
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

EXACT COMPUTATION OF ANY-ORDER SHAPLEY IN-
TERACTIONS FOR GRAPH NEURAL NETWORKS

Anonymous authors
Paper under double-blind review

ABSTRACT

Albeit the ubiquitous use of Graph Neural Networks (GNNs) in machine learning
(ML) prediction tasks involving graph-structured data, their interpretability re-
mains challenging. In explainable artificial intelligence (XAI), the Shapley Value
(SV) is the predominant method to quantify contributions of individual features
to a ML model’s output. Addressing the limitations of SVs in complex prediction
models, Shapley Interactions (SIs) extend the SV to groups of features. In this
work, we explain single graph predictions of GNNs with SIs that quantify node
contributions and interactions among multiple nodes. By exploiting the GNN
architecture, we show that the structure of interactions in node embeddings are
preserved for graph prediction. As a result, the exponential complexity of SIs
depends only on the receptive fields, i.e. the message-passing ranges determined
by the connectivity of the graph and the number of convolutional layers. Based
on our theoretical results, we introduce GraphSHAP-IQ, an efficient approach to
compute any-order SIs exactly. GraphSHAP-IQ is applicable to popular message-
passing techniques in conjunction with a linear global pooling and output layer.
We showcase that GraphSHAP-IQ substantially reduces the exponential complex-
ity of computing exact SIs on multiple benchmark datasets. Beyond exact com-
putation, we evaluate GraphSHAP-IQ’s approximation of SIs on popular GNN
architectures and compare with existing baselines. Lastly, we visualize SIs of
real-world water distribution networks and molecule structures using a SI-Graph.

1 INTRODUCTION

Graph-structured data appears in many domains and real-world applications (Newman, 2018), such
as molecular chemistry (Gilmer et al., 2017), water distribution networks (WDNs) (Ashraf et al.,
2023), sociology (Borgatti et al., 2009), physics (Sanchez-Gonzalez et al., 2020), or human re-
sources (Frazzetto et al., 2023). To leverage such structure in machine learning (ML) models, Graph
Neural Networks (GNNs) emerged as the leading family of architectures that specifically exploit the
graph topology (Scarselli et al., 2009). A major drawback of GNNs is the opacity of their predic-
tive mechanism, which they share with most deep-learning based architectures (Amara et al., 2022).
Reliable explanations for their predictions are crucial when model decisions have significant conse-
quences (Zhang et al., 2024) or lead to new discoveries (McCloskey et al., 2019).
In explainable artificial intelligence (XAI), the Shapley Value (SV) (Shapley, 1953) is a prominent
concept to assign contributions to entities of black box ML models (Lundberg & Lee, 2017; Covert
et al., 2021; Chen et al., 2023). Entities typically represent features, data points (Ghorbani & Zou,
2019) or graph structures (Yuan et al., 2021; Ye et al., 2023). Although SVs yield an axiomatic
attribution scheme, they do not give any insights into joint contributions of entities, known as inter-
actions. Yet, interactions are crucial to understanding decisions of complex black box ML models
(Wright et al., 2016; Sundararajan et al., 2020; Kumar et al., 2021). Shapley Interactions (SIs) (Gra-
bisch & Roubens, 1999; Bordt & von Luxburg, 2023) extend the SV to include joint contributions
of multiple entities. SIs satisfy similar axioms while providing interactions up to a maximum num-
ber of entities, referred to as the explanation order. In this context, SVs are the least complex SIs,
whereas Möbius Interactions (MIs) (or Möbius transform) (Harsanyi, 1963; Rota, 1964) are the most
complex SIs by assigning contributions to every group of entities. Thus, SIs convey an adjustable
explanation with an accuracy-complexity trade-off for interpretability (Bordt & von Luxburg, 2023).
SVs, SIs and MIs are limited by exponential complexity, e.g. with 20 features already 220 ≈ 106
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Figure 1: SI-Graphs overlayed on a molecule graph showing exact SIs for a molecule with 30
atoms from MTG. A GNN correctly identifies it as mutagenic. The SIs, in line with ground-
truth knowledge, highlight the NO2 groups. Computing exact SIs requires 230 ≈ 109 model calls.
GraphSHAP-IQ needs 7 693.

model calls per explained instance are required. Consequently, practitioners rely on model-agnostic
approximation methods (Lundberg & Lee, 2017; Fumagalli et al., 2023) or model-specific methods
(Lundberg et al., 2020; Muschalik et al., 2024) that exploit knowledge about the model’s structure
to reduce complexity. As a remedy for GNNs, the SV was applied as a heuristic on subgraphs (Ying
et al., 2019; Ye et al., 2023), or approximated (Duval & Malliaros, 2021; Bui et al., 2024).
In this work, we address limitations of the SV for GNN explainability by computing the SIs visual-
ized as the SI-Graph in Figure 1. Our method yields exact SIs by including GNN-specific knowledge
and exploiting properties of the SIs. In contrast to existing methods (Yuan et al., 2021; Ye et al.,
2023), we evaluate the GNN on node level without the need to cluster nodes into subgraphs. Instead
of model-agnostic approximation (Duval & Malliaros, 2021; Bui et al., 2024), we provide structure-
aware approximation for graph prediction and prove that MIs of node embeddings indeed transfer
to graph prediction for linear readouts. In summary, our approach is a model-specific computation
of SIs for GNNs, akin to TreeSHAP (Lundberg et al., 2020).

Contribution. Our main contributions include:

(1) We introduce SIs among nodes and the SI-Graph for graph predictions of GNNs that ad-
dress limitations of the SV and exploit graph and GNN structure with our theoretical results.

(2) We present GraphSHAP Interaction Quantification (GraphSHAP-IQ), an efficient method
to compute exact any-order SIs in GNNs or approximate them in restricted settings.

(3) We show substantially reduced complexity when applying GraphSHAP-IQ on real-world
benchmark datasets, and analyze SI-Graphs of a WDN and molecule structures.

(4) We find that interactions in deep readout GNNs are not restricted to the receptive fields.

Related Work. The SV (Shapley, 1953) was applied in XAI for local (Lundberg & Lee, 2017;
Covert et al., 2021) and global (Casalicchio et al., 2019; Covert et al., 2020) model interpretability,
or data valuation (Ghorbani & Zou, 2019). The Myerson value (Myerson, 1977) is a variant of the
SV for games restricted to graph components. Extensions of the SV to interactions for ML were
proposed by Lundberg et al. (2020); Sundararajan et al. (2020); Tsai et al. (2023); Bordt & von
Luxburg (2023) Due to the exponential complexity, model-specific methods for tree-based models
for SVs (Lundberg et al., 2020; Yu et al., 2022), any-order SIs (Zern et al., 2023; Muschalik et al.,
2024) and MIs (Hiabu et al., 2023) were proposed. Model-agnostic approximation methods cover
the SV (Lundberg & Lee, 2017; Chen et al., 2019; Kolpaczki et al., 2024a), SIs (Fumagalli et al.,
2023; Kolpaczki et al., 2024b; Fumagalli et al., 2024), and MIs (Kang et al., 2024).
Instance-wise explanations on GNNs were proposed via perturbations (Ying et al., 2019; Luo et al.,
2020; Yuan et al., 2021; Schlichtkrull et al., 2021), gradients (Pope et al., 2019; Sánchez-Lengeling
et al., 2020; Schnake et al., 2022; Xiong et al., 2023) or surrogate models (Vu & Thai, 2020; Huang
et al., 2023). GNN explanations are given in terms of nodes (Pope et al., 2019; Huang et al., 2023)
and subgraphs (Ying et al., 2019; Luo et al., 2020; Yuan et al., 2021). Other use paths (Schnake
et al., 2022; Huang et al., 2023) and edges (Schlichtkrull et al., 2021). For perturbation-based
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attributions, maskings for nodes (Ying et al., 2019; Yuan et al., 2021) or edges (Luo et al., 2020;
Schlichtkrull et al., 2021) were introduced. The SV was applied in perturbation-based methods to
assess the quality of subgraphs (Yuan et al., 2021; Zhang et al., 2022; Ye et al., 2023), approximate
SVs (Duval & Malliaros, 2021; Akkas & Azad, 2024) or for pre-defined motifs (Perotti et al., 2022).
Recently, pairwise SIs were approximated to discover subgraph explanations (Bui et al., 2024). For
a more detailed comparison of this work with existing related work, we refer to Appendix C.
In contrast to existing work, we compute exact SVs on node level. Moreover, we exploit graph
and GNN structure to compute SIs that uncover complex interactions, formally prove that for linear
readouts interaction structures of node embeddings are preserved for graph predictions.

2 BACKGROUND

In Section 2.1, we introduce SIs that provide an adjustable accuracy-complexity (emphasize added)
trade-off for explanations (Bordt & von Luxburg, 2023). In this context, SVs are the simplest and
MIs the most complex SIs. In Section 2.2, we introduce GNNs, whose structure we exploit in
Section 3 to efficiently compute any-order SIs. A summary of notations can be found in Appendix A.

2.1 EXPLANATION COMPLEXITY: FROM SHAPLEY VALUES TO MÖBIUS INTERACTIONS

Concepts from cooperative game theory, such as the SV (Shapley, 1953), are prominent in XAI to
interpret predictions of a black box ML model via feature attributions (Strumbelj & Kononenko,
2014; Lundberg & Lee, 2017). Formally, a cooperative game ν : P(N) → R is defined, where
individual features N = {1, . . . , n} act as players and achieve a payout for every group of players
in the power set P(N). To obtain feature attributions for the prediction of a single instance, ν
typically refers to the model’s prediction given only a subset of feature values. Since classical ML
models cannot handle missing feature values, different methods have been proposed, such as model
retraining (Strumbelj et al., 2009), conditional expectations (Lundberg & Lee, 2017; Aas et al., 2021;
Frye et al., 2021), marginal expectations (Janzing et al., 2020) and baseline imputations (Lundberg
& Lee, 2017; Sundararajan et al., 2020). In high-dimensional feature spaces, retraining models or
approximating feature distributions is infeasible, imputing absent features with a baseline, known
as Baseline Shapley (BShap) (Sundararajan & Najmi, 2020), is the prevalent method (Lundberg
& Lee, 2017; Sundararajan et al., 2017; Jethani et al., 2022). We now first introduce the MIs as
a backbone of additive contribution measures. Later in Section 3, we exploit sparsity of MIs for
GNNs to compute the SV and any-order SIs.

Möbius Interactions (MIs) m : P(N) → R, alternatively Möbius transform (Rota, 1964),
Harsanyi dividend (Harsanyi, 1963), or internal interaction index (Fujimoto et al., 2006), are a fun-
damental concept of cooperative game theory. The MI is

m(S) :=
∑
T⊆S

(−1)|S|−|T |ν(T ) and they recover ν(T ) =
∑
S⊆T

m(S) for all S, T ⊆ N. (1)

From the MIs, every game value can be additively recovered, and MIs are the unique measure with
this property (Harsanyi, 1963; Rota, 1964). The MI of a subset S ⊆ N can thus be interpreted as
the pure additive contribution that is exclusively achieved by a coalition of all players in S, and
cannot be attributed to any subgroup of S. The MIs are further a basis of the vector space of games
(Grabisch, 2016), and therefore every measure of contribution, such as the SV or the SIs, can be
directly recovered from the MIs, cf. Appendix E.3.

Shapley Values (SVs) for players i ∈ N of a cooperative game ν are the weighted average

ϕSV(i) :=
∑

T⊆N\i

1

n ·
(
n−1
|T |

)∆i(T ) with ∆i(T ) := ν(T ∪ i)− ν(T )

over marginal contributions ∆i(T ). It was shown (Shapley, 1953) that the SV is the unique attribu-
tion method that satisfies desirable axioms: linearity (the SV of linear combinations of games, e.g.,
model ensembles, coincides with the linear combinations of the individual SVs), dummy (features
that do not change the model’s prediction receive zero SV), symmetry (if a model does not change
its prediction when switching two features, then both receive the same SV), and lastly efficiency
(the sum of all SVs equals the difference between the model’s prediction ν(N) and the featureless
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prediction ν(∅)). We may normalize ν, such that ν(∅) = 0, which does not affect the SVs. The SV
assigns attributions to individual features, which distribute the MIs that contain feature i, cf. Ap-
pendix E.3. However, the SV does not provide any insights about feature interactions, i.e. the joint
contribution of multiple features to the prediction. Yet, in practice, understanding complex mod-
els requires investigating interactions (Slack et al., 2020; Sundararajan et al., 2020; Kumar et al.,
2021). While the SVs are limited in their expressivity, the MIs are difficult to interpret due to the
exponential number of components. The SIs provide a framework to bridge both concepts.

Shapley Interactions (SIs) explore model predictions beyond individual feature attributions, and
provide additive contribution for all subsets up to explanation order k = 1, . . . , n. More formally,
the SIs Φk : Pk(N) → R assign interactions to subsets of N up to size k, summarized in Pk(N).
The SIs decompose the model’s prediction with ν(N) =

∑
S⊆N,|S|≤k Φk(S). The least complex

SIs are the SVs, which are obtained with k = 1. For k = n, the SIs are the MIs with 2n components,
which provide the most faithful explanation of the game but entail the highest complexity. SIs are
constructed based on extensions of the marginal contributions ∆i(T ), known as discrete derivatives
(Grabisch & Roubens, 1999). For two players i, j ∈ N , the discrete derivative ∆ij(T ) for a subset
T ⊆ N \ ij is defined as ∆ij(T ) := ν(T ∪ ij)− ν(T )−∆i(T )−∆j(T ), i.e., the joint contribution
of adding both players together minus their individual contributions in the presence of T . This
recursion is extended to any subset S ⊆ N and T ⊆ N \ S. A positive value of the discrete
derivative ∆S(T ) indicates synergistic effects, a negative value indicates redundancy, and a value
close to zero indicates no joint information of all players in S given T . The Shapley Interaction
Index (SII) (Grabisch & Roubens, 1999) provides an axiomatic extension of the SV and summarizes
the discrete derivatives in the presence of all possible subsets T as

ϕSII(S) =
∑

T⊆N\S

1

(n− |S|+ 1) ·
(
n−|S|
|T |

)∆S(T ) with ∆S(T ) :=
∑
L⊆S

(−1)|S|−|L|ν(T ∪ L).

Given an explanation order k, the k-Shapley Values (k-SIIs) (Lundberg et al., 2020; Bordt & von
Luxburg, 2023) construct SIs recursively based on the SII, such that the interactions of SII and
k-SII for the highest order coincide. Alternatively, the Shapley Taylor Interaction Index (STII)
(Sundararajan & Najmi, 2020) and the Faithful Shapley Interaction Index (FSII) (Tsai et al., 2023)
have been proposed, cf. Appendix E.2. In summary, SIs provide a flexible framework of increasingly
complex and faithful contributions ranging from the SV (k = 1) to the MIs (k = n). Given the MIs,
it is possible to reconstruct SIs of arbitrary order, cf. Appendix E.3. In Section 3, we will exploit the
sparse structure of MIs of GNNs to efficiently compute any-order SIs.

2.2 GRAPH NEURAL NETWORKS

GNNs are neural networks specifically designed to process graph input (Scarselli et al., 2009). A
graph g = (V,E,X) consists of sets of nodes V = {v1, ..., vn}, edges E ⊂ V × V and d0-
dimensional node features X = [x1, ...,xn]

t ∈ Rn×d0 , where xi are the node features of node
vi ∈ V . A message passing GNN leverages the structural information of the graph g to iteratively
aggregate node feature information of a given node v ∈ V within its neighborhood N (v) := {u ∈
V | euv ∈ E}. More precisely, in each iteration k ∈ {1, ..., ℓ}, the dk-dimensional k-th hidden node
features H(k) = [h

(k)
1 , . . . ,h

(k)
n ]t ∈ Rn×dk are computed node-wise by

h
(0)
i := xi, h

(k)
i := ρ(k)(h

(k−1)
i , ψ({{φ(k)(h

(k−1)
j ) | uj ∈ N (vi)}})), (2)

where {{·}} indicates a multiset and ρ(k) and φ(k) are arbitrary (aggregation) functions acting on
the corresponding spaces. Moreover, ψ is implemented as a permutation-invariant function, ensuring
independence of both the order and number of neighboring nodes, and allows for an embedding of
multisets as vectors. The node embedding function is thus fi(X) := h

(ℓ)
i . For graph regression, the

representations of the last nodes H(ℓ) must be aggregated in a fixed-size graph embedding for the
downstream task. More formally, this is achieved by employing an additional permutation-invariant
pooling function Ψ and a parametrized output layer σ : Rdℓ → Rdout layer, where dout corresponds
to the output dimension. The output of a GNN for graph-level inference is defined as

fg(X) := σ
(
Ψ({{fi(X) | vi ∈ V }})

)
. (3)

For graph classification, class probabilities are obtained from fg(X) through softmax activation.
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3 ANY-ORDER SHAPLEY INTERACTIONS FOR GRAPH NEURAL NETWORKS

In the following, we are interested in explaining the prediction of a GNN fg for a graph g with
respect to nodes. We aim to decompose a model’s prediction into SIs Φk visualized by a SI-Graph.

Definition 3.1 (SI-Graph). The SI-Graph is an undirected hypergraph gSI
k := (N,Pk(N),Φk) with

node attributes Φk(i) for i ∈ N and hyperedge attributes Φk(S) for 2 ≤ |S| ≤ k.

The simplest SI-Graph displays the SVs (k = 1) as node attributes, whereas the most complex
SI-Graph displays the MIs (k = n) as node and hyperedge attributes, illustrated in Figure 1. The
complexity of the SI-Graph is adjustable by the explanation order k, which determines the maximum
hyperedge order. The sum of all contributions in the SI-Graph yields the model’s prediction (for
regression) or the model’s logits for the predicted class (for classification). This choice is natural for
an additive contribution measure due to additivity in the logit-space. To compute SIs, we introduce
the GNN-induced graph game νg with a node masking strategy in Section 3.1. The graph game
is defined on all nodes and describes the output given a subset of nodes, where the remaining are
masked. Computing SIs on the graph game defines a perturbation-based and a decomposition-based
GNN explanation (Yuan et al., 2023), which is an extension of node attributions (Agarwal et al.,
2023). In Section 3.2, we show that GNNs with linear global pooling and output layer satisfy
an invariance property for the node game associated with the node embeddings (Theorem 3.3).
This invariance implies sparse MIs for the graph game (Proposition 3.6), which determines the
complexity of MIs by the corresponding receptive fields (Theorem 3.7), which substantially reduces
the complexity of SIs in our experiments. In Section 3.3, we introduce GraphSHAP-IQ, an efficient
algorithm to exactly compute and estimate SIs on GNNs. All proofs are deferred to Appendix B.

3.1 A COOPERATIVE GAME FOR SHAPLEY INTERACTIONS ON GRAPH NEURAL NETWORKS

Given a GNN fg , we propose the graph game for which we compute axiomatic and fair SIs.

Definition 3.2 (GNN-induced Graph and Node Game). For a graph g = (V,E,X) and a GNN fg ,
we let N := {i : vi ∈ V } be the node indices and define the graph game νg : P(N)→ R as

νg(T ) := fg,ŷ(X
(T )) with X(T ) := (x

(T )
1 , ...,x(T )

n )t ∈ Rn×d0 and x
(T )
i :=

{
xi if i ∈ T,
b if i ̸∈ T,

with i ∈ N and baseline b ∈ Rd0 . In graph regression fg,ŷ ≡ fg and for graph classification fg,ŷ
is the component of the predicted class ŷ of fg . We further introduce the (multi-dimensional) node
game νi : P(N)→ Rdℓ as νi(T ) := fi(X

(T )) for i ∈ N and each node vi ∈ V .

The graph game outputs the prediction of the GNN for a subset of nodes T ⊆ N by masking all
node features of nodes vi with i ∈ N \ T using a suitable baseline b, illustrated in Figure 2, left.
Computing such SVs is known as BShap (Sundararajan & Najmi, 2020) and a prominent approach
for feature attributions (Lundberg & Lee, 2017; Covert et al., 2021; Chen et al., 2023). As a baseline
b, we propose the average of each node feature over the whole graph. By definition, the prediction
of the GNN is given by νg(N) = fg(X), and due to the efficiency axiom, the sum of contributions
in the SI-Graph yields the model’s prediction, and thus a decomposition-based GNN explanation
(Yuan et al., 2023). The graph and the node game are directly linked by Equation (3) as

νg(T ) = fg,ŷ(X
(T )) = σŷ(Ψ({{fi(X(T ))} | v ∈ V })) = σŷ(Ψ({{νi(T )} | i ∈ N})), (4)

where σŷ outputs the component of σ for the predicted class ŷ. The number of convolutional layers
ℓ determines the receptive field, i.e. the message-passing range defined by its ℓ-hop neighborhood

N (ℓ)
i := {j ∈ N | dg(i, j) ≤ ℓ} with dg(i, j) := length of shortest path from vj to vi in g.

Consequently, the node game νi is unaffected by maskings outside its ℓ-hop neighborhood.

Theorem 3.3 (Node Game Invariance). For a graph g and an ℓ-Layer GNN fg , let νi be the GNN-
induced node game with i ∈ N . Then, νi satisfies the invariance νi(T ) = νi(T ∩N (ℓ)

i ) for T ⊆ N .
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Figure 2: Illustration of the graph game νg .
Masked nodes (grey) are imputed by base-
line b, and embeddings are determined by
the receptive field (left). Subsequently, a lin-
ear pooling (Ψ) and output layer (σ) yield the
GNN-induced graph game output.

Node Masking: Computing SIs on the graph
game is a perturbation-based explanation (Yuan
et al., 2023), where also other masking strategies
were proposed (Agarwal et al., 2023); for exam-
ple, node masks (Ying et al., 2019; Yuan et al.,
2021), edge masks (Luo et al., 2020; Schlichtkrull
et al., 2021) or node feature masks (Agarwal et al.,
2023). Our method is not limited to a specific
masking strategy as long as it defines an invariant
game (Theorem 3.3). We implement our method
with the well-established and theoretically under-
stood BShap (Sundararajan & Najmi, 2020). Al-
ternatively, the T -induced subgraph could be used,
but GNNs are fit to specific graph topologies, such
as molecules, and perform poorly on isolated sub-
graphs (Alsentzer et al., 2020). Note that, differ-
ent masking strategies may emphasize different as-
pects of GNNs, which is important future work.
Due to the invariance, we show that MIs and SIs
of the graph game are sparse. To obtain our theo-
retical results, we require a structural assumption.
Assumption 3.4 (GNN Architecture). We require the global pooling Ψ and the output layer σ to be
linear functions, e.g. Ψ is a mean or sum pooling operation and σ is a dense layer.

Linearity Assumption: In our experiments, we show that popular GNN architectures yield com-
petitive performances under Assumption 3.4 on multiple benchmark datasets. In fact, such an as-
sumption should not be seen as a hindrance, as it is the norm in GNN benchmark evaluations (Errica
et al., 2020). Furthermore, simple global pooling functions, such as sum or mean, are adopted in
many GNN architectures (Xu et al., 2019; Wu et al., 2022), while more sophisticated pooling layers
do not always translate into empirical benefits (Mesquita et al., 2020; Grattarola et al., 2021). Like-
wise, a linear output layer is a common design choice, and the advantage of deeper output layers
must be validated for each task (You et al., 2020).

3.2 COMPUTING EXACT SHAPLEY AND MÖBIUS INTERACTIONS FOR THE GRAPH GAME

Given a GNN-induced graph game νg from Definition 3.2 with Assumption 3.4, i.e. Ψ and σ are
linear, then the MIs of each node game are restricted to the ℓ-hop neighborhood. Intuitively, mask-
ings outside the receptive field do not affect the node embedding. Consequently, we show that the
MIs of the graph game are restricted by all existing ℓ-hop neighborhoods. More formally, due to the
invariance of the node games (Theorem 3.3), the MIs for subsets that are not fully contained in the
ℓ-hop neighborhood N (ℓ)

i are zero.
Lemma 3.5 (Trivial Node Game Interactions). Let mi : P(N) → Rdℓ be the MIs of the GNN-
induced node game νi for i ∈ N under Assumption 3.4. Then, mi(S) = 0 for all S ̸⊆ N (ℓ)

i .

Lemma 3.5 yields that the node game interactions outside of the ℓ-hop neighborhood do not have to
be computed. Due to Assumption 3.4, the interactions of the GNN-induced graph game are equally
zero for subsets that are not fully contained in any ℓ-hop neighborhood.
Proposition 3.6 (Trivial Graph Game Interactions). Let mg : P(N) → R be the MIs of the GNN-
induced graph game νg under Assumption 3.4 and let I :=

⋃
i∈N P(N

(ℓ)
i ) be the set of non-trivial

interactions. Then, mg(S) = 0 for all S ⊆ N with S /∈ I.

I is the set of non-trivial MIs, whose size depends on the receptive field of the GNN. The size of I
also directly determines the required model calls to compute SIs.
Theorem 3.7 (Complexity). For a graph g and an ℓ-Layer GNN fg , computing MIs and SIs on the
GNN-induced graph game νg requires |I| model calls. The complexity is thus bounded by

|I| ≤
∑
i∈N

2|N
(ℓ)
i | ≤ n · 2n

(ℓ)
max ≤ n · 2

dℓ+1
max−1

dmax−1 ,
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where n(ℓ)max := maxi∈N |N (ℓ)
i | is the size of the largest ℓ-hop neighborhood and dmax is the maxi-

mum degree of the graph instance.

In other words, Theorem 3.7 shows that the complexity of MIs (originally 2n) for GNNs depends
at most linearly on the size of the graph n. Moreover, the complexity depends exponentially on the
connectivity dmax of the graph instance and the number of convolutional layers ℓ of the GNN. Note
that this is a very rough theoretical bound. In our experiments, we empirically demonstrate that in
practice for many instances exact SIs can be computed, even for large graphs (n > 100). Besides
this upper bound, we empirically show that the graph density, which is the ratio of edges compared
to the number of edges in a fully connected graph, is an efficient proxy for the complexity.

3.3 GRAPHSHAP-IQ: AN EFFICIENT ALGORITHM FOR SHAPLEY INTERACTIONS

Algorithm 1 GraphSHAP-IQ
Require: Graph g = (V,E,X),

ℓ-Layer GNN fg , SI order k.

1: I ←
⋃

i∈N P(N
(ℓ)
i )

2: νg ← [fg(X
(T ))]T∈I

3: mg ← [MI(νg, S)]S∈I
4: Φk ← MITOSI(mg, k)
5: return MIs mg , SIs Φk

Building on Theorem 3.7, we propose GraphSHAP-IQ, an effi-
cient algorithm to compute SIs for GNNs. We first present the
simplified method to compute exact SIs, which we then extend
to an approximation in restricted settings. The computation of
exact SIs with GraphSHAP-IQ is outlined in Algorithm 1. First,
GraphSHAP-IQ identifies the set of non-zero MIs I based on the
given graph instance (line 1). The GNN is then evaluated for all
maskings contained in I (line 2). Given these GNN predictions,
the MIs for all interactions in I are computed (line 3). Based
on the computed MIs, the SIs are computed using the conver-
sion formulas (line 4). Lastly, GraphSHAP-IQ outputs the exact
MIs and SIs. For graphs with high connectivity and GNNs with
many convolutional layers, computing exact SIs with Algorithm 1 could remain infeasible. We
thus present an extension of GraphSHAP-IQ for efficient approximation of SIs. The core idea is
to introduce a hyperparameter λ, which limits the highest order of MIs that are computed. Hence,
GraphSHAP-IQ outputs exact values, if λ = n

(ℓ)
max. For a detailed description of GraphSHAP-IQ

and the approximatation variant, we refer to Appendix D.

4 EXPERIMENTS

In this section, we empirically evaluate GraphSHAP-IQ for GNN explainability, and showcase a sub-
stantial reduction in complexity for exact SIs (Section 4.1), benefits of approximation (Section 4.2),
and explore the SI-Graph for WDNs and molecule structures (Section 4.3). Following Amara et al.
(2022), we trained a Graph Convolutional Network (GCN) (Kipf & Welling, 2017), Graph Isomor-
phism Network (GIN) (Xu et al., 2019), and Graph Attention Network (GAT) (Velickovic et al.,
2018) on eight real-world chemical datasets for graph classification and a WDN for graph regres-
sion, cf. Table 1. We trained all models under Assumption 3.4 and reported test accuracies, that are
comparable to existing benchmarks (Errica et al., 2020; You et al., 2020). More details can be found
in Appendix F and the technical supplement.

Table 1: Summary of datasets and model accuracy.
Dataset Description Model Accuracy by Layer (%)

Dataset Graphs dout
Nodes
(avg)

Density
(avg)

GCN GAT GIN Speed-Up
1 2 3 1 2 3 1 2 3 1 2 3

Benzene (BNZ)
(Sánchez-Lengeling et al., 2020) 12000 2 20.6 22.8 84.2 88.6 90.4 83.1 85.1 85.7 84.9 90.5 90.8 104 103 102

FluorideCarbonyl (FLC)
(Sánchez-Lengeling et al., 2020) 8671 2 21.4 21.6 82.4 83.9 83.9 82.4 82.2 82.4 84.6 87.2 87.1 104 103 102

Mutagenicity (MTG)
(Kazius et al., 2005) 4337 2 30.3 18.3 77.8 80.7 80.3 72.6 73.6 74.8 77.8 77.4 77.5 105 104 102

AlkaneCarbonyl (ALC)
(Sánchez-Lengeling et al., 2020) 1125 2 21.4 21.5 98.7 97.8 99.1 98.2 96.3 97.3 96.9 97.3 97.8 104 103 102

PROTEINS (PRT)
(Borgwardt et al., 2005) 1113 2 39.1 42.4 75.2 71.1 74.0 75.3 60.5 79.8 79.3 74.9 67.7 105 103 102

ENZYMES (ENZ)
(Borgwardt et al., 2005) 600 6 32.6 32.0 34.2 37.5 35.8 32.5 35.0 35.8 36.7 35.0 39.2 106 104 103

COX2 (CX2)
(Sutherland et al., 2003) 467 2 41.2 10.6 87.2 86.1 87.2 81.9 87.2 85.1 84.0 85.1 85.1 109 108 106

BZR (BZR)
(Sutherland et al., 2003) 405 2 35.8 13.0 90.1 87.7 90.2 88.9 86.4 87.7 88.9 88.9 88.9 108 106 104
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Figure 3: Complexity of GraphSHAP-IQ in model calls (in log 10) by number of nodes for all
graphs of BZR (left) and MTG (middle, right) visualized by number of convolutional layers (left,
middle) and graph density GNN (right). While model-agnostic baselines scale exponentially (dashed
lines), GrahpSHAP-IQ scales approximately linearly with graph sizes (R2 of linear fit in braces).

4.1 COMPLEXITY ANALYSIS OF GRAPHSHAP-IQ FOR EXACT SHAPLEY INTERACTIONS

In this experiment, we empirically validate the benefit of exploiting graph and GNN structures with
GraphSHAP-IQ. The complexity is measured by the number of evaluations of the GNN-induced
graph game, i.e. the number of model calls of the GNN, which is the limiting factor of SIs (Fumagalli
et al., 2023; Kolpaczki et al., 2024b; Muschalik et al., 2024). For every graph in the benchmark
datasets, described in Table 1, we compute the complexity of GraphSHAP-IQ, where the first upper
bound from Theorem 3.7 is used if maxi∈N |N (ℓ)

i | > 23, i.e. the complexity exceeds 223 ≈ 8.3 ×
106. Figure 3 displays the log-scale complexity (y-axis) by the number of nodes n (x-axis) for BZR
(left) and MTG (middle, right) for varying number of convolutional layers ℓ (left, middle) and by
graph density for a 2-Layer GNN (right). The model-agnostic baseline is represented by a dashed
line. For results on all datasets, see Appendix G.1. Figure 3 shows that the computation of SIs is
substantially reduced by GraphSHAP-IQ. Even for large graphs with more than 100 nodes, where the
baseline requires over 2100 ≈ 1030 model calls, many instances can be exactly computed for 1-Layer
and 2-Layer GNNs with fewer than 105 evaluations. In this case, the complexity of GraphSHAP-IQ
is almost constant. Figure 3 (right) shows that the graph density is an efficient proxy of complexity,
with higher values for instances near the baseline.

4.2 APPROXIMATION QUALITY OF GRAPHSHAP-IQ

For densely connected graphs and GNNs with many layers, exact computation of SIs might still be
infeasible. We thus evaluate the approximation of SIs with GraphSHAP-IQ, which computes all MIs
up to order λ, as described in Appendix D. We compare GraphSHAP-IQ with current state-of-the-art
model-agnostic baselines to approximate SIs for SVs and 2-SIIs and large graphs. For the SV, we ap-
ply KernelSHAP (Lundberg & Lee, 2017), Unbiased KernelSHAP (Covert & Lee, 2021), k-additive
SHAP (Pelegrina et al., 2023), Permutation Sampling (Castro et al., 2009), SVARM (Kolpaczki et al.,
2024a), and L-Shapley (Chen et al., 2019). We estimate 2-SII values with KernelSHAP-IQ (Fuma-
galli et al., 2024), Inconsistent KernelSHAP-IQ (Fumagalli et al., 2024), Permutation Sampling (Tsai
et al., 2023), SHAP-IQ (Fumagalli et al., 2023), and SVARM-IQ (Kolpaczki et al., 2024b). We select
10 graphs containing 30 ≤ n ≤ 40 nodes for the MTG, PRT, and BZR benchmark datasets. For
each graph, we compute MIs for each λ with GraphSHAP-IQ and estimate SVs and 2-SIIs with the
same number of model calls as the baselines, which primarily determine the runtime, as detailed in
Appendix G.2. Ground Truth (GT) SVs and 2-SIIs are computed via GraphSHAP-IQ and compared
in terms of MSE (lower is better). In Figure 4, we observe that GraphSHAP-IQ outperforms the
sampling-based baselines in settings with a majority of lower-order MIs (MTG and 2-layer GIN).
Model-agnostic baselines exhibit a comparable estimation performance in settings with higher-order
interactions (PRT and 2-layer GAT). We refer to Appendix G.4 for a detailed description of the
baselines and more experiments. Yet, approximated SIs exhibit an approximation error, cf. Figure 4
(right), and should be interpreted with care.

4.3 REAL-WORLD APPLICATIONS OF SHAPLEY INTERACTIONS AND THE SI-GRAPH

We now apply GraphSHAP-IQ in real-world applications and include further results in Appendix G.
Monitoring water quality in WDNs requires insights into a dynamic system governed by local par-
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Figure 4: Approximation of SIs with GraphSHAP-IQ (green) and model-agnostic baselines for MTG
(left). At budgets, where GraphSHAP-IQ reaches exact SIs, the baselines achieve varying estimation
qualities and computational costs (middle) which leads to different estimated explanations (right).
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Figure 5: Exact SIs values for three example graph structures. SVs illustrate the trajectory of chlori-
nation levels in a WDN (a). STII (order 2) values showcase that a Pyridine molecule is not classified
as benzene (b), and the largest positive MI for a benzene molecule is the benzene ring (c).

tial differential equations. Here, we investigate the spread of chlorine as a graph-level regression of a
WDN, where a GNN predicts the fraction of nodes chlorinated after some time. Based on the Hanoi
WDS (Vrachimis et al., 2018), we create a temporal WaterQuality (WAQ) dataset containing 1 000
graphs consisting of 30 time steps. We train and explain a simple GNN, which processes node and
edge features like chlorination level at each node and water flow between nodes. Figures 5 and 11
show that 2-SIIs spread over the WDS aligned with the water flow. Therein, mostly first-order inter-
actions influence the time-varying chlorination levels.
Benzene rings in molecules are structures consisting of six carbon (C) atoms connected in a ring
with alternating single and double bonds. We expect a well-trained GNN to identify benzene rings
to incorporate higher-order MIs (order ≥ 6). Figure 5 shows two molecules and their SI-Graphs
computed by GraphSHAP-IQ. The Pyridine molecule in Figure 5 (b) is correctly predicted to be
non-benzene as the hexagonal configuration features a nitrogen (N) instead of a carbon, which is
confirmed by the SVs highlighting the nitrogen. STIIs of order 2 reveal that the MI of nitrogen is
zero and interactions with neighboring carbons are non-zero, presumably due to higher-order MIs,
since STII distributes all higher-order MIs to the pairwise STIIs. In addition, STIIs among the five
carbon atoms impede the prediction towards the benzene class. Interestingly, opposite carbons coin-
cide with the highest negative interaction. The MIs for a benzene molecule with 21 atoms in Figure 5
(c) reveal that the largest positive MI coincides with the 6-way MI of the benzene ring.
Mutagenicity of molecules is influenced by special compounds like nitrogen dioxide (NO2) (Kaz-
ius et al., 2005). Figure 1 shows SIs for a MTG molecule, which GNN accurately identifies as
mutagenic. 2-SIIs and MIs both show that not the nitrogen atom but the interactions of the NO2

bonds contributed the most.
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Figure 6: MIs and 2-SII scores for a 2-layer GCN trained on MTG with a linear readout and a deep
readout. Deep readout produces interactions outside the receptive field which are recolored in grey.

5 COMPARISON OF LINEAR AND DEEP READOUTS

Theorem 3.4 imposes the use of a linear readout, which is a limitation of our method, though it re-
mains commonly used in practice (You et al., 2020). In this section, we compare SIs for GNNs with
both linear and non-linear readouts. We train a 2-layer GCN architecture with both linear and non-
linear (2-layer perceptron) readouts on MTG, where both models achieve comparable performance.
Figure 6 shows that non-linear readouts produce substantially different MIs that are not restricted to
the receptive fields. Lower-order explanations are similar, indicating the correct reasoning of both
models (NO2 group signalling mutagenicity). We conclude that linear readout restricts the inter-
actions of the GNN to the graph structure and its receptive fields. In contrast, non-linear readouts
enable interactions that extend beyond the receptive fields of the GNN. Many SV-based XAI meth-
ods for GNNs (Yuan et al., 2021; Zhang et al., 2022; Ye et al., 2023; Bui et al., 2024) implicitly
rely on the assumption that interactions outside the receptive fields are negligible, which should be
evaluated carefully for non-linear readouts.

6 LIMITATIONS AND FUTURE WORK

We presented GraphSHAP-IQ, an efficient method to compute SIs that applies to all popular message
passing techniques in conjunction with a linear global pooling and output layer. Assumption 3.4
is a common choice for GNNs (Errica et al., 2020; Xu et al., 2019; Wu et al., 2022) and does not
necessarily yield lower performance (Mesquita et al., 2020; You et al., 2020; Grattarola et al., 2021),
which is confirmed by our experiments. However, exploring non-linear choices that preserve triv-
ial MIs is important for future research. Masking node features with a fixed baseline, known as
BShap, preserves the topology of the graph structure and is a well-established approach (Sundarara-
jan et al., 2020). Nevertheless, alternatives such as induced subgraphs, edge-removal, or learn-
able masks, could emphasize other properties of the GNN. Lastly, deterministic approximation
of GraphSHAP-IQ shows mixed results when higher-order MIs dominate, where GNN-informed
sampling methods using Proposition 3.6 are promising future work. Our results could further be
applied to other models with spatially restricted features, such as convolutional neural networks.

7 CONCLUSION

We introduced the GNN-induced graph game, a cooperative game for GNNs on graph prediction
tasks that outputs the model’s prediction given a set of nodes. The remaining nodes are masked
using a baseline for node features, corresponding to the well-established BShap (Sundararajan et al.,
2020). We showed that under linearity assumptions on global pooling and output layers, the com-
plexity of computing exact SVs, SIs, and MIs on any GNN is determined solely by the receptive
fields. Based on our theoretical results, we presented GraphSHAP-IQ, an efficient method to com-
pute any-order SIs for GNNs. GraphSHAP-IQ is a deterministic approach that is capable to compute
exact MIs and SIs, and approximate SIs in restricted settings. We show that GraphSHAP-IQ sub-
stantially reduces the complexity of SIs on multiple real-world benchmark datasets and propose to
visualize SIs as the SI-Graph. By computing the SI-Graph, we discover trajectories of chlorine in
WDNs and important molecule substructures, such as benzene rings or NO2 groups.
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ETHICS STATEMENT

This paper presents work aiming to advance the field of ML and specifically the field of XAI. There
are many potential societal consequences of our work. Our research holds significant potential for
positive societal impact, particularly in areas like the natural sciences (e.g., chemistry and biology)
and network analytics. Our work can positively impact ML adoption and potentially reveal biases
or unwanted behavior in ML systems.

However, we recognize that the increased explainability provided by XAI also carries ethical risks.
There is the potential for “explainability-based white-washing”, where organizations, firms, or in-
stitutions might misuse XAI to justify questionable actions or outcomes. With responsible use, XAI
can amplify the positive impacts of ML, ensuring its benefits are realized while minimizing harm.

REPRODUCIBILITY STATEMENT

The python code for GraphSHAP-IQ is available in the supplementary material, and can be used
on any graph game, a class specifically tailored to the shapiq package. We include formal proofs
of all claims made in the paper in Appendix B. We further describe the experimental setup and
details regarding reproducibility in Appendix F. Our experimental results, setups and plots can be
reproduced by running the corresponding scripts. The datasets and their sources are described in
Table 3.
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Classic Papers in Combinatorics, pp. 332–360. Springer, 1964.

Alvaro Sanchez-Gonzalez, Jonathan Godwin, Tobias Pfaff, Rex Ying, Jure Leskovec, and Peter W.
Battaglia. Learning to simulate complex physics with graph networks. In Proceedings of the 37th
International Conference on Machine Learning, ICML 2020, 13-18 July 2020, Virtual Event,
volume 119 of Proceedings of Machine Learning Research, pp. 8459–8468. PMLR, 2020.

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Benjamı́n Sánchez-Lengeling, Jennifer N. Wei, Brian K. Lee, Emily Reif, Peter Wang, Wesley Wei
Qian, Kevin McCloskey, Lucy J. Colwell, and Alexander B. Wiltschko. Evaluating attribution
for graph neural networks. In Advances in Neural Information Processing Systems 33: Annual
Conference on Neural Information Processing Systems 2020, NeurIPS 2020, December 6-12,
2020, virtual, 2020.

Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and Gabriele Monfardini.
The graph neural network model. IEEE Trans. Neural Networks, 20(1):61–80, 2009.

Michael Sejr Schlichtkrull, Nicola De Cao, and Ivan Titov. Interpreting graph neural networks for
NLP with differentiable edge masking. In International Conference on Learning Representations,
2021.

Thomas Schnake, Oliver Eberle, Jonas Lederer, Shinichi Nakajima, Kristof T. Schütt, Klaus-Robert
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A NOTATION

We use lower-case letters to represent the cardinalities of the subsets, e.g. s := |S|. S summary of
notations is given in Table 2.

Table 2: Notation Table
Notation Description

Data Notations
g = (V,E,X) Graph instance to explain, with nodes V , edges E, and node features X
V := {v1, . . . , vn} Set of nodes in g
E ⊂ V × V Set of edges in g
d0 Number of node features
xi ∈ Rd0 Node feature vector of node vi
X ∈ Rn×d0 Node feature matrix for all nodes in g
b ∈ Rd0 Baseline node features used for masking
N := {i : vi ∈ V } Set of graph node indices
n := |N | Number of nodes in the graph instance
i ∈ N Index of node vi ∈ V in g
N (v) ⊆ N Node indices of the neighborhood of node v

GNN Notations
fg(X) GNN prediction for graph g and node features X
fg,ŷ(X) GNN prediction of class ŷ for graph g and node features X
ℓ Number of graph convolutional layers
k = 1, . . . , ℓ Intermediate graph convolutional layers
dk Number of features in node embedding at layer k
h
(k)
i ∈ Rdk Node embedding vector for node vi at layer k

H(k) := [h
(k)
1 , . . . ,h

(k)
n ] Node embedding matrix of the graph instance at layer k

Ψ (Linear) permutation-invariant global pooling function
σ (Linear) readout layer of the GNN
N (ℓ)

i ⊆ N Node indices of the ℓ-hop neighborhood of node vi
n
(ℓ)
max := maxi∈N |N (ℓ)

i | Size of the largest ℓ-hop neighborhood of the graph instance
dmax Maximum node degree of the graph instance

Masking Notations
T ⊆ N Set of node indices, typically used for masked predictions, where N \ T are masked

x
(T )
i :=

{
xi if i ∈ T,
b if i ̸∈ T, Masked node features of nodes vi, where nods in N \ T are masked with baseline b

X(T ) = [x
(T )
1 , . . . ,x

(T )
n ] with T ⊆ N Masked node feature matrix of g, where nodes in N \ T are masked with b

fg(X
(T )) Masked prediction of the GNN using masked node features X(T )

fi(X
(T )) with i ∈ N Masked node embedding fi for node vi evaluated at masked node features X(T )

Game Theory Notations
P(N) Power set of N , i.e. all possible sets of node indices used to define the game
Pk(N) Power set of N up to sets of size k, i.e. the sets for which the final SI explanation is computed
νg(T ) := fg,ŷ(X

(T )) Graph game evaluated at T ⊆ N , i.e. GNN prediction fg of class ŷ with masked node features X(T )

νi(T ) := fi(X
(T )) for i ∈ N Graph node game evaluated at T ⊆ N , i.e. GNN embedding fi of node i with masked node features X(T )

S ⊆ N Set of node indices, used to refer to an interaction, i.e. the sets for which attributions are computed
mg(S) MI for a set S ⊆ N of the graph game νg
mi(S) MI for a set S ⊆ N of the graph node game νi
I :=

⋃
i∈N P(N

(ℓ)
i ) Set of non-trivial MIs, i.e. mg(S) = 0, if S /∈ I

Φk(S) Final SI explanation of order k evaluated at a set S of size at most k
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B PROOFS

B.1 PROOF OF THEOREM 3.3

Proof. By definition of νi, we need to show that fi(X(T )) = fi(X
(T∩N (ℓ)

i )) holds. We prove by
induction over ℓ. Denote f (ℓ)i the corresponding node embedding function for the ℓ-layer GNN For
a GNN with ℓ = 1, it is immediately clear from Equation (2) that

f
(1)
i (X(T )) = ρ(1)(x

(T )
i , ψ({{φ(1)(x

(T )
j ) | uj ∈ N (1)

i }})) = f
(1)
i (X(T∩N (1)

i )).

Next, assume f (ℓ−1)
i (X(T )) = f

(ℓ−1)
i

(
X(T∩N (ℓ−1)

i )
)

holds for any GNN, i ∈ N and T ⊆ N .
Then for a GNN with ℓ layers, we have

f
(ℓ)
i (X(T )) = ρ(ℓ)(f

(ℓ−1)
i (X(T )), ψ({{φ(ℓ)(f

(ℓ−1)
j (X(T ))) | vj ∈ N (1)

i }}))

= ρ(ℓ)(f
(ℓ−1)
i (X(T∩N (ℓ−1)

i )), ψ({{φ(ℓ)(f
(ℓ−1)
j (X(T∩N (ℓ−1)

j ))) | vj ∈ N (1)
i }}))

= ρ(ℓ)(f
(ℓ−1)
i (X(T∩N (ℓ)

i )), ψ({{φ(ℓ)(f
(ℓ)
j (X(T∩N (ℓ)

i ))) | vj ∈ N (1)
i }}))

= f
(ℓ)
i (X(T∩N (ℓ)

i ))

where we have used that N (ℓ−1)
i ⊆ N (ℓ)

i and N (ℓ−1)
j ⊆ N (ℓ)

i for j ∈ N (1)
i together with the

invariance (induction hypothesis) of f (ℓ−1)
i and f (ℓ−1)

j .

B.2 PROOF OF LEMMA 3.5

Proof. Let i ∈ N and S ̸⊆ N (ℓ)
i . Our goal is to show that mi(S) = 0. For every subset T ⊆ N , we

can define disjoint sets

T+
i := T ∩N (ℓ)

i and T−
i := T ∩ (N \ N (ℓ)

i ), such that T = T+
i ⊔ T

−
i ,

with T+
i ⊆ N

(ℓ)
i and T−

i ⊆ N \N
(ℓ)
i . For S = S+

i ⊔S
−
i the assumption S ̸⊆ N (ℓ)

i implies that S−
i

is not empty, i.e. s−i := |S−
i | > 0. Furthermore, due to the node game invariance, cf. Theorem 3.3,

we have νi(T ) = νi(T
+
i ) for every T ⊆ N . In the following, lower-case letters represent the

corresponding cardinalities of the subsets, e.g. t+i := |T+
i |. For the MI of interest S, the sum, by

definition of MIs, ranges over P(S). Thus, since S+
i , S

−
i ∈ P(S), we have for every T+

i ⊆ S+
i

and every T−
i ⊆ S−

i that the union T+
i ⊔ T

−
i ∈ P(S). On the other hand, every T ∈ P(S) can be

uniquely decomposed into T = T+
i ⊔ T

−
i . Hence, instead of summing over all T ∈ P(S), we may

also sum over all subsets T = T+
i ∪ T

−
i with T+

i ⊆ S
+
i and T−

i ⊆ S
−
i . The MI for S is then

mi(S) =
∑
T⊆S

(−1)s−t νi(T )

=
∑

T+
i ⊆S+

i

∑
T−
i ⊆S−

i

(−1)s−(t+i +t−i ) νi
(
T+
i ⊔ T

−
i

)
=

∑
T+
i ⊆S+

i

∑
T−
i ⊆S−

i

(−1)s−(t+i +t−i ) νi
(
T+
i

)
=

∑
T+
i ⊆S+

i

(−1)s−t+i νi
(
T+
i

) ∑
T−
i ⊆S−

i

(−1)t
−
i

=
∑

T+
i ⊆S+

i

(−1)s−t+i νi
(
T+
i

) s−i∑
t−i =0

(
s−i
t−i

)
(−1)t

−
i

=
∑

T+
i ⊆S+

i

(−1)s−t+i νi
(
T+
i

)
(1− 1)s

−
i = 0,

where we used the node game invariance in the third equation, the binomial theorem (a + b)n =∑n
k=0

(
n
k

)
an−kbk in the second last equation, and s−i > 0 in the last equation.
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B.3 PROOF OF PROPOSITION 3.6

Proof. The proof will be based on two important properties of the MIs.

Lemma B.1. The MI of a constant game ν ≡ c ∈ R is

mc(S) =

{
c, if S = ∅,
0, otherwise.

Proof. The MI for a constant game is computed for S = ∅ asm(∅) = ν(∅) = c and for s := |S| > 0
as

m(S) =
∑
T⊆S

(−1)s−tν(T ) = c
∑
T⊆S

(−1)s−t = c · (−1)s
s∑

t=0

(
s

t

)
(−1)t = c · (−1)s(1− 1)s = 0,

where we have used the binomial theorem (a+ b)n =
∑n

k=0

(
n
k

)
an−kbk.

The second property is the linearity of the MI in terms of a linear combination of games.

Lemma B.2 (Linearity (Fujimoto et al., 2006)). For a linear combination of two games ν := c ·
ν1 + ν2 for a constant c ∈ R, the MI of ν is given as

mν(S) = c ·mν1
(S) +mν2

(S).

for all S ⊆ N .

Proof. This result follows from Theorem 4.9 and Lemma 4.1 in Fujimoto et al. (2006). However, it
may also be verified directly

mν(S) =
∑
T⊆S

(−1)s−tν(T ) =
∑
T⊆S

(−1)s−t(c · ν1(T ) + ν2(T )) = c ·mν1(T ) +mν2(T ).

Next, let S ̸∈
⋃

i∈N P(N
(ℓ)
i ). Our goal is to show that mg(S) = 0. By Lemma 3.5, we have that

mi(S) = 0 ∈ Rdℓ for all i ∈ N and node games νi : P(N)→ Rdℓ . We can thus define a new game
νΨ : P(N) → Rdℓ as νΨ(T ) := Ψ({{νi(T ) | i ∈ N}}) for T ⊆ N . Due to Assumption 3.4, Ψ
is linear (a linear combination of inputs), and by Lemma B.1, constant shifts do not affect the MIs.
We therefore assume that Ψ({{0}, . . . {0}}) = 0 for any number of zero vectors 0. By the linearity
of the MI (Lemma B.2), we have then

mΨ(S) = Ψ({{mi(S) | i ∈ N}}) = 0.

Lastly, νg represents the logits of the predicted class in the GNN, i.e. νg(T ) = σ(νΨ(T )). The
output layer σ transforms the games defined as the components of the (multi-dimensional) output of
νΨ to an vector of size dout, where σŷ returns the component used in the graph game νg . Again, by
Lemma B.1, constant shifts do not affect the MIs, and we let σŷ(0) = 0, to obtain

mg(S) = σŷ(mΨ(S)) = σŷ(0) = 0,

and likewise for graph regression, which concludes the proof.

B.4 PROOF OF THEOREM 3.7

By Proposition 3.6, the set of non-trivial MIs is given by I. To compute exact MIs it is therefore
necessary to compute all MIs contained in I. Clearly, to compute the MI mg(S) for any S ⊆ N , it
is by definition of the MI necessary to evaluate νg(S). Hence, the complexity of computing exact
MIs cannot be lower than |I|. Given now all graph game evaluations νg(T ) with T ∈ I, we proceed
to show that no additional evaluation is required. In fact, to compute the MI mg(S) for S ∈ I, we
require all game evaluations ν(T ) with T ⊆ S. By definition of I (Proposition 3.6), there exists
a node index i ∈ N , such that S ∈ P(N (ℓ)

i ). Since S ⊆ N (ℓ)
i it follows immediately that all

T ⊆ S satisfy T ∈ P(N (ℓ)
i ), and hence T ∈ I, which we have already computed. This finishes
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the proof that exact computation requires |I| graph game evaluations and hence GNN model calls.
Additionally, the number of elements in I is trivially bounded by the number of subsets in N , i.e.
2n and further

|I| =

∣∣∣∣∣⋃
i∈N

P(N (ℓ)
i )

∣∣∣∣∣ ≤∑
i∈N

|P(N (ℓ)
i )| =

∑
i∈N

2|N
(ℓ)
i | ≤ n · 2n

(ℓ)
max ,

where each ℓ-hop neighborhood was bounded by n(ℓ)max := maxi∈N |N (ℓ)
i |. Lastly, we bound the

number of nodes in the ℓ-hop neighborhood by bounding the number of nodes in each hop with the
maximum degree dmax as

n(ℓ)max ≤ 1 + dmax + d2max + · · ·+ dℓmax =
dℓ+1
max − 1

dmax − 1
,

where we have used the formula for geometric progression. With this bound we obtain the final
bound

|I| ≤ n · 2n
(ℓ)
max ≤ n · 2

dℓ+1
max−1

dmax−1 ,

which concludes the proof.
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C DETAILED COMPARISON OF GRAPHSHAP-IQ AND RELATED WORK

In the following, we discuss in detail distinctions of GraphSHAP-IQ with related work in Ap-
pendix C.1. In particular, we compare GraphSHAP-IQ with GraphSVX (Duval & Malliaros, 2021),
SubgraphX (Yuan et al., 2021), GStarX (Zhang et al., 2022) SAME (Ye et al., 2023), and recent work
by Bui et al. (2024). Moreover, we establish a connection between GraphSHAP-IQ and L-Shapley
in Appendix C.2

C.1 EXTENDED RELATED WORK

Myerson-Taylor Interactions (Bui et al., 2024) This work highlights the opportunities and sig-
nificance of SIs for GNN interpretability. Bui et al. (2024) propose an optimal partition of the graph
instance as an explanation. This partition is found by approximating second-order STII via Monte
Carlo on connected components of the graph, without being structure-aware of GNNs. Note that in
our benchmark datasets, there are no isolated components in the graphs, and therefore this does not
yield any reduction in complexity. In contrast, GraphSHAP-IQ is able to compute exact STII (and
Myerson-STII) for any order.

GraphSVX (Duval & Malliaros, 2021). GraphSVX proposes to compute Shapley values without
interactions on GNNs. This method does not use any GNN-specific structural assumption for graph
classification, since they consider SVs (not interactions). For graph classification, GraphSVX is
an application of KernelSHAP to GNNs. However, for node classification, a result for SVs based
on the dummy axiom was established, which also follows from Lemma 3.5. Note that this result
for SVs is not applicable for graph prediction, since the dummy axiom does not hold on the graph
level, cf. Section 5.5., global/graph classification in (Duval & Malliaros, 2021). For our main result
(Theorem 3.6), looking at the purified interactions (SVs) instead of SVs is crucial.

SubgraphX (Yuan et al., 2021). SubgraphX identifies isolated subgraphs as explanation. This
is done by proposing the SV as a heuristical scoring function for subgraph exploration. Given a
subgraph candidate, a reduced game is defined, where the whole subgraph represents a single player.
Based on the computed SV, the quality of the subgraph is determined. In contrast, GraphSHAP-IQ
does not require to group nodes and does not identify isolated components using a scoring function.
Instead, GraphSHAP-IQ computes exact SVs on node level, and SIs on all possible subgraphs up to
order k, which yields an additive decomposition using all these components, which is faithful to the
graph game.

GStarX (Zhang et al., 2022). GStarX identifies isolated subgraphs as an explanation. It is re-
lated to SubgraphX (Yuan et al., 2021) and proposes an alternative scoring function to the SVs.
In contrast, GraphSHAP-IQ does not identify isolated components using a scoring function. In-
stead, GraphSHAP-IQ decomposes the GNN into all possible components (subgraphs) up to order
k. Hence, GraphSHAP-IQ explains the GNN prediction across all maskings faithfully.

SAME (Ye et al., 2023). SAME proposes a hierarchical MCTS algorithm as a heuristic way to
find explanations as subgraphs. They consider k-hop neighborhoods for computation of the SV,
which however is not accurate for graph prediction, cf. GraphSVX (Duval & Malliaros, 2021).

C.2 LINKING GRAPHSHAP-IQ AND L-SHAPLEY

In this section, we present a link of GraphSHAP-IQ to L-Shapley (Chen et al., 2019) and prove a
novel result, which states that L-Shapley with sufficiently large parameter computes exact SVs on
games that admit the invariance property (Theorem 3.3), e.g. the GNN-induced node game. L-
Shapley is a model-agnostic method to approximate SVs that utilizes the underlying graph structure
of features. L-Shapley proposes to compute the marginal contributions ∆i(T \ i) of subsets T that
contain i ∈ N in its λ-hop neighborhood

ϕ̂L-SV
λ (i) :=

1

|N (λ)
i |

∑
T⊆N (λ)

i :i∈T

(
|N (λ)

i | − 1

t− 1

)−1

∆i(T \ i). (5)
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The weights thereby match the weights of the SV restricted to its k-hop neighborhood. While L-
Shapley is restricted to the SV, it strongly differs conceptionally from GraphSHAP-IQ in multiple
ways. First, GraphSHAP-IQ allows to compute interactions up to order λ in the ℓ-hop neighbor-
hood, whereas L-Shapley (implicitly) computes interactions up to order λ in the λ-hop neighbor-
hood. Second, L-Shapley considers only a single neighborhood of the player i ∈ N , whereas
GraphSHAP-IQ includes all interactions that contain player i in any ℓ-hop neighborhoods. Con-
sequently, GraphSHAP-IQ covers all interactions up to order λ of the GNN-induced graph game,
whereas L-Shapley only covers interactions up to order λ that are fully contained in the λ-hop neigh-
borhood of the node game of player i. Third, L-Shapley is a model-agnostic method, which is based
on a heuristical view of the game structure, whereas GraphSHAP-IQ exploits the GNN structure and
additivity of all node games summarized in the graph game. Consequently, GraphSHAP-IQ com-
putes exact SV with λ = ℓ, whereas L-Shapley computes exact SVs with λ = n, i.e. only with all
2n model calls. Lastly, GraphSHAP-IQ maintains efficiency and computes the MIs, which allow to
construct any-order SIs yielding an accuracy-interpretability trade-off based on practitioner’s needs.
Theorem C.1. For a graph g and a single GNN-induced node game νi for i ∈ N associated with the
node embedding h

(ℓ)
vi , GraphSHAP-IQ applied on the node game with λ = |N (ℓ)

i | and explanation
order k = 1 returns the L-Shapley computation with λ = ℓ. That is, in this specific case the
L-Shapley computation is equal to the GraphSHAP-IQ computation and yields the exact SVs.

Proof. Let νi be a single node game of node vi ∈ V . If λ = |N (ℓ)
i |, then by Corollary D.1

GraphSHAP-IQ computes exact MIs contained in N (ℓ)
i , which by Lemma 3.5 are all non-trivial

interactions of the node game up to order λ = ℓ. Consequently, GraphSHAP-IQ computes exact SVs
of the node game. On the other hand, we will show that the L-Shapley computation in Equation (5)
also yields these exact SVs in this case. We first observe that due to the node game invariance in
Theorem 3.3, we have for

T+
i := T ∩N (ℓ)

i ⊆ N (ℓ)
i and T−

i := T ∩ (N \ N (ℓ)
i ) ⊆ N \ N (ℓ)

i ,

with T = T+
i ⊔ T

−
i that

∆i(T \ i) = ν(T \ i)− ν(T ) = ν(T+
i \ i)− ν(T

+
i ) = ∆i(T

+
i \ i).

Before we compute the SV we need to state the following identity.

Lemma C.2 (Lemma 1 in Chen et al. (2019)). For any integer n and pair of non-negative integers
s ≥ t, we have

n∑
j=0

1(
n+s
j+t

)(n
j

)
=
s+ 1 + n

(s+ 1)
(
s
t

) .
Proof. The proof is given in the proof in Lemma 1 in Appendix B by Chen et al. (2019).

Hence, we can compute the SV as

ϕSV(i) =
∑

T⊆N\i

1

n ·
(
n−1
t

)∆i(T )

=
∑

T⊆N :i∈T

1

n ·
(
n−1
t−1

)∆i(T \ i)

=
∑

T⊆N :i∈T

1

n ·
(
n−1
t−1

)∆i(T
+
i \ i)

=
∑

T+
i ⊆N (ℓ)

i :i∈T+
i

∆i(T
+
i \ i)

∑
T−
i ⊆N\N (ℓ)

i

1

n ·
( n−1
t+i +t−i −1

)
=

∑
T+
i ⊆N (ℓ)

i :i∈T+
i

∆i(T
+
i \ i)

n−|N (ℓ)
i |∑

t−i =0

(
n− |N (ℓ)

i |
t−i

)
1

n ·
(n−|N (ℓ)

i |+(|N (ℓ)
i |−1)

t−i +(t+i −1)

)
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=
∑

T+
i ⊆N (ℓ)

i :i∈T+
i

∆i(T
+
i \ i)

|N (ℓ)
i | − 1 + 1 + n− |N (ℓ)

i |

n · (|N (ℓ)
i | − 1 + 1)

(|N (ℓ)
i |−1

t+i −1)

)
=

∑
T+
i ⊆N (ℓ)

i :i∈T+
i

∆i(T
+
i \ i)

1

|N (ℓ)
i | ·

(|N (ℓ)
i |−1

t+i −1)

) ,
where we have used Lemma C.2 in the second last equation. This result of the SVs clearly coincides
with Equation (5), which concludes the proof.

Theorem C.1 shows that L-Shapley computes exact SVs, if the game corresponds to a node game
in a GNN. However, L-Shapley does not compute exact SVs for the graph game, as interactions
involved in the computation of the SV may also appear in other neighborhoods. In fact, L-Shapley
applied on the graph game only converges for k = n, which corresponds to 2n model evaluations. In
our experiments, we also show empirically that L-Shapley performs poorly on GNN-induced graph
games.
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D ADDITIONAL ALGORITHMIC DETAILS FOR GRAPHSHAP-IQ

In this section, we provide further details of the GraphSHAP-IQ algorithm, including the full algo-
rithm that is capapable of approximation.

D.1 EXACT COMPUTATION

Algorithm 1 outlines the exact computation for GraphSHAP-IQ and we provide further details and
pseudocode in this section. Algorithm 2 describes the computation of the MIs from line 3 in Algo-
rithm 1. Given the MIs, GraphSHAP-IQ outputs the converted SIs, according to the conversion for-
mulas discussed in Appendix E.3. Algorithm 3 describes the pseudocode of the conversion method
called in line 4 in Algorithm 1. Here, the method GETCONVERSIONWEIGHT outputs the distribu-
tion weight for each specific index given an MI S̃, a SI S and the index, according to the conversion
formulas discussed in Appendix E.3.

Algorithm 2 Möbius Interaction (MI)
Require: Game values νg and MI of interest S ⊆ N .

1: mg[S]← 0
2: for T ∈ P(S) do
3: mg[S]← mg[S] + (−1)|S|−|T |νg[T ]
4: end for
5: return MI mg .

Algorithm 3 MItoSI
Require: (Approximated) MIs m̂g , SI order k and SI index

1: for S̃ ∈ INDEX(m̂g) do
2: for S ∈ P(S̃) with |S| ≤ k do
3: Φk[S]← 0, if not initialized yet.
4: wS ← GETCONVERSIONWEIGHT(S̃, S, index)
5: Φk[S]← Φk[S] + wS · m̂g[S̃]
6: end for
7: end for
8: return SIs Φk.

D.2 APPROXIMATION WITH GRAPHSHAP-IQ

For graphs with high connectivity and GNNs with many convolutional layers, computing exact SIs
via Theorem 3.7 may still be infeasible. We thus propose GraphSHAP-IQ, a flexible approach to
compute either exact SIs or an approximation. Outlined in Algorithm 4, GraphSHAP-IQ depends on
a single parameter λ = 1, . . . , n that controls the size of computed MIs. Given λ, GraphSHAP-IQ
deploys a deterministic approximation method that computes exhaustively all non-trivial MIs of the
GNN-induced graph game νg up to order λ. In Appendix C.2, we discuss a link between SVs and
L-Shapley (Chen et al., 2019).
Exact SIs: If λ ≥ n

(ℓ)
max, i.e. λ is larger or equal to the largest neighborhood size, then the set of

remaining neighborhoods Rλ (line 2) is empty. GraphSHAP-IQ then computes all non-trivial MIs
and returns exact SIs. In fact, according to Proposition 3.6, Iλ (line 1) contains all non-trivial MIs
and GraphSHAP-IQ evaluates the graph game νg on all of these subsets (line 3). The MIs m̂g(S)
are then computed for all S ∈ Iλ = I (line 4), and converted to SIs (line 13), cf. Appendix E.3.
Approximation: If λ < n

(ℓ)
max, then Iλ (line 1) does not contain all non-trivial MIs and the set

of remaining neighborhoods Rλ (line 2) is not empty. Consequently, the recovery property of the
MIs, cf. Equation (1), does not hold for T ∈ Rλ, and in particular not for the model predic-
tion νg(N) = f(X). Thus, for neighborhoods T ∈ Rλ GraphSHAP-IQ computes the current
recovery value using the MIs (line 7) and assigns the gap to m̂g(T ) (line 8). Note that a previous
sorting (line 5) is required to ensure that previously assigned neighborhood MIs are included. Ul-
timately, the largest neighborhood S∗ ∈ Rλ (line 10) receives the gap τ (line 11) of the prediction
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νg(N) = f(X) and the sum of all MIs to maintain efficiency (line 12). The rationale of maintaining
the recovery property is that while GraphSHAP-IQ introduces a bias on the approximated MIs, it
equally distributes missing interaction mass onto lower-order SIs. GraphSHAP-IQ further satisfies
the following corollary.

Corollary D.1. GraphSHAP-IQ computes exact SIs, if λ ≥ n(ℓ)max − 1.

Proof. By Proposition 3.6 it is clear that GraphSHAP-IQ computes exact MIs and consequently
exact SIs for λ ≥ maxi∈N (|N (ℓ)

i |), since GraphSHAP-IQ computes all MIs in I up to order λ.
For λ ≥ maxi∈N (|N (ℓ)

i |)− 1, GraphSHAP-IQ computes all MIs up to order maxi∈N (|N (ℓ)
i |)− 1

However, for all neighborhoods of size maxi∈N (|N (ℓ)
i |), there is only a single MI remaining, which

is then collected inRλ. W.l.o.g letR be the set to the corresponding missing MI. Due to the recovery
property of the MIs, this last missing interaction is exactly the gap computed in line 7, since

mg(R) =
∑
T⊆R

(−1)r−tν(T ) = ν(R) +
∑
T⊂R

(−1)r−tν(T ).

Since this holds for all missing interactions in Rλ and further I = Iλ ∪ Rλ, it concludes the proof
as also the efficiency gap (line 12) is zero due to∑

T∈Iλ∪Rλ

mg(T ) =
∑
T∈I

mg(T ) =
∑
T⊆N

mg(T ) = νg(N) = fg(X).

Algorithm 4 GraphSHAP-IQ
Require: Graph g = (V,E,X), ℓ-Layer GNN fg , MI order λ, SI order k.

1: Iλ ← [T ]T∈I,|T |≤λ

2: Rλ ← [N (ℓ)
i ]N (ℓ)

i /∈Iλ

3: νg ← [fg(X
(T ))]T∈Iλ∪Rλ

4: m̂g ← [MI(νg, S)]S∈Iλ

5: Rλ ← SORT(Rλ)
6: for S ∈ Rλ do
7: ν̂g[S]←

∑
T⊂S m̂g[T ]

8: m̂g[S]← νg[S]− ν̂g[S]
9: end for

10: S∗ ← SELECTMAX(Rλ)
11: τ ← fg(X)−

∑
T m̂g[T ]

12: m̂g[S
∗]← m̂g[S

∗]− τ
13: Φ̂k ← MITOSI(m̂g, k)

14: return MIs m̂g , SIs Φ̂k
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E FURTHER BACKGROUND ON SHAPLEY INTERACTIONS

In this section we provide further background on SIs. We first provide more related work in Ap-
pendix E.1. In Appendix E.2, we introduce SIs that satisfy the efficiency axiom. In Appendix E.3,
we discuss conversion formulas of MIs to various SIs.

E.1 RELATED WORK ON SHAPLEY INTERACTIONS

The SV (Shapley, 1953) is a concept from game theory (Grabisch, 2016) and applied in XAI for
local (Lundberg & Lee, 2017; Covert et al., 2021; Chen et al., 2023) and global (Casalicchio et al.,
2019; Covert et al., 2020) model interpretability, or data valuation (Ghorbani & Zou, 2019). The
Myerson value (Myerson, 1977) is a variant of the SV for games restricted on components of graphs.
Extensions of the SV to interactions were proposed in game theory (Grabisch & Roubens, 1999;
Marichal & Roubens, 1999) and ML (Lundberg et al., 2020; Sundararajan et al., 2020; Tsai et al.,
2023; Bordt & von Luxburg, 2023), where ML-based extensions preserve efficiency, e.g. the sum
of interactions equals the model’s prediction. The MIs (Rota, 1964; Harsanyi, 1963; Fujimoto et al.,
2006) define a fundamental concept in game theory, and the edge case of ML-based SIs. Due to
the exponential complexity of SIs, efficient methods for tree-based models for SVs (Lundberg et al.,
2020; Yu et al., 2022), any-order SIs (Zern et al., 2023; Muschalik et al., 2024) and MIs (Hiabu et al.,
2023) were proposed. In model-agnostic settings, approximation methods have been proposed (Tsai
et al., 2023; Fumagalli et al., 2023; Kolpaczki et al., 2024b; Fumagalli et al., 2024) as extensions
of SV-based methods (Castro et al., 2009; Covert & Lee, 2021; Kolpaczki et al., 2024b; Lundberg
& Lee, 2017; Pelegrina et al., 2023), and by exploiting graph-structured inputs (Chen et al., 2019).
Recently, MIs were computed in synthetic settings (Kang et al., 2024).

E.2 EFFICIENT SHAPLEY INTERACTION INDICES

In the following, we describe extensions of the SV to SIs, which yield efficient interaction indices.
That is, given an explanation order k the SIs Φk are defined on all interactions up to order k and
yield an additive decomposition of the model’s prediction, i.e

ν(N) =
∑

S⊆N,|S|≤k

Φk(S).

k-Shapley Values (k-SII) The k-SIIs values of order 1 are defined as the SVs ϕSV. Furthermore,
the pairwise k-SIIs are given as

Φ2(ij) := ϕSII(ij) and Φ2(i) := ϕSV(i)− 1

2

∑
j∈N\i

ϕSII(ij).

The general case is described by Bordt & von Luxburg (2023) and involves the Bernoulli numbers.
For any explanation order k = 1, . . . , n, the k-SIIs are recursively defined as

Φk(S) :=

{
ϕSII(S) if |S| = k

Φk−1(S) +Bk−|S|
∑|S|+S̃=k

S̃⊆N\S ϕSII(S ∪ S̃) if |S| < k

with 1 ≤ |S| ≤ k ≤ n, Φ0 ≡ 0 and Bernoulli numbers Bn (Bordt & von Luxburg, 2023). For
k = 1, k-SII is the SV, and for k = n the MI (Bordt & von Luxburg, 2023). An explicit definition
of k-SII is given in Appendix A.1 in Bordt & von Luxburg (2023) as

Φk(S) =

k−|S|∑
r=0

∑
R⊆N,|R|=r

Bkϕ
SII(S ∪R).

Besides SII and k-SII, there exist other interaction indices that extend the SV to higher orders and
yield the MIs for k = n. These essentially differ by their distribution of MI to lower-order interac-
tions. Similar to k-SII, these interaction indices can be described by the MIs. Hence, they can be
computed once the MIs are known.
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Shapley Taylor Interaction Index (STII) The STII (Sundararajan et al., 2020) is an interaction
index that gives stronger emphasis to the highest order of computed interactions, which capture all
higher-order MIs. It is defined as

ΦSTII
k (S) := a(S) for |S| < k and ΦSTII

k (S) :=
k

n

∑
T⊆N\S

1(
n−1
|T |

)∆S(T ) for |S| = k.

The STII for lower order, i.e. |S| < k, is simply the MI. For the maximum order, i.e. |S| =
k, the STII is computed as an average over discrete derivatives. Therefore, the STII distributes
the higher-order MI with |S| > k solely on the top-order interactions of the STII. It was shown
(Sundararajan et al., 2020) that the STII is the only interaction index preserving the Shapley axioms
that additionally satisfies the interaction distribution axiom besides the classical axioms.

Faithful Shapley Interaction Index (FSII) The FSII (Tsai et al., 2023) is an interaction index
that yields stronger emphasis on the faithfulness of the interaction index. It is defined as the best
approximation of interactions up to order k in terms of a weighted least square objective

ΦFSII
k := argmin

Φk⊆Rnk

∑
T⊆N, 0<|T |<n

µ(t)

ν(T )− ∑
S⊆T,|T |≤k

Φk(S)

2

,

such that ν(N) =
∑

S⊆N, |S|≤k

Φk(S) and ν(∅) = Φk(∅),

where µ(t) ∝ n−1

(nt)·t·(n−t)
and nk := |{S ⊆ N | |S| ≤ k}| is the number of interactions up to

size k. It was shown that the FSII is the only interaction index preserving the Shapley axioms that
additionally satisfies the faithfulness property, i.e. is represented as the solution to a single weighted
least square problem (Tsai et al., 2023).

E.3 CONVERSION FORMULAS FOR MÖBIUS INTERACTIONS TO SHAPLEY INTERACTIONS

The MIs are a basis of the vector space of cooperative games and thus all SIs can be expressed in
terms of the MIs. The SV as well as the SII can be directly computed by the conversion formulas

ϕSV(i) =
∑

S̃⊆N :i∈S̃

m(S̃)

|S̃|
and ϕSII(S) =

∑
S̃⊆N :S̃⊇S

m(S̃)

|S̃| − |S|+ 1
.

The conversion formula for the MI to k-SII is given in Theorem 6 in Bordt & von Luxburg (2023).
The conversion for STII is given in the proof of Theorem 8 in Appendix H (Bordt & von Luxburg,
2023). The conversion formula from to the FSII is given in Theorem 19 in Tsai et al. (2023).
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F EXPERIMENTAL SETUP AND REPRODUCIBILITY

All the experiments have been conducted using the PyTorch Geometric library (Fey & Lenssen,
2019), running on a computing machine equipped with Intel(R) Xeon(R) CPU, one Nvidia RTX
A5000 and 60GB of RAM. Overall, the total compute time of this project, including preliminary
experiments, training of GNNs, computation of baselines and SIs, required no more than 100 hours,
which could be reduced by simple parallelization.

F.1 DATASETS

All considered methods were empirically validated on eight common real-world chemical datasets
for graph classification and one real-world water distribution network for graph regression. We avoid
synthetic datasets commonly used in the graph XAI community due to their limitations (Amara et al.,
2022). The licenses for the datasets are summarized in Table 3.

Table 3: Dataset License Overview
Dataset Source License

BNZ (Sánchez-Lengeling et al., 2020) CC0 1.0 Universal
FLC (Sánchez-Lengeling et al., 2020) CC0 1.0 Universal
MTG (Kazius et al., 2005) CC0 1.0 Universal
ALC (Sánchez-Lengeling et al., 2020) CC0 1.0 Universal
PRT (Borgwardt et al., 2005; Morris et al., 2020) “Free to use”, cf. Section 2 of Morris et al. (2020)
ENZ (Borgwardt et al., 2005; Morris et al., 2020) “Free to use”, cf. Section 2 of Morris et al. (2020)
CX2 (Sutherland et al., 2003; Morris et al., 2020) “Free to use”, cf. Section 2 of Morris et al. (2020)
BZR (Sutherland et al., 2003; Morris et al., 2020) “Free to use”, cf. Section 2 of Morris et al. (2020)
WAQ (Vrachimis et al., 2018) EUROPEAN UNION PUBLIC LICENCE v. 1.2 EUPL

F.1.1 CHEMICAL DATASETS

This data reflects biological and chemical problems, where particular substructures can predict the
properties of molecules. The Benzene (BNZ) (Sánchez-Lengeling et al., 2020) dataset consists of
12 000 moleculars, with each graph labeled as containing or not a benzene ring. In this context, the
underlying explanations for the predictions are the specific atoms (nodes) that make up the benzene
rings. The Fluoride Carbonyl (FLC) (Sánchez-Lengeling et al., 2020) dataset comprises 8 671
molecular graphs, each labeled positive or negative. A positive sample denotes a molecule with
a fluoride ion (F-) and a carbonyl functional group (C = O). The underlying explanations for the
labels are the specific combinations of fluoride atoms and carbonyl functional groups present within
a given molecule. Similarly, the Alkane Carbonyl (ALC) (Sánchez-Lengeling et al., 2020) dataset
consists of 1 125 molecular graphs, labeled positive if it features an unbranched alkane chain and a
functional carbonyl group (C = O), which serves as an underlying explanation. The Mutagenicity
(MTG) (Kazius et al., 2005) dataset comprises 1 768 graph molecules, categorized into two classes
based on their mutagenic properties, specifically their effect on the Gram-negative bacterium S.
Typhimurium. Following Agarwal et al. (2023), the original dataset of 4 337 graphs was reduced to
1 768, retaining only those molecules whose labels directly correlate with the presence or absence
of specific toxicophores (motifs in the graphs), including NH2, NO2, aliphatic halide, nitroso, and
azo-type groups, as defined by (Kazius et al., 2005). The latter four datasets have been retrieved
from the implementation of (Agarwal et al., 2023). PROTEINS (PRT) (Borgwardt et al., 2005)
and ENZYMES (ENZ) (Borgwardt et al., 2005) involve graphs whose nodes represent secondary
structure elements and edges indicate neighborhood in the amino-acid sequence, entailing 1 113 and
600 graphs respectively. BZR (BZR) and COX2 (CX2) (Sutherland et al., 2003) are correlation
networks of biological activities of compounds with their structural attributes, of 405 and 467 graphs.
These latter datasets are fetched from the benchmark collection of (Morris et al., 2020). They all
have binary labels except for ENZ, which has 6 classes. Finally, we did not exploit the additional
continuous node features available for ENZ.

F.1.2 WATER DISTRIBUTION NETWORK

We apply GraphSHAP-IQ to a dynamical system governed by local partial differential equations
(PDEs). Specifically, the spread of chlorine in water distribution systems (WDS), where a GNN pre-
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Table 4: Model accuracy for shallow and deep GNNs (1-6 layers).
Dataset Description Model Accuracy by Layer (%)

Dataset Graphs dout
Nodes
(avg)

Density
(avg)

GCN GAT GIN
1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6

BNZ
(Sánchez-Lengeling et al., 2020) 12000 2 20.6 22.8 84.2 88.6 90.4 90.6 90.6 90.6 83.1 85.1 85.7 84.5 87.8 86.3 84.9 90.5 90.8 92.1 92.3 92.3
PRT
(Borgwardt et al., 2005) 1113 2 39.1 42.4 75.2 71.1 74.0 70.3 70.3 69.4 75.3 60.5 79.8 69.4 68.5 68.5 79.3 74.9 67.7 72.1 73.0 73.9

ENZ
(Borgwardt et al., 2005) 600 6 32.6 32.0 34.2 37.5 35.8 43.3 40.0 31.7 32.5 35.0 35.8 23.3 43.3 45.0 36.7 35.0 39.2 25.0 30.0 30.0

dicts the fraction of nodes chlorinated after some time, framing this task as a graph-level regression.
We chose this task because chemicals in WDS spread predominantly with water flow (advection).
Therefore, the task should be mainly explained by the flow pattern of the network, which yields an
intuitive expectation of the explanations.

We generate a temporal dataset WaterQuality (WAQ) using the EPyT-Flow toolbox (Artelt et al.,
2024). The dataset consists of 1000 temporal graphs with 30 time steps each. Spatially, the graphs
represent the Hanoi WDS (Vrachimis et al., 2018), a popular 32-node benchmark WDS.

F.2 GNN ARCHITECTURES

Our approach universally applies to any message passing GNN and can be employed on graph
datasets without requiring ground truth explanations. Since different GNN architectures exhibit
unique learning patterns and performance characteristics, their explanations will also vary. To
demonstrate the effectiveness of our approach, we followed the remarks and setting of Amara et al.
(2022), by comparing the explanations of three popular GNN models: GCN (Kipf & Welling, 2017),
GIN (Xu et al., 2019), and GAT (Velickovic et al., 2018). The overall model architecture is as fol-
lows: the graph input is unprocessed, we stack the GNN layers for l ∈ {1, 2, 3}, concatenate all the
embeddings (You et al., 2020), apply global sum-pooling (Xu et al., 2019), and finally, a dense lin-
ear layer returns the output predictions. Furthermore, each GNN layer is followed by a sequence of
modules: batch normalization, dropout, and LeakyReLU activation function (You et al.,
2020). We validated the models for different amounts of hidden units h ∈ {8, 16, 32, 64, 128}, and
we defined the multilayer perceptron of GIN with 32 hidden units, while all the remaining design
choices for the GNN layers follow their default settings (e.g., aggregation function, number of at-
tention heads, ...). For a selection of datasets, we also compared performances for deeper GNNs, cf.
Table 4. The performances of the deeper models compared to more shallow GNNs are mixed. All
architectures lead to quite similar performances. Both shallow (less than 4 GNN layers) and deeper
models (more than 3 GNN layers) lead to best performing architectures.

Regarding WAQ, since we now have important edge features (water flows), we cannot use vanilla
GCN, GIN, or GAT as before. Instead, we designed a simple GNN that can process edge features,
using 3 message-passing layers with mean-aggregation, ReLU activations, global average-pooling
as the readout layer, and finally, a linear layer provides the regression outputs.

F.3 TRAINING

The adopted loss is the (binary) Cross-Entropy for classification and the L1 for the regression. The
chemical datasets have been split in train/validation/test sets with a ratio of 80/10/10 in a strati-
fied fashion, ensuring that the splits have a balanced amount of classes. The models are randomly
initialized and trained for 500 epochs with early stopping with patience of 100 on the valida-
tion set and a batch size of 64. The models have been trained with Adam optimizer with a starting
learning rate of 0.01, using a halving scheduler with the patience of 50 epochs up to 1e−5, and
weight decay factor of 5e−4.

The test accuracies for the best-validated model configuration reported in Table 1, are comparable
to existing benchmarks (Errica et al., 2020; You et al., 2020), confirming that our approach is valid
for complex and powerful GNN architectures, as long as Assumption 3.4 holds. Moreover, deeper
GNNs do not necessarily yield better performances, cf. Table 4.
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G ADDITIONAL EXPERIMENTAL RESULTS

This section includes additional empirical results and further details on the experimental setup. Ap-
pendix G.1 contains additional complexity results for benchmark datasets. Appendix G.3 shows
a timeline for the WDN example use case. Appendix G.4 shows the approximation quality of
GraphSHAP-IQ compared to a collection of state-of-the-art baseline methods. Appendix G.5 show-
cases example SIs on molecule structures from different datasets.

G.1 COMPLEXITY ANALYSIS

In this experiment we provide further results on Section 4.1. We evaluate the complexity on GNNs
with varying number of convolutional layers on multiple benchmark datasets, as described in Ta-
ble 1. The complexity is measured by number of evaluations of the GNN-induced graph game, i.e.
number of model calls of the GNN, which is the limiting factor of SIs (Fumagalli et al., 2023; Kol-
paczki et al., 2024b; Muschalik et al., 2024). Due to Theorem 3.7, the complexity of GraphSHAP-
IQ does only depend on the message passing ranges and is in particular independent of the message
passing technique. We therefore omit the explicit architecture in this experiment and focus only on
the number of convolutional layers ℓ. For every graph in the benchmark datasets, we evaluate the
complexity of GraphSHAP-IQ, where the model-agnostic method requires 2n, where n is the num-
ber of nodes in the graph. If the size of the largest neighborhood exceeds 22, i.e. GraphSHAP-IQ
requires at least 223 ≈ 8.3 × 106 model calls, then the complexity is approximated by the upper
bound presented in Theorem 3.7. Figure 7, Figure 8, and Figure 9 display the complexity (in log 10)
by the size of the graphs for all instances (upper) and the median, Q1, and Q3 per graph size (n)
for all benchmark datasets. The model-agnostic computation is represented by the dashed line. The
results show that the GT computation of SIs is substantially reduced by GraphSHAP-IQ for many
instances in the benchmark datasets.

Figure 7: Complexity of GraphSHAP-IQ against model-agnostic baseline (dashed) in model calls
(in log 10) (y-axis) by number of nodes (x-axis) for all instances (upper) and median, Q1, Q3 (lower)
for BNZ (left), FLC (middle), and MTG (right).
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Figure 8: Complexity of GraphSHAP-IQ against model-agnostic baseline (dashed) in model calls
(in log 10) (y-axis) by number of nodes (x-axis) for all instances (upper) and median, Q1, Q3 (lower)
for ALC (left), PRT (middle), and ENZ (right).

Figure 9: Complexity of GraphSHAP-IQ against model-agnostic baseline (dashed) in model calls
(in log 10) (y-axis) by number of nodes (x-axis) for all instances (upper) and median, Q1, Q3 (lower)
for CX2 (left) and BZR (right).
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G.2 RUNTIME ANALYSIS

In this section, we conduct a small runtime analysis to confirm that the main driver of computa-
tional complexity for GraphSHAP-IQ is indeed the number of model calls. This is standard in the
approximation literature of SIs (Tsai et al., 2023) and confirmed for all baseline methods (Fumagalli
et al., 2024). We select 100 graph instances from MTG with 20 to 40 nodes, where GraphSHAP-IQ
requires less than 10000 model calls for exact computation for a 2-Layer GCN. We then compute
exact SIs for order 1 (SV), 2 (2-SII), and 3 (3-SII) with GraphSHAP-IQ. For each graph instance,
we run all baseline methods using the same budget that GraphSHAP-IQ required for exact com-
putation. Figure 10 shows the number of model calls and runtime (upper row), as well as number
of graph nodes and runtime (lower row) for order 1 (left), 2 (middle), and 3 (right). As expected,
GraphSHAP-IQ’s runtime scales linearly with number of model calls, and is basically unaffected by
the size of the graph. Moreover, given the same number of model calls, GraphSHAP-IQ’s runtime
is similar to efficient baselines (SHAP-IQ and Permutation Sampling). Notably, increasing the ex-
planation order barely affects the runtime of GraphSHAP-IQ, whereas it substantially increases the
runtime of competitive baselines (KernelSHAP-IQ, SVARM-IQ, SHAP-IQ).

Figure 10: Runtime comparison of GraphSHAP-IQ and baseline methods for SVs (left), 2-SII (mid-
dle), and 3-SII (right). All methods were given the number of model calls, which were required
for exact computation with GraphSHAP-IQ. The runtime (y-axis) against number of model calls (x-
axis) plot (upper row) shows that the runtime of GraphSHAP-IQ scales linearly (R2 > 0.97) with
increasing number of model calls. In contrast, the runtime (y-axis) against number of graph nodes
(x-axis) plot (lower row) shows that the runtime is independent from the size of the graph. Lastly,
increasing the explanation order substantially increases the runtime of most baseline methods, but
barely affects GraphSHAP-IQ.
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G.3 EXPLAINING WATER QUALITY IN WATER DISTRIBUTION NETWORKS (WDNS)

We investigate the validity of our approach in explaining a critical real-world scenario: adding
chlorine to water distribution system (WDS) is a common disinfection practice used to inactivate
microorganisms that can cause waterborne diseases. Chlorine is an effective disinfectant due to
its ability to oxidize and denature microbial cells. However, it can be toxic to aquatic organisms,
particularly at high concentrations, and can impart an unpleasant taste or odor to the water, affecting
consumer acceptance. In practice, chlorine is added to a water reservoir and flows unevenly through
the network. Therefore, it is essential to model these flows and concentrations, which is not trivial
since it is a dynamical system governed by local PDEs. We frame this problem as graph regression
task, where the goal is to predict the relative chlorine concentration for each node at each time step.
In Figure 11, we report the Hanoi WDN (Vrachimis et al., 2018) and simulate a chlorine injection at
node reservoir 31 for t = 0. We observe how the 2-SII highlight the progressive importance of the
nodes — from the reservoir throughout the network.
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Figure 11: Spread of chlorination through a WDN over time as explained by 2-SII.

G.4 APPROXIMATION QUALITY OF GRAPHSHAP-IQ

Additionally to the experiments conducted in Section 4.2, this section contains further evaluations
on three datasets and a detailed description of the SV baselines (Appendix G.4.2) and the 2-SII
baselines (Appendix G.4.3). Figures 12 to 14 show the approximation quality of different GNN
architectures for the MTG, PRT , and BZR benchmark datasets. Appendix G.4.1 outlines the approx-
imation experiments in detail.

G.4.1 SETUP DESCRIPTION

To compare GraphSHAP-IQ’s approximation result with existing model-agnostic baselines, we
compute SIs for three benchmark datasets (MTG, PRT , and BZR). For each dataset, we randomly
select 10 graphs containing 30 ≤ n ≤ 40 nodes each. Based on Section 4.1, we further limit
the selection to graphs which can be exactly computed via GraphSHAP-IQ with at most 10 000
(for MTG and PRT) and 215 = 32 768 (for BZR) model evaluations. First, we compute SIs with
GraphSHAP-IQ for each MI interaction order λ starting with λ = 1 until λ ≥ maxi∈N (|N (ℓ)

i |)− 1
(c.f. Corollary D.1). Note that for different graphs even for the same datasets the maximum λ value
may differ. For each λ, we observe the required model evaluations by GraphSHAP-IQ. Second,
we compute SIs with the baseline methods provided the same approximation budget as required
by GraphSHAP-IQ for each λ. Therein, we directly compare how the baselines (which may be run
with any arbitrary approximation budget) compare with GraphSHAP-IQ. For each estimation budget
(number of model evaluation), we estimate the SIs via two independent iterations for each baseline
and average the evaluation metrics (each dot in Figures 12 to 15 are averaged evaluation metrics over
two runs). As evaluation metric we choose the mean-squared-error (MSE, lower is better). For each
graph, we compute the MSE between the ground truth SIs, as computed by exact GraphSHAP-IQ,
and the estimated values.

G.4.2 DESCRIPTION OF SV BASELINES

As SV baselines we apply current state-of-the-art sampling based methods that operate on different
representations of the SV and/or aggregation technique. In general, all of the following baseline
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methods (with L-Shapley as the only exception) are sampling coalitions of players, evaluate the
model on these coalitions, observe the output of the model, and finally aggregate the observed out-
puts into the SV. All SV baselines are implemented according to the shapiq (Fumagalli et al., 2023)
open-source software package in Python.

KernelSHAP as proposed in (Lundberg & Lee, 2017) is a prominent SV approximation method and
is applied akin to its original conception in addition to the sampling tricks discussed in (Covert &
Lee, 2021; Fumagalli et al., 2023).

k-Additive KernelSHAP (Pelegrina et al., 2023) is an extension to KernelSHAP, which also utilizes
higher-order SIs in the computation procedure of the SV. Therein, it shows better approximation
qualities than KernelSHAP. For our experiments, we set the higher-order interactions to 2.

Unbiased KernelSHAP (Covert & Lee, 2021) extends on KernelSHAP and offers a provably unbi-
ased alternative. It was recently shown that Unbiased KernelSHAP is linked to the k-SII SHAP-IQ
estimator (Fumagalli et al., 2023).

Permutation Sampling for SV (Castro et al., 2009) is a standard estimation method that iterates
over random permuations of the player set to determine the coalitions to be used for the model
evaluations. Because a permutation always needs to be traversed in its entirety, the number of model
calls may be lower than GraphSHAP-IQ’s or the rest of the baselines.

SVARM (Kolpaczki et al., 2024a) is another sampling-based baseline operating on a stratified rep-
resentation of the SVs. Akin to KernelSHAP it can be queried on an arbitrary number of coalitions.

L-Shapley (Chen et al., 2019) is a deterministic method for computing the Shapley values for
structured data. Unlike the rest of the SV approximation methods, L-Shapley cannot be evalu-
ated on an arbitrary set of coalitions or number of model evaluations. L-Shapley functions similarly
to GraphSHAP-IQ in that it deterministically evaluates coalitions based on neighborhoods in the
graphs. To circumvent this, we let L-Shapley akin to GraphSHAP-IQ. After L-Shapley exceeds
GraphSHAP-IQ’s number of model evaluation we stop the iteration and use the last estimates (the
estimates where L-Shapley always exceeds GraphSHAP-IQ in terms of model evaluations).

G.4.3 DESCRIPTION OF 2-SII BASELINES

Similar to Appendix G.4.2, we apply current state-of-the-art sampling based methods for 2-SII and
in general k-SII. All of the following baseline methods are sampling-based. We implement the
experiments based on the shapiq (Fumagalli et al., 2023) open-source Python software package.

KernelSHAP-IQ (Fumagalli et al., 2024) directly extends the SV KernelSHAP approximation
paradigm to SII and, hence, to k-SII. KernelSHAP-IQ leads to high quality estimates.

Inconsistent KernelSHAP-IQ (Fumagalli et al., 2024) is a different version of KernelSHAP-IQ,
which is linked to the k-Additive KernelSHAP (Pelegrina et al., 2023). While often leading to better
estimations in lower number of model evaluations, Inconsistent KernelSHAP-IQ does not converge
to the ground-truth values like KernelSHAP-IQ.

SHAP-IQ (Fumagalli et al., 2023) is a sampling-based mean estimator for computing SIIs among
other interaction indices like STII. It is theoretically linked to Unbiased KernelSHAP (Fumagalli
et al., 2023) and, thus, transfers its SV procedure to SII.

Permutation Sampling for SII(Tsai et al., 2023) directly transfers the permutation sampling proce-
dure from its SV counterpart (Castro et al., 2009) to estimate SII. Similar to the SV algorithm, the
SII variant requires a full pass through a permutation which may lead to less model evaluations with
this baseline.

SVARM-IQ (Kolpaczki et al., 2024b) extends SVARM’s (Kolpaczki et al., 2024a) stratified rep-
resentation from the SV to the SII. Often SVARM-IQ outperforms state-of-the-art approximation
methods.

G.5 EXPLANATION GRAPHS FOR MOLECULE STRUCTURES

This section contains further exemplary SI-graphs for molecule structures of the MTG and BNZ
datasets. Figure 16 shows two molecules from the MTG dataset, where one of those molecules is
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Figure 12: Comparison of GraphSHAP-IQ’s approximation quality with model-agnostic baselines
on 10 graphs with 30 ≤ n ≤ 40 nodes from the PRT dataset for a 2-layers GCN (left), GAT (middle)
and GIN (right). The top row presents the MSE for each estimation (dots) and averaged over λ (line)
with the standard error of the mean (confidence band). The bottom row shows the same information
including the MIs as box plots for each λ.

the same as in Figure 1. Further, Figure 17 shows additional SI-Graphs for molecules of the BNZ
dataset. Lastly, Figure 18 shows how the SI-Graphs differ for different GNN architectures.
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Figure 13: Comparison of GraphSHAP-IQ’s approximation quality with model-agnostic baselines
on 10 graphs with 30 ≤ n ≤ 40 nodes from the MTG dataset for a 2-layers GCN (left), GAT
(middle) and GIN (right). The top row presents the MSE for each estimation (dots) and averaged
over λ (line) with the standard error of the mean (confidence band). The bottom row shows the same
information including the MIs as box plots for each λ.
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Figure 14: Comparison of GraphSHAP-IQ’s approximation quality with model-agnostic baselines
on 10 graphs with 30 ≤ n ≤ 40 nodes from the BZR dataset for a 2-layers GCN (left), GAT (middle)
and GIN (right). The top row presents the MSE for each estimation (dots) and averaged over λ (line)
with the standard error of the mean (confidence band). The bottom row shows the same information
including the MIs as box plots for each λ.
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Figure 15: Comparison of GraphSHAP-IQ’s approximation quality with model-agnostic baselines
on 10 graphs with 30 ≤ n ≤ 40 nodes from the PRT dataset for a 2-layers GCN (left), GAT (middle)
and GIN (right). The top row presents the MSE for each estimation (dots) and averaged over λ (line)
with the standard error of the mean (confidence band). The bottom row shows the same information
including the MIs as box plots for each λ.
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Figure 16: Additional SI-Graphs for molecule structures of the MTG dataset; molecule 71 with 30
atoms (left) and molecule 189 with 14 atoms (right). The model is a 2-layer GCN.
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Figure 17: Additional SI-Graphs for molecule structures of the BNZ dataset; molecule Pyridine with
6 atoms (left) and molecule 57 with 21 atoms (right). The model is a 3-layer GAT.
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Figure 18: Comparison of the SI-Graphs for the pyridine molecule for the three model architectures
fitted on BNZ. All models accurately predict the molecule to be non-benzene.
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