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Abstract

Weighting methods in causal inference have been
widely used to achieve a desirable level of co-
variate balancing. However, the existing weight-
ing methods have desirable theoretical properties
only when a certain model, either the propensity
score or outcome regression model, is correctly
specified. In addition, the corresponding estima-
tors do not behave well for finite samples due to
large variance even when the model is correctly
specified. In this paper, we consider to use the
integral probability metric (IPM), which is a met-
ric between two probability measures, for covari-
ate balancing. Optimal weights are determined
so that weighted empirical distributions for the
treated and control groups have the smallest IPM
value for a given set of discriminators. We prove
that the corresponding estimator can be consistent
without correctly specifying any model (neither
the propensity score nor the outcome regression
model). In addition, we empirically show that our
proposed method outperforms existing weighting
methods with large margins for finite samples.

1. Introduction
Estimating causal effects from observational data has be-
come an important research topic since it has the advantage
of low budget requirements and a large amount of available
data, compared with randomized trials (Yao et al., 2021).
The main difficulty in estimating the causal effect is that, for
a binary treatment, the pre-treatment covariate distribution
of the treated group differs significantly from that of the con-
trol group. This systematic difference requires sophisticated
methods to find a causal relationship from observational
data (Lunceford & Davidian, 2004; Imbens & Rubin, 2015).
There have been lots of methods developed including regres-
sion adjustment (Hill, 2011), matching (Stuart, 2010) and
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weighting (Imai & Ratkovic, 2014) methods to adjust for the
systematic bias. The main goal of these methods is to make
the two groups comparable, meaning that their covariate
distributions are (asymptotically) balanced. Achieving the
covariate balancing is essential to causal inference.

One of the core approaches in covariate balancing is inverse
probability weighting (IPW) (Hirano et al., 2003). The IPW
method gives weights to observed samples reciprocally pro-
portional to the propensity scores that are the conditional
probabilities of being assigned to the treatment. Using these
weights, the IPW can match the covariate distributions of
the treated and control groups. However, in practice, the
propensity scores (thus weights) are unknown and hence
must be estimated. Propensity scores are conventionally
estimated by standard regression models including the lo-
gistic regression (Lunceford & Davidian, 2004) or machine
learning techniques (Lee et al., 2010).

One of the issues using the IPW is that though the weighting
scheme eventually achieves the covariate balancing as the
sample size increases, there is no guarantee to achieve the
balance for given data. Since the IPW uses the inverse of
probabilities, a small error in estimating these probabilities
would cause a substantial error in the estimated causal effect
(Li et al., 2018). That is, the performance of the IPW estima-
tor highly relies on the correctness of the propensity score
estimation (Hainmueller, 2012; Imai & Ratkovic, 2014).

Instead of estimating the propensity score, Hainmueller
(2012) and Imai & Ratkovic (2014) propose to find the
weights that match the sample moments of the covariate. By
weighting samples to balance the sample moments of the
covariate of the two groups, they improve the stability of
the causal effect estimate to make it more accurate.

The biggest drawback of the existing weighting methods is
that their theoretical guarantee and good performance are
valid in a restricted situation: either the propensity score or
the true outcome model (i.e. the regression model for either
treated or control group) is a linear function of covariate
(Sant’Anna et al., 2022). Without this condition, the esti-
mated causal effect is not guaranteed to be consistent. To
address this issue, they assume that an appropriate transfor-
mation exists such that the true outcome regression model is
expressed as a linear function of the transformed covariate.
However, since information required for choosing a good
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transformation is rarely available in practice, researchers
usually apply the methods without transformation.

In this paper, we propose a general framework of covariate
balancing using the integral probability metric (CBIPM).
The IPM, which includes the Wasserstein distance (Kan-
torovich & Rubinshtein, 1958; Villani, 2008) as a special
case, has been widely used for learning generative models
(Arjovsky et al., 2017), but has not been popularly used for
covaraite balancing.

The proposed framework is motivated by the fact that the
IPM between the covariate distributions of the treated and
control groups is directly related to the worst-case bias of the
estimated causal effect with respect to outcome regression
models. Thus, by searching the weights that minimize the
IPM of the two covariate distributions, we can reduce the
bias to have a good estimate of causal effect.

We consider two types of algorithms for CBIPM - (1) para-
metric CBIPM (P-CBIPM) and (2) nonparametric CBIPM
(N-CPIPM), where the former assumes a certain parametric
model for the weights while the later does not. An important
advantage of the these two CBIPM methods over existing
weighting methods is that the estimated causal effect is con-
sistent under much milder conditions on the true propensity
score and outcome regression models. See Section 4 for
details.

The parametric CBIPM has been already used implicitly in
estimating the conditional average treatment effect (CATE)
or individual treatment effect (ITE) (Shalit et al., 2017; Yao
et al., 2018; Wang et al.). Even though our interest is to
improve the existing weighting methods, useful insights
for the CATE or ITE estimation problems can be obtained
from the theoretical results in this paper. For example, when
the parametric model for the weights is correctly specified,
we show that the P-CBIPM estimator is consistent with
a minimal set of discriminators. This result suggests that
a simpler set of discriminators is recommended when the
parametric model for the weights is complex.

The nonparametric CBIPM is a new trial of using the IPM
for causal inference, and yields several important and inter-
esting implications. For the corresponding ATT estimator
to be consistent, the choice of the set of discriminators in
the IPM is important. For example, the ATT estimator is
consistent when the true outcome regression model belongs
to the set of discriminators. A surprising result, however, is
that the ATT estimator can be consistent even when the set
of discriminators is fairly small so that it does not include
the complex true outcome regression model. That is, by
the N-CBIPM, we can construct a consistent ATT estima-
tor without correctly specifying either the propensity score
model or the outcome regression model, which is the first
of its kinds.

The main contributions of this work are summarized as
follows.

• We propose a general framework of covariate balancing
using the IPM to develop two weighting algorithms -
parametric CBIPM and nonparametric CBIPM.

• We prove the consistency of the corresponding estima-
tors of causal effect under mild regularity conditions.

• We empirically show that our proposed estimators out-
perform existing weighting methods with large mar-
gins.

2. Preliminaries
2.1. Notations and Models

Let X ∈ X ⊂ Rd be a random vector of covariate whose
distribution is denoted by P. The binary treatment indicator
T is generated from Ber(π(X)), where the propensity score
π(·) is defined as the conditional probability of receiving
the treatment given covariate. We assume the strict overlap
condition: there exists η > 0 such that

η ≤ π(x) ≤ 1− η,

for every x ∈ X . Note that a large body of literature
assumes the strict overlap condition as it is indispensable
for theoretical analysis (D’Amour et al., 2021).

Let Y (0) and Y (1) denote the potential outcomes under
control and treatment, respectively. We use the ignorability
assumption (Rosenbaum & Rubin, 1983):

T ⊥⊥ (Y (0), Y (1))|X.

This assumption roughly says that a set of confounders
that affect both treatment T and potential outcomes
(Y (0), Y (1)) is a subset of observable covariates. That is,
we do not allow situations where we miss any confounder.
When there exists an unmeasured confounder and thus the
ignorability assumption is violated, we typically do sensi-
tivity analysis to evaluate the robustness of the conclusion
made under the ignorability assumption (Rosenbaum, 2002).

Suppose we observe n independent copies D(n) =
{(Xi, Ti, Yi)}ni=1, of (X, T, Y ), where Y := TY (1) +
(1− T )Y (0) is the observed outcome. Note that we never
observe both potential outcomes simultaneously, which is
often referred to as the fundamental problem of causal infer-
ence (Holland, 1986).

The primary goal of this paper is to estimate the average
treatment effect for the treated (ATT) based on D(n). The
ATT, which is the causal effect of how much the treated
units are benefited by the treatment from a retrospective
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perspective, is defined as

ATT := E (Y (1)− Y (0)|T = 1) .

In turn, the sample ATT (SATT) is defined as

SATT :=
1

n1

∑
i:Ti=1

E(Yi(1)− Yi(0)).

It is easy to show that the SATT converges to the ATT with
the converge rate 1/

√
n, and thus we focus on estimating

the SATT in this paper.

The average treatment effect (ATE) over the population is
also popularly considered instead of the ATT, where the
ATE is defined as

ATE := E (Y (1)− Y (0)) .

In this paper, we mainly consider the ATT because of its
notational simplicity. But, the CBIPM methods for the ATT
can be easily modified for the ATE, which is discussed in
Appendix B.

The true outcome regression models mt(x) =
E(Y (t)|x), t ∈ {0, 1} also play an important role
in causal effect estimation. For technical simplicity,
we assume that supt∈{0,1} supx∈X V(Y (t)|x) < ∞,
supt∈{0,1} supx∈X mt(x) ≤ Bm for a constant Bm > 0,
and X ⊂ Rd is compact.

For an integer n ∈ N, we denote [n] := {1, . . . , n}. A capi-
tal letter denotes a random variable or matrix interchange-
ably whenever its meaning is clear, and a vector is denoted
by a bold letter, e.g. x := (x1, . . . , xd)

⊤. For ϵ > 0 and
a set of functions F ⊂ L1(P), N[ ](F , L1(P), ϵ) denotes
L1(P)-bracketing number of F (Giné & Nickl, 2021).

2.2. Review of weighting methods

In this paper, we consider the estimator of the ATT given as
the following form

ÂTT
w

=
∑

i:Ti=1

1

n1
Yi −

∑
i:Ti=0

wiYi, (1)

for a given weight vector w = (w1, . . . , wn)
⊤ with wi ≥

0, which we call the weighted estimator. We review the
methods of estimating w.

Inverse Probability Weighting (IPW) The IPW estima-
tor for the ATT is given by∑

i:Ti=1

1

n1
Yi −

∑
i:Ti=0

1

n1

π̂ (Xi)

(1− π̂ (Xi))
Yi,

where π̂(·) is an estimated propensity score. The quantities
(1/n1){π̂ (Xi) /(1 − π̂ (Xi))} are the weights for control

units. The propensity score is generally estimated by the
maximum likelihood estimator (MLE) with the linear logis-
tic regression model:

πβ(x) =
1

1 + exp(−x⊤β)
.

where β ∈ Rd. Other machine learning techniques can be
also used instead (Lee et al., 2010).

A modified version of the IPW estimator is to use normal-
ized weights such as∑

i:Ti=1

1

n1
Yi −

∑
i:Ti=0 π̂ (Xi) (1− π̂ (Xi))

−1
Yi∑

i:Ti=0 π̂ (Xi) (1− π̂ (Xi))
−1 ,

This estimator is often called the stabilized IPW (SIPW)
(Robins et al., 2000). The advantages of the SIPW estimator
over the IPW are that the SIPW is translation invariant in the
sense that the estimator is not affected by the way the out-
comes are centered and it is bounded by (minYi,maxYi).

Covariate Balancing Propensity Score (CBPS) For an
arbitrary measurable function ϕ : X → Rp, we have

E
[
π(X)(1− T )ϕ(X)

1− π(X)

∣∣∣∣X] = ϕ(X)π(X)

1− π(X)
E [(1− T )|X]

= ϕ(X)E [T |X]

= E [Tϕ(X)|X]

under the ignorability assumption. Hence

E
[

π(X)

1− π(X)
(1− T )ϕ(X)

]
= E [Tϕ(X)] . (2)

Note that the true propensity odds ratio, namely π(X)/(1−
π(X)), is the unique measurable function (with respect to
X) that achieve the equality (2).

Based on this intuition, Imai & Ratkovic (2014) proposes to
estimate β ∈ Rd by balancing the moments of the treated
and control groups,

1

n

∑
i:Ti=0

πβ(Xi)

1− πβ(Xi)
ϕ (Xi) =

1

n

∑
i:Ti=1

ϕ (Xi) , (3)

where ϕ (·) : X → Rp is pre-specified transformation.
Then, they estimate the ATT by∑

i:Ti=1

1

n1
Yi −

∑
i:Ti=0

1

n1

πβ̂(Xi)

1− πβ̂(Xi)
Yi,

where β̂ is the solution of the equation (3). Especially,
letting ϕ (X) = X ensures that the first moment of each
covariate is balanced even when the propensity score model
is misspecified. Thus, the corresponding ATT estimator is
unbiased as long as the true outcome regression model is
linear (see Appendix F.1 for the proof). Detailed procedures
of CBPS and the extensions can be found in Imai & Ratkovic
(2014).
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Entropy Balancing (EB) Hainmueller (2012) proposes
to maximize the entropy of the weights w while matching
the moments of the two groups. They solve

minimize
w

∑
i:Ti=0

wi logwi

subject to
∑

i:Ti=0

wiϕ (Xi) =
1

n1

∑
i:Ti=1

ϕ (Xi) ,∑
i:Ti=0

wi = 1, wi > 0,

where w = (w1, . . . , wn)
⊤ and ϕ (·) : X → Rp is a pre-

specified transformation. Then, they estimate the ATT by

∑
i:Ti=1

Yi

n1
−
∑

i:Ti=0

wiYi.

Note that wi play a similar role to π(Xi)
1−π(Xi)

in (2) for CBPS

and π̂(Xi)
(1−π̂(Xi))

of the IPW estimator. That is, instead of
estimating the propensity score, EB estimates the weight
that satisfies the balancing condition like (3). When there
are multiple solutions satisfying the balancing condition,
EB chooses one which minimizes the entropy.

Later, Zhao & Percival (2017) proves that EB is doubly
robust in the sense that the estimator is consistent if the
true outcome regression model or the logit of the propensity
score is a linear function of ϕ (X). The estimator, however,
is not consistent when neither of these two models is linear.

3. Bias and IPM for the weighted estimator
In this section, we link the bias of the weighted estimator
of the ATT to the IPM between the two weighted empirical
distributions. We define

W+ :=

{
w = (w1, . . . , wn)

⊤ ∈ [0, 1]n :

∑
i:Ti=0

wi = 1,
∑

i:Ti=1

wi = 0

}
,

and we only consider the weighted estimator withw ∈ W+.

3.1. Balancing error of the weighted estimator

As discussed in Ben-Michael et al. (2021), the error of
ÂTT

w
can be decomposed as

ÂTT
w
−ATT = errwbal +errwobs +(SATT−ATT), (4)

where errwbal and errwobs are the balancing and observation
errors, respectively which are defined as

errwbal =
∑

i:Ti=1

m0(Xi)

n1
−
∑

i:Ti=0

wim0(Xi),

errwobs =
∑

i:Ti=1

Yi −m1(Xi)

n1
−
∑

i:Ti=0

wi(Yi −m0(Xi)).

See Appendix F.2 for the derivation of (4). The observation
error is an inevitable error due to the randomness in Y , and is
unbiased in the sense that E(errwobs) = 0 for any w ∈ W+.
Moreover, it can be shown that errwobs → 0 holds as n→∞
under mild regularity conditions (e.g.

∑n
i=1 w

2
i → 0). See

(A.11) of the Appendix for the proof.

Hence, we focus on finding the weights that minimize the
balancing error. The balancing error arises due to the co-
variate imbalance between the treated and weighted control
units. Note that the balancing error is independent of the
randomness of Y . Thus, if w balances the two covariate
distributions perfectly, i.e.,∑

i:Ti=1

1

n
δXi

(·) =
∑

i:Ti=0

wiδXi
(·),

where δx(·) is the Dirac delta, then the balancing error
becomes zero regardless of what the m0 is.

Note that CBPS and EB target to balance the first moments
of ϕ(X) (i.e., usingw which satisfies

∑
i:Ti=1

1
n1
ϕ(X)i =∑

i:Ti=0 wiϕ(X)i). Thus, balancing them guarantees the
balancing error being zero only when m0(·) is a linear com-
bination of ϕ(·). The knowledge about ϕ, however, is rarely
available in practice.

3.2. The IPM as the worst-case balancing error

Let

P0,n(·) =
1

n0

∑
i:Ti=0

δXi(·),

P1,n(·) =
1

n1

∑
i:Ti=1

δXi
(·)

be the empirical distributions of X conditioned on T = 0
and T = 1, respectively. For w = (w1, . . . , wn)

⊤ ∈ W+,
the weighted empirical distribution Pw0,n ofX in the control
units is defined as

Pw0,n(·) =
∑

i:Ti=0

wiδXi(·).

Although detailed procedures are different, the ultimate
goal of the weighting methods is to find a good w such that
Pw0,n ≈ P1,n.
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The main idea of our proposed methods is to use the IPM
between Pw0,n and P1,n for a measure of covariate imbal-
ance. For a given classM of discriminators (i.e. functions
fromX to R), the IPM dM(P1,P2) between two probability
measures P1 and P2 is defined as

dM(P1,P2) := sup
m∈M

∣∣∣∣∫
x∈X

m(x)(dP1 − dP2)

∣∣∣∣ .
WhenM includes all 1-Lipschitz functions1, the IPM be-
comes the well known Wasserstein distance (Kantorovich &
Rubinshtein, 1958).

Note that the IPM between Pw0,n and P1,n is given as

dM(Pw
0,n,P1,n) = sup

m∈M

∣∣∣∣∣∣
∑

i:Ti=0

wim(Xi)−
∑

i:Ti=1

m(Xi)

n1

∣∣∣∣∣∣ .
(5)

That is, dM(Pw0,n,P1,n) is equal to the absolute value of
the worst-case balancing error for the ATT when m0 ∈
M. Furthermore, since E(errwobs) = 0, (4) implies that
the bias of ÂTT

w
is upper bounded by dM(Pw0,n,P1,n).

This property of the IPM is summarized in the following
proposition.

Proposition 3.1. Suppose m0 ∈ M. Then, for any w ∈
W+, we have∣∣∣E(ÂTTw − SATT |X1, . . . ,Xn

)∣∣∣ ≤dM(Pw0,n,P1,n).

4. Covariate balancing using the IPM
In this section, we propose two methods for covariate balanc-
ing using the IPM (CBIPM). The basic idea of the CBIPM
is to estimate w by

ŵ = argmin
w∈W

dM(Pw0,n,P1,n), (6)

whereW ⊆W+ is the pre-specified set of weight vectors
andM is the set of discriminators. We consider the two
CBIPM - parametric CBIPM and nonparametric CBIPM
which differ in the choice ofW andM.

4.1. Parametric CBIPM

If we have information that the propensity score belongs to
some specified parametric family, we can use parametric
space forW . Assume

logit(π(·)) = c0 + f( · ;θ0)
1A given function m on X is a L-Lipschitz function if

|m(x1)−m(x2)| ≤ L∥x1−x2∥ for all x1,x2 ∈ X , where ∥ ·∥
is certain norm defined on X .

holds for unknown c0 ∈ R and θ0 ∈ Θ, where Θ is a
compact set of Rk for k ∈ N and f( · ;θ) is a function
parameterized by θ ∈ Θ. For the identifiability of the pa-
rameters, we assume f(0;θ) = 0 for every θ ∈ Θ. In this
case, we consider

WP (f) :=
{
wf (θ ;D(n)) : θ ∈ Θ

}
,

wherewf ( · ;D(n)) : Θ→W+ is an n-dimensional vector
function defined as

wf (θ;D(n))i :=
I(Ti = 0) exp(f(Xi;θ))∑

i:Ti=0 exp(f(Xi;θ))
, i ∈ [n].

Note that wf (θ0;D(n)) is equivalent to the SIPW weights
with the true propensity score. In other words, W(f) in-
cludes the ideal weight. Finally, the parametric CBIPM
method (P-CBIPM) solves

ŵ = argmin
w∈WP (f)

dM(Pw0,n,P1,n), (7)

and estimates the ATT using (1).

The consistency of the ATT estimator of the parametric
CBIPM is proved in Theorem 4.1 under the following very
mild regularity conditions when the parametric model is
correctly specified.

Assumption A.1. For every x ∈ X , θ 7→ f(x;θ) is con-
tinuous.

Assumption A.2. f( · ;θ1) ≡ f( · ;θ2) if and only if
θ1 = θ2

Assumption B.1. For any ϵ > 0, N[ ](M, || · ||1,P, ϵ) <∞.

Assumption B.2. dM(P1,P2) = 0 if and only if P1 ≡ P2.

Assumptions A.1 and A.2 are about f( · ;θ), while Assump-
tions B.1 and B.2 are aboutM. Assumption A.1 is made for
technical purposes and Assumption A.2 is needed for the
identifiability, both of which are minimal. While Assump-
tion B.1 is a standard assumption for consistency, Assump-
tion B.2 implies that the set of discriminators can be quite
small. For example,M = {exp(θ⊤x) : θ ∈ [−τ, τ ]d} for
some τ > 0 satisfies B.2 because of the uniqueness of the
moment generating function.

Theorem 4.1. Assume there exist unknown c0 ∈ R and
θ0 ∈ Θ such that

logit(π(·)) = c0 + fθ0(·).

If Assumptions A.1, A.2, B.1 and B.2 hold, then for ŵ defined
by (7),

ÂTT
ŵ
→ ATT .

in probability.
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Comparison with CBPS Note that the weight parame-
terizations of the P-CBIPM and CBPS are identical since
f( · ;θ) in the P-CBIPM plays exactly the same role as
logit(πθ̂(·)) of CBPS. However, CBPS focuses matching
the first moments, while the quantities to be balanced by
the P-CBIPM depend onM. If we chooseM as the set of
linear functions, then the P-CBIPM is identical to CBPS.
That is, CBPS can be considered as a special case of the
P-CBIPM. More details about equivalence are provided in
Appendix F.3.

4.2. Nonparametric CBIPM

For the nonparametric CBIPM (N-CBIPM), we consider

WN (B) :=
{
w ∈ W+ : max

i∈[n]
wi ≤

B

n0

}
,

asW, where B > 0 is a sufficiently large number such that
1/η2 ≤ B. Then, we solve

ŵ = argmin
w∈WN (B)

dM(Pw0,n,P1,n), (8)

and estimate the ATT by (1).

As expected, we need a stronger assumption aboutM than
Assumption B.2 for the consistency of the ATT estimator,
which is stated as follows.

Definition 4.1. For two classesM1 andM2 of discrim-
inators, dM1(·, ·) ≲ dM2(·, ·) if and only if there exists
an increasing function ξ : [0,∞) → [0,∞) such that
limr↓0 ξ(r) = 0 and dM1

(P1,P2) ≤ ξ(dM2
(P1,P2)) for

any two probability measures P1 and P2.

Assumption B.3. (M dominatesM0) There exists a class
M0 of outcome regression models including m0(·) such
that dM0

(·, ·) ≲ dM(·, ·).

Assumption B.3 provides us a guide for choosingM. Sim-
ply, we can chooseM⊃M0 because dM0

(·, ·) ≲ dM(·, ·)
always holds. There exists, however, an interesting example
of M such that M is fairly small (e.g. M ⊂ M0) but
dominates a fairly largeM0. The sigmoid IPM (Kim et al.,
2022) is such an example. See Section 4.3 for details.

Theorem 4.2. ConsiderM which satisfies Assumptions B.1
and B.3. Then for ŵ defined by (8),

ÂTT
ŵ
→ ATT .

in probability.

4.3. Choice of the set of discriminators in the N-CBIPM

Wassesterin distance LetML1
be the set of all bounded

1-Lipschitz functions. i.e.,

ML1 := {m(·) : X → R, ||m||L ≤ 1, ||m||∞ ≤ Bm}.

Note that dML1
(·, ·) is the Wassesterin distance, which is

widely used in machine learning society. In practice, we
approximate 1-Lipschitz functions by deep neural networks
(DNN) as it is done by Arjovsky et al. (2017) and Gulrajani
et al. (2017). Details of the N-CBIPM method with the
Wassesterin distance are given in Appendix C for reader’s
sake.

Maximum Mean Discrepancy Let kγ : Rd × Rd → R
be radial basis function (RBF) kernel with the width γ and
(Hγ(X ), || · ||Hγ(X )) be RKHS corresponding to kγ . For

Mkγ ,B = {f ∈ Hγ(X ) : ||f ||Hγ(X ) ≤ B},

Maximum Mean Discrepancy (MMD) is defined by
dMkγ,B

(·, ·) (Gretton et al., 2012). The advantage of MMD
is that we can calculate dMkγ,B

(Pw0,n,P1,n) as a closed
form and thus the corresponding optimization algorithm
becomes lighter and simpler.

Sigmoid IPM Kim et al. (2022) studies the set of para-
metric discriminators, so-called the sigmoid-IPM (SIPM),
which is defined as

Msig := {σ(ρ⊤x+ µ) : ρ ∈ Rd, µ ∈ R},

where σ(·) = (1 + exp(·))−1 is the sigmoid function. An
interesting property ofMsig is that it dominates fairly large
classes of discriminators even it is parametric. For example,
Msig dominates MC∞,K with ξ(r) = r and Fa,C with
ξ(r) = r1/3, where

MC∞,K :=
{
f : X → R : ∀r ∈ Nd

0,

||Drf ||∞ ≤
√
r!K |r|1

}
,

for positive constant K and

Fa,C =

{
f :

∫
|f̃(z)|dz ≤ a,

∫
∥z∥1|f̃(z)|dz ≤ C

}
,

for positive constants a and C, where f̃(z) =∫
e−iz⊤xf(x)dx. Note that the function classMC∞,B is

large enough to include certain function spaces popularly
used in modern machine learning algorithms, such as RKHS
with RBF kernel. Thus, we expect that MMD behaves sim-
ilarly to the SIPM. On the other hand, Fa,C is the set of
functions approximated by single-layer neural networks
(Yukich et al., 1995), which is quite large. For examples of
function classes beloning to Fa,C , see Barron (1993).

Remark These threeML1
,Mkγ ,B andMsig satisfy As-

sumption B.1. See Gottlieb et al. (2016), Sancetta (2020)
and Gao & Wellner (2007) for the proofs.

6



Covariate balancing using the integral probability metric

4.4. Computation algorithm

We solve the min-max optimization problem (6) via the
adversarial training algorithm. Suppose that W and M
are parameterized by θ ∈ Θ and ψ ∈ Ψ, respectively.
For example, we can let θ = (θ1, . . . , θn)

⊤ with w(θ)i ∝
exp(θi)I(Ti = 0) for the N-CBIPM. Then, we update the
discriminator m(·;ψ) (used in the IPM) and w(θ) itera-
tively using the gradient ascent and descent algorithms. A
pseudo-code for the CBIPM methods is described in Algo-
rithm 1.

Algorithm 1 Proposed algorithm for the ATT
1: for t = 1, · · · , T do
2: for t′ = 1, · · · , Tadv do
3: Calculate Ladv(θ,ψ)
4: ψ ← ψ + lradv · ∇ψLadv(θ,ψ)
5: end for
6: Calculate L(θ,ψ)
7: θ ← θ − lr · ∇θL(θ,ψ)
8: end for
9: Return

∑
i:Ti=1 Yi/n1 −

∑
i:Ti=0 w(θ)iYi

The two loss functions Ladv and L are modifications of

ℓn(θ,ψ) :=

∣∣∣∣∣ ∑
i:Ti=1

m(Xi;ψ)

n1
−
∑

i:Ti=0

w(θ)i m(Xi;ψ)

∣∣∣∣∣
2

,

where the modifications depend on the choiceM. For ex-
ample, there is a closed-form solution for updating ψ in
MMD and thus only θ is updated. For the SIPM, we pro-
pose to use an ensemble technique to avoid the phenomenon
of mode collapse (Salimans et al., 2016; Che et al., 2019).
The detailed explanations of the algorithms for each IPM
are given in Appendix C. We use the square of the IPM to
make the loss function smooth.

5. Experiments
We illustrate the superiority of the CBIPM to existing base-
lines by analyzing simulated and real datasets. For the
baselines, we consider the SIPW with the linear logistic
regression (GLM), the SIPW with the boosting (Boost) used
by Lee et al. (2010), the SIPW with the CBPS with the
linear logistic regression (Imai & Ratkovic, 2014) and the
EB of Hainmueller (2012). For CBPS and EB, we match
the first moments of X (i.e. ϕ(x) = x). For the CBIPM,
we use the three discriminators considered in Section 4.3,
and the linear logistic regression is used for the P-CBIPM.

In Section 5.1 and 5.2, we present the experimental results
using simulation and real datasets respectively. Experimen-
tal results using other simulation settings are shown in Ap-
pendix E.1. See Appendix E.2 for the experiment results

using the semi-synthetic datasets. The code is available at
https://github.com/ggong369/CBIPM.

5.1. Simulation

We generate simulated datasets using the Kang-Schafer ex-
ample (Kang & Schafer, 2007). For each unit i = 1, . . . , n,
latent variables Zi = (Zi1, Zi2, Zi3, Zi4)

⊤ are indepen-
dently generated from N(0, I4). Instead of Zi, only its
nonlinear transformationsXi = (Xi1, Xi2, Xi3, Xi4)

⊤ are
observed, which are given as

Xi1 = exp(Zi1/2),

Xi2 = Zi1/(1 + exp(Zi1)) + 10,

Xi3 = (Zi1Zi3/25 + 0.6)3,

Xi4 = (Zi2 + Zi4 + 20)2.

Outcomes are generated from

Yi = 210 + 27.4Zi1 + 13.7Zi2 + 13.7Zi3 + 13.7Zi4 + ϵi,

where ϵi ∼ N(0, 1). Note that the outcome regression
models are nonlinear in X and that ATT = 0 since
m0(·) = m1(·).

For the true propensity score, we consider the linear and
the nonlinear functions of X . Specifically, for the linear
propensity score model, we generate the binary treatment
indicators Ti ∈ {0, 1} from

P(T = 1|Xi) = σ(Xi1 − 0.5Xi2 − 2Xi3 − 0.01Xi4).

Also, for the nonlinear propensity score model, we use the
model in the original Kang-Schafer example. That is, we
generate the binary treatment indicators Ti ∈ {0, 1} from

P(T = 1|Zi) = σ(−Zi1 + 0.5Zi2 − 0.25Zi3 − 0.1Zi4).

The results based on 1000 simulated datasets are presented
in Table 1. When logit(π(·)) is linear, GLM tends to have
small biases, but it is unstable to have large RMSEs. In
contrast, the parametric weighting methods such as CBPS,
EB, and the P-CBIPM have large biases but much smaller
RMSEs compared to those of GLM.

The results of the N-CBIPMs with the SIPM and MMD are
much better than those of the parametric weighting methods,
which is surprising results since the parametric model is
well specified. That is, the variance dominates the bias
in the estimation of the inverse of the propensity score.
The superiority of the N-CBIPM is more prominent when
logit(π(·)) is nonlinear. For every n, the N-CBIPMs with
the SIPM and MMD outperform the other methods with
large margins in terms of both the bias and RMSE.
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Table 1. Kang-Schafer example with the linear/nonlinear propensity scores. We generate 1000 simulations and report the bias and
RMSE as the performance measures. For each pair of dataset and performance measure (i.e. for each row), the two best results are marked
by bold letters.

logit(π(·)) Measure n
Existing methods P-CBIPM N-CBIPM

GLM Boost CBPS EB Wass MMD SIPM Wass MMD SIPM

Linear
Bias

200 0.617 1.448 -0.843 -0.877 -0.856 -0.607 -0.423 -1.040 0.346 -0.576
1000 -0.059 0.932 -0.333 -0.318 -0.319 -0.191 -0.169 -1.059 0.415 0.042

RMSE
200 4.026 3.935 3.018 3.020 3.029 2.932 2.842 2.876 2.615 2.715

1000 2.838 1.586 1.433 1.433 1.457 1.395 1.299 1.563 1.097 1.147

Nonlinear
Bias

200 -7.233 -8.375 -4.745 -4.806 -5.015 -4.949 -5.086 -3.945 -3.162 -3.569
1000 -7.295 -6.489 -4.496 -4.494 -4.698 -4.548 -4.690 -3.608 -2.844 -2.733

RMSE
200 8.275 9.204 5.354 5.395 5.681 5.562 5.697 4.632 4.356 4.491

1000 7.514 6.665 4.620 4.618 4.887 4.700 4.826 3.761 3.020 2.973

Figure 1. Comparison of the QQ plots: For the four input vari-
ables, we draw the QQ plots of the four weighting methods be-
tween the weighted empirical distributions of the treated and the
control groups.

5.2. Real dataset

The Tennessee Student/Teacher Achievement Ratio experi-
ment (STAR) is a 4-year longitudinal class-size study con-
ducted by the State Department of Education to measure
the influence of class size on student achievement tests
and non-achievement measures (Achilles et al., 2008). The
school-level STAR dataset2 was collected in 1998 including
the contents such as school demographic variables, school
graduation rate, credits required for graduation, advanced
course offerings, and so on. We analyze the STAR dataset
to figure out how the covariance balancing is achieved by
the weighting methods.

We use the six variables for X : school urbanicity
(SCHLURBN), student enrollment (ENRLMENT), the esti-
mated number of students in senior year (SENIORS), per-

2https://doi.org/10.7910/DVN/SIWH9F

cent of students minority (MNRTYPCT), percent of students
receiving free/reduced lunch (FRLCHPCT), and percent
of 9th-grade students in 94-95 who did not graduate (NO-
GRDPCT), and use whether the Math IV course is offered
(MATH4) or not for the treatment indicator. To see how
well the estimated weights achieve covariate balancing, we
investigate the QQ plot between the marginal empirical dis-
tribution of the treated group and the marginal weighted em-
pirical distribution of the control group for the four continu-
ous input variables (ENRLMENT, SENIORS, MNRTYPCT,
FRLCHPCT). Figure 1 compares the QQ plots for the four
weighting methods including the equal weighting (Eq.w),
GLM, CBPS, and the N-CBIPM with MMD (N-CBIPM).
Note that the points of the QQ plot lines on the 45◦ straight
line if and only if the two distributions are exactly the same
(Marden, 2004). The four weighting methods improve co-
variate balancing much compared to equal weighting, and
the N-CBIPM performs better in particular for the SENIORS.
See Appendix E.4 for the results of the hypothesis testing
for the equality of the two distributions.

6. Estimation of the ATE
The CBIPM can be modified easily for estimating the ATE.
Let

Pn(·) =
1

n

n∑
i=1

δXi
(·)

be the empirical distribution ofX. Then, we search for the
weights of the control group as well as the weights for the
treated group such that both of the two weighted empirical
distributions are similar to Pn. See Appendix B for details.

7. Discussions
We have seen that the N-CBIPM dominates the other com-
petitors. An important advantage of the N-CBIPM is that
the ATT (and the ATE) estimator is consistent even without
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correctly specifying either the propensity score model or
the outcome regression model. Moreover, surprisingly, the
N-CBIPM outperforms the parametric weighting methods
even when the parametric model is correctly specified. For
the ATE, it is well known that the IPW estimator with an
estimated propensity score is better than that with the true es-
timated propensity score (Lunceford & Davidian, 2004). A
similar argument could be applied to explain the superiority
of the N-CBIPM.

The estimated weights by the N-CBIPM can be used for
estimating the CATE or ITE. For example, the weighted
empirical risk can be minimized to estimate the outcome
regression models in the T-learner (Künzel et al., 2019). We
believe that the weighted T-learner has several advantages
over the T-learner, which we leave as a future research topic.
Similar modifications would be also possible for the S-, X-
and R- learners (Künzel et al., 2019; Nie & Wager, 2021).

The convergence rate of the N-CBIPM estimator is also
interesting. The choice ofM and corresponding ξ(·) would
affect the convergence rate. More studies on this problem
are worth pursuing.
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A. Proofs for theoretical results
Proof for Proposition 3.1

Proof. Since (5), ∣∣∣E(ÂTTw − SATT
∣∣∣X1, . . . ,Xn

)∣∣∣ = |E(errwbal |X1, . . . ,Xn)|

≤dM(Pw0,n,P1,n)

by (4).

For simplicity, we denote fθ(·) := f(·;θ) for the proof.

Lemma A.1. Let P0 and P1 be the probability measures ofX conditioned on T = 0 and T = 1, respectively. For given
θ ∈ Θ, denote

dPθ0(x) :=
exp(fθ(x))dP0(x)∫

x∈X exp(fθ(x))dP0(x)

as the weighted probability measure for the control group. If Θ ⊂ Rk is compact and Assumption A.1, A.2 and B.2 hold,
then for any ϵ > 0,

inf
|θ−θ0|≥ϵ

dM(Pθ0 ,P1) > 0. (A.1)

Proof. We denote E0(·) as the expectation operator with respect to P0. For any x ∈ X , since exp(c0 + fθ0(x)) =
π(x)(1− π(x))−1, we obtain

dPθ00 (x) =
exp(fθ0(x))dP0(x)∫

x∈X exp(fθ0(x))dP0(x)

=
exp(c0 + fθ0(x))dP0(x)∫

x∈X exp(c0 + fθ0(x))dP0(x)

=
π(x)(1− π(x))−1dP0(x)∫

x∈X π(x)(1− π(x))−1dP0(x)

=
dP1(x)P(T = 1)/P(T = 0)

(
∫
x∈X dP1(x))P(T = 1)/P(T = 0)

=dP1(x). (A.2)

If Pθ0 ≡ P1 holds for some θ ∈ Θ, then

exp(fθ(·))
E0(exp(fθ(X)))

≡ exp(fθ0(·))
E0(exp(fθ0(X)))

,

and thus we get fθ ≡ fθ0 since fθ(0) = fθ0(0) = 0. Hence, by Assumption A.2, θ = θ0.

To sum up, for any θ ̸= θ0, dM(Pθ0 ,P1) > 0 by Assumption B.2. Since {θ ∈ Θ : |θ − θ0| ≥ ϵ} is compact and
θ 7→ dM(Pθ0 ,P1) is continuous by Assumption A.1, we obtain (A.1).

Lemma A.2 (Lemma 3.1 of van de Geer (2000)). Let F be a set of functions from X to R, and Pn = 1
n

∑n
i=1 δXi

. If for
any ϵ > 0, N[ ](F , L1(P), ϵ) <∞, then

sup
f∈F

∣∣∣∣∫
x

f(x)(dPn(x)− dP(x))

∣∣∣∣→ 0.
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Proof for Theorem 4.1

Proof. For given θ ∈ Θ, denote

dPθ0(x) :=
exp(fθ(x))dP0(x)∫
x
exp(fθ(x))dP0(x)

as the weighted probability measure for the control group. Also, we deonote Pθ0,n := P
wf (θ ;D(n))
0,n and wθ =

(wθ1 , . . . , w
θ
n)

⊤ := wf (θ ;D(n)). For any given ϵ > 0, there exists δ > 0 by Lemma A.1 such that

inf
|θ−θ0|≥ϵ

dM(Pθ0 ,P1) = δ > 0.

Note that solving (7) is identical to solving

θ̂n := argmin
θ∈Θ

dM(P
wf (θ ;D(n))
0,n ,P1,n).

We will show that θ̂n converges to θ0. Since dM(Pθ̂n0,n,P1,n) ≤ dM(Pθ00,n,P1,n) by the definition of θ̂n, we get

Pθ0

(
|θ̂n − θ0| ≥ ϵ

)
≤Pθ0

(
inf

|θ−θ0|≥ϵ

(
dM(Pθ0,n,P1,n)− dM(Pθ00,n,P1,n)

)
≤ 0

)
≤Pθ0

(
inf

|θ−θ0|≥ϵ

(
dM(Pθ0,n,P1,n)− dM(Pθ00,n,P1,n)

)
− inf

|θ−θ0|≥ϵ
dM(Pθ0 ,P1) < −

δ

2

)
≤Pθ0

(
inf

|θ−θ0|≥ϵ

(
dM(Pθ0,n,P1,n)− dM(Pθ00,n,P1,n)− dM(Pθ0 ,P1)

)
< −δ

2

)
≤Pθ0

(
sup
θ∈Θ

∣∣dM(Pθ0,n,P1,n)− dM(Pθ0 ,P1)
∣∣ > δ

4

)
, (A.3)

where the last inequality holds because dM(Pθ00 ,P1) = 0 by (A.2). Since∣∣dM(Pθ0,n,P1,n)− dM(Pθ0 ,P1)
∣∣

=

∣∣∣∣∣ supm∈M

∣∣∣ ∑
i:Ti=0

wθi m(Xi)−
1

n1

∑
i:Ti=1

m(Xi)
∣∣∣− sup

m∈M

∣∣∣ ∫
x

m(x)dPθ0(x)−
∫
x

m(x)dP1(x)
∣∣∣∣∣∣∣∣

≤ sup
m∈M

∣∣∣ ∑
i:Ti=0

wθi m(Xi)−
∫
x

m(x)dPθ0(x)
∣∣∣+ sup

m∈M

∣∣∣ 1
n1

∑
i:Ti=1

m(Xi)−
∫
x

m(x)dP1(x)
∣∣∣,

we obtain

Pθ0

(
sup
θ∈Θ

∣∣dM(Pθ0,n,P1,n)− dM(Pθ0 ,P1)
∣∣ > δ

4

)
≤Pθ0

(
sup
θ∈Θ

sup
m∈M

∣∣∣ ∑
i:Ti=0

wθi m(Xi)−
∫
x

m(x)dPθ0(x)
∣∣∣ > δ

8

)
(A.4)

+Pθ0

(
sup
m∈M

∣∣∣ 1
n1

∑
i:Ti=1

m(Xi)−
∫
x

m(x)dP1(x)
∣∣∣ > δ

8

)
.

(A.5)

Since

sup
θ∈Θ,m∈M

∣∣∣∣∣ 1n0

∑
i:Ti=0

fθ(Xi)m(Xi)−
∫
x

fθ(x)m(x)dP0(x)

∣∣∣∣∣→ 0,

and

sup
θ∈Θ

∣∣∣∣∣ 1n0

∑
i:Ti=0

fθ(Xi)−
∫
x

fθ(x)dP0(x)

∣∣∣∣∣→ 0
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hold by Assumption B.1 and Lemma A.2, we get

sup
θ∈Θ,m∈M

∣∣∣∣∣ ∑
i:Ti=0

wθi m(Xi)−
∫
x

m(x)dF θ0 (x)

∣∣∣∣∣ = sup
θ∈Θ,m∈M

∣∣∣∣∣
∑

i:Ti=0 fθ(Xi)m(Xi)∑
i:Ti=0 fθ(Xi)

−
∫
x
fθ(x)m(x)dP0(x)∫
x
fθ(x)dP0(x)

∣∣∣∣∣
≤ sup
θ∈Θ,m∈M

∣∣∣∣∣
1
n0

∑
i:Ti=0 fθ(Xi)m(Xi)

1
n0

∑
i:Ti=0 fθ(Xi)

−
∫
x
fθ(x)m(x)dP0(x)
1
n0

∑
i:Ti=0 fθ(Xi)

∣∣∣∣∣
+ sup
θ∈Θ,m∈M

∣∣∣∣∣
∫
x
fθ(x)m(x)dP0(x)
1
n0

∑
i:Ti=0 fθ(Xi)

−
∫
x
fθ(x)m(x)dP0(x)∫
x
fθ(x)dP0(x)

∣∣∣∣∣
→0,

and hence (A.4) converges to 0. Also, (A.5) converges to 0 by Lemma A.2. To sum up, (A.3) converges to 0, which implies
that θ̂n converges to θ0 in probability. Hence, by Assumption A.1, we have

ÂTT
ŵ

=
∑

i:Ti=1

Yi

n1
−
∑

i:Ti=0 exp(f(Xi; θ̂n))Yi∑
i:Ti=0 exp(f(Xi; θ̂n))

→E (Y (1)|T = 1)− E (Y (0)|T = 1)

=ATT .

Proof for Theorem 4.2

Proof. Let u(·) := π(·)
1−π(·) . For given Dn, we define w0 = (w0

1, . . . , w
0
n)

⊤ as

w0
i =

I(Ti = 0)u(Xi)∑
i:Ti=0 u(Xi)

, i ∈ [n].

Since
η <

η

1− η
≤ u(·) ≤ 1− η

η
<

1

η
,

w0 ∈ WN (B) holds. By definition of ŵ,

dM(Pŵ0,n,P1,n) ≤ dM(Pw
0

0,n,P1,n). (A.6)

For any m(·) ∈M, we have ∑
i:Ti=1

(
m(Xi)

n1

)
=

∑n
i=1 I(T = 1)m(Xi)∑n

i=1 I(T = 1)

=
1
n

∑n
i=1 I(T = 1)m(Xi)
1
n

∑n
i=1 I(T = 1)

→E(I(T = 1)m(X))

E(I(T = 1))

=E(m(X)|T = 1),

and hence

sup
m∈M

∣∣∣∣∣ ∑
i:Ti=1

m(Xi)

n1
− E(m(X)|T = 1)

∣∣∣∣∣→ 0 (A.7)

holds by Lemma A.2.

14
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Also, since

E(I(T = 0)u(X)m(X)) =E

(
E

(
I(T = 0)

π(X)

1− π(X)
m(X)

∣∣∣∣∣X
))

=E
(

π(X)

1− π(X)
m(X)E (I(T = 0)|X)

)
=E(I(T = 1)m(X)),

and

E(I(T = 0)u(X)) =E

(
E

(
I(T = 0)

π(X)

1− π(X)

∣∣∣∣∣X
))

=E
(

π(X)

1− π(X)
E (I(T = 0)|X)

)
=E(I(T = 1)),

we obtain ∑
i:Ti=0

w0
im(Xi) =

∑
i:Ti=0 u(Xi)m(Xi)∑

i:Ti=0 u(Xi)

=

∑n
i=1 I(T = 0)u(Xi)m(Xi)∑n

i=1 I(T = 0)u(Xi)

=
1
n

∑n
i=1 I(T = 0)u(Xi)m(Xi)
1
n

∑n
i=1 I(T = 0)u(Xi)

→E(I(T = 0)u(X)m(X))

E(I(T = 0)u(X))

=
E(I(T = 1)m(X))

E(I(T = 1))

=E(m(X)|T = 1).

Hence,

sup
m∈M

∣∣∣∣∣ ∑
i:Ti=0

w0
im(Xi)− E(m(X)|T = 1)

∣∣∣∣∣→ 0 (A.8)

holds by Lemma A.2.

To sum up,

dM(Pŵ0,n,P1,n) ≤dM(Pw
0

0,n,P1,n)

= sup
m∈M

∣∣∣∣∣ ∑
i:Ti=0

w0
im(Xi)−

∑
i:Ti=1

m(Xi)

n1

∣∣∣∣∣
→0

holds by (A.6), (A.7) and (A.8). Since dM0
(·, ·) ≲ dM(·, ·) by Assumption B.3, we obtain

errŵbal =
∑

i:Ti=1

m0(Xi)

n1
−
∑

i:Ti=0

ŵim0(Xi)

≤dM0(P
ŵ
0,n,P1,n)

≤ξ(dM(Pŵ0,n,P1,n))

→0. (A.9)
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Let C(n) = {(Xi, Ti)}ni=1. Since ŵi is a measurable function of C(n) for every i ∈ [n], we get

E

( ∑
i:Ti=1

Yi −m1(Xi)

n1
−
∑

i:Ti=0

ŵi(Yi −m0(Xi))

∣∣∣∣∣C(n)
)

= 0.

Also, since

max
i∈[n]

ŵi <
1

n0η2
,

we obtain

Var

( ∑
i:Ti=1

Yi −m1(Xi)

n1
−
∑

i:Ti=0

ŵn,i(Yi −m0(Xi))

∣∣∣∣∣C(n)
)

=
∑

i:Ti=1

Var

(
Yi(1)

n1

∣∣∣Xi

)
+
∑

i:Ti=0

Var
(
ŵiYi(0)

∣∣Xi

)
=
∑

i:Ti=1

Var (Yi(1)|Xi)

n2
1

+
∑

i:Ti=0

ŵ2
i Var

(
Yi(0)

∣∣Xi

)
≤ C

min(n0, n1)
.

for some constant C > 0. In addition, we have

E

( ∑
i:Ti=1

Yi −m1(Xi)

n1
−
∑

i:Ti=0

ŵ2
i (Yi −m0(Xi))

∣∣∣C(n)) = 0, (A.10)

and so

Var(errŵobs) =Var

( ∑
i:Ti=1

Yi −m1(Xi)

n1
−
∑

i:Ti=0

ŵi(Yi −m0(Xi))

)

=E

(
Var

( ∑
i:Ti=1

Yi −m1(Xi)

n1
−
∑

i:Ti=0

ŵi(Yi −m0(Xi))
∣∣∣C(n)))

+Var

(
E

( ∑
i:Ti=1

Yi −m1(Xi)

n1
−
∑

i:Ti=0

ŵi(Yi −m0(Xi))
∣∣∣C(n)))

→0,

which implies

errŵobs → 0 (A.11)

in probability because E
(
errŵobs

)
= 0 by (A.10). Now, by (A.9), (A.11) and the fact SATT → ATT in probability, we

conclude ÂTT
ŵ
→ ATT in probability.
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B. The CBIPM for the ATE
In this paper, we mainly focus on the ATT to write more concisely. However, all discussions about the ATT can be extended
to the ATE. In this section, we briefly analyze the ATE using the CBIPM.

B.1. Bias and the IPM for the ATE

In this section, we link the bias of the weighted estimator of the ATE to the IPM.

For t ∈ {0, 1}, we define

W+
t :=

{
w = (w1, . . . , wn)

⊤ ∈ [0, 1]n :
∑

i:Ti=t

wi = 1,
∑

i:Ti ̸=t

wi = 0

}

as the set of all possible n-dimensional weight vectors for the units {i : Ti = t}. The weighted estimator for the ATE using
w0 = (w0,1, . . . , w0,n)

⊤ ∈ W+
0 and w1 = (w1,1, . . . , w1,n)

⊤ ∈ W+
1 can be expressed as

ÂTE
w0,w1

=
∑

i:Ti=1

w1,iYi −
∑

i:Ti=0

w0,iYi. (B.1)

The error of ÂTE
w0,w1

can be decomposed as

ÂTE
w0,w1

−ATE = Erw0,w1

bal +Erw0,w1

obs +(SATE−ATE), (B.2)

where

Erw0,w1

bal =

(
n∑

i=1

m0(Xi)

n
−
∑

i:Ti=0

w0,im0(Xi)

)
−

(
n∑

i=1

m1(Xi)

n
−
∑

i:Ti=1

w1,im1(Xi)

)
,

and

Erw0,w1

obs =−
∑

i:Ti=0

w0,i(Yi −m0(Xi)) +
∑

i:Ti=1

w1,i(Yi −m1(Xi)).

Here, Erw0,w1

bal and Erw0,w1

obs are the balancing error observation errors of the ATE, which have similar properties with those
of the ATT. That is, Erw0,w1

bal arises due to covariate imbalance and Erw0,w1

obs is an inevitable error due to the randomness in
Y .

For wt = (wt,1, . . . , wt,n)
⊤ ∈ W+

t for t ∈ {0, 1}, we denote

Pwt
t,n =

∑
i:Ti=t

wt,iδXi ,

as the weighted empirical distribution ofX for control (or treated) units. Since

dM(Pwt
t,n,Pn) = sup

m(·)∈M

∣∣∣∣∣
n∑

i=1

m(Xi)

n
−
∑

i:Ti=t

wt,im(Xi)

∣∣∣∣∣ , (B.3)

dM(Pw0
0,n,Pn) + dM(Pw1

1,n,Pn) is an upper bound of the worst-case balancing error for the ATE when m0,m1 ∈M.

Furthermore, since E(Erw0,w1

obs ) = 0, (B.2) implies that the bias of ÂTE
w0,w1

is upper bounded by dM(Pw0
0,n,Pn) +

dM(Pw1
1,n,Pn).

Proposition B.1. If m0,m1 ∈M, then∣∣∣E(ÂTEw0,w1

− SATE |X1, . . . ,Xn)
∣∣∣ ≤ dM(Pw0

0,n,Pn) + dM(Pw1
1,n,Pn)

holds.
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Proof. Since (B.3), ∣∣∣E(ÂTEw0,w1

− SATE
∣∣∣X1, . . . ,Xn

)∣∣∣ = |E(Erw0,w1

bal |X1, . . . ,Xn)|

≤dM(Pw0
0,n,Pn) + dM(Pw1

1,n,Pn)

by (B.2).

B.2. The CBIPM for the ATE

The basic idea of the CBIPM for the ATE is to estimate w0 and w1 by

ŵ0 = argmin
w0∈W0

dM(Pw0
0,n,Pn),

ŵ1 = argmin
w1∈W1

dM(Pw1
1,n,Pn),

whereW0 ⊆ W+
0 andW1 ⊆ W+

1 are the pre-specified set of weight vectors andM is the set of discriminators.

Parametric CBIPM for ATE Assume
logit(π(·)) = c0 + f( · ;θ0)

holds for unknown c0 ∈ R and θ0 ∈ Θ, where Θ is a compact set of Rk for k ∈ N and f( · ;θ) is a function parameterized
by θ ∈ Θ. For the identifiability of the parameters, we assume f(0;θ) = 0 for every θ ∈ Θ. For t ∈ {0, 1}, we consider

WP
t (f) :=

{
wt,f (θ ;D(n)) : θ ∈ Θ

}
,

where w0,f ( · ;D(n)) : Θ→W+
0 and w1,f ( · ;D(n)) : Θ→W+

1 are n-dimensional vector functions defined as

w0,f (θ;D(n))(i) :=
1

n
+

n1

n

exp(f(Xi;θ))∑
i:Ti=0 exp(f(Xi;θ))

, i : Ti = 0,

w1,f (θ;D(n))(i) :=
1

n
+

n0

n

exp(−f(Xi;θ))∑
i:Ti=1 exp(−f(Xi;θ))

, i : Ti = 1.

Finally, the parametric CBIPM method (P-CBIPM) for the ATE solves

ŵt = argmin
wt∈WP

t (f)

dM(Pwt
t,n,Pn), (B.4)

for t ∈ {0, 1} and estimates the ATE using (B.1).

For simplicity, we denote fθ(·) := f(·;θ) for the proof .

Lemma B.2. For given θ ∈ Θ, denote

dPθ0(x) :=

(
P(T = 0) +P(T = 1)

exp(fθ(x))∫
x∈X exp(fθ(x))dP0(x)

)
dP0(x),

dPθ1(x) :=

(
P(T = 1) +P(T = 0)

exp(−fθ(x))∫
x∈X exp(−fθ(x))dP1(x)

)
dP1(x)

as the weighted probability measure for the control and treated group. If Θ ⊂ Rk is compact and Assumption A.1, A.2 and
B.2 hold, then for t ∈ {0, 1} and any ϵ > 0,

inf
|θ−θ0|≥ϵ

dM(Pθt ,P) > 0. (B.5)
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Proof. For any x ∈ X , we obtain

dPθ00 (x) =P(T = 0)dP0(x) +P(T = 1)
exp(fθ0(x))dP0(x)∫

x∈X exp(fθ0(x))dP0(x)

=P(T = 0)dP0(x) +P(T = 1)dP1(x)

=dP(x), (B.6)

and

dPθ01 (x) = dP(x).

If Pθ0 ≡ P holds for some θ ∈ Θ, then

exp(fθ(·))
E0(exp(fθ(X)))

≡ exp(fθ0(·))
E0(exp(fθ0(X)))

,

and thus we get fθ ≡ fθ0 since fθ(0) = fθ0(0) = 0. Hence, by Assumption A.2, θ = θ0. Similarly, Pθ1 ≡ P if and only
if θ = θ0.

To sum up, for any θ ̸= θ0, dM(Pθt ,P) > 0 by Assumption B.2. Since {θ ∈ Θ : |θ − θ0| ≥ ϵ} is compact and
θ 7→ dM(Pθt ,P) is continuous by Assumption A.1, we obtain (B.5).

Theorem B.3. Assume there exist unknown c0 ∈ R and θ0 ∈ Θ such that

logit(π(·)) = c0 + fθ0(·).

If Assumptions A.1, A.2, B.1 and B.2 hold, then for ŵ0 and ŵ1 defined by (B.4),

ÂTE
ŵ0,ŵ1

→ ATE .

in probability.

Proof. For given θ ∈ Θ, denote

dPθ0(x) :=

(
P(T = 0) +P(T = 1)

exp(fθ(x))∫
x∈X exp(fθ(x))dP0(x)

)
dP0(x),

dPθ1(x) :=

(
P(T = 1) +P(T = 0)

exp(−fθ(x))∫
x∈X exp(−fθ(x))dP1(x)

)
dP1(x)

as the weighted probability measure for the control and treated group. Also, we denote Pθt,n := P
wt,f (θ ;D(n))
t,n and

wθt = (wθt,1, . . . , w
θ
t,n)

⊤ := wt,f (θ ;D(n)) for t ∈ {0, 1}. For any given ϵ > 0, there exist δ > 0 by Lemma B.2 such that

inf
|θ−θ0|≥ϵ

dM(Pθ0 ,P) = δ > 0.

Note that for t ∈ {0, 1}, solving (B.4) is identical to solving

θ̂t,n := argmin
θ∈Θ

dM(P
wt,f (θ ;D(n))
t,n ,Pn).
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We will show that θ̂t,n converges to θ0. Since dM(P
θ̂t,n
t,n ,Pn) ≤ dM(Pθ0t,n,Pn) by the definition of θ̂t,n, we get

Pθ0

(
|θ̂t,n − θ0| ≥ ϵ

)
≤Pθ0

(
inf

|θ−θ0|≥ϵ

(
dM(Pθt,n,Pn)− dM(Pθ0t,n,Pn)

)
≤ 0

)
≤Pθ0

(
inf

|θ−θ0|≥ϵ

(
dM(Pθt,n,Pn)− dM(Pθ0t,n,Pn)

)
− inf

|θ−θ0|≥ϵ
dM(Pθt ,P) < −

δ

2

)
≤Pθ0

(
inf

|θ−θ0|≥ϵ

(
dM(Pθt,n,Pn)− dM(Pθ0t,n,Pn)− dM(Pθt ,P)

)
< −δ

2

)
≤Pθ0

(
sup
θ∈Θ

∣∣dM(Pθt,n,Pn)− dM(Pθt ,P)
∣∣ > δ

4

)
, (B.7)

where the last inequality holds because dM(Pθ0t ,P1) = 0 by (B.6). Since∣∣dM(Pθt,n,Pn)− dM(Pθt ,P)
∣∣

= sup
m∈M

∣∣∣ ∑
i:Ti=0

wθt,im(Xi)−
1

n

n∑
i=1

m(Xi)
∣∣∣ − sup

m∈M

∣∣∣ ∫
x

m(x)dPθt (x)−
∫
x

m(x)dP(x)
∣∣∣∣∣∣∣∣

≤ sup
m∈M

∣∣∣ ∑
i:Ti=0

wθt,im(Xi)−
∫
x

m(x)dPθt (x)
∣∣∣ + sup

m∈M

∣∣∣ 1
n

n∑
i=1

m(Xi)−
∫
x

m(x)dP(x)
∣∣∣,

we obtain

Pθ0

(
sup
θ∈Θ

∣∣dM(Pθt,n,Pn)− dM(Pθt ,P)
∣∣ > δ

4

)
≤Pθ0

(
sup
θ∈Θ

sup
m∈M

∣∣∣ ∑
i:Ti=0

wθt,im(Xi)−
∫
x

m(x)dPθt (x)
∣∣∣ > δ

8

)

+Pθ0

(
sup
m∈M

∣∣∣ 1
n

n∑
i=1

m(Xi)−
∫
x

m(x)dP(x)
∣∣∣ > δ

8

)
→0

by Assumption B.1 and Lemma A.2.

To sum up, (B.7) converges to 0, which implies that θ̂t,n converges to θ0 in probability. Hence, by Assumption A.1, we
obtain

ÂTE
ŵ0,ŵ1

=
∑

i:Ti=1

(
1

n
+

n0

n

exp(−f(Xi; θ̂1,n))∑
i:Ti=1 exp(−f(Xi; θ̂1,n))

)
Yi −

∑
i:Ti=0

(
1

n
+

n1

n

exp(f(Xi; θ̂0,n))∑
i:Ti=0 exp(f(Xi; θ̂0,n))

)
Yi

→E (Y (1))− E (Y (0))

=ATE .

Nonparametric CBIPM for ATE We consider

WN
0 (B) :=

{
w0 ∈ W+

0 : max
i∈[n]

wi ≤
B

n0

}
,

WN
1 (B) :=

{
w1 ∈ W+

1 : max
i∈[n]

wi ≤
B

n1

}
,

where B > 0 is a sufficiently large number such that 1/η ≤ B. Then, we solve

ŵ0 = argmin
w0∈WN

0 (B)

dM(Pw0
0,n,Pn),

ŵ1 = argmin
w1∈WN

1 (B)

dM(Pw1
1,n,Pn),

(B.8)

and estimate the ATE by (B.1).
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Assumption B.4. (M dominatesM0) There exists a classM0 of outcome regression models including m0(·) and m1(·)
such that dM0(·, ·) ≲ dM(·, ·).
Theorem B.4. ConsiderM which satisfies Assumptions B.1 and B.4. Then for ŵ0 and ŵ1 defined by (B.8),

ÂTE
ŵ0,ŵ1

→ ATE .

in probability.

Proof. Let u0(·) := 1
1−π(·) and u1(·) := 1

π(·) . For given Dn and t ∈ {0, 1}, we define w0
t = (w0

t,1, . . . , w
0
t,n)

⊤ as

w0
t,i =

I(Ti = t)ut(Xi)∑
i:Ti=t ut(Xi)

, i ∈ [n].

Since

1 <
1

1− η
≤ ut(·) ≤

1

η
,

w0
t ∈ WN

t (B) holds. By definition of ŵt,

dM(Pŵt
t,n,Pn) ≤ dM(P

w0
t

t,n ,Pn). (B.9)

For any m(·) ∈M we have

sup
m∈M

∣∣∣∣∣
n∑

i=1

m(Xi)

n
− E(m(X))

∣∣∣∣∣→ 0 (B.10)

by Lemma A.2. Also, since

E(I(T = t)ut(X)m(X)) = E(m(X))

and

E(I(T = t)ut(X)) = 1,

we obtain ∑
i:Ti=t

w0
t,im(Xi) =

∑
i:Ti=t ut(Xi)m(Xi)∑

i:Ti=t ut(Xi)

=

∑n
i=1 I(T = t)ut(Xi)m(Xi)∑n

i=1 I(T = t)ut(Xi)

=
1
n

∑n
i=1 I(T = t)ut(Xi)m(Xi)
1
n

∑n
i=1 I(T = t)ut(Xi)

→E(I(T = t)ut(X)m(X))

E(I(T = t)ut(X))

=E(m(X)).

Hence,

sup
m∈M

∣∣∣∣∣ ∑
i:Ti=t

w0
t,im(Xi)− E(m(X))

∣∣∣∣∣→ 0 (B.11)

holds by Lemma A.2.
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To sum up, for t ∈ {0, 1},

dM(Pŵt,n,Pn) ≤dM(P
w0

t
t,n ,Pn)

= sup
m∈M

∣∣∣∣∣ ∑
i:Ti=0

w0
t,im(Xi)−

n∑
i=1

m(Xi)

n

∣∣∣∣∣
→0

holds by (B.9), (B.10) and (B.11). Since dM0(·, ·) ≲ dM(·, ·) by Assumption B.3, we obtain

Erŵ0,ŵ1

bal =

(
n∑

i=1

m0(Xi)

n
−
∑

i:Ti=0

ŵ0,im0(Xi)

)
−

(
n∑

i=1

m1(Xi)

n
−
∑

i:Ti=1

ŵ1,im1(Xi)

)
≤dM0(P

ŵ0
0,n,Pn) + dM0(P

ŵ1
1,n,Pn)

≤ξ(dM(Pŵ0
0,n,Pn)) + ξ(dM(Pŵ1

1,n,Pn))

→0. (B.12)

Let C(n) = {(Xi, Ti)}ni=1. Since ŵt,i is a measurable function of C(n) for every i ∈ [n] and t ∈ {0, 1}, we can easily show

Erŵ0,ŵ1

obs =−
∑

i:Ti=0

w0,i(Yi −m0(Xi)) +
∑

i:Ti=1

w1,i(Yi −m1(Xi))→ 0 (B.13)

in probability, by following the proof of (A.11). Now, by (B.12), (B.13) and the fact SATE → ATE in probability, we

conclude ÂTE
ŵ0,ŵ1

→ ATE in probability.

B.3. Experiments

Table 2. Kang-Schafer example with the linear/nonlinear propensity scores, for the ATE. We generate 1000 simulations and report
the bias and RMSE as the performance measures. For each pair of dataset and performance measure (i.e. for each row), the two best
results are marked by bold letters.

logit(π(·)) Measure n
Existing methods P-CBIPM N-CBIPM

GLM Boost CBPS Wass MMD SIPM Wass MMD SIPM

Linear
Bias

200 0.287 0.873 -0.108 -0.208 0.016 0.093 -0.222 0.638 -0.847
1000 -0.059 0.497 -0.069 -0.053 -0.011 -0.015 -0.409 0.448 -1.323

RMSE
200 3.387 3.037 2.885 2.793 2.635 2.652 2.622 2.548 2.934

1000 1.994 1.190 1.408 1.240 1.219 1.209 1.261 1.063 1.874

Nonlinear
Bias

200 -1.848 -10.624 -5.116 -4.934 -4.875 -4.929 -4.563 -2.568 -3.461
1000 1.606 -7.585 -6.012 -5.325 -5.261 -5.101 -4.707 -2.827 -3.737

RMSE
200 9.462 11.101 5.995 5.582 5.605 5.634 5.305 3.720 4.446

1000 11.079 7.680 6.268 5.531 5.447 5.263 4.874 3.026 4.028
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Table 2 presents the bias and RMSE for the ATE estimators. Generally, the results are similar to those for the ATT. An
exception is that the biases of GLM for the nonlinear propensity score are small, which we think occurs by chance since the
RMSEs are very large. In addition, we draw the boxplots of the estimated ATE values in Figure 2 as the compliments to the
results of Table 2.

(a) Linear logit(π(·)), n = 200 (b) Linear logit(π(·)), n = 1000

(c) Nonlinear logit(π(·)), n = 200 (d) Nonlinear logit(π(·)), n = 1000

Figure 2. Boxplots of the estimated ATE values on Kang-Schafer example. The boxplots are drawn based on the ATE estimates
obtained from 1000 simulated datasets for the Kang-Schafer example. X-axis and Y-axis represent the estimated ATE values and the
weighting methods, respectively.
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C. Experimental details
We use R (ver. 4.0.2), Python (ver. 3.6), and NVIDIA TITAN Xp GPUs to obtain the estimates of the ATT and the ATE.
Detailed settings for each method are as follows:

GLM We use linear logistic regression, where the regression coefficients are estimated by the MLE.

Boosted CART We follow the experimental setting in Lee et al. (2010). To be more specific, we use twang package
(Ridgeway et al., 2017), with 20,000 iterations and the shrinkage parameter of 0.0005, with the iteration stopping point that
minimizes the mean of the Kolmogorov-Smirnov test statistics.

CBPS CBPS is implemented using CBPS package (Fong et al., 2022) with the default parameters.

EB EB is implemented using EB package (Hainmueller & Hainmueller, 2022) with the default parameters.

The CBIPM with the Wassersterin distance We implement the CBIPM with the Wasserstein distance using techniques
suggested by Arjovsky et al. (2017) and Gulrajani et al. (2017). More specifically, we randomly sample x̃1, . . . , x̃R

uniformly from along straight lines between pairs of points sampled from treated and control groups. Then, on these samples,
we calculate the gradient of the discriminator with respect to its input and penalize the norm of the gradient to go towards 1.
Formula of Ladv(θ,ψ) and L(θ,ψ) for Algorithm 1 is as follow:

x(c)
r ∼ P0,n, x

(t)
r ∼ P1,n, ur ∼ U(0, 1), r ∈ [R],

x̃r := urx
(c)
r + (1− ur)x

(t)
r , r ∈ [R],

Ladv(θ,ψ) := ℓn(θ,ψ)−
τ

R

R∑
r=1

(||∇x̃rm(x̃r;ψ)||2 − 1)2,

L(θ,ψ) := ℓn(θ,ψ),

where m(·;ψ) is a neural network parameterized by ψ, and τ is regularization parameters. For both the P-CBIPM and the
N-CBIPM, we use a neural network with 100 hidden nodes with leaky relu. We use Adam (Kingma & Ba, 2014) optimizer
with lr = 0.03 and T = 1000 for gradient descent steps, and Adam optimizer with lradv = 0.3, Tadv = 5 for gradient ascent
steps. τ = 0.3 and R = 100 are used. For additional stability, we clip the weights and biases of m(·;ψ) to 0.1 after each
gradient ascent step.

The CBIPM with MMD RBF kernel kγ : Rd × Rd → R is defined as

kγ(x,x
′) = exp

(
−∥x− x

′∥22
γ2

)
.

For w = (w1, . . . , wn)
⊤ ∈ W+, dMkγ,B

(Pw0,n,P1,n)
2 is expressed as

dMkγ,B
(Pw0,n,P1,n)

2 =
∑

i:Ti=0

∑
j:Tj=0

wiwjkγ(Xi,Xj)− 2
∑

i:Ti=0

∑
j:Tj=1

wi

n1
kγ(Xi,Xj) +

∑
i:Ti=1

∑
j:Tj=1

1

n2
1

kγ(Xi,Xj).

In turn, formula of L(θ,ψ) for Algorithm 1 is

L(θ,ψ) = L(θ) = dMkγ,B
(P
w(θ)
0,n ,P1,n)

2,

and we don’t need line 2 ∼ 4 of Algorithm 1. We use Adam optimizer with lr = 0.03, T = 1000 for gradient descent steps,
and γ = 10.

The CBIPM with the SIPM SinceMsig is a parameter family, we can simply iterate gradient ascent steps and descent
steps. However, we confirm that mode collapse (Salimans et al., 2016; Che et al., 2019) occurs frequently when we use the
sigmoid IPM for covariate balancing. To resolve this difficulty, we ensemble the multiple discriminators.
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In the gradient ascent step, we update ψ = (ψ1, . . . ,ψS) using the sum of the loss functions. In the gradient descent step,
we update θ using the discriminator which has the highest loss value. The formula of Ladv(θ,ψ) and L(θ,ψ) for Algorithm
1 are

Ladv(θ,ψ) :=

S∑
s=1

ℓn(θ,ψs),

L(θ,ψ) :=max
s∈[S]

ℓn(θ,ψs),

where ψs = (ρ⊤s , µs)
⊤ and m(x;ψs) = σ(ρ⊤s x+ µs).

In Appendix E.5, we show that using multiple discriminators dramatically improves the accuracies without increasing
computing time much. That’s because discriminators m(·;ψ1), . . . ,m(·;ψS) ∈Msig can be expressed using single linear
function from Rd to RS , and hence parallel calculations using gpu can be used.

For P-CBIPM, we use Adam optimizer with lr = 0.03, T = 1000 for gradient descent steps, SGD optimizer with
lradv = 0.01, and Tadv = 1 for gradient ascent steps. For N-CBIPM, we use Adam optimizer with lr = 0.1, T = 1000 for
gradient descent steps, SGD optimizer with lradv = 1.0, and Tadv = 3 for gradient ascent steps. For both methods, we use
S = 100.
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D. Comparison with doubly robust estimator
The weighting methods can be combined with an estimation of the outcome regression model to become doubly robust. The
augmented IPW (AIPW) (Robins et al., 1994) is such an approach. The AIPW first estimates the outcome regression model
m̂0 using only control samples and then applies the IPW to Yi − m̂0(Xi). For general w ∈ W+, the augmented estimator
for the ATT can be expressed as

ÂTT
w

Aug =
∑

i:Ti=1

Yi − m̂0(Xi)

n1
−
∑

i:Ti=0

wi(Yi − m̂0(Xi)).

Similar with (4), the error of ÂTT
w

Aug can be decomposed as

ÂTT
w

Aug −ATT = (errwbal)Aug + errwobs +(SATT−ATT),

where errwobs is defined same as before and

(errwbal)Aug =
∑

i:Ti=1

m0(Xi)− m̂0(Xi)

n1
−
∑

i:Ti=0

wi(m0(Xi)− m̂0(Xi)).

Note that (errwbal)Aug is close to zero no matter what w is used when m̂0 ≈ m0 and thus the augmented estimator is
doubly robust. That is, the augmented estimator is consistent without modeling the weights correctly. In this sense, the
augmented estimator is similar to the N-CBIPM estimator. However, the two methods work quite differently. The key
difference is that the balancing process of the CBIPM only uses {(Xi, Ti)}ni=1, but the outcomes {Yi}ni=1 are also needed
for augmentation. With pre-calculated weights only using {(Xi, Ti)}ni=1, the CBIPM can be used more flexibly in practice
such as the time-varying outcome regression model situations.

More important advantage of the N-CBIPM over augmentation is that the accuracy of the N-CBIPM estimator is less
influenced by the complexity of estimating m0 because the N-CBIPM does not use the outcomes when it estimates the
weights. To confirm this conjecture, we do a small experiment to compare the weighting methods with and without
augmentation. For augmentation, we use the ordinary least square estimator (OLS) and Bayesian additive regression tree
(BART) of Chipman et al. (2010). To control the difficulty of estimation of m0, we use the two values (1 and 10) for the
standard deviation of the noise in the Kang-Schafer example.

Table 3. Kang-Schafer example with small/large noises. We generate 1000 simulations and report the bias and RMSE as the performance
measures. For each pair of dataset and performance measure (i.e. for each of three rows), the two best results are marked in bold letters.

std of noise Measure Aug
Existing methods P-CBIPM N-CBIPM

GLM Boost CBPS EB Wass MMD SIPM Wass MMD SIPM

1

Bias
× -7.233 -8.375 -4.745 -4.806 -5.015 -4.869 -5.086 -3.945 -2.732 -3.569

OLS -6.233 -6.095 -4.739 -4.755 -4.885 -4.830 -4.979 -3.939 -2.686 -3.347
BART -3.868 -3.792 -3.688 -3.687 -3.716 -3.699 -3.721 -3.619 -3.519 -3.582

RMSE
× 8.275 9.204 5.354 5.395 5.681 5.455 5.697 4.632 4.422 4.491

OLS 7.161 6.898 5.344 5.352 5.518 5.422 5.593 4.624 4.394 4.223
BART 4.746 4.667 4.520 4.517 4.544 4.532 4.554 4.436 4.397 4.400

10

Bias
× -7.164 -8.306 -4.671 -4.732 -4.942 -4.795 -4.994 -3.886 -2.739 -3.517

OLS -6.157 -6.005 -4.664 -4.681 -4.812 -4.755 -4.903 -3.88 -2.693 -3.296
BART -4.698 -4.516 -4.250 -4.251 -4.291 -4.279 -4.320 -4.057 -3.802 -3.961

RMSE
× 8.387 9.289 5.575 5.615 5.886 5.669 5.897 4.997 5.237 5.016

OLS 7.294 7.041 5.566 5.574 5.733 5.636 5.795 4.988 5.212 4.812
BART 5.942 5.757 5.405 5.402 5.457 5.432 5.480 5.209 5.290 5.210

The results with the nonlinear propensity score are presented in Table 3. while it is helpful when the variance of the noise is
small, the augmentation using BART depreciates the performance of the N-CBIPM. That is, augmentation is only helpful
when m0 is easy to estimate. Also, note that the N-CBIPM outperforms the other weighting methods with large margins
even with augmentation.

26



Covariate balancing using the integral probability metric

E. Additional experimental results
E.1. Results on other simulation designs

We consider various simulations models whose results are presented in this section.

Kang-Schafer example with small overlap To verify the CBIPM also works well for a case of small overlap, we modify
the Kang-Schafer example as follows. we generate the binary treatment indicators Ti ∈ {0, 1} from

P(T = 1|Zi) = σ(−2Zi1 + Zi2 − 0.5Zi3 − 0.2Zi4).

in Kang-Schafer example, which is obtained by multiplying 2 to the logit of the propensity score of the original Kang-Schafer
example. By multiplying 2, we make the overlap between data of trained and controlled groups smaller. Table 4 presents the
bias and RMSE for the ATT and the ATE estimators for this model, which amply show that the N-CBIPMs outperform the
other methods with large margins in terms of both the bias and RMSE.

Table 4. Kang-Schafer example with small overlap We generate 1000 simulations and report bias and RMSE. For each dataset and
measure, the two best values are marked in bold letters. We omit EB because its solution often doesn’t converge in the small overlap
situation.

Interest Measure n
Existing methods P-CBIPM N-CBIPM

GLM Boost CBPS Wass MMD SIPM Wass MMD SIPM

ATT
Bias

200 -12.708 -14.277 -8.586 -10.836 -9.833 -8.709 -6.381 -6.940 -8.139
1000 -13.021 -11.590 -6.676 -7.780 -7.034 -6.836 -4.546 -5.280 -5.303

RMSE
200 14.178 15.186 9.638 12.322 11.006 9.614 7.752 8.248 10.699
1000 13.391 12.169 6.927 8.379 7.423 6.973 4.708 5.563 5.559

ATE
Bias

200 -2.683 -18.393 -8.292 -9.186 -9.517 -9.456 -7.766 -4.836 -5.526
1000 6.785 -14.486 -9.447 -9.628 -9.843 -9.687 -7.991 -5.041 -4.826

RMSE
200 14.875 18.783 9.258 9.917 10.212 10.175 8.480 6.015 6.881
1000 20.432 14.586 9.712 9.800 10.004 9.838 8.129 5.285 5.092

Heterogeneous treatment effect example To verify that CBIPM also works well for heterogeneous treatment effects, we
consider a new simulation model as follows. We generate binary treatments Ti from

P(Ti = 1|Xi) =
(
1 + exp(−T ′

i )
)−1

,

where T ′
i ∼ N (µi1, 0.5),

µi1 =
sin
(
max(Xi1, Xi2, Xi3)

)
+max(Xi3, Xi4, Xi5)

2

2 + (Xi1 +Xi5)2

+ 4X3
i1 sin(3Xi3)

(
1 + exp(Xi4 − 0.5Xi3

)
+X2

i3 + 2(X2
i5) sin(Xi4)− 3,

and Xi = (Xi1, Xi2, Xi3, Xi4, Xi5, Xi6)
⊤ ∈ R6 generating from Unif(−2, 2). Also, we generate their corresponding

outcomes from Yi ∼ N (µi2, 0.1), where

µi2 = 2(Xi1 − 2)2 + 5 cos(2Xi5) · I(Ti = 1) +
1

X2
i2 + 1

· max(Xi1, Xi6)
3

(1 + 2X2
i3)

· sin(Xi2) + 3(2Xi4 − 1)2.

Using Monte Carlo approximation with 105 samples, we obtain the true values of the ATT and the ATE that are −0.684 and
−0.925, respectively.

Table 5 presents the bias and RMSE for the ATT and the ATE estimators. For most setting, the N-CBIPMs outperform the
other methods with large margins in terms of both the bias and RMSE.
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Table 5. Heterogeneous treatment effect example We generate 1000 simulations and report bias and RMSE. For each dataset and
measure, the two best values are marked in bold letters. Similar to Table 4, we omit EB because its solution often does not converge.

Interest Measure n
Existing methods P-CBIPM N-CBIPM

GLM Boost CBPS Wass MMD SIPM Wass MMD SIPM

ATT
Bias

200 -4.158 -2.550 -3.198 -3.177 -2.956 -3.403 -1.941 -0.033 -0.785
1000 -0.817 -1.032 -0.992 -0.997 -0.993 -0.972 -0.318 0.375 0.987

RMSE
200 11.966 6.155 6.748 6.796 6.515 7.092 5.988 4.912 6.260

1000 1.197 1.325 1.383 1.392 1.383 1.367 1.016 0.496 1.464

ATE
Bias

200 -3.950 -2.107 -2.965 -2.929 -2.806 -3.175 -2.957 0.529 -1.046
1000 -0.114 -2.379 -0.175 -0.245 -0.149 -0.100 -0.033 0.044 -0.196

RMSE
200 11.425 5.764 6.410 6.143 6.250 6.802 6.158 4.519 5.964

1000 1.027 2.485 1.014 1.036 0.957 0.955 1.159 0.162 1.013

E.2. Semi-synthetic experiments

We conduct semi-synthetic experiments using ACIC 2016 datasets and show the results in Table 6. The ACIC 2016 datasets
contain covariates, simulated treatment, and simulated response variables for the causal inference challenge in the 2016
Atlantic Causal Inference Conference (Dorie et al., 2019). For each of 20 conditions, treatment and response data were
simulated from real-world data corresponding to 4802 individuals and 58 covariates. Among 77 simulation settings, we
select the last five ones and analyze 100 simulated data sets for each simulation setting.

It is interesting to see that no IPM dominate others. While it works well for ATE, MMD is much inferior for ATT. On the
other hand, SIPM is opposite (works well for ATT but not for ATE). Wasserstein IPM performs stably. The results indicate
that the choice of the discriminator in the IPM is important for accurate estimation of the causal effect.

Table 6. ACIC 2016 datasets For each dataset and measure, the two best values are marked in bold letters. Similar to Table 4, we omit
EB because its solution often does not converge.

Dataset Measure
ATT ATE

Existing methods N-CBIPM Existing methods N-CBIPM
GLM CBPS Wass MMD SIPM GLM CBPS Wass MMD SIPM

1 Bias 0.432 0.468 0.368 0.466 0.425 0.433 0.455 0.366 0.379 0.391
RMSE 0.712 0.740 0.601 0.699 0.676 0.695 0.716 0.592 0.570 0.606

2 Bias 0.100 0.102 0.095 0.128 0.095 0.109 0.056 0.098 0.107 0.106
RMSE 0.368 0.354 0.315 0.330 0.324 0.345 0.669 0.287 0.270 0.292

3 Bias 0.248 0.272 0.219 0.253 0.234 0.223 0.252 0.192 0.189 0.202
RMSE 0.625 0.648 0.545 0.586 0.566 0.541 0.586 0.450 0.440 0.455

4 Bias 0.294 0.305 0.242 0.313 0.292 0.303 0.314 0.234 0.256 0.278
RMSE 0.534 0.526 0.435 0.501 0.490 0.494 0.505 0.402 0.397 0.412

5 Bias 0.340 0.421 0.355 0.406 0.388 0.358 0.363 0.285 0.290 0.302
RMSE 0.783 0.812 0.649 0.724 0.717 0.679 0.708 0.562 0.550 0.570
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E.3. Boxplots for experimental results in Section 5.1

In Figure 3, we draw the boxplots of the estimated ATT obtained from the simulation in Section 5.1 as the compliments to
the results of Table 1.

(a) Linear logit(π(·)), n = 200 (b) Linear logit(π(·)), n = 1000

(c) Nonlinear logit(π(·)), n = 200 (d) Nonlinear logit(π(·)), n = 1000

Figure 3. Boxplots of the estimated ATT values on Kang-Schafer example. The boxplots are drawn based on the ATT estimates
obtained from 1000 simulated datasets for the Kang-Schafer example. X-axis and Y-axis represent the estimated ATT values and the
weighting methods, respectively.

E.4. Hypothesis test for experimental results in Section 5.2

For the complements to Figure 1, we calculate the test statistics and corresponding p-values of the two sample Kolmogorov-
Smirnov test between the (weighted) empirical distributions of the treated and control groups, whose results are presented in
Table 7. For most variables, especially for SENIORS, N-CBIPM achieves better covariate balancing.
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Table 7. Two-sample Kolmogorov-Smirnov test for STAR data We apply the two-sample Kolmogorov-Smirnov test to measure how
well the weighting methods achieve covariate balancing for STAR data. For N-CBIPM, we use MMD.

Variables
Test stat. p-value

Eq.w GLM CBPS N-CBIPM Eq.w GLM CBPS N-CBIPM

ENRLMENT 0.299 0.109 0.095 0.057 0.008 0.905 0.967 1.000
SENIORS 0.332 0.139 0.122 0.073 0.002 0.671 0.823 1.000

MNRTYPCT 0.128 0.104 0.099 0.085 0.699 0.929 0.954 0.997
FRLCHPCT 0.192 0.073 0.068 0.089 0.205 0.999 1.000 0.995

E.5. Abolation study : the number of ensemble models in the SIPM

In Appendix C, we propose to use an ensemble technique for the SIPM to avoid model collapse. To illustrate the efficiency
of the ensemble techniques, we investigate the accuracy (RMSE) and computing time of the ensemble SIPM algorithm with
the various numbers of ensemble models, whose results are presented in Figure 4. The ensemble technique improves the
accuracies significantly without increasing computing time much.

(a) P-CBIPM with SIPM, n = 200 (b) P-CBIPM with SIPM, n = 1000

(c) N-CBIPM with SIPM, n = 200 (d) N-CBIPM with SIPM, n = 1000

Figure 4. RMSE and Computing time for ensemble SIPM. Accuracies and computing times of the P-CBIPM and N-CBIPM with the
SIPM according to the number of the ensembles are compared for the Kang-Schafer example considered in Section 5.1.

30



Covariate balancing using the integral probability metric

F. Additional proofs for the manuscript
F.1. Unbiasedness of CBPS when true outcome model is linear

For ϕ (X) =X , constraint (3) becomes

1

n

∑
i:Ti=0

πβ̂(Xi)

1− πβ̂(Xi)
Xi =

1

n

∑
i:Ti=1

Xi.

Hence, if m0(·) : Rd → R is a linear function, we get

∑
i:Ti=0

πβ̂(Xi)

1− πβ̂(Xi)
m0(Xi) =

∑
i:Ti=1

m0(Xi).

Hence, for given C(n) = {(Xi, Ti)}ni=1, we obtain

E(E(
∑

i:Ti=1

1

n1
Yi −

∑
i:Ti=0

1

n1

πβ̂(Xi)

1− πβ̂(Xi)
Yi | C(n)))

=E(
1

n1

∑
i:Ti=1

m1(Xi)−
1

n1

∑
i:Ti=0

πβ̂(Xi)

1− πβ̂(Xi)
m0(Xi))

=E(
1

n1

∑
i:Ti=1

(m1(Xi)−m0(Xi)))

=E(SATT) = ATT .

F.2. Derivation for error decomposition

We obtain (4) by

ÂTT
w
−ATT

=(
∑

i:Ti=1

1

n1
Yi −

∑
i:Ti=0

wiYi)− SATT+(SATT−ATT)

=(
∑

i:Ti=1

1

n1
Yi −

∑
i:Ti=0

wiYi)−
1

n1

∑
i:Ti=1

(m1(Xi)−m0(Xi)) + (SATT−ATT)

=
1

n1

∑
i:Ti=1

m0(Xi) +
1

n1

∑
i:Ti=1

Yi −m1(Xi)

n1
−
∑

i:Ti=0

wiYi + (SATT−ATT)

=
1

n1

∑
i:Ti=1

m0(Xi)−
∑

i:Ti=0

wim0(Xi) +
1

n1

∑
i:Ti=1

Yi −m1(Xi)

n1
−
∑

i:Ti=0

wi(Yi −m0(Xi)) + (SATT−ATT)

= errwbal +errwobs +(SATT−ATT).

F.3. CBPS as the special case of P-CBIPM

Consider solving (7) over

f(x;θ) = θ⊤x, θ ∈ Rd,

Mlinear =
{
m(·) : m(x) = α⊤x,α ∈ Rd, ||α||∞ ≤ 1

}
.
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Then, this formulation of P-CBIPM is indeed the same as that of CBPS. More specific,

dMlinear(Pw0,n,P1,n) = sup
m∈Mlinear

∣∣∣∣∣ ∑
i:Ti=0

wim(Xi)−
∑

i:Ti=1

m(Xi)

n1

∣∣∣∣∣
= sup

||α||∞≤1

∣∣∣∣∣ ∑
i:Ti=0

wiα
⊤Xi −

∑
i:Ti=1

α⊤Xi

n1

∣∣∣∣∣
= sup

||α||∞≤1

∣∣∣∣∣∣
∑

i:Ti=0

d∑
j=1

wiαjXij −
∑

i:Ti=1

d∑
j=1

αjXij

n1

∣∣∣∣∣∣
= sup

||α||∞≤1

∣∣∣∣∣∣
d∑

j=1

αj

( ∑
i:Ti=0

wiXij −
∑

i:Ti=1

Xij

n1

)∣∣∣∣∣∣
=

d∑
j=1

∣∣∣∣∣ ∑
i:Ti=0

wiXij −
∑

i:Ti=1

Xij

n1

∣∣∣∣∣ ,
whereXi = (Xi1, . . . , Xid)

⊤. Since wθi is expressed as

wθi :=
I(Ti = 0) exp(θ⊤Xi)∑

i:Ti=0 exp(θ
⊤Xi)

i ∈ [n]

for given θ ∈ Rd, w has a degree of freedom of d. Hence, there exists a unique solution θ̂n such that dMlinear(Pw
θ̂n

0,n ,P1,n)
equals zero, which is identical to the solution of CBPS.
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