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ABSTRACT

Protein biology centers on the intricate relationships among sequence, structure,
and function (text), with structure understanding being a crucial aspect for uncover-
ing protein biological functions. Traditional methods based on protein language
models (pLMs) often focus on specific aspects of biological function prediction but
do not account for the broader, dynamic context of protein research—an important
component for addressing the complexity of protein biology. Modern large lan-
guage models (LLMs) excel in human-machine interaction, language understanding
and generation, at a human-like level. By bridging structural representations with
the contextual knowledge encoded within LLMs, STELLA leverages the strengths
of LLMs to enable versatile and accurate predictions in protein-related tasks. It
showcases the transformative potential of multimodal LLMs as a novel paradigm
besides pLMs in advancing protein biology research by achieving state-of-the-art
performance in both functional description and enzyme-catalyzed reaction predic-
tion tasks. This study not only establishes an innovative LLM-based paradigm to
understand proteins, but also expands the boundaries of LLM capabilities in protein
biology. To foster collaboration and inspire further innovation, the codes, datasets,
and pre-trained models are made publicly available at the anonymous GitHub
repository https://anonymous.4open.science/r/STELLA-DF00.

1 INTRODUCTION

Protein biology revolves around the interplay of three data modalities: sequence, structure, and
function (text). The principle “sequence determines structure, and structure determines function”
underscores the critical link between a protein’s amino acid sequence, its tertiary structure, and its
biological role, such as its main functions and enzyme-catalyzed reactions. Structural data offer
significant insights into how a protein’s three-dimensional conformation, including features such
as active sites and binding pockets, enables and regulates its core biological functions. Accurate
understanding of these biological functions plays a pivotal role in advancing disease research, drug
discovery, metabolic pathway analysis, and the design of enzymes for medical and biotechnological
applications.

Although extensive structural data have been accumulated through decades of protein science research,
including experimentally determined structures in the RCSB Protein Data Bank (PDB) 1 (Berman
et al., 2000) and computationally predicted structures in the AlphaFold Protein Structure Database
(AFDB) 2 (Varadi et al., 2021) by AlphaFold 2 (AF2) (Jumper et al., 2021), further efforts are
needed to leverage these resources for deeper understanding of protein biological functions. The
PDB, as one of the most comprehensive repositories of experimentally determined protein structures,
has long served as a cornerstone of structural biology and biology computational models, such as
AlphaFold 3 (Abramson et al., 2024) and ESM3 (Hayes et al., 2024). Similarly, the AFDB has
dramatically increased access to high-quality predicted protein structures. These vast structural
datasets provide a valuable foundation for advancing protein science, offering new opportunities
to deepen our understanding of proteins. However, fully realizing their potential requires bridging

1https://www.rcsb.org/
2https://alphafold.ebi.ac.uk/

1

https://anonymous.4open.science/r/STELLA-DF00
https://www.rcsb.org/
https://alphafold.ebi.ac.uk/


054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

the gap between structural data and the functional and biochemical insights essential for practical
applications in both research and industry.

Understanding structures is crucial for uncovering biological functions, such as protein functional de-
scriptions, elucidating enzyme-catalyzed reactions, and addressing fundamental biological questions,
as emphasized in this study. Previous efforts in protein function analysis have included methods
such as clustering methods based on protein structure similarity (Barrio-Hernandez et al., 2023;
Huang et al., 2023) and text generation methods (Abdine et al., 2023). While these approaches
have contributed valuable insights, they often fall short of fully capturing the intricate and multidi-
mensional relationships between protein structure and function, limiting their ability in addressing
the complexity of protein biology. Furthermore, these methods typically lack iterative feedback
mechanisms from domain experts, which are essential for aligning results with their diverse research
objectives. Predicting enzyme-catalyzed reactions is another complex task in protein science, attract-
ing significant research attention (Derevyanko et al., 2018; Steinegger et al., 2019; Hermosilla et al.,
2021; Zhang et al., 2022; Hermosilla and Ropinski, 2022; Fan et al., 2022). Although progress has
been made, existing methods often approach enzyme prediction as a multi-label classification task,
which still struggles with accurately predicting enzyme classes that have not been thoroughly explored
in high-throughput proteomics studies. These limitations hinder the ability to fully understand the
functions of such enzymes, underscoring the need for more advanced approaches to achieve reliable
predictions and accelerate research in this area.

To address this challenge, innovative approaches that integrate structural data with cutting-edge
computational tools are urgently needed. Recent advancements, including Prot2Text (Abdine et al.,
2023), ProteinGPT (Xiao et al., 2024), and ProtChatGPT (Wang et al., 2024a), have explored the
utilization of multimodal LLMs in protein biology. These models typically integrate protein sequence
and structure data using a late fusion strategy, where each modality is encoded separately before
being aligned or combined. However, late fusion approaches have certain limitations, such as the
potential loss of cross-modal relationships and increased complexity of encoder modules. In contrast,
the early fusion strategy—where different modalities are jointly represented and fused into a unified
representation at encoding stage—has the potential to both preserve the intrinsic relationships between
modalities and improve computational efficiency. Motivated by the aforementioned perspectives, this
work investigates the advantages of early fusion for multimodal LLMs modeling in protein biology.

To leverage the potential of multimodal LLMs with an early fusion strategy in protein biology,
this study introduces STELLA, a multimodal LLM designed to bridge protein language and natu-
ral language, enabling the learning of complex structure-function relationships from multimodal
data. Unlike previous approaches that use late fusion strategies, STELLA utilizes ESM3 encoder
(esm3_sm_open_v1) (Hayes et al., 2024), which inherently implements an early fusion mechanism,
where protein sequence and structure are jointly represented in a unified encoding process. By
leveraging these fused structural representations—integrating both sequence and structural informa-
tion—STELLA enhances protein understanding through the power of LLMs, enabling it to interpret
protein tertiary structures and predict functional descriptions and enzyme-catalyzed reactions from
diverse and versatile user prompts. Apart from the advancement of protein language models (pLMs),
STELLA highlights the transformative potential of multimodal LLMs in advancing protein biology
research by achieving state-of-the-art performance in both tasks. In doing so, it offers a new paradigm
for understanding proteins and extends the capabilities of general-purpose LLMs in the field of
protein biology. The key contributions of this study include:

1. By inheriting the early fusion mechanism of ESM3, STELLA achieves state-of-the-art performance
in protein functional description and enzyme-catalyzed reaction prediction tasks.

2. This study constructs a large-scale multimodal instruction tuning dataset, OPI-Struc, to support
training of multimodal LLMs for protein-related tasks.

3. This study presents the methodology, architecture, and performance of STELLA, alongside the
open source code, data, and pre-trained models to encourage collaboration and further advancements
in the field.

We anticipate that this study will help drive the advancement of protein science and computational
biology through LLM-based approaches, establishing a new paradigm beyond the pLM-based
paradigms.
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2 RELATED WORK

2.1 PROTEIN-TEXT MODELING

The long-term goal of protein representation learning is to extract biologically relevant information
from diverse data modalities, including amino acid sequences and tertiary structures (i.e., protein
language) as well as relevant texts in natural language that encapsulate protein related knowledge.
Aligning the protein language and natural language has emerged as a crucial aspect of advancing
protein representation learning, and attracted much attention in the research community. For in-
stances, ProtST (Xu et al., 2023) utilizes contrastive learning to align amino acid sequences with
biomedical texts, aiming to obtain biologically informative protein embeddings that can be applied
to various downstream tasks. Besides protein representation learning, ProteinDT (Liu et al., 2023a)
leverages textual data to enhance protein design in text-to-sequence generation tasks. Additionally,
Prot2Text (Abdine et al., 2023) proposes a method of aligning protein structures and function de-
scription texts by using a fused multimodal encoder-decoder framework. In Prot2Text, the encoder
is composed of a Relational Graph Convolutional Neural Network (RGCN) for encoding protein
structures and a ESM2-35M (Lin et al., 2022) for encoding amino acid sequences and the decoder is
a pretrained GPT-2 model to generate protein function annotations. Before the prevalence of LLMs,
protein representation learning mainly focuses on single modality like amino acid sequences, or
sequence-text alignment by contrastive learning. Hardly any research engages in how to effectively
bridge biological language (e.g., protein tertiary structures) to the massive knowledge embedded in
natural language that plays a pivotal role in both scientific communication and discovery. As we all
know, the process of scientific discovery is a procedure propelled by communication among domain
experts and iterative experimentation. Therefore, the excellent conversation and reasoning abilities of
LLMs are highly expected to empower the process of scientific discovery.

2.2 LLMS FOR PROTEIN BIOLOGY

Recent studies have highlighted the potential of LLMs in advancing biomedical research, spanning
molecules, proteins, and RNA. In the specific domain of protein biology, several notable develop-
ments have emerged. ProTokens (Lin et al., 2023) employs discrete and compressed protein tokens
that encode rich structural information for LLMs. These tokens are learned through an autoencoder
framework, with both the input and output consisting of 3D protein structures. InstructProtein(Wang
et al., 2023) constructs instruction datasets derived from a knowledge graph to address the annota-
tion imbalance present in previous protein-text datasets. This dataset is utilized to fine-tune LLMs
for aligning protein sequences with natural language, enabling bidirectional tasks such as predict-
ing functions from sequences and generating protein sequences from natural language prompts.
BioMedGPT (Luo et al., 2023) employs a fully-connected layer to connect an amino acid sequence
encoder, ESM-2-3B (Lin et al., 2022), and Llama2-Chat-7B (Touvron et al., 2023), which has been
incrementally pretrained on biomedical literature from S2ORC (Lo et al., 2020). ProteinChat (Huo
et al., 2024) represents a more recent multi-modal LLM designed to predict protein functions. It
integrates a protein sequence encoder, xTrimoPGLM (Chen et al., 2024), with the Vicuna-13B
model (Zheng et al., 2023) through a linear layer adapter. Trained on over 1.5 million protein-related
(protein, prompt, answer) triplets from the Swiss-Prot dataset, ProteinChat covers a wide range of
protein functions. By taking an amino acid sequence as input, it generates comprehensive narratives
detailing the functional properties of the given protein.

3 A FIRST LOOK AT STELLA’S CAPABILITIES THROUGH CASE STUDIES

STELLA demonstrates outstanding performance in protein understanding by integrating structural
representations into LLMs. As illustrated in Figure 1 (left), STELLA excels in following natural
language instructions and providing responses that align with the research goals of human specialists.
During the interaction, STELLA correctly identified the primary function of the newly reviewed
protein G1TFE0 in the Swiss-Prot database, accurately recognizing it as a component of the large
ribosomal subunit. As the dialogue progressed, STELLA elaborated on the core constituents of the
ribonucleoprotein complex, highlighting its extensive domain knowledge. Additionally, STELLA
showcased its reasoning capabilities by linking the loss of ribosomal function to cellular dysfunctions,
demonstrating its ability to establish connections between complex biological processes. In the right
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panel of Figure 1, STELLA accurately predicted the function of another newly characterized protein,
A0A1D0BR98. Upon further inquiry from the user, it explained details about the mechanisms
of the toxin and provided practical treatments. Both case studies illustrate STELLA’s ability to
predict protein functions from structural data and to deliver informative, contextually relevant
responses tailored to diverse research objectives. Moreover, STELLA’s robust reasoning abilities
enable it to assist domain experts in uncovering connections between protein functions and disease
mechanisms, further highlighting its potential to drive scientific discovery and innovation. More
example demonstrations are shown in Figure 4 of Appendix A.1.

Function of this protein (SwissProt ID: G1TFE0, release date is 27-Mar-

2024):

Component of the large ribosomal subunit. The ribosome is a large 

ribonucleoprotein complex responsible for the synthesis of proteins 

in the cell.

Function of this protein (SwissProt ID: A0A1D0BR98, release date is 

27-Mar-2024):

Probable ion channel inhibitor.

Could you predict the function of this protein? 

[AFDB_ID: AF-G1TFE0-F1-model_v4.pdb]

Sure! This protein is a component of the large ribosomal 

subunit, which is responsible for the synthesis of proteins in 

the cell.

What are the main components of a large ribonucleoprotein 

complex?

The large ribonucleoprotein complex is composed of several 

proteins and ribonucleotides. The protein we're looking at is 

one of the components of this complex.

What is the possible result if this function is lost?

If this function is lost, the large ribonucleoprotein complex may 

not be able to function properly, leading to errors in protein 

synthesis and potentially affecting cellular function.

Yes, it is possible that this protein could be used as a toxin, 

perhaps to disrupt the normal functioning of ion channels in 

the body and cause harm.

.

The protein is a probable ion channel inhibitor.

Well, if this protein is found to be a toxin, then the best course 

of treatment would be to neutralize it, either by binding to it 

or by breaking it down into smaller pieces.

What is the function of this protein? 

[AFDB_ID: AF-A0A1D0BR98-F1-model_v4.pdb]

So it is a possible kind of toxin?

What are the possible treatments?

Figure 1: STELLA’s ability to engage in conversation (Model used: STELLA-ESM3-Llama-
3.1-8B-Instruct). The protein G1TFE0 and A0A1D0BR98 are from newly release 2024_02 of the
Swiss-Prot database. Left: protein G1TFE0. Right: protein A0A1D0BR98. Orange box: ground
truth of the function. Blue Box: inquiry from the user. Green box: output of the model. Images
indicating the user and assistant were generated by AI tools.

4 METHODOLOGY

4.1 STELLA MODEL ARCHITECTURE

Overview. STELLA is a multimodal LLM for protein modeling, drawing inspiration from
LLaVA (Liu et al., 2023b), a prominent multimodal architecture designed for vision-language
tasks that integrates vision encoders with LLMs. As illustrated in Figure 2, STELLA is composed of
three key components: a protein structure encoder, a modality connector, and a LLM. Similar
to the typical two-stage training paradigm employed by LLaVA and other multimodal LLMs such
as Bunny (He et al., 2024), STELLA adopts a two-stage multimodal instruction tuning (MMIT)
approach, which has proven effective in this study. What differs is that STELLA’s two stages of
training utilize the same datasets, due to the extreme scarcity of protein instruction data. The prompt
templates for training are provided in A.2, and hyperparameters in Table 6 (Appendix A.3).

Protein structure encoder. The protein structure encoder is responsible for translating protein tertiary
structures into high-dimensional structural representations. In this study, we utilize ESM3 (Hayes
et al., 2024), a leading model pretrained on multiple modalities, including sequence, structure, and
function tokens. ESM3 encodes these distinct modalities as discrete token tracks and integrates them
into a unified representation space through transformer blocks. Notably, the model incorporates
geometric attention in its initial transformer block, effectively capturing atomic-level details of
proteins.

4
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Modality connector. The modality connector acts as a bridge between the structural representations
derived from the protein structure encoder and the natural language embeddings, such as function
descriptions. In this implementation, a simple linear layer is employed as the adapter, which has
proven effective, as demonstrated in previous works like LLaVA (Liu et al., 2023b).

LLM. The LLM integrated into STELLA is Llama-3.1-8B-Instruct (Dubey et al., 2024), a highly
capable model that excels across multiple benchmarks, including general knowledge (Hendrycks
et al., 2021a; Wang et al., 2024b; Zhou et al., 2023), mathematics (Cobbe et al., 2021; Hendrycks
et al., 2021b; Rein et al., 2023; Clark et al., 2018), code generation (Chen and et al., 2021; Liu et al.,
2023c), tool-use (Yan et al., 2024; Srinivasan et al., 2023), long context tasks (Zhang et al., 2024)
and multilingual ability (Shi et al., 2022). Additionally, the model exhibits strong safety features,
supported by Llama Guard 3, ensuring reliable performance across sensitive applications.

Tokenizer
&

Embedding

Protein
Structure
Encoder

Disease resistance 
protein required for 

incompatible 
interactions with 

avirulent strains of 
Hyaloperonospora 

arabidopsidis (downy 
mildew), isolate Hpa-
Hiks1 in cv. Columbia.

Output

Modality
Connector

L
a
rg

e
L
a
n
g
u
a
g
e

M
o
d
e
l

Is it within your capacity to 
offer a detailed elucidation of 
the function assigned to the 

protein?

User prompt

Stage1

Stage2

Figure 2: The architecture of STELLA. Stage1 of MMIT: to fine-tune the modality connector
using the OPI-Struc dataset by freezing the protein structure encoder and LLM. Stage2 of MMIT: to
continually fine-tune the modality connector and the LLM simultaneously with different learning
rates, by freezing the protein structure encoder. Flame: model is trainable; Snowflake: model is
frozen. Protein image credits: AFDB.

4.2 TASK DEFINITION

Functional description prediction (FP). Through multimodal instruction tuning, STELLA effec-
tively aligns protein structural representations with natural language, enabling the accurate prediction
of protein functions from tertiary structures. By leveraging multimodal instruction data, STELLA can
uncover novel functional associations, substantially reducing the labor-intensive process of manual
annotation. This approach offers a powerful and flexible tool for protein functional description predic-
tion. Furthermore, the integration of LLM-based multi-turn dialogues supports iterative interactions
with researchers, facilitating continuous refinement of predictions. This adaptive learning process,
driven by expert feedback, not only enhances the model’s performance but also allows for tailored
adjustments to meet specific research objectives.

Enzyme-catalyzed reaction prediction (EP). Predicting enzyme-catalyzed reactions aim at forecast-
ing the biochemical outcomes facilitated by enzymes. Enzymes, as protein-based biological catalysts,
are essential for accelerating chemical reactions by lowering activation energy barriers. Accurate pre-
diction of enzyme-catalyzed reactions holds substantial value across various domains, including drug
discovery, metabolic engineering, and synthetic biology. In this study, enzyme-catalyzed reactions
were mapped to their corresponding enzyme names, which serve as proxies for the reactions in which
the associated proteins are involved. This approach allows for more seamless integration with LLMs,
ensuring the EP task effectively captures the biological functions of enzymes in a way that aligns
with the capabilities of LLMs.

5
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4.3 OPI-STRUC DATASET

Overview. The Open Protein Instructions for Structures (OPI-Struc) dataset was specifically
curated to support multimodal instruction tuning (MMIT) in this study, by integrating both protein
structural and textual modalities. Corresponding to the FP and EP task, OPI-Struc is organized into
two main categories: Function and Enzyme (see Appendix A.7, example ④). The Function dataset
is further divided into two subcategories: Funcft (see Appendix A.7, example ①) and Funcmc (see
Appendix A.7, example ③) based on label formats: free-text question-answer (ft) and multiple-choice
question-answer (mc), respectively. Additionally, to reflect the iterative nature of scientific discovery,
20% (49,663 samples) of the Funcft_train dataset were randomly selected to be augmented with
enriched function annotations generated through conversations using Llama-2-13B-Chat, forming the
Funcft_train_aug dataset (see Appendix A.7, example ②). The splitted training and testing sets and
corresponding statistics are presented in Table 1.

Table 1: Statistics of OPI-Struc. The FP task is composed of two subtasks: FPft and FPmc. In
the FPft task, besides the hold-out testing set Funcft_test, a newer release of Swiss-Prot v2024_01
(v2401) was utilized to construct Funcft_test_v2401 that aims to assess STELLA’s performance on
unseen data. In the FPmc task, we designed two versions of testing sets: Funcmc_test_1x (options w/o
permutation) and Funcmc_test_4x (options w/ permutation). See Appendix A.7 for data examples ①,
②, ③ and ④.

Task Training set Training set size Testing set Testing set size Metrics Protein source

FPft Funcft_train (+aug) 248,315 (+49,663) Funcft_test
Funcft_test_v2401

4,203
270

BLEU-4
BERT-score

ROUGE
AFDB

FPmc Funcmc_train 24,000 Funcmc_test_1x
Funcmc_test_4x

4,203
16,812 Accuracy AFDB

EP Enzymetrain 29,205 Enzymetest 5,651 Accuracy PDB

Data explanation. Each sample of the OPI-Struc dataset consists of a protein tertiary structure
(sourced from either AFDB or PDB), task-specific natural language instructions formatted as conver-
sations, and corresponding labels. In the Function dataset, protein structures are derived from AFDB,
while the labels (i.e., protein function descriptions) are from the release 2022_04 3 of Swiss-Prot 4.
In addition, when curating Funcmc_train, the four answer options (A, B, C, D) were randomly
permuted within the training set to introduce variability and mitigate answer bias. For the testing set
Funcmc_test, two versions were generated: one without permuted answer options (1x) and another
with permutation (4x), ensuring a more robust evaluation by accounting for both consistent and
variable answer configurations. The Enzyme dataset was obtained from the SIFTS database (Dana
et al., 2018), and the original labels, defined by Enzyme Commission (EC) numbers, were mapped to
enzyme names using the BRENDA Enzyme Database 5 (e.g., 1.1.1.10 → L-xylulose reductase). To
ensure consistency and accuracy, the OPI-Struc dataset underwent a rigorous preprocessing pipeline
following established data cleaning protocols. In addition, detailed analysis of various dataset char-
acteristics were conducted to highlight its comprehensiveness and potential implications for model
performance. For instance, the distribution of protein sequence lengths, which correlates with the
complexity of protein structures, was examined (see Figure 5, Appendix A.4). These variations
underscore the dataset’s coverage of a wide range of structural complexities, which is crucial for
training models that can generalize effectively across both simple and complex protein structures.
Furthermore, the label distribution was analysed, including the length distribution of function de-
scriptions and the frequency of enzyme names, as shown in Figure 6 (Appendix A.4). These insights
emphasize the importance of ensuring model robustness across diverse structural and functional
complexities to achieve reliable and consistent performance during evaluation.

Instruction preparation. The raw data were transformed into an instruction-based format to support
learning tasks by providing diverse and structured task instructions. To achieve variation in instruction
phrasing, ChatGPT (GPT-3.5) was employed via a web interface to generate rephrased instructions.

3https://ftp.uniprot.org/pub/databases/uniprot/previous_releases/
release-2022_04/knowledgebase/UniProtKB_SwissProt-relstat.html

4https://www.uniprot.org/uniprotkb?query=reviewed:true
5https://www.brenda-enzymes.org/
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For instance, using the query: “Could you provide 100 alternative ways to rephrase the prompt ‘Please
describe the function of the protein’?”, approximately 100 distinct variations of task instructions were
produced (see Appendix A.5 for a detailed list). Each generated instruction was carefully reviewed
for accuracy and relevance, ensuring that only high-quality variations were included in the final
Function dataset. During the augmentation process for the Function-augtrain_FTQA dataset, the
Llama-2-13B-Chat model (Touvron et al., 2023) was utilized to generate dialogic interactions based
on protein function descriptions sourced from Swiss-Prot. The prompt used for this augmentation was:

“Given a functional description of the protein, design two or three rounds of questions and answers
based on this description. Ensure the content is detailed. The output format is: [‘Q’:, ‘A’:, ‘Q’:,

‘A’:].” By integrating diverse instructions, this approach facilitated a more dynamic and engaging
bridge between protein structural and textual modalities, thereby enriching the OPI-Struc dataset and
improving its adaptability and effectiveness for addressing a wide range of research objectives.

Data split. (1) The Function dataset was divided according to the data split method used in (Abdine
et al., 2023), maintaining less than 40% sequence similarity between the protein sequences in the
training and testing sets to ensure a rigorous evaluation. (2) The Enzyme dataset was partitioned
following the same split method as in (Hermosilla et al., 2021).

5 EVALUATION OF STELLA MODEL

This study is critical for advancing our understanding of how multimodal LLMs can effectively
leverage protein structural representations to address protein-related tasks and extend beyond these
applications. By systematically evaluating the STELLA model across the FP and EP tasks, we seek to
elucidate both the strengths and limitations of structural representations in the context of building mul-
timodal LLMs for protein modeling. For these tasks, we designed five distinct evaluations based on
the corresponding testing sets detailed in Table 1, including FPft_eval, FPft_eval_v2401, FPmc_eval_1x,
FPmc_eval_4x, EPeval. The hyperparameters for evaluation are presented in Appendix A.3, while the
user prompts for evaluation are listed in Table 7 (Appendix A.6).

Experimental results demonstrate that STELLA is a robust and highly adaptable multimodal LLM.
By integrating protein structural representations and LLMs, STELLA exhibits enhanced flexibility
and scalability across diverse protein-related tasks, consistently delivering accurate and contextually
appropriate outputs. In addition to these strengths, STELLA achieves competitive performance in
function and enzyme prediction tasks, rivalling existing specialized models. These results underscore
STELLA’s potential as a powerful tool for advancing protein science, offering new possibilities for
the broader field of computational biology.

5.1 EVALUATION METRICS

Multiple typical metrics for natural language processing (NLP) tasks, including BLEU, BERT-score,
and ROUGE, were employed for comprehensive evaluation in the FP task. However, given the
specialization and complexity of biological function descriptions, the quality of LLM responses
cannot be fully captured by solely NLP metrics. Recognizing the limitations of such conventional
NLP metrics in protein-related tasks, we intentionally designed the multiple-choice QA (MCQA)
subtask, FPmc, which adopted Accuracy as metrics, to objectively assess STELLA’s performance.
BLEU, typically applied in machine translation, is used to assess the similarity between two sequences.
Particularly, BLEU-4, which measures the overlap of 4-grams between the generated and reference
text, was adopted in this study. BERT-score evaluates the token-level similarity between a generated
sentence and a reference sentence. ROUGE, a set of metrics traditionally used for automatic text
summarization and machine translation, compares generated text to reference texts to calculate the
degree of overlap. It includes ROUGE-1, ROUGE-2, and ROUGE-L, which are based on different
n-gram methods. ROUGE-L, which focuses on the longest common subsequence, is particularly
effective in evaluating summarization and translation quality by considering overall sentence structure.
In addition, the EP task adopted Accuracy as metrics.

7
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5.2 EVALUATION RESULTS

5.2.1 RESULTS OF FUNCTION DESCRIPTION PREDICTION

In order to assess STELLA’s capability to predict protein functional descriptions based on tertiary
structures, we designed the FPft_eval, using the hold-out testing set Funcft_test, which was also
utilized for evaluation in Prot2Tex (Abdine et al., 2023). As shown in Table 2, STELLA demonstrated
state-of-the-art (SOTA) overall performance, surpassing Prot2TextBASE and Prot2TextLARGE (Ab-
dine et al., 2023) in the FPft_eval.

Comparison with Foldseek. We adopt Foldseek as baseline comparison, indulging two steps:
structure retrieval using Foldseek (Van Kempen et al., 2024) and function mapping from Swiss-Prot.
In the first step, for the 4,203 structures in our testing set, we used the Foldseek easy-search 6

command with default parameters to search for similar protein structures within the training set for
each test protein. For the e-value parameter, only matches with an e-value below 0.001 are considered
and returned. In the second step, the corresponding functional description is determined based on
the top-1 retrieved protein from the Swiss-Prot database. The median e-value of the top-1 retrieved
proteins is 2.723e-20, indicating a high confidence in the retrieval results by Foldseek.

Table 2: Evaluation results of the FP task, comparing with existing work. Training recipes for
STELLA-ESM3-Llama-3.1-8B-Instruct: Funcft_train dataset. Bold and underline indicate the best
and the runner-up performance.

Evaluation Model/Method BLEU-4 ↑ BERT Score ↑
ROUGE Score ↑

ROUGE-1 ROUGE-2 ROUGE-L

FPft_eval

Prot2TextBASE 0.3511 0.8430 0.5059 0.4271 0.4849
Prot2TextLARGE 0.3629 0.8520 0.5368 0.4560 0.5140
STELLA-ESM3-Llama-3.1-8B-Instruct (e3+e3) 0.4024 0.8496 0.5218 0.4487 0.5041
STELLA-ESM3-Llama-3.1-8B-Instruct (e3+e6) 0.4300 0.8564 0.5423 0.4747 0.5257
Foldseek 0.3627 0.8358 0.4799 0.4027 0.4586

Furthermore, it is noteworthy that FPft_eval may be impacted by linguistic variability, where model-
generated responses with correct meanings differ in expression from the reference. Therefore, we
designed FPmc_eval_1x and FPmc_eval_4x to eliminate ambiguity by providing predefined answer
choices, which enables more objective and standardized evaluation. This method requires STELLA
to not only identify the correct answer but also engage in reasoning and option filtering based on
contextual knowledge, thus providing a more comprehensive assessment of its reasoning capabilities.
This provides a more robust evaluation for STELLA. Our experiments demonstrated that STELLA
exhibits strong reasoning capabilities by achieving accuracies at Acc@FPmc_eval_1x = 0.8056 and
Acc@FPmc_eval_4x = 0.7618. Notably, without integrating with LLMs, baseline models like vanilla
ESM3 and Prot2Text are unable to produce outputs in a MCQA format.

5.2.2 RESULTS OF ENZYME NAME PREDICTION

EPeval aims to assess STELLA’s ability in enzyme name prediction. On top of the original
Enzymetrain set, we excluded 10 samples due to their associated PDB files lacking certain atom
coordinates necessary for embedding extraction with the protein structure encoder in STELLA. As
shown in Table 3, we witnessed the performance from Accuracy = 0.8806 to Accuracy = 0.8885, by
increasing the training epoch from 3 to 6 in stage-2 training. At last, STELLA achieved a state-of-
the-art result in the EP task, surpassing previous SOTA Accuracy = 0.8850 in CDConv (Fan et al.,
2022).

5.3 ABLATION STUDY

5.3.1 ABLATION OF PROTEIN ENCODERS AND LLMS

To further investigate the representative ability of different protein encoders, we visualized 4,203
protein structure embeddings from the testing set, Funcft_test, generated by ESM3, Prot2Text (Abdine
et al., 2023), and SaProt (Su et al., 2023), using UMAP, as illustrated in Figure 3. The visualization
reveals that for the five most frequently occurring functions in the testing set, proteins with the same

6https://github.com/steineggerlab/foldseek?tab=readme-ov-file#search
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Table 3: Evaluation results of the EP task. Accuracy is a metric that means the predict answer totally
matches the target. Single: Enzymetrain dataset, mix3: Funcft_train + Funcmc_train + Enzymetrain.
Bold and underline indicate the best and the runner-up performance.

Model Training manner Acc@EP ↑
DeepFRI (Gligorijević et al., 2021) w/ pretrain 0.6330
UniRep (Alley et al., 2019) w/o pretrain 0.7290
3DCNN (Derevyanko et al., 2018) w/o pretrain 0.7880
HH-suite3 (Steinegger et al., 2019) w/o pretrain 0.8260
ESM-1b (Rives et al., 2021) w/ pretrain 0.8310
GearNet-Edge-IEConv (Zhang et al., 2022) w/o pretrain 0.8530
IEConv (Hermosilla et al., 2021) w/o pretrain 0.8720
GearNet-Multiview-Contrast (Zhang et al., 2022) w/ pretrain 0.8750
New IEConv (Hermosilla and Ropinski, 2022) w/ pretrain 0.8810
CDConv (Fan et al., 2022) w/o pretrain 0.8850

STELLA-ESM3-Llama-3.1-8B-Instruct(single,two-stage,e3+e3) MMIT 0.8806
STELLA-ESM3-Llama-3.1-8B-Instruct(single,two-stage,e3+e6) MMIT 0.8885

function tend to form more compact clusters in the ESM3 representation space compared to the other
two encoders. A detailed description of the three encoders is provided in Table 8 (Appendix A.8).
Furthermore, several leading LLMs, outlined in Table 9 (Appendix A.9), were integrated into the
STELLA framework, enabling an analysis of their impact on STELLA’s performance. The ablation
results in Table 4 indicate that the combination of the ESM3 encoder with the Llama-3.1 model
yielded the best performance in protein function prediction tasks. Moreover, the results underscore
the strong overall performance of Llama models across various encoders, reaffirming the effectiveness
of combining protein structural information with LLM-based reasoning capabilities.

Figure 3: UMAP visualization of 4,203 protein structure embeddings in the testing set Funcft_test
generated by ESM3, Prot2Text, and SaProt. Each plot illustrates the clustering of protein structures
based on their embeddings, revealing the representational differences among the three encoders. The
highlighted proteins belong to specific functions as detailed in the legend. ESM3 demonstrates the
strongest representative ability.

5.3.2 ABLATION OF TRAINING DATA MIX AND TRAINING EPOCHS

An ablation study was conducted to evaluate model performance across varying training data mixes
and training epochs. The results, presented in Table 5, indicate that increasing training epochs
consistently enhances performance across all data mix configurations. Notably, the model trained
exclusively on the Funcft_train dataset achieved the highest evaluation scores when trained for
three epochs (e3+e3), suggesting that a longer training duration significantly improves its capability
to generate accurate and contextually relevant responses. Incorporating the Funcmc_train dataset
endowed STELLA with multi-choice Q&A capabilities, while causing only a slight decline in its
predictive performance on FPft_eval, as both datasets belong to the same overarching task domain.
However, the inclusion of the Enzymetrain dataset in the mix3 configuration led to superior enzyme
prediction performance but caused a noticeable decline in function prediction capability, highlighting
the challenges inherent in designing high-quality multitask datasets. Furthermore, during the mix3
training, all metrics demonstrated consistent improvement with extended training, progressing from

9
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Table 4: Ablation of protein encoders and LLMs in the FPft_eval. Training recipes: single
Funcft_train dataset, epochs of two stages (e3+e3). Bold and underline indicate the best and the
runner-up performance.

Evaluation Model BLEU-4 ↑ BERT Score ↑
ROUGE Score ↑

ROUGE-1 ROUGE-2 ROUGE-L

FPft_eval

STELLA-ESM3-Llama-3.1-8B-Instruct 0.4024 0.8496 0.5218 0.4487 0.5041
STELLA-ESM3-Llama-3-8B-Instruct 0.4020 0.8503 0.5138 0.4478 0.5001
STELLA-ESM3-Phi-3-mini-128k-instruct 0.3807 0.8435 0.4991 0.4273 0.4839
STELLA-Prot2Text-Llama-3.1-8B-Instruct 0.4009 0.8497 0.5284 0.4454 0.5031
STELLA-Prot2Text-Llama-3-8B-Instruct 0.3892 0.8456 0.5177 0.4329 0.4915
STELLA-Prot2Text-Phi-3-mini-128k-instruct 0.3771 0.8426 0.5058 0.4210 0.4799
STELLA-Prot2Text-Mistral-7B-Instruct-v0.2 0.3889 0.8525 0.5224 0.4359 0.4949
STELLA-Prot2Text-BioMedGPT-LM-7B 0.3999 0.8488 0.5282 0.4447 0.5020
STELLA-Prot2Text-BioMistral-7B-DARE 0.3870 0.8533 0.5241 0.4357 0.4980
STELLA-SaProt-Llama-3-8B-Instruct 0.3588 0.8276 0.4685 0.3965 0.4523
STELLA-SaProt-Mistral-7B-Instruct-v0.2 0.3514 0.8251 0.4607 0.3894 0.4455

FPft_eval_v2401

STELLA-ESM3-Llama-3.1-8B-Instruct 0.0489 0.7565 0.2210 0.1085 0.1867
STELLA-Prot2Text-Llama-3.1-8B-Instruct 0.0425 0.7555 0.2454 0.1020 0.1919
STELLA-Prot2Text-Llama-3-8B-Instruct 0.0510 0.7605 0.2486 0.1062 0.1918
STELLA-Prot2Text-Mistral-7B-Instruct-v0.2 0.0440 0.7685 0.2529 0.1046 0.1975

(e3+e1) to (e3+e3), as illustrated in Figure 7 (AppendixA.10). This trend underscores the positive
effect of prolonged training on model performance and emphasizes the significance of meticulous
dataset selection and appropriate training duration to optimize predictive performance. Additionally,
the FPft_eval_v2401 was designed to assess STELLA’s generalization capability on newly released
proteins, using the testing set Funcft_test_v2401.

Table 5: Ablation of training data mix and training epochs across FPft_eval, FPmc_eval_1x,
FPmc_eval_4x and EPeval for STELLA-ESM3-Llama-3.1-8B-Instruct. single: Funcft_train, mix2:
Funcft_train + Funcmc_train, mix3: Funcft_train + Funcmc_train + Enzymetrain. The 2nd column
indicates the training epochs of two stages. Bold indicates the best performance in each configuration.

Data mix Training epochs BLEU-4 ↑ BERT Score ↑
ROUGE Score ↑ Acc@FPmc_eval ↑

Acc@EPeval ↑
ROUGE-1 ROUGE-2 ROUGE-L 1x 4x

single
(e3+e1) 0.2653 0.8065 0.3938 0.3097 0.3770 - - -
(e3+e2) 0.3574 0.8363 0.4790 0.4028 0.4617 - - -
(e3+e3) 0.4024 0.8496 0.5218 0.4487 0.5041 - - -

mix2
(e3+e1) 0.2397 0.8003 0.3624 0.2861 0.3505 0.6936 0.5893 -
(e3+e2) 0.3411 0.8330 0.4554 0.3878 0.4428 0.7940 0.7428 -
(e3+e3) 0.4020 0.8491 0.5119 0.4465 0.4980 0.8056 0.7618 -

mix3
(e3+e1) 0.1092 0.7665 0.1749 0.1352 0.1747 0.7345 0.6460 0.7972
(e3+e2) 0.1948 0.7898 0.2754 0.2254 0.2687 0.7904 0.7307 0.8666
(e3+e3) 0.2394 0.8025 0.3233 0.2720 0.3151 0.7956 0.7402 0.8809

6 CONCLUSION AND FUTURE WORK

This study presented STELLA, a novel multimodal LLM in an early fusion strategy inherited from
ESM3, which integrates protein structural representations with the contextual knowledge embedded
within LLMs. Through multimodal instruction tuning using the OPI-Struc dataset, STELLA achieves
SOTA performance in two critical tasks: protein functional description prediction and enzyme-
catalyzed reaction prediction. Beyond excelling in protein understanding, STELLA establishes
an innovative LLM-based paradigm for protein-related research, complementing traditional pLM-
based approaches. This work highlights the transformative potential of STELLA as a powerful
computational tool for advancing protein biology. Looking ahead, future efforts should focus on
encompassing more downstream tasks by expanding the OPI-Struc dataset, as well as exploring
advanced techniques such as retrieval-augmented generation (RAG) and agent-based systems to
further enhance STELLA’s capabilities. These advancements will unlock its full potential as a
pioneering tool in computational biology, solidifying its role in driving the next generation of
innovations in protein science and beyond.
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Vladimir Gligorijević, P Douglas Renfrew, Tomasz Kosciolek, Julia Koehler Leman, Daniel Beren-
berg, Tommi Vatanen, Chris Chandler, Bryn C Taylor, Ian M Fisk, Hera Vlamakis, et al. Structure-
based protein function prediction using graph convolutional networks. Nature communications, 12
(1):3168, 2021.

Ethan C Alley, Grigory Khimulya, Surojit Biswas, Mohammed AlQuraishi, and George M Church.
Unified rational protein engineering with sequence-based deep representation learning. Nature
methods, 16(12):1315–1322, 2019.

Alexander Rives, Joshua Meier, Tom Sercu, Siddharth Goyal, Zeming Lin, Jason Liu, Demi Guo,
Myle Ott, C. Lawrence Zitnick, Jerry Ma, and Rob Fergus. Biological structure and function
emerge from scaling unsupervised learning to 250 million protein sequences. Proceedings of the
National Academy of Sciences, 118(15):e2016239118, 2021. doi: 10.1073/pnas.2016239118. URL
https://www.pnas.org/doi/abs/10.1073/pnas.2016239118.

Jin Su, Chenchen Han, Yuyang Zhou, Junjie Shan, Xibin Zhou, and Fajie Yuan. SaProt: Protein
language modeling with structure-aware vocabulary. bioRxiv 2023.10.01.560349, 2023. doi:
10.1101/2023.10.01.560349.

AI@Meta. Llama 3 model card, 2024. URL https://github.com/meta-llama/llama3/
blob/main/MODEL_CARD.md.

Albert Q. Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot,
Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier,
Lélio Renard Lavaud, Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, Thibaut Lavril, Thomas
Wang, Timothée Lacroix, and William El Sayed. Mistral 7b, 2023.

Marah Abdin, Jyoti Aneja, and et al Hany Awadalla. Phi-3 technical report: A highly capable language
model locally on your phone, 2024. URL https://arxiv.org/abs/2404.14219.

Le Yu, Bowen Yu, Haiyang Yu, Fei Huang, and Yongbin Li. Language models are super mario:
Absorbing abilities from homologous models as a free lunch, 2024.

Yanis Labrak, Adrien Bazoge, Emmanuel Morin, Pierre-Antoine Gourraud, Mickael Rouvier, and
Richard Dufour. Biomistral: A collection of open-source pretrained large language models for
medical domains, 2024.

14

https://arxiv.org/abs/2210.03057
https://arxiv.org/abs/2210.03057
https://doi.org/10.1093/nar/gky1114
https://www.pnas.org/doi/abs/10.1073/pnas.2016239118
https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md
https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md
https://arxiv.org/abs/2404.14219


756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

A APPENDIX

A.1 EXAMPLE DEMONSTRATION OF STELLA’S CAPABILITIES THROUGH CASE STUDIES

Function of this protein (SwissProt ID: Q9W3K5, from hold-out testing 
set):
Catalyzes the ATP-dependent ligation of L-glutamate and L-cysteine 
and participates in the first and rate-limiting step in glutathione 
biosynthesis.

Function of this protein (SwissProt ID: Q5KYR2, from hold-out testing 
set):
Involved in the isomerization of 5-deoxy-glucuronate (5DG) to 5-
dehydro-2-deoxy-D-gluconate (DKG or 2-deoxy-5-keto-D-gluconate).

What are the main functions of this protein?
[AFDB_ID: AF-Q9W3K5-F1-model_v4.pdb]

The main functions of this protein are to catalyze the ATP-dependent 
ligation of L-glutamate and L-cysteine, and to a lesser extent, of L-histidine 
and L-tryptophan.

Compare the function of glutamate-cysteine ligase with that of glutathione 
synthetase. What structural or mechanistic features distinguish these 
enzymes, and how do they together regulate glutathione levels?

Glutamate-cysteine ligase and glutathione synthetase are both involved 
in the synthesis of glutathione, a critical antioxidant in cells. However, 
they have different functions and mechanisms of action. Glutamate-
cysteine ligase catalyzes the ligation of L-glutamate and L-cysteine to 
form a peptide bond, while glutathione synthetase catalyzes the 
condensation of L-glutamate and L-cysteine to form glutathione. The two 
enzymes have different substrate specificities and reaction conditions, 
and they work together to regulate glutathione levels in cells.

The isomerization reaction catalyzed by this protein has several potential 
applications in biotechnology and pharmaceutical production. For example, the 
conversion of 5DG to DKG could be used to produce novel compounds or to 
improve the efficiency of existing ones. Additionally, the reaction could be 
used to develop new biotechnological processes or to improve existing ones.

The main functions of this protein are involved in the isomerization of 5-deoxy-
glucuronate (5DG) to 5-dehydro-2-deoxy-D-gluconate (DKG or 2-deoxy-5-
keto-D-gluconate).

Yes, the isomerization reaction could also be used to produce novel antibiotics, 
anticancer agents, or other bioactive compounds. For example, the conversion 
of 5DG to DKG could be used to synthesize novel peptidoglycan structures, 
which are important for bacterial cell wall synthesis and could potentially be 
used to develop new antibiotics.

What are the main functions of this protein?
[AFDB_ID: AF-Q5KYR2-F1-model_v4.pdb]

Describe potential industrial or medical applications of the isomerization 
catalyzed by this protein, specifically converting 5-deoxy-glucuronate 
(5DG) to 5-dehydro-2-deoxy-D-gluconate (DKG). How might this 
reaction be utilized in biotechnology or pharmaceutical production?

Any further examples?

Figure 4: STELLA’s ability to engage in conversation (Model used: STELLA-ESM3-Llama-3.1-
8B-Instruct). The protein Q9W3K5 and Q5KYR2 are from the hold-out testing set of OPI-Struc.
Left: protein Q9W3K5. Right: protein Q5KYR2. Orange box: ground truth of the function. Blue
Box: inquiry from the user. Green box: output of the model. Images indicating the user and assistant
were generated by AI tools.

A.2 PROMPT TEMPLATE FOR TRAINING

The prompt template of STELLA-Prot2Text-Llama-3.1-8B-Instruct

<|begin_of_text|><|start_header_id|>user<|end_header_id|>

<structure>
May I request a comprehensive breakdown outlining the function linked to the protein?
<|eot_id|><|start_header_id|>assistant<|end_header_id|>
Involved in the gluconeogenesis. Catalyzes stereospecifically the conversion of dihydroxyacetone
phosphate (DHAP) to D-glyceraldehyde-3-phosphate (G3P). <|eot_id|><|end_of_text|>

The prompt template of STELLA-Prot2Text-Mistral-7B-Instruct-v0.2

<s>[INST] <structure>
May I request a comprehensive breakdown outlining the function linked to the protein? [/INST]Involved
in the gluconeogenesis. Catalyzes stereospecifically the conversion of dihydroxyacetone phosphate
(DHAP) to D-glyceraldehyde-3-phosphate (G3P)</s>

A.3 HYPERPARAMETERS FOR TRAINING AND EVALUATION

Stage1 aims to align a protein structure embedding space and a plain-text embedding space. In this
stage, the modality connector trainable, while both the protein structure encoder and the LLM are
frozen. Stage2 is dedicated to teach STELLA to follow complicated natural language instructions
and generate response dedicated to protein tasks. In this stage, both the modality connector and the
LLM are trainable with different learning rates, while the protein structure encoder is still frozen.
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Both stages use the same training datasets. The prompts templates for training follow the examples
shown in Appendix A.2.

Hyperparameters in PT stage and IT stage are summarized in Table 6. It is noteworthy that we
adopt different learning rates for each different components of STELLA to finely control the training
process. Especially, in the IT stage, we set the learning rate of the modality connector larger than
LLM backbone, to improve LLMs’ training convergence.

Table 6: Hyperparameters for stage1 training, stage2 training and testing. FFT: Full Fine-tuning;
LoRA: LoRA Tuning

Config Stage1 Stage2 Testing
DeepSpeed ZeRO Stage 2 3 NA

optimizer AdamW AdamW NA
optimizer hyperparameters (β1,β2)=(0.9, 0.999), eps=1e-8 (β1,β2)=(0.9, 0.999), eps=1e-8 NA

per_device_train_batch_size 2 1(FFT)/2(LoRA) NA
gradient_accumulation_steps 4 2(FFT)/4(LoRA) NA

gradient_checkpointing True True NA
learning rate (lr) 2e-5 (Connector) 2e-4 (Connector), 2e-5 (LLM) NA

weight decay 0.0 0.0 NA
warmup steps 48 - NA
warmup ratio - 0.03 NA

lr scheduler type cosine cosine NA
training epochs 3 3 NA

GPU 4*A100 8*A100(FFT)/4*A100(LoRA) 1*A100
temperature NA NA 0.2

top_k NA NA 50
top_p NA NA 0.75

num_beams NA NA 1
max_new_tokens NA NA 1000

use_cache NA NA True
do_sample NA NA True

A.4 ANALYSIS OF DATA LABEL DISTRIBUTION OF THE OPI-STRUC DATASET

Figure 5: Distribution of protein sequence lengths across the FP (left) and EP (right) tasks for
training and testing sets. The variation in sequence length distribution between the training and
testing sets ensures model robustness across proteins with diverse structural complexities.
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(a) (b)

Figure 6: a: Length distribution of functional descriptions in the Function dataset. b: Frequency
of enzyme names in the Enzyme dataset. The enzyme name distribution in the training set follows
a long-tailed pattern, but the label distribution in the test set differs significantly from that in the
training set.

A.5 EXPANDED INSTRUCTIONS BY CHATGPT (GPT-3.5)

Expanded instructions by ChatGPT (GPT-3.5)

• May I request an elaborate overview of the function linked to the protein?
• Is it within your capacity to provide a comprehensive overview of the function associated

with the protein?
• Can you supply a detailed breakdown of the function ascribed to the protein?
• May I request a comprehensive depiction of the function pertaining to the protein?
• May I request a comprehensive account outlining the function of the protein?
• Is it possible for you to furnish a comprehensive breakdown of the function associated with

the protein?
• May I request a comprehensive breakdown outlining the function linked to the protein?’
• Could you share a detailed elucidation of the function assigned to the protein?’
• Would you mind giving me a detailed breakdown of the function associated with the

protein?
• Is it within your capacity to provide a comprehensive overview of the function linked to the

protein?
• Could you supply an extensive description of the function ascribed to the protein?
• Can you furnish a comprehensive elucidation of the function ascribed to the protein?
• Is it feasible for you to offer a comprehensive analysis regarding the function of the protein?
• Would it be possible for you to offer a thorough breakdown of the function ascribed to the

protein?
• Can you furnish a comprehensive explanation regarding the function of the protein?
• Can you furnish a comprehensive analysis of the function encompassing the protein?
• May I inquire about a comprehensive explanation encompassing the function of the protein?
• Can you furnish a comprehensive description of the function ascribed to the protein?
• Would you mind providing a comprehensive overview of the function attributed to the

protein?
• Could you share an elaborate overview of the function linked to the protein?
• Could you share a comprehensive overview of the function encompassing the protein?

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

• Could you offer a comprehensive elucidation of the function assigned to the protein?
• May I request a comprehensive breakdown outlining the function associated with the

protein?
• Would you mind giving me a comprehensive analysis of the function attributed to the

protein?
• Is it within your capacity to offer a detailed elucidation of the function assigned to the

protein?
• Can you supply a comprehensive explanation of the function related to the protein?
• Can you give me a comprehensive explanation of the function ascribed to the protein?
• Is it possible for you to provide a detailed description of the function ascribed to the protein?
• Could you share a comprehensive description of the function encompassing the protein?
• Would you mind providing a thorough explanation of the function related to the protein?
• Can you offer a comprehensive analysis of the function attributed to the protein?
• Can you supply a comprehensive depiction of the function related to the protein?
• May I request a detailed overview of the function associated with the protein?
• May I request a comprehensive analysis of the function attributed to the protein?
• Would you mind giving me a comprehensive description of the function attributed to the

protein?
• Is it feasible for you to offer a comprehensive explanation regarding the function of the

protein?
• Is it within your capacity to provide a comprehensive explanation of the function related to

the protein?
• Would it be possible for you to provide a comprehensive analysis of the function attributed

to the protein?
• May I inquire about a thorough account of the function related to the protein?
• May I request a comprehensive account of the function pertaining to the protein?
• Is it feasible for you to give an extensive overview of the function linked to the protein?
• Could you provide a detailed elucidation of the function encompassing the protein?
• Would it be possible for you to offer a comprehensive depiction encompassing the function

of the protein?
• Is it feasible for you to offer a comprehensive account of the function ascribed to the

protein?
• Is it within your capacity to provide a comprehensive breakdown of the function linked to

the protein?
• Could you share a comprehensive breakdown of the function linked to the protein?
• May I inquire about a comprehensive depiction of the function encompassing the protein?
• Is it within your capacity to provide a comprehensive overview of the function assigned to

the protein?
• May I inquire about a comprehensive account of the function associated with the protein?
• Could you provide a detailed account of the function assigned to the protein?
• Could you furnish a detailed depiction of the function encompassing the protein?
• Can you provide a detailed description of the function ascribed to the protein?
• May I inquire about a comprehensive explanation outlining the function of the protein?
• May I request a comprehensive overview of the function ascribed to the protein?
• Could you provide a detailed elucidation outlining the function associated with the protein?
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• Can you provide a comprehensive elucidation of the function assigned to the protein?
• Would it be possible for you to offer a comprehensive explanation of the function associated

with the protein?
• Would you mind giving me a comprehensive account of the function attributed to the

protein?
• May I inquire about a comprehensive breakdown of the function assigned to the protein?
• Can you give me a detailed breakdown of the function linked to the protein?
• Can you give me a detailed depiction of the function encompassing the protein?
• Is it possible for you to furnish a comprehensive depiction of the function encompassing

the protein?
• Can you supply a comprehensive breakdown of the function associated with the protein?
• Can you furnish a detailed overview of the function linked to the protein?
• May I inquire about a thorough explanation of the function related to the protein?
• Could you share a detailed analysis of the function attributed to the protein?
• Would you be able to furnish a detailed explanation of the function encompassing the

protein?
• Is it feasible for you to provide an elaborate account of the function attributed to the protein?
• May I inquire about a comprehensive analysis of the function assigned to the protein?
• Would you be able to provide a detailed elucidation of the function assigned to the protein?
• May I request a detailed breakdown of the function associated with the protein?
• Would it be possible for you to offer a comprehensive depiction of the function ascribed to

the protein?
• May I inquire about a detailed account of the function assigned to the protein?
• Could you provide an in-depth explanation of the function associated with the protein?
• May I inquire about a detailed description of the function ascribed to the protein?
• Would you be able to provide a comprehensive account of the function pertaining to the

protein?
• Can you furnish a comprehensive description outlining the function associated with the

protein?
• Can you supply a comprehensive analysis of the function linked to the protein?
• Would it be possible for you to offer a comprehensive analysis of the function related to the

protein?
• Could you offer a comprehensive breakdown of the function associated with the protein?
• Could you supply a thorough explanation of the function related to the protein?
• Is it feasible for you to supply a thorough explanation of the function related to the protein?
• Would it be possible for you to offer an in-depth description of the function of the protein?
• Is it within your capacity to provide a comprehensive depiction of the function related to

the protein?
• Could you provide a detailed description outlining the function of the protein?
• Can you share a comprehensive account of the function pertaining to the protein?
• Would it be possible for you to provide an extensive description of the function ascribed to

the protein?
• Could you share a comprehensive depiction of the function pertaining to the protein?
• Could you provide a detailed analysis of the function ascribed to the protein?
• Is it within your capacity to provide a comprehensive elucidation of the function associated

with the protein?
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• Would you mind giving me a comprehensive depiction of the function pertaining to the
protein?

• Could you share a comprehensive overview of the function ascribed to the protein?
• Is it within your capability to offer a detailed account of the function pertaining to the

protein?
• Can you supply a comprehensive account of the function linked to the protein?
• Could you share a comprehensive breakdown of the function ascribed to the protein?
• Would it be possible for you to offer a comprehensive account linked to the function of the

protein?
• Can you supply a comprehensive explanation of the function assigned to the protein?
• Is it possible for you to provide a comprehensive analysis of the function attributed to the

protein?
• Is it feasible for you to offer a comprehensive description of the function attributed to the

protein?

A.6 PROMPT TEMPLATE FOR EVALUATION

Table 7 presents the user prompts used in the evaluation of three tasks. Notably, we designed the
prompt to ensure that the model outputs only one of the four options (A, B, C, or D) in the FPMCQA

task, facilitating assessment.

Table 7: User prompts for evaluation.
Task Testing set Answer formatting prompts

FPft
Funcft_test

Funcft_test_v2401
What are the main functions of this protein?

FPmc
Funcmc_text_1x
Funcmc_text_4x

Answer with the option’s letter from the given choices directly. Please
respond to the question with an answer choice, which is either A, B, C or D.

EP Enzymetest What is the enzyme name linked to this protein?

A.7 EXAMPLES OF THE OPI-STRUC DATA

① An example of Funcft_train data

[
{
"swissprot_id": "Q0BWM9",
"sequence": "

MFNKQSVSLEWAGRTLTIETGQVARQADGAVMVQYGDTIVLATAVFAKEAKPGQDFFPLTV
NYQEKYFASGRIPGGFFKREGRPTEKETLTSRLIDRPIRPLFVDGFKHEVQVVVTTLSYDL
ENDADIIALVGASAALVLSGAPFMGPIGAARVGYKDGQYIINPTIAELEESELDLVVAGTT
DAVMMVESQAAELSEDVMLGAVVAGHDAMQPVIDAIIALAEKAAKEPFAYEPPDHSAALKS
VIDTVGADLSKAYKITAKGERYAAIGAAKDKAKAALLGTDEAPGVMTPEVFKTVFKEAEAS
VVRGDILKTGQRIDGRKLDQIRPIVAEAGFLPRTHGSSLFTRGETQAICVATLGTSDDEQY
IDGLDGTKKEKFMLHYNFPPYSVGETGRMGGAGRREIGHGKLAWRALKAVLPKHEDFPYTI
RMVSEITESNGSSSMATVCGCSLAMMDAGVPLTRPVSGIAMGLILEGSEFAVLSDILGDED
HLGDMDFKVAGTENGVTSLQMDIKVAGITKDIMGKALEQAKGGRMHILGEMGKALTASRGQ
LSENAPQMEIIKVPTDKIRDVIGSGGKVIRGIVDETGAKVNIDDDGTVQISAMDRKSIDAA
IKMIKGITAEAEVGEIYEGKVVSMKDFGIFVNFFGPKDGLVHVSQMANKRIGHPKEMVKEG
DKVWVKLMGFDERGKVRLSMKVVDQETGKELAEEAGDDASED",

"conversations": [
{
"from": "human",
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"value": "Can you furnish a comprehensive description
outlining the function associated with the protein?\n<
structure>"

},
{
"from": "gpt",
"value": "Involved in mRNA degradation. Catalyzes the

phosphorolysis of single-stranded polyribonucleotides
processively in the 3'- to 5'-direction."

}
],
"AFDB_id": "AF-Q0BWM9-F1-model_v4"

},
]

② An example of Funcft_train_aug dataset

[
{
"swissprot_id": "Q1WT60",
"sequence": "

MENKKLHIALLFGGNSSEHDVSKRSAHNIYDALDKDKYDVSVFMFTKKGFLLGNKDSMRIF
DGENEDDVVTEVIKDVDFSNPLANIQNLAEVKDVDVFYPVIHGNMGEDGTVQGLFRLLNKPW
IGSGVASSGVSFDKDLTKKLLTLNGIRNTKYVLVTPENKADYPYAKVAEELGETLFVKPARQ
GSSVGIHKVRNEEEYNAALEDGFKYDYKILVEEAIKNPREVECSVLGNRDIKASKLGAIRIP
ESDDFYDYNNKFVDASGVVFEMPIKLPEKLTKEIQQMSLDAFRALDNRGLARMDFLVDKNDV
PYFGEVNTLPGFTNISLYPQLWEVSGISYSELIDQLIQLAIDEFNDNAKIHYDFTKLGTEKV
GKKIIGE",

"conversations": [
{
"from": "human",
"value": "What is the main function of this protein?\n<

structure>"
},
{
"from": "gpt",
"value": "The main function of this protein is cell wall

formation."
},
{
"from": "human",
"value": "Can you explain the process of cell wall formation

?"
},
{
"from": "gpt",
"value": "Certainly! The protein helps to synthesize and

modify the cell wall, which is a critical structure that
provides support, protection, and cell-to-cell interaction
. The cell wall is composed of various components,
including polysaccharides, proteins, and other molecules.
Our protein plays a key role in the synthesis and
modification of these components to form a strong and
stable cell wall."

},
{
"from": "human",
"value": "How does the protein contribute to the synthesis of

the cell wall?"
},
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{
"from": "gpt",
"value": "The protein helps to catalyze the formation of

glycosidic bonds between the cell wall components. These
bonds are crucial for the stability and integrity of the
cell wall. Additionally, the protein can also modify
existing glycosidic bonds to further strengthen the cell
wall."

}
],
"AFDB_id": "AF-Q1WT60-F1-model_v4"

},
]

③ An example of Funcmc_train data

[
{
"swissprot_id": "P62877",
"sequence": "

MAAAMDVDTPSGTNSGAGKKRFEVKKWNAVALWAWDIVVDNCAICRNHIMDLCIECQANQ
ASATSEECTVAWGVCNHAFHFHCISRWLKTRQVCPLDNREWEFQKYGH",
"conversations": [
{
"from": "human",
"value": "<structure>\nWhat are the main functions of this

protein?\nA. E3 ubiquitin ligase component of multiple
cullin-RING-based E3 ubiquitin-protein ligase (CRLs)
complexes which mediate the ubiquitination and subsequent
proteasomal degradation of target proteins, including
proteins involved in cell cycle progression, signal
transduction, transcription and transcription-coupled
nucleotide excision repair. CRLs complexes and ARIH1
collaborate in tandem to mediate ubiquitination of target
proteins, ARIH1 mediating addition of the first ubiquitin
on CRLs targets. The functional specificity of the E3
ubiquitin-protein ligase complexes depends on the variable
substrate recognition components. As a component of the
CSA complex promotes the ubiquitination of ERCC6 resulting
in proteasomal degradation. Recruits the E2 ubiquitin-
conjugating enzyme CDC34 to the complex and brings it into
close proximity to the substrate. Probably also
stimulates CDC34 autoubiquitination. May be required for
histone H3 and histone H4 ubiquitination in response to
ultraviolet and for subsequent DNA repair. Promotes the
neddylation of CUL1, CUL2, CUL4 and CUL4 via its
interaction with UBE2M. Involved in the ubiquitination of
KEAP1, ENC1 and KLHL41. In concert with ATF2 and CUL3,
promotes degradation of KAT5 thereby attenuating its
ability to acetylate and activate ATM.\nB. Part of the
MIS12 complex which is required for normal chromosome
alignment and segregation and kinetochore formation during
mitosis.\nC. Catalyzes the cyanide-resistant oxidation of
ubiquinol and the reduction of molecular oxygen to water,
but does not translocate protons and consequently is not
linked to oxidative phosphorylation. May increase
respiration when the cytochrome respiratory pathway is
restricted, or in response to low temperatures.\nD. Pair-
rule protein expressed in a segmentally repeating pattern
to define the polarity of embryonic segments. Capable of
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sequence-specific DNA-binding.\nAnswer with the option's
letter from the given choices directly."

},
{
"from": "gpt",
"value": "A"

}
],
"AFDB_id": "AF-P62877-F1-model_v4"

},
]

④ An example of Enzymetrain data

[
{
"PDB_id": "5ivp.A",
"conversations": [
{
"from": "human",
"value": "Could you inform me of the enzyme name tagged to

this protein?<structure>\n"
},
{
"from": "gpt",
"value": "aminoacyl-tRNA hydrolase"

}
]

},
]

A.8 COMPARISON OF PROTEIN STRUCTURE ENCODERS

Difference among three representative protein structure encoders employed in this study, ESM3,
Prot2Text and SaProt, are presented in Table 8.

A.9 DIFFERENT COMPOSITION OF PROTEIN STRUCTURE ENCODERS AND LLMS

According to the architecture of STELLA, it is flexible and customizable to integrate various protein
encoders and LLMs to form STELLA variants. In order to delve into the effectiveness of different
composition of protein encoders and LLMs, we elaborately choose different protein encoders and
foundation LLMs, as shown in Table 9.

A.10 ABLATION OF TRAINING EPOCHS FOR MIX3 TRAINING

Each graph in Figure 7 shows how the scores for BLEU-4, BERT Score, ROUGE Scores, and
Accuracy change over the training periods labeled as (e3+e1), (e3+e2), and (e3+e3). All the metrics
improve as training epochs increase, suggesting better performance with more training.

23



1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

Table 8: Comparison of three representative protein structure encoders.

Protein encoder Modality Modality fusion methods

ESM3
Sequence,
Structure,
Function

ESM3 is a multimodal model pretrained on mas-
sive sequence, structure and function tokens via
masked language modeling (MLM). It encodes
these modalities as discrete token tracks, which are
fused into a unified representation space using sev-
eral transformer blocks, with geometric attention
in the first block to incorporate atomic information.

Prot2Text
Sequence,
Structure,
Function

Prot2Text is a multimodal model incorporating a
Relational Graph Convolution Network (RGCN),
ESM-2 and GPT-2 to generate protein function an-
notation. It is designed to integrate information
from two sources: the output of the RGCN and
the protein sequence data processed by ESM-2.
The RGCN receives all-atom protein structures as
its input, providing detailed structural information.
Subsequently, the Prot2Text encoder aligns this in-
tegrated data with functional annotation through a
generative alignment approach using a text decoder.
Prot2Text serve as a method for protein structure-
text feature alignment.

SaProt Sequence,
Structure

SaProt is a large-scale pre-trained model using
about 40 million protein sequences and structures
with structure-aware vocabulary which integrates
residue tokens with structure tokens simultane-
ously. It adopts an ESM-based architecture that
takes inputs as structure-aware protein sequences,
which combine the protein sequence residue tokens
and discrete structural tokens encoded using folk-
seek. This encoder is not aligned with functional
annotation text.

Table 9: Specifications of STELLA composition of various protein structure encoders and
foundation LLMs.

Protein encoder Foundation LLM Note Composed STELLA variant

ESM3 (Hayes et al., 2024)

Llama-3.1-8B-Instruct (AI@Meta, 2024) Open source model by Meta STELLA-ESM3-Llama-3.1-8B-Instruct
Llama-3-8B-Instruct (AI@Meta, 2024) Open source model by Meta STELLA-ESM3-Llama-3-8B-Instruct
Mistral-7B-Instruct-v0.2 (Jiang et al., 2023) Open source model by Mistral AI STELLA-ESM3-Mistral-7B-Instruct-v0.2
Phi-3-mini-128k-instruct (Abdin et al., 2024) Open source model by Microsoft STELLA-ESM3-Phi-3-mini-128k-instruct
BioMistral-7B-DARE a Tailored model for biomedical domain STELLA-ESM3-BioMistral-7B-DARE
BioMedGPT-LM-7B b Luo et al. (2023) Tailored model for biomedical domain STELLA-ESM3-BioMedGPT-LM-7B

Prot2Text (Abdine et al., 2023)

Llama-3.1-8B-Instruct Open source model by Meta STELLA-Prot2Text-Llama-3.1-8B-Instruct
Llama-3-8B-Instruct Open source model by Meta STELLA-Prot2Text-Llama-3-8B-Instruct
Mistral-7B-Instruct-v0.2 Open source model by Mistral AI STELLA-Prot2Text-Mistral-7B-Instruct-v0.2
Phi-3-mini-128k-instruct Open source model by Microsoft STELLA-Prot2Text-Phi-3-mini-128k-instruct
BioMistral-7B-DARE Tailored model for biomedical domain STELLA-Prot2Text-BioMistral-7B-DARE
BioMedGPT-LM-7B Tailored model for biomedical domain STELLA-Prot2Text-BioMedGPT-LM-7B

SaProt (Su et al., 2023)

Llama-3.1-8B-Instruct Open source model by Meta STELLA-SaProt-Llama-3.1-8B-Instruct
Llama-3-8B-Instruct Open source model by Meta STELLA-SaProt-Llama-3-8B-Instruct
Mistral-7B-Instruct-v0.2 Open source model by Mistral AI STELLA-SaProt-Mistral-7B-Instruct-v0.2
Phi-3-mini-128k-instruct Open source model by Microsoft STELLA-SaProt-Phi-3-mini-128k-instruct
BioMistral-7B-DARE Tailored model for biomedical domain STELLA-SaProt-BioMistral-7B-DARE
BioMedGPT-LM-7B Tailored model for biomedical domain STELLA-SaProt-BioMedGPT-LM-7B

a Merge (Yu et al., 2024) of Mistral-7B-Instruct-v0.1 and BioMistral-7B (Labrak et al., 2024) which was further pre-trained on top of Mistral-7B-Instruct-v0.1 using PubMed
Central Open Access from https://www.ncbi.nlm.nih.gov/pmc/tools/openftlist/

b Increamtally pre-training from Llama-2-7B-Chat with S2ORC (Lo et al., 2020) corpus.
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Figure 7: The trend lines for the various metrics across different training epochs.
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