Overview of Baselines
	Backbone
	Training Settings

	Exploration with Buffer Size
	Computation Analysis
	Efficiency via Separate LoRA Adapters
	Training Statistics

	Task Accuracy

