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Abstract

A significant challenge in maintaining real-world
machine learning models is responding to the con-
tinuous and unpredictable evolution of data. Most
practitioners are faced with the difficult question:
when should I retrain or update my machine learn-
ing model? This seemingly straightforward prob-
lem is particularly challenging for three reasons:
1) decisions must be made based on very limited
information - we usually have access to only a
few examples, 2) the nature, extent, and impact
of the distribution shift are unknown, and 3) it
involves specifying a cost ratio between retrain-
ing and poor performance, which can be hard
to characterize. Existing works address certain
aspects of this problem, but none offer a compre-
hensive solution. Distribution shift detection falls
short as it cannot account for the cost trade-off;
the scarcity of the data, paired with its unusual
structure, makes it a poor fit for existing offline
reinforcement learning methods, and the online
learning formulation overlooks key practical con-
siderations. To address this, we present a princi-
pled formulation of the retraining problem and
propose an uncertainty-based method that makes
decisions by continually forecasting the evolution
of model performance evaluated with a bounded
metric. Our experiments addressing classification
tasks show that the method consistently outper-
forms existing baselines on 7 datasets.

1. Introduction
In many industrial machine learning settings, data are con-
tinuously arriving and evolving (Gama et al., 2014). This
means that a model, fθ, that was trained on a fixed dataset,
D, will become outdated. This usually translates to a cost in
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the form of a missed opportunity. However, retraining a new
model, fθ′ , on a more up-to-date dataset, D′, is also costly.
Beyond the obvious costs of computational resources and
energy (Strubell et al., 2020), there are human resource costs
associated with assigning experts to deploy and maintain
the model, as well as collecting and cleaning data. Deploy-
ing a new model also generally comes with a higher risk.
Therefore, the optimal retraining schedule depends on this
comprehensive cost of retraining, on the cost of making mis-
takes, and on future model performance. Figure 1 provides
a visualization of the task.

Although this retraining problem is ubiquitous in indus-
try (Gama et al., 2014), there are few works in the machine
learning literature that tackle it directly. It has been framed
as an application of the distribution shift detection prob-
lem (Bifet & Gavaldà, 2007), where the conventional strat-
egy involves triggering retraining whenever a substantial
shift is detected (Bifet & Gavaldà, 2007; Cerqueira et al.,
2021; Pesaranghader & Viktor, 2016). However, this ap-
proach overlooks retraining costs. This can be particularly
problematic when training is expensive, as demonstrated in
our experiments. Others have reduced the need for retraining
by incorporating robustness to distribution shifts (Schwinn
et al., 2022) or adapting to them (Filos et al., 2020), but
these methods have limits on the extent of the shift they
can handle. Other related areas include online, adaptive,
life-long, and transfer learning (Hoi et al., 2021), which
aim to update models to new or evolving data distributions.
However, these methods are primarily concerned with max-
imal model performance, while the goal of our work is to
explicitly minimize the overall cumulative cost. In particu-
lar, continual learning approaches and the like cannot delay
updates due to future cost considerations. Moreover, in
practice, the cost of retraining can go beyond the number of
gradient updates or sample complexity, as discussed above.
Finally, because this is a sequential decision problem, it can
be framed within the offline reinforcement learning frame-
work (Levine et al., 2020). In theory, offline RL methods
should be applicable, but few, if any, are designed for very
low-data settings. They require substantial amounts of data
for training and hyperparameter tuning, and are therefore
largely unsuitable to use in this context.

A direct treatment of the cost consideration in the retraining
problem is presented by Žliobaitė et al. (2015) and by Ma-
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Figure 1. The Retraining Problem: The performance of a model trained on a dataset Di gradually decreases when evaluated on more
recent datasets in the presence of distribution shift. The task is to determine when retraining is beneficial compared to keeping an older
model. We must take into consideration the trade-off between potential accuracy gains and the costs associated with retraining. In the
training schedule θ shown here, retraining occurs twice, at t = 4 and t = 8.

hadevan & Mathioudakis (2024). The formulation by Ma-
hadevan & Mathioudakis (2024) accounts for the trade-off
between the cost of retraining and the cost of performance.
Their method, CARA, relies on approximating the perfor-
mance of a model on new data, and the retraining decision is
based on this value. However, this approach makes several
limiting assumptions: 1) the relative cost objective assumes
that the “difficulty” of the task remains constant; and 2) the
performance approximation assumes the data distribution
is almost stationary. Instead, we consider a more general
objective that combines both the retraining cost and the av-
erage performance over a specified horizon. We detail the
relationship between our objective and CARA’s objective
in Appendix A.12. Our formulation is more general and
does not depend on strong assumptions regarding the data
distribution and its impact on performance. Additionally,
our method can leverage new observations of the model’s
performance. Our proposed method involves forecasting the
performance of both future and current models and making
decisions based on the uncertainty of our predictions. There
is no constraint on how the “retrained” model is obtained.
It can be fine-tuned from a previous model, trained from
scratch, or derived using any other procedure. We show the
effectiveness of our approach on five real datasets and two
synthetic datasets. We make the following contributions:

• We introduce a principled formulation of a practical ver-
sion of the retraining problem. We explain connections to
existing formulations and offline reinforcement learning.

• We establish upper limits on the optimal number of re-
trains based on performance bounds which can be used to
determine whether you should consider retraining or not.

• We propose a novel retraining decision procedure based

on performance forecasting: UPF. Our proposed algo-
rithm outperforms existing baselines. It requires minimal
data by fully leveraging the structure specific to the retrain-
ing problem, employing compact regression models, and
balancing the uncertainty caused by data scarcity through
an uncertainty-informed decision process.

2. Related Work
We discuss related work and fields relevant to the retraining
problem. A more detailed literature review, including con-
nections to other related fields is provided in Appendix A.3.

Retraining problem Few works explicitly target the re-
training problem. Žliobaitė et al. (2015) propose a return
on investment (ROI) framework to monitor and assess the
retraining decision process, but do not introduce a method
for actually deciding when to retrain. Mahadevan & Math-
ioudakis (2024) develop a retraining decision algorithm,
CARA, which integrates the cost of retraining and intro-
duces a “staleness cost” for persisting with an old model.
CARA approximates the staleness cost using offline data
consisting of several trained models and their historical
performance. Three versions of CARA are proposed: (i)
retraining if the estimated staleness exceeds a threshold; (ii)
retraining based on estimated cumulative staleness; or (iii)
identifying an optimal retraining frequency. While provid-
ing promising results, CARA requires access to some of the
data that will be used for retraining, and is very computa-
tionally intensive, so there is no adaptation to data obtained
during the online decision period. Hoffman et al. (2025)
address a related problem: deciding whether to retain the
current model (i.e., no retraining), fully retrain it, or refine
it via finetuning. The authors formulate an objective that
balances retraining cost, the impact of concept drift (ambi-
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guity), the uncertainty associated with each option (risk),
and the expected performance.

Distribution shift detection The retraining problem is
closely connected to distribution shift detection and mit-
igation (Wang et al., 2024a; Hendrycks & Gimpel, 2017;
Rabanser et al., 2019). Some approaches decide to adapt a
model after detection of a changed distribution (Sugiyama
& Kawanabe, 2012; Zhang et al., 2023). Since the sig-
nal for these methods is designed to adapt a model rather
than trigger a full retraining, they are not appropriate to
be used as full retraining signals. Other approaches, how-
ever, directly treat the detection of a distribution shift as a
cue for retraining. ADWIN (Bifet & Gavaldà, 2007) uses
statistical testing of the label or feature distribution. An-
other approach is to directly monitor the model’s perfor-
mance. FHDDM (Pesaranghader & Viktor, 2016) employs
Hoeffding’s inequality, while Raab et al. (2020) propose a
method that relies on a Kolmogorov-Smirnov Windowing
test. These approaches work well with low retraining costs,
but perform poorly when retraining costs are high, as they
tend to recommend retraining far too often. Additionally,
they lack adaptability to varying costs, and it is difficult to
determine the correct significance level to use for a given
retraining-to-performance cost ratio.

Offline reinforcement learning Lastly, we discuss con-
nections to offline reinforcement learning (ORL), where an
agent must learn a policy from a fixed dataset of rewards,
actions, and states. This subset of RL is challenging, as the
agent cannot explore and must rely on the dataset to infer
underlying dynamics and handle distribution shifts. Levine
et al. (2020) provide an extensive review. Q-learning and
value function methods, which focus on predicting future
action costs, have become the preferred approaches (Levine
et al., 2020; Kalashnikov et al.; Hejna et al., 2023; Kostrikov
et al., 2022). Some methods incorporate epistemic uncer-
tainty into the Q-function to address distribution shifts of
unseen actions (Kumar et al., 2020; Luis et al., 2023).

If we view the states as encoding both time and the model
in use, and actions as either retraining or maintaining the
current model, we can frame our problem as ORL. However,
most existing RL approaches focus on scaling to large state
or action spaces, employ large models, and assume access
to abundant data, making them unsuitable for our context. A
more detailed discussion on the connections and limitations
of ORL methods is included in Appendix A.11.

3. Problem Setting
We outline our formulation of the retraining problem. We
have access to a sequence of datasets, D−w, . . . ,D0, . . .DT

with features and labels xi,t ∼ Xt, yi,t ∼ Yt,Dt =

{(xi,t, yi,t)}
∣Dt∣
i=1 , which are assumed to be drawn from

a sequence of distributions Dt ∼ pt. In practice, this re-
flects the gradual distribution shifts that occur when col-
lecting data over time, so we specifically cannot assume
that pt = pt+1 (this would correspond to a special case
of the problem, which we refer to as the no distribution
shift case). The datasets are acquired at discrete times
t = [−w, . . . ,0, . . . , T ]. The sequence is split into an of-
fline period that spans t = [−w, . . .0], followed by an online
period [t = 1, . . . T ]. At each time step t of the online pe-
riod, we are given the option to (re)train a model ft, using
the data acquired up until time t, for a retraining cost of ct.
Datasets and trained models can be formed and obtained
through any means depending on the task; for example, f1
could be fine-tuned from f0 and D1 could contain D0.

The complete sequence of decisions can be encoded as a
binary vector θ ∈ {0,1}T , where θt = 1 indicates that we
retrain the model at time t. We introduce rθ(t) as a mapping
function that returns, at time t, the last training time, i.e.,
rθ(t) =maxt′∈[0,...,t]s.t.θt′=1 t

′, or rθ(t) = 0 if ∣∣θ∣∣1 = 0.).

At each time step t, we are required to generate a certain
number of predictions Nt on a test set, which incurs a loss
ℓ(ŷ, y), scaled by a cost et. This would correspond to actu-
ally using the model to make predictions, for example, to
detect fraud – failing to detect a fraudulent transaction costs
et, and approximately Nt transactions are verified at time
t. To make these predictions at time t, we use the most re-
cently trained model, which we denote by frθ(t). To ensure
that there is always at least one model available during the
online period, we always train the last offline model f0.

The target cost is a function of θ, which encodes the retrain-
ing decisions, and combines two costs: the cost associated
with model performance, ∑T

t=1 et∑
Nt

i=1 ℓ(frθ(t)(xi,t), yi,t),
and the cost to retrain, θtct:

Cα(θ) = E [
T

∑
t=1

et
Nt

∑
i=1

ℓ(frθ(t)(xi,t), yi,t) + θtct] . (1)

To make the expression more concise, we condense the ex-
pected loss into a scalar pei,j where the two indices denotes
the model index, and the timestep, respectively:

pei,j =

⎧⎪⎪
⎨
⎪⎪⎩

EDj [ℓ(fi(Xj), Yj)] , if i ≤ j ,
0 , otherwise .

(2)

We can simplify the problem by assuming a fixed cost of
retraining, ct = c, cost of loss, et = e, and number of predic-
tions, Nt = N . The solutions we develop are easily extended
to the case where these are varying, but known, quantities.
Introducing a cost-to-performance ratio parameter α = c

eN
,

we can compactly write the online objective as:

Cα(θ) = eN (α∣∣θ∣∣1 +
T

∑
t=1

perθ(t),t) . (3)
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3.1. Offline and Online data

The cost Cα(θ) is only evaluated over the online period. We
assume that we have access to all the datasets and trained
models during the offline period. In practice, the number
of models and datasets is typically limited to only a few
(around 10 to 20 at most), which is why we characterize
this problem as being in a low-data regime. We denote this
data as Ioffline = (D−w, . . .D0, f−w, . . . , f0). In the online
mode, each decision at time t can only rely on information
available prior to that time, which we denote by I<t. I<t
therefore contains both the offline data Ioffline , and the
online data that was collected up to the timestep t: Ionline<t .
The online data is similar to the offline data, but it only
contains the models that were actually trained; Ionline<t =

(D1, . . .Dt−1,{fi}i s.t. θi=1)).

Each entry of θ can therefore be modeled by a binary func-
tion g(t,I<t) ∈ {0,1}:

θ = [g(1,Ioffline
), . . . , g(T,I<T ))]

⊺. (4)

Given ct, et, and Nt, the task is to determine the g that gen-
erates the retraining schedule θ∗ minimizing cost Cα(θ):

θ∗ = argmin
θ∈{0,1}T

Cα(θ) . (5)

3.2. Some analysis

Before introducing methods that learn to generate such a
schedule θ, we characterize basic properties of the problem.
Specifically, we establish bounds on the number of retrain-
ing actions of the optimal solution. These can be used to
determine whether we even need to consider retraining. We
also provide guidance on leveraging existing performance
bounds (such as scaling laws) to compute the relevant quan-
tities in these bounds. These theoretical insights can be used
to derive practical rules-of-thumb on a case-by-case basis.

Our upper bound depends on the difference between the ex-
pected performance of a model trained on datasetDi and the
performance of a model trained on the subsequent dataset
Di+1, evaluated on the same dataset from any timestep Dt:

L ≥ ∣pei,t − pei+1,t∣∀t ∈ [T ] (6)

Given this quantity, we derive the following result of an up-
per bound for the number of retrains of the optimal solution,
which we denote by r∗ = ∣∣θ∗∣∣1:
Proposition 3.1. Given that L ≥ ∣pei,t−pei+1,t∣ ∀t ∈ [T ], a
horizon T ∈ N, and a relative cost of retrain α, the number
of retrains of the solution to Equation 5 r∗ ≜ ∣∣θ∗∣∣1 satisfies:

r∗ ≤ T −

√
α

L
(7)

The proof is provided in Appendix A.4. Suppose a prac-
titioner has reasonable approximations of L and α, and a

horizon to consider, T . Then if T −
√
(α
L
) < 1, no retrain-

ing should be performed. We demonstrate how this result
should be used in practice in Appendix A.4.1.

Bounding L General bounds for L are too loose to be
helpful; however, in some cases, reasonable estimates
can be derived. For the specific case of “no distribu-
tion shift” IID data, where the data simply accumulates
(Dt ⊂ Dt+1,Dt ∼ p(D)∀t), we can leverage known theoret-
ical results, such as Probably Approximately Correct (PAC)
learning theory (Valiant, 1984) or Rademacher Complex-
ity (Bartlett & Mendelson, 2002). For large-scale training
settings, precise empirical scaling laws are available (Ka-
plan et al.; Hoffmann et al., 2024). Kaplan et al. derive
that the loss L of the neural network scales with respect to
dataset size N as L = (N/5.4 ⋅ 1013)

−0.095
. Such scaling

laws enable accurate estimation of expected performance
improvements from expanded datasets L. Thus, they enable
informed decisions about when retraining can yield substan-
tial benefits. For more discussion see Appendix A.5. Even
in real-world applications, where data often exhibit tem-
poral or spatial dependencies, making the non-distribution
shift IID assumption unrealistic, bounds have been derived
using stability analysis or tailored Rademacher complexity
bounds (Mohri & Rostamizadeh, 2008; 2007; 2010).

4. Methodology
A retraining decision algorithm must specify the decision
functions gϕ(t,I<t) ∈ {0,1} (where ϕ contains the algo-
rithm’s parameters) used to build the decision vector θ. To
make perfect decisions, we would need future performance
values, i.e., pei,j∀(i > t or j > t). This is infeasible; how-
ever, we assume that there is a temporal correlation between
the performances of different models trained at different
times, which we aim to exploit to build a predictive model.
We therefore propose to 1) model these future values as
random variables and learn their distributions; and 2) base
our decisions on the predicted distributions to construct our
method, the Uncertainty-Performance Forecaster (UPF).

4.1. Future Performance Forecaster

The first component of our algorithm involves learning a
performance predictor to forecast unknown entries in pe,
which are defined as pei,j = EDj [ℓ(fi(Xj), Yj)] for i ≤ j
(see Eqn 2). In a classification setting where we consider the
0-1 loss ℓ(y′, y) = 1[y′ ≠ y], these are 1 − accuracy. We
introduce random variables Aij and model the entries peij
as realizations of these. Although this prediction task may
initially seem similar to the performance estimation (PE)
problem (Garg et al., 2020), it is fundamentally different.
PE focuses on estimating the performance of an existing
model under distribution shift, whereas our task involves

4



When to retrain a machine learning model

forecasting the future performance of models that do not yet
exist. Crucially, PE lacks a temporal dimension, as it does
not account for the evolution of models over time.

Since the Ai,j random variables are bounded, we model
them (after appropriate scaling) as Beta distributed with pa-
rameters α(ri,j), β(ri,j) that depend on some input feature
ri,j . These features contain information about the current
state of the feature distribution as well as the timestamp (see
the section Inputs in Appendix A.7 for full details). This
forecasting formulation allows us to capture both covariate
and concept drift. This choice of the Beta distribution is
particularly appropriate when the performance metrics Ai,j

are accuracies, as in our experiment, since accuracy can be
interpreted as the sum of Bernoulli random variables. Of
course, other distributions could also be considered. We also
define their associated mean µ(ri,j) and variance σ(ri,j).
Given the parameters α(ri,j), β(ri,j), we model the ran-
dom variables to be independent of each other:

P (A0,0, . . . ,AT,T ∣{α(ri,j), β(ri,j)}
T
i≤j) (8)

=∏
i≤j

Beta(α(ri,j), β(ri,j)). (9)

where Beta() denotes the pdf of a Beta distribution. We
choose the input features rij to include the indices of the
training and evaluation datasets (i and j, respectively), along
with additional features that capture the gap between the
training and evaluation timesteps (the difference j − i, and
summary statistics of the distribution shift zshift (see Ap-
pendix A.7 for details). The input features are thus given by
ri,j = [i, j, j − i, zshift].

From the offline data, we have access to observations
ai,j ∼ Ai,j , and can build a regression dataset to learn the
parameters α(ri,j), β(ri,j). We specify the learning task
by constructing (ri,j , ai,j) pairs:

M<t = {(ri,j , ai,j);∀fi ∈ I<t,∀Dj ∈ I<t} . (10)

Direct learning of the α,β parameters can be unstable.
Therefore, we use a Gaussian approximation:

Beta(α(ri,j), β(ri,j)) ≈ N (µ(ri,j), σ(ri,j)), (11)

This allows us to write the likelihood of our dataset as:

L(M<t;ϕ) = ∏
i,j∈M<t

P (ai,j ∣ri,j , ϕ) (12)

= ∏
i,j∈M<t

N (ai,j ;µϕ(ri,j), σϕ(ri,j)). (13)

We parameterize the variance as a constant σϕ(ri,j) = σϕ.
Maximizing the likelihood w.r.t. to the mean parameters
µϕ(ri,j) then becomes a standard mean square error min-
imization. Given the expectation of operating in a very
low-data regime, we rely on simple inference models, such

as linear regression. Once the parameters are learned, we
can recover the corresponding αϕ(ri,j), βϕ(ri,j) parame-
ters to obtain our predictive distribution (see Appendix A.7
for additional details);

Pϕ(Ai,j) = Beta(αϕ(ri,j), βϕ(ri,j)). (14)

As stated, this parameterization is appropriate for bounded
losses. Other distributions can be used to model different
loss domains (see Appendix A.8). As I<t grows at each time
step, our training data increases, so we retrain and obtain
a new Pϕ(Ai,j) each time. As constructed, past decisions
influence the dataset Ionline available for the next iteration,
but this effect is ignored by the algorithm. Empirically, we
find that the algorithm performs well despite this. One di-
rection worth investigating is the incorporation of random
decisions to allow the predictor to learn over a broader re-
gion of actions and responses. As our methodology involves
forecasting future performance as a key subtask, we evaluate
and quantify the impact of success in this task on the overall
performance of our algorithm, as detailed in Appendix A.7.

4.2. Decisions under uncertainty

Now we describe how we use Pϕ(Ai,j) to decide whether
to retrain. We introduce a random variable C̃ that represents
the total cost (Eqn. 3) (given a sequence of decisions θ):

C̃(θ) = eN (α∥θ∥1 +
T

∑
t=1

Arθ(t),t) . (15)

We can therefore define our decision rule based on this
random cost using our learned distribution of performances
Pϕ(Āi,j). Given the past decisions θ<t, our next decision
θ̃t is obtained by comparing the δ-level quantiles of the total
cost incurred if we retrain, denoted by C̃θ<t ∣retrain, and
the cost incurred if we do not, denoted by C̃θ<t ∣keep. Using
F −1X (δ) as the quantile function of a random variable, our
rule is given by:

θ̃t = 1 [F
−1
C̃θ<t ∣retrain

(δ) < F −1
C̃θ<t ∣keep

(δ)] . (16)

The quantile parameter δ allows us to control how conser-
vative we are. Lower values of δ lead to decisions that
prioritize costs with lower variance, while setting δ = 0.5
simply selects the decision that minimizes the median total
cost. As defined, the retraining decision θ̃t is deterministic.

We begin by giving explicit expressions for the conditional
random variables C̃θ<t ∣retrain and C̃θ<t ∣keep. If we de-
cide to retrain at time step t, the incurred costs include the
retraining cost α, the performance cost of the most recent
model At,t, and future costs for the decisions we will make.
Specifically, we incur C̃θ<t+1 ∣retrain if the next decision
is to retrain, and C̃θ<t+1 ∣keep if it is not. If we choose not
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to retrain and keep the current model, we only incur the
performance cost of the old model, Arθ(t−1),t.

These random variables can therefore be recursively defined:

C̃θ<t ∣retrain = α +At,t + θ̃t+1C̃θ<t+1 ∣retrain (17)

+ (1 − θ̃t+1)C̃θ<t+1 ∣keep (18)

= α +At,t +
T

∑
t′=t+1

Arθ̃(t′),t′ + αθ̃t′ (19)

C̃θ<t ∣keep = Arθ(t−1),t +
T

∑
t′=t+1

Arθ̃(t′),t′ + αθ̃t′ (20)

As shown, the cost random variables are constructed recur-
sively by summing the distribution of the cost of perfor-
mances Ai,j that would be selected by the decision rule θ̃,
as θ̃ and the α parameter are both deterministic.

The decision rule introduced in Eqn. 16 can therefore be
written as:

θ̃t = 1[F
−1
α+At,t+∑T

t′=t+1 Ar
θ̃
(t′),t′+αθ̃t′

(δ) (21)

< F −1
Arθ(t−1),t+∑

T
t′=t+1 Ar

θ̃
(t′),t′+αθ̃t′

(δ)]. (22)

We use the learned Beta distributions, introduced in the
previous section, plugging them into Eqn. 22 in order to
make a retraining decision.

If the parameterization Pϕ(Ai,j) does not lead to a closed
form expression, we use Monte Carlo methods to obtain
quantile estimates:

F −1Cθ<t ∣retrain
(δ) ≈ F̂ −1Cθ<t ∣retrain

(δ) (23)

where F̂ −1Cθ<t ∣retrain
(δ) is obtained through bootstrapping.

Connection to offline reinforcement learning The for-
mulation closely resembles a Q-learning formulation. The
C values defined in Eqns. 18- 20 strongly align with Q
functions. Indeed, one possible approach is to bypass the
learning of the pe and directly optimize the decision-making
process using Q-learning approaches. The problem we are
considering can be viewed as a corner case of offline RL,
where the state space is finite and enumerable, the training
data are extremely limited and the transition function is
deterministic and fully known. In fact, our methodology
can be reinterpreted as an offline variant of a Q-learning
approach with a specific parameterization of the Q function,
further justifying the motivation behind our method. We
explore and formalize this connection in Appendix A.11.
However, as we have explained in the related work section,
existing ORL methods are not suitable for this setting. We
provide the results for one ORL baseline in Appendix A.11
to exemplify that point.

5. Experiments
Evaluation Metrics The performance of a retraining de-
cision method is evaluated based on both the average perfor-
mance and the total retraining cost. The tradeoff between
these factors is controlled by α. When using the zero-one
loss in classification, α can be seen as the ratio of retrain-
ing cost to the cost of misclassifications. In practice, α is
application-dependent and should be set by the practitioner.
The retraining cost would be low (small α) for situations
such as fine-tuning small models. By contrast, when re-
training large language models, or in high-stakes settings
requiring extensive validation, the retraining cost is high
(large α). The retraining decision method should be robust
across all scenarios. The appropriate value of α can be very
difficult to estimate and will likely be an approximation in
practice. Consequently, we present experiments that test the
robustness of the method to inaccuracies in α in Section A.2.

In our experiments, we address classification tasks with
a zero-one loss, and set eN = 1. We report an empirical
estimate of the target cost Ĉα(θ) (Eqn. 3), obtained from
the test set, over varying α:

Cα(θ) ≈ Ĉα(θ) ≜ α∣∣θ∣∣1 +
T

∑
t=1

petestrθ(t),t, (24)

where petesti,j = 1 − acctest with ℓ(y, y′) = 1[y ≠ y′], To
summarize the results at multiple α operating points, we
report the area-under-the-curve (AUC) of Ĉα(θ). We com-
pute 10 α operating points and we allow α to range from 0
(no retrain cost) to αmax (where the cost is too high to jus-
tify any retraining). The upper bound, αmax, is determined
by the α value at which the oracle reaches 0 retrains.1 The
oracle is obtained by determining the optimal schedule that
minimizes the target cost, assuming exact knowledge of all
future peij entries, i.e., θoracle

= argminθ Ĉα(θ).

Datasets We present results on synthetic and real datasets.
For the real datasets, we use datasets with a timestamp for
each sample and partition the data in time to create a se-
quence of datasets D0,D1, . . . . For each trial, we sample
a different sequence of length w + T within the complete
dataset sequence available. We report results on: (i) the
electricity dataset (?), a binary classification task predicting
the rise or fall of electricity prices in New South Wales, Aus-
tralia; (ii) the airplane dataset (Gomes et al., 2017), which
records whether a flight is delayed; (iii) yelpCHI (Dou et al.,
2020), which classifies if a user’s review is legitimate; and
(iv) epicgames (Ozmen et al., 2024), where the task is to

1The use of the oracle to define the range of α values for the
AUC computation does not bias the performance assessment via
pollution with future knowledge. None of the algorithms makes
use of the oracle information. Using the oracle merely ensures
that the performance comparison is conducted over the range of
relevant α.
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predict whether an author’s critique of a game was selected
as a top critique. As a base model f , we use XGBoost (Chen
& Guestrin, 2016).

We also present a larger vision dataset that requires a larger
network to process. iWildCam (Beery et al., 2020) con-
sists of images of animals in the wilderness, captured at
various locations, and the task involves multi-class animal
classification. Our approach uses a pretrained vision model,
augmented with a linear layer that processes the image rep-
resentation along with the location domain to produce the
final classification output. We allow for a different pre-
trained architecture model at each timestep t, and perform
a random search over a set of 188 choices from the Hug-
gingface library (Wightman, 2019). These encompass a
wide variety of networks, including ViT (Dosovitskiy et al.,
2021), ResNeT (He et al., 2016) and CNNs (O’Shea &
Nash, 2015). Appendix A.6 provides additional details on
the architecture, training procedure, and hyperparameter
search. For the synthetic dataset, we follow Mahadevan
& Mathioudakis (2024) to generate two 2D datasets with
covariate shift (Gauss) and concept drift (circles) (Pesarang-
hader et al., 2016). Appendix A.6 contains details on the
generation. We report 3 trials for iWild and 10 trials for the
other datasets.

Baselines and algorithm settings We set the confidence
threshold of our UPF algorithm to δ = 95%, as it is a stan-
dard value used for confidence intervals. For µϕ(ri,j), we
use a linear regression model, ElasticNetCV (Zou & Hastie,
2005), from the scikit-learn library. All other optimization
parameters are set to default choices from the scikit learn
libraries. We report results on shift detection baselines and
the three variants of the CARA baseline, as well as the
oracle.

For the distribution shift detection baselines, we set the
window size to the size of an individual dataset ∣D∣, and re-
train when the algorithm detects a distribution shift. (Then
we reset the algorithm with the dataset of the last retrained
model.) As these methods cannot take into account the
cost of retraining, we vary the significance level threshold
δ to obtain different frequencies of retraining. We include
ADWIN-δ (Bifet & Gavaldà, 2007), which is based on
statistical testing of the label distribution, FHDDM-δ (Pe-
saranghader & Viktor, 2016), which is based on Hoeffding’s
inequality, and KSWIN-δ (Raab et al., 2020), which is
based on the Kolmogorov-Smirnov test.

CARA (Mahadevan & Mathioudakis, 2024) searches for
the best strategy with fixed parameters using the offline data.
The standard version, CARA, searches for the best thresh-
old of approximate performance and retrains when it drops
below it. The cumulative version, CARA cumul., searches
for the best threshold of the cumulated approximate per-
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Figure 2. Results on the electricity dataset. Top) Cost Ĉα(θ) vs
α. Bottom) Number of retrains vs α. In the top figure, we can
see that UPF consistently reaches low Ĉα(θ) across different α.
In the bottom figure, the number of retrains of UPF follows the
optimal baseline more closely.

formance; and the periodic strategy, CARA per., searches
for the best retraining frequency. Appendix A.12 provides
additional details on the CARA baseline.

Appendix A.11 includes results for an offline RL baseline.

6. Results
We start by presenting in Table 1 the area-under-the-curve
(AUC) of the total cost value Ĉα(θ). The AUC is computed
as the area over a range of α values determined by the oracle
performance. Lower values of AUC are better because we
aim to reduce the cost over the operating range. Overall, our
proposed method achieves the best trade-off between the
number of retrains and average accuracy across all baselines
and datasets. To gain better insight into the behavior of the
different algorithms and how they are impacted by varying
retraining cost parameters, we provide a detailed overview
for one dataset with two values of α: one where the cost
of retraining is low and one where it is high, as shown in
Table 2. Figure 2 depicts how the the total cost Ĉα(θ) and
the number of retrains vary as α is changed. Appendix A.10
contains the complete set of results and figures.
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Table 1. AUC of the combined performance/retraining cost metric Ĉα(θ), computed over a range of α values, for all datasets. The bolded
entries represent the best, and the underlined entries indicate the second best. The ∗ denotes statistically significant difference with respect
to the next best baseline, evaluated using a Wilcoxon test at the 5% significance level.

electricity Gauss circles airplanes yelpCHI epicgames iWild

ADWIN-5% 2.8099 0.4533 0.0753 2.6353 0.1298 0.3217 3.7371
ADWIN-50% 2.8131 0.4848 0.0753 2.7147 0.1298 0.3238 4.2564
KSWIN-5% 3.8979 0.3975 0.0753 3.2300 0.1322 0.3420 4.4268
KSWIN-50% 4.0521 0.9530 0.0794 3.2042 0.1655 0.3537 4.4268
FHDDM-5% 3.1525 0.3893 0.0753 2.6577 0.1324 0.3298 4.4267
FHDDM-50% 3.4037 0.5918 0.0772 2.7077 0.1450 0.3389 4.4268
CARA cumul. 2.7147 0.3862 0.0731 2.2900 0.1299 0.3228 3.8922
CARA per. 2.8986 0.4678 0.0800 2.4061 0.1318 0.3260 3.7527
CARA 2.7198 0.3841 0.0726 2.2753* 0.1294 0.3202 3.9506

UPF (ours) 2.5782* 0.3829* 0.0668* 2.2865 0.1293* 0.3189* 3.0498*

oracle 2.4217 0.3724 0.0627 2.2298 0.1275 0.3170 2.4973

Table 2. We compare the best performing algorithms for the electricity dataset with the optimal decisions (the oracle) in both high and low
retraining cost settings. For each baseline, we report the number of retrains and the average accuracy, as well as our primary metric Ĉα(θ)
that combines both factors using α. The results show that the proposed method achieves the best Ĉα(θ) value and closely approximates
the oracle’s behavior in both scenarios, highlighted in bold.

High retrain cost α = 0.9 Low retrain cost α = 0.1
#retrain Average Acc Ĉα(θ) #retrain Average Acc Ĉα(θ)

ADWIN-5% 1.0 ± 0.58 0.7 ± 0.04 3.27 ± 0.4 1.0 ± 0.58 0.7 ± 0.04 2.47 ± 0.25
ADWIN-50% 1.17 ± 0.38 0.72 ± 0.03 3.32 ± 0.32 1.17 ± 0.38 0.72 ± 0.03 2.39 ± 0.26
CARA 0.0 ± 0.0 0.65 ± 0.02 2.78 ± 0.19 0.33 ± 0.75 0.66 ± 0.04 2.73 ± 0.25
CARA cumul. 0.0 ± 0.0 0.65 ± 0.02 2.78 ± 0.19 0.33 ± 0.48 0.67 ± 0.02 2.68 ± 0.18
CARA per. 1.0 ± 0.0 0.69 ± 0.02 3.34 ± 0.14 1.0 ± 0.0 0.69 ± 0.02 2.54 ± 0.14

UPF (ours) 0.1 ± 0.3 0.68 ± 0.04 2.69 ± 0.26 2.5 ± 0.67 0.75 ± 0.03 2.24 ± 0.17

oracle 0.0 ± 0.0 0.66 ± 0.03 2.68 ± 0.26 5.6 ± 1.44 0.83 ± 0.02 1.93 ± 0.06

First, examining the behavior of the optimal solution (ora-
cle), we unsurprisingly observe that in the high retraining
cost scenario, both the number of retrains and the average
accuracy are lower, while in the low retraining cost sce-
nario, the number of retrains and the average accuracy are
higher. Next, we observe that the proposed UPF method
follows the oracle more closely than the other baselines
and is more sensitive to the α parameter compared to the
cost-aware method (CARA). This is particularly apparent
in Figure 2. The CARA baselines relies heavily on its as-
sumptions about performance and is therefore not as robust
in scenarios where those assumptions do not hold. The de-
tection shift methods cannot take the varying parameters
as input, so the results remain the same for both values
of α. Since these methods do not account for retraining
costs, they perform better when the cost is very low, as they
simply retrain whenever a shift is detected. This can be a
good strategy if retraining costs little. Indeed, we observe
that all ADWIN and FHDDM variants are closer to the op-
timal values in the low range of α in the left of Figure 2.

However, as the cost of retraining increases, these methods
become impractical. Varying the threshold can yield better
results—a lower significance requirement (50%) allows for
more retraining and therefore works better when retraining
costs are low, while the inverse holds in a high-cost regime,
where a more conservative retraining strategy is preferable.
However, it is not possible to know in advance which sig-
nificance threshold should be used for a given α, making
these methods largely impractical for such a setting. Finally,
we present a comparison of the timing complexity of the
algorithms in Appendix A.9, where we report the online and
offline processes for each method. We observe that UPF is
among the lowest-cost methods in both categories.

Ablation study: Importance of uncertainty We perform
an ablation study, with results reported in Appendix A.1.
In our approach, we model the distribution of future costs
and set targets at the 95% quantile to ensure robustness
against noisy predictions. In Appendix A.1, we compare this
uncertainty-aware strategy with a deterministic counterpart,

8



When to retrain a machine learning model

which does not account for uncertainty. The result of the
ablation study confirms that accounting for uncertainty does,
in fact, enhance robustness and improve performance.

Sensitivity study: Robustness to wrong α: Our approach
requires the practitioner to specify the ratio of cost-to-
performance, which could be difficult to determine and
could be specified incorrectly. In Appendix A.2, we assess
the robustness of our method to a wrongly specified α and
find that performance is not significantly impacted by the
misspecification of α.

7. Conclusion and limitations
We have proposed a practical formulation of the important
problem of model retraining, which has been neglected in
the literature, and highlighted its complexity. Our method
outlines a promising avenue, as our experiments have shown
that even with distribution shift, it is not unreasonable to
expect some patterns in future performance that could be
predicted with the help of uncertainty modeling. This data-
driven approach is lightweight, practical, and outperforms
existing approaches. It is robust to varying cost settings
and has demonstrated resilience to misspecified cost-to-
performance ratios. We have also highlighted the quan-
tities of interest to estimate in order to better understand
the characteristics of a specific problem. While our study
demonstrates promising results in predicting optimal retrain-
ing schedules, several aspects warrant further exploration.
Since our model treats performance prediction as a forecast-
ing task, it is primarily suited to gradual changes. Handling
abrupt shifts in performance remains an open challenge. On
the experimental side, our main experiments investigate a
setting where the offline dataset (w = 7) is non-negligible in
size. However, we achieved good performance even with a
reduced dataset, which shows that initial training costs can
be reduced (see Appendix A.13). We evaluated the method
individually for each dataset, but future work could further
reduce costs by transferring schedulers across datasets and
tasks. Additionally, adapting techniques from Hyperparam-
eter Optimization could enhance performance forecasting.
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Rabanser, S., Günnemann, S., and Lipton, Z. Failing loudly:
An empirical study of methods for detecting dataset shift.
In Proc. Conf. on Neural Inf. Proces. Syst. (NeurIPS),
2019.

Rakotoarison, H., Adriaensen, S., Mallik, N., Garibov,
S., Bergman, E., and Hutter, F. In-context freeze-thaw
bayesian optimization for hyperparameter optimization.
In Proc. Int. Conf. on Machine Learning (ICML), 2024.

Ross, S., Gordon, G., and Bagnell, D. A reduction of imita-
tion learning and structured prediction to no-regret online
learning. In Proc. Int. Conf. on Artificial Intelligence and
Statistics (AISTAT), 2011.

Scheirer, W. J., de Rezende Rocha, A., Sapkota, A., and
Boult, T. E. Toward open set recognition. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence, 35
(7):1757–1772, 2013.

Schmidt, L., Santurkar, S., Tsipras, D., Talwar, K., and
Madry, A. Adversarially robust generalization requires
more data. In Proc. Conf. on Neural Inf. Proces. Syst.
(NeurIPS), 2018.

Schwinn, L., Bungert, L., Nguyen, A., Raab, R., Pulsmeyer,
F., Precup, D., Eskofier, B., and Zanca, D. Improving
robustness against real-world and worst-case distribution
shifts through decision region quantification. In Proc. Int.
Conf. on Machine Learning (ICML), 2022.

Shahriari, B., Swersky, K., Wang, Z., Adams, R. P., and
de Freitas, N. Taking the human out of the loop: A
review of bayesian optimization. Proc. of the IEEE, 104
(1):148–175, 2016.

Strubell, E., Ganesh, A., and McCallum, A. Energy and
policy considerations for modern deep learning research.
In Proc. Conf. on Artificial Intelligence (AAAI), 2020.

Sugiyama, M. and Kawanabe, M. Machine Learning in
Non-Stationary Environments: Introduction to Covariate
Shift Adaptation. The MIT Press, 2012.

Swersky, K., Snoek, J., and Adams, R. P. Freeze-thaw
bayesian optimization. arXiv:1406.3896, 2014.

Valiant, L. G. A theory of the learnable. Communications
of the ACM, 27(11):1134–1142, 1984.

Wang, H., Vaze, S., and Han, K. Dissecting out-of-
distribution detection and open-set recognition: A critical
analysis of methods and benchmarks. Int. J. of Comp.
Vision, 133:1326–1351, 2024a.

Wang, W., Fan, Z., and Ng, S. H. Trajectory-based multi-
objective hyperparameter optimization for model retrain-
ing. arXiv:2405.15303, 2024b.

Wightman, R. Pytorch image models. https://github.
com/rwightman/pytorch-image-models,
2019.

11

https://github.com/rwightman/pytorch-image-models
https://github.com/rwightman/pytorch-image-models


When to retrain a machine learning model

Yao, H., Choi, C., Cao, B., Lee, Y., Koh, P. W. W., and Finn,
C. Wild-time: A benchmark of in-the-wild distribution
shift over time. In Proc. Conf. on Neural Inf. Proces. Syst.
(NeurIPS), 2022.

Zhang, Y.-J., Zhang, Z.-Y., Zhao, P., and Sugiyama, M.
Adapting to continuous covariate shift via online density
ratio estimation. In Proc. Conf. on Neural Inf. Proces.
Syst. (NeurIPS), 2023.

Zou, H. and Hastie, T. Regularization and Variable Selection
Via the Elastic Net. J. of the Royal Statistical Society
Series B: Statistical Methodology, 67(2):301–320, 03
2005.
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A. Appendix
A.1. Ablation study - The importance of uncertainty

In our approach, we model the distribution of future costs and set targets at the 95% quantile to ensure robustness against
noisy predictions. To assess whether this strategy enhances robustness and improves performance, we compare the proposed
UPF algorithm, with the 95% quantile, against a deterministic version, referred to as PF, which selects the predicted decision
that minimizes costs. This corresponds to setting the quantile to 50% in our algorithm (PF = UPF-50%). We observe in Table
3 that relying on conservative quantiles in our predictions results in better overall outcomes, compared to the deterministic
version, PF, with statistical significance observed across all datasets except for electricity.

Table 3. Ablation study on accounting for uncertainty in our prediction. Targeting the 95% quantile is better overall than the deterministic
approach (equivalent to a 50% quantile). The ∗ denotes statistically significant difference with respect to the next best baseline, evaluated
using a Wilcoxon test at the 5% significance level.

electricity gauss circles airplanes yelp epicgames

PF 2.5884 ± 0.13* 0.3673 ± 0.03 0.0697 ± 0.01 2.3688 ± 0.35 0.1180 ± 0.00 0.3211 ± 0.01
UPF 2.6056 ± 0.14 0.3643 ± 0.03* 0.0670 ± 0.01* 2.2688 ± 0.26* 0.1175 ± 0.00* 0.3202 ± 0.00*

A.2. Ablation study - Robustness to wrong α

In our setting, we assume that the relative cost of performance and retraining α is known. However, in practice, this tradeoff
value can be hard to estimate accurately. It is therefore of high practical interest to assess the impact of a misspecified
α value, and to identify the settings where misspecification is the most impactful. In Figure 3, we present how wrongly
specified α values impact the performance of our algorithm and the CARA baseline on one dataset. Both algorithms are
reasonably robust, as it requires a large deviation from the true α value (upper right and bottom left) to start seeing a
degradation of performance of more than 1%. UPF is generally more robust to changes of α. Both algorithms are more
susceptible to overestimation of α.
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Figure 3. Impact of wrong α measured by the percentage increase of Ĉα(θ) on the epicgames dataset. left) CARA right) UPF. Overall,
both methods are reasonably robust to a wrong α specification, with UPF being the more robust.

A.3. Extended Discussion of Related Work

Retraining problem Few works explicitly target the retraining problem. Žliobaitė et al. (2015) propose a return on
investment (ROI) framework to monitor and assess the retraining decision process. Mahadevan & Mathioudakis (2024)
develop a retraining decision algorithm, CARA, which integrates the cost of retraining into its formulation. It introduces the
concept of a “staleness cost” which represents the cost of not retraining. The approach involves approximating the staleness
cost and optimizing various strategies to reduce the overall cost, based on some offline data. The offline data consist of a few
trained models, each with an associated dataset that was collected prior to the retraining decision process. Mahadevan &
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Mathioudakis (2024) propose three methods: the first retrains when the estimated staleness cost exceeds a threshold; the
second tracks the accumulated staleness cost and applies a threshold on that value; and the third searches for the optimal
retraining frequency. The staleness cost approximation for using a model on a dataset relies on the loss of individual known
samples. This loss is scaled by the average similarity between the features of these known samples and the features of the
dataset of interest. Consequently, it assumes access to the features of some of the samples at a given time before deciding to
retrain. Moreover, the search for the threshold or the period is computationally intensive and therefore can only be done
once using some offline data; it cannot modify the parameters as new information arrives.

Distribution shift detection The retraining problem is closely connected to distribution shift detection and mitigation (Wang
et al., 2024a; Hendrycks & Gimpel, 2017; Scheirer et al., 2013; Cerqueira et al., 2021; Bar-Shalom et al., 2023; Rabanser
et al., 2019). Some methods adapt the model to adjust to evolving distributions (Sugiyama & Kawanabe, 2012; Zhang
et al., 2023; Fang et al., 2020; Pesaranghader et al., 2018). Since the signal for these methods is designed to adapt a model
rather than trigger a full retraining, they are not appropriate to be used as full retraining signals. Some approaches, however,
directly treat the detection of a distribution shift as a cue for retraining (Bifet & Gavaldà, 2007; Pesaranghader & Viktor,
2016; Raab et al., 2020), and can be used as baselines. ADWIN (Bifet & Gavaldà, 2007) uses statistical testing of the
label or feature distribution. Another approach is to directly monitor the model’s performance. FHDDM (Pesaranghader &
Viktor, 2016) employs Hoeffding’s inequality, while (Raab et al., 2020) relies on a Kolmogorov-Smirnov Windowing test.
These approaches may work well when retraining costs are low, but they become unsuitable when retraining is expensive –
it is not always optimal to retrain after every minor shift. This is tied to a more general weakness of lacking adaptability
to varying costs. While the significance level parameteter can be adjusted, the appropriate significance level for a given
retraining-to-performance cost ratio is unknown and difficult to estimate.

Changepoint detection Another closely related field is changepoint detection, which is similar to the distribution shift
problem. Changepoint detection is the task of identifying points in a sequence where the statistical properties of the data
change abruptly. This problem was introduced and presented by Adams & MacKay (2007), where they aim to infer the
most probable distribution of the most recent changepoint in an online setting. Recent work, such as (Li et al., 2021), has
expanded on this problem in ways closer to our retraining setting, as they incorporate adaptation into the changepoint
detection process,The sensitivity of the detection is controlled by certain sensitivity parameters.

However, to transform the changepoint detection problem formulated by Li et al. (2021) into the retraining problem we
consider, we would need to introduce a cost for adaptation, a cost for accuracy loss, and then formulate an optimization
problem to find the appropriate sensitivity parameter for achieving the optimal number of adaptations. However, since
this parameter lacks a specific physical or practical meaning, it is unclear beforehand how the choice of its value will
impact the adaptation rate. Furthermore, in our setting, the optimal rate of adaptation (or retraining frequency) is unknown.
Determining this optimal retraining frequency is one of the major challenges of the retraining problem.

Bayesian Optimization Our method is based on forecasting future model performance using historical data. This approach
closely aligns with Bayesian Optimization (see (Shahriari et al., 2016) for a review on this topic), commonly used in the
Hyperparameter Optimization (HPO) field. The Freeze-Thaw method, introduced by Swersky et al. (2014), leverages
Gaussian Processes to predict the trajectory of validation loss, enabling early stopping and optimization of the hyperparameter
search space. It remains a relevant technique (Rakotoarison et al., 2024). Similarly, Dai et al. (2019) derive a Bayes-optimal
stopping rule using a related approach. This method can be extended to predict the performance of other models and address
hyperparameter optimization challenges (Wang et al., 2024b). In our context, we predict the performance of different models
under potential distribution shifts, but the underlying idea is similar.

Label-free performance estimation Similarly, our approach is also related to the general fields of performance estimation
without labels (Garg et al., 2020; Guillory et al., 2021; Chen* et al., 2021) and active testing (Kossen et al., 2021). Part of the
problem is similar in that the goal is to estimate performance; however, the similarity ends there, as these methods generally
assume access to the model f for which performance is estimated, as well as access to the features of the dataset (Garg et al.,
2020). Our approach involves forecasting performance not only for known models but also for unknown models. While
our approach does not explicitly differentiate strategies, it is true that we have access to additional information. Therefore,
extensions that leverage existing techniques in this area could strengthen our method.

This forecasting problem can seem similar to the problem of uncertainty quantification (Hendrycks & Gimpel, 2017; Liu
et al., 2020), but we are targeting average performance of unknown models, not the probability of error of a given model at a
given input P (f(x) = y∣x).
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Offline reinforcement learning Lastly, we discuss the connection to the offline reinforcement learning (ORL) setting,
where the agent must learn a policy from a fixed dataset of rewards, actions, and states. This subset of RL is particularly
challenging, as the agent cannot explore the entire MDP and can only rely on the dataset to infer the underlying dynamics
and handle distribution shifts (Ross et al., 2011; Levine et al., 2020; Hejna et al., 2023). Policy gradient methods can be
adapted to the offline setting using variants of importance sampling, but they are generally prone to high variance and require
large amounts of data to be effective (Levine et al., 2020). For this reason, Q-learning and value function methods, where
the task is to predict the future costs of actions, have emerged as the preferred approaches for ORL (Levine et al., 2020;
Kalashnikov et al.; Hejna et al., 2023; Kostrikov et al., 2022). Lagoudakis & Parr (2003) presents a classical method that uses
a linear approximation of the Q-function, while (Kalashnikov et al.) employs convolution-based Q-function architectures
for vision tasks.Others have leveraged advancements in sequential learning, applying transformer-based architectures to
predict rewards(Janner et al., 2021) or Q-functions(Chebotar et al., 2023). Some methods integrates epistemic uncertainty
on Q-function to account for the distribution shift of unseen actions (Kumar et al., 2020; O’Donoghue et al., 2017; Luis
et al., 2023).

If we view the states as time and the model in use, and actions as either retraining or maintaining the current model, we
can frame this problem as an offline reinforcement learning (RL) problem. The problem would also feature a deterministic
transition matrix and a highly structured reward which unusual in RL. However, most existing approaches focus on scaling
to very large state spaces, employing large models, and assuming access to abundant data, making them unsuitable for our
context. A key requirement for our approach is that it must be highly efficient to train. If the resources required for making a
retraining decision are comparable to those for retraining the model itself, the approach becomes impractical.

A.4. Proof of Proposition 3.1

We provide the proof for our result from Proposition 3.1, which states the following.

Given that L ≥ ∣pei,t − pei+1,t∣ ∀t ∈ [T ], a horizon of T ∈ N, and a relative cost of retrain α, the number of retrains of the
solution to Equation 5 r∗ ≜ ∣∣θ∗∣∣1 satisfies:

r∗ ≤ T −

√
α

L
(25)

We start by defining a function that takes the model index i and the timesteps t as arguments, and outputs the performance
pe(i, t) = pei,t, and rewrite the objective:

Cα(θ) = α∣∣θ∣∣1 +
T

∑
t=1

pe (rθ(t), t) , (26)

θ∗ = argmin
θ∈{0,1}T

Cα(θ), (27)

where we still have that rθ(t) returns the most recent index of retraining at t.

Subproblem with a fixed number of retrains We can break down this optimization problem into subproblems, where we
solve for the optimal retraining schedule for a given fixed number of retrains r. We define such a subproblem as follows:

Cr(θ) = αr +
T

∑
t=1

pe (rθ(t), t) , (28)

θ∗r = argmin
θ∈{0,1}T s.t. ∣∣θ∣∣=r

Cr(θ). (29)

Since we know that we will have r retrains, we can rewrite this subproblem by encoding the retraining decisions as r
timesteps of retrain t1 < ⋅ ⋅ ⋅ < tr. We use a simple index mapping function I ∶ [T ]r → {0,1}T :

I({t1, . . . , tr}) = θ s.t.

⎧⎪⎪
⎨
⎪⎪⎩

θt = 1 if t ∈ {t1, . . . , tr}
θt = 0 o.w.

(30)

We can remove the constant αr from the objective as it does not depend on the parameters anymore. The solution of Eqn 29
is given by:
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θ∗r = argmin
θ∈{0,1}T s.t. ∣∣θ∣∣=r

αr +
T

∑
t=1

pe (rθ(t), t) (31)

= argmin
θ∈{0,1}T s.t. ∣∣θ∣∣=r

T

∑
t=1

pe (rθ(t), t) since the αr is fixed (32)

= I
⎛

⎝
argmin

t1<⋅⋅⋅<tr∈[T ]r

t1

∑
s=1

pe(0, s) +
r−1
∑
i=1
(

ti+1
∑

s=ti+1
pe(ti, s)) +

T

∑
s=tr+1

pe(tr, s)
⎞

⎠
(33)

θ∗r = I
⎛

⎝
argmin

t1<⋅⋅⋅<tr∈[T ]r
Mr({t1, . . . , tr})

⎞

⎠
(34)

where Mr({t1, . . . , tr}) ≜
t1

∑
s=1

pe(0, s) +
r−1
∑
i=1
(

ti+1
∑

s=ti+1
pe(ti, s)) +

T

∑
s=tr+1

pe(tr, s) (35)

We therefore can focus on the new objective Mr({t1, . . . , tr}) as minimizing this objective is equivalent to finding θ∗r .

{t1, . . . , tr}
∗
= argmin

t1<⋅⋅⋅<tr∈[T ]r
Mr({t1, . . . , tr}) (36)

M∗
r ≜Mr({t1, . . . , tr}

∗
) (37)

θ∗r = I ({t1, . . . , tr}
∗
) (38)

Lemma A.1. Given a discrete function pe ∶ [T ] × [T ]→ R with bounded L ≥ ∣pe(i, t) − pe(i + 1, t)∣, a timestep horizon
T ∈ N, and a number of retrains r ∈ {1, T − 1}, we can show that:

L(T − r)2 ≥M∗
r −M

∗
r+1 (39)

That is, the relative improvement of performance cost that you can gain by increasing the number of retrainings from r to
r + 1 is upper bounded by L(T − r)2.

This allows us to preemptively determine the maximum number of retains r we have to consider for solving our initial
problem, as we know the cost of adding one more retrain (α). Therefore, once L(T − r)2 is smaller than α, the optimal
solution cannot have higher than r retrains. That is,

L(T − r∗)2 < α Ô⇒ r∗ < T −

√
α

L
(40)

This concludes our proof for Proposition A.4. We provide the proof for Lemma A.1 in the following section.

Proof Lemma A.1 To prove this lemma, we decompose the M∗
r+1 quantity into the Mr value we would obtain with the first

r timesteps of the solution {t1, . . . tr+1}∗ and some value:
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M∗
r+1 =

t∗1
∑
s=1

pe(0, s) +
r−1
∑
i=1

⎛

⎝

t∗i+1
∑

s=t∗i+1
pe(t∗i , s)

⎞

⎠
+

t∗r+1
∑

s=t∗r+1
pe(t∗r , s) +

T

∑
s=t∗r+1+1

pe(t∗r+1, s)

=

t∗1
∑
s=1

pe(0, s) +
r−1
∑
i=1

⎛

⎝

t∗i+1
∑

s=t∗i+1
pe(t∗i , s)

⎞

⎠
+

T

∑
s=t∗r+1

pe(t∗r , s) −
T

∑
s=t∗r+1+1

pe(t∗r , s) +
T

∑
s=t∗r+1+1

pe(t∗r+1, s)

=

t∗1
∑
s=1

pe(0, s) +
r−1
∑
i=1

⎛

⎝

t∗i+1
∑

s=t∗i+1
pe(t∗i , s)

⎞

⎠
+

T

∑
s=t∗r+1

pe(t∗r , s)

−
T

∑
s=t∗r+1+1

pe(t∗r , s) +
T

∑
s=t∗r+1+1

pe(t∗r+1, s) (adding zero)

=Mr({t1, . . . , tr+1}
∗
∖ t∗r+1) −

T

∑
s=t∗r+1+1

pe(t∗r , s) +
T

∑
s=t∗r+1+1

pe(t∗r+1, s)

=Mr({t1, . . . , tr+1}
∗
∖ t∗r+1) −

T

∑
s=t∗r+1+1

(pe(t∗r , s) − pe(t
∗
r+1, s)) .

By definition, we know that;

Mr({t1, . . . , tr+1}
∗
∖ t∗r+1) ≥M

∗
r . (41)

That is, the M value that we obtain by removing the last timestamp using the solution for the r + 1 problem.

Using that inequality in our previous result, we obtain the final result:

M∗
r+1 ≥M

∗
r −

T

∑
s=t∗r+1+1

(pe(t∗r , s) − pe(t
∗
r+1, s)) (42)

≥M∗
r −

T

∑
s=t∗r+1+1

L(t∗r+1 − t
∗
r) (43)

=M∗
r − (T − t

∗
r+1)L(t

∗
r+1 − t

∗
r) (44)

≥M∗
r −L(T − r)

2. (45)

A.4.1. PROPOSITION 3.1 IN PRACTICE

In this section, we illustrate how to use the result from Proposition 3.1 in practice. To restate, proposition states the following;

Given that L ≥ ∣pei,t − pei+1,t∣ ∀t ∈ [T ], a horizon of T ∈ N, and a relative cost of retrain α, the number of retrains of the
solution to Equation 5 r∗ ≜ ∣∣θ∗∣∣1 satisfies:

r∗ ≤ T −

√
α

L
. (46)

We present the α values that guarantee various numbers of optimal retrains r∗ = 0,1,2 in our experiment. Since we can’t
provide a true upper bound for the L value, we approximate it using the empirical maximum value that we observe in a
specific dataset for ∣pei,t − pei+1,t∣. In Figure 4, we can see that the α at which we know for certain that we don’t need to
retrain is not too far off the operational region of the problem. The oracle decides to not retrain around α = 0.5, and the
bound from our result guarantees that we don’t have to retrain if the selected α is larger than 0.96.

A.5. Bounding L

In this section, we provide more details on the known results from the literature that can be connected to the bound L.
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Figure 4. Results on the Gauss dataset, with the α values from Proposition A.1 providing different upper bounds on the optimal number of
retrain r∗. Left) Cost Ĉα(θ) vs α. Right) Number of retrains vs α.

Approximating L from known upper bounds For some simple models, explicit bounds on the expected performance
as a function of the number of samples N have been derived. We can use those upper bounds to approximate L under no
distribution shift, where the dataset size is steadily increasing by a known number of samples ∣D∣.

Theorem A.2 (Standard generalization in the Gaussian model (from (Schmidt et al., 2018) )). Let
(x1, y1), . . . , (x(i+1)∣D∣, y(i+1)∣D∣) ∈ Rd × {±1} be drawn i.i.d. from a (θ∗, σ)-Gaussian model with ∥θ∗∥2 =

√
d. Let

ŵ ∈ Rd be the unit vector in the direction of z = 1
(i+1)∣D∣ ∑

(i+1)∣D∣
i=1 yixi, i.e., ŵ = z/∥z∥2. Then with probability at least

1 − 2 exp (− d
8(σ2+1)), the linear classifier fŵ has classification error at most;

pei,t ≤ exp
⎛

⎝
−
(2
√
(i + 1)∣D∣ − 1)2d

2(2
√
(i + 1)∣D∣ + 4σ)2σ2

⎞

⎠
. (47)

For the proof please refer to (Schmidt et al., 2018). An L bound value can therefore be loosely approximated to match the
gap of the upper bound;

∣pei,t − pei+1,t∣ < L ≈ exp
⎛

⎝
−
(2
√
(i + 1)∣D∣ − 1)2d

2(2
√
(i + 1)∣D∣ + 4σ)2σ2

⎞

⎠
− exp

⎛

⎝
−
(2
√
(i + 2)∣D∣ − 1)2d

2(2
√
(i + 2)∣D∣ + 4σ)2σ2

⎞

⎠
. (48)

Beyond IID data. In real-world applications, data often exhibits temporal or spatial dependencies, making the non-
distribution shift i.i.d. assumption unrealistic. For non-i.i.d. processes, stability analysis (Mohri & Rostamizadeh, 2007;
2010) or bounds based on Rademacher complexity (Mohri & Rostamizadeh, 2008) can be used to analyze generalization
performance and thus to derive retraining schedules in more complex scenarios.

In the context, of the proposed retraining framework, bounds like this theoretically allow us to make precise statements
about the benefit of retraining L to derive optimal retraining schedules. In practice, deriving a retraining schedule from these
bounds would provide a loose and non-sufficient estimate. Thus, we introduce a data-driven algorithm to estimate optimal
retraining schedules in our work.
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Empirical knowledge on the scaling law of L on N for LLMs Kaplan et al. derive scaling laws for large language models
(LLMs) concerning the dependency of the final cross-entropy loss depending on model size, dataset size and compute budget
used for training. They find a power-law for all of the aforementioned parameters. For example, they find that the loss L
of the neural network scales with respect to the dataset size N as L = (N/5.4 ⋅ 1013)

−0.095
. This empirical relationship

provides valuable insights for determining optimal retraining schedules. By quantifying how loss decreases with increasing
dataset size, it enables researchers to estimate the expected performance improvements from expanded datasets L and to
make informed decisions about when retraining would yield substantial benefits.

A.6. Dataset

Dataset statistics can be viewed in Table 4.

Table 4. Dataset description. w denotes the number of timestep of the offline phase, T denotes the number of timestep of the online phase.
The Model describes the architecture used for each ft.

Dataset Model αmax w ∣M<0∣ T Dataset size (∣D∣) Num. features Task Total N

Gauss XGBoost 0.5 7 21 8 5000 2 Binary - (Synthetic)
circles XGBoost 0.25 7 21 8 5000 2 Binary - (Synthetic)

electricity XGBoost 1 7 21 8 2000 6 Binary 4,5312
yelpCHI XGBoost 0.1 7 21 8 4000 25 Binary 67,395
epicgames XGBoost 0.1 7 21 8 1000 400 Binary 17,584
airplanes XGBoost 0.7 7 21 8 3000 7 Binary ..
iWild Vision Model (see A.6.1) 1 7 21 8 40,605 224x224+1 100 539,383

In this section, we provide a more detailed overview of each retraining datasets. Except for the iWild experiment, each
individual dataset Dt is constructed with distinct samples, with no overlap between Dt and Dt−1. For the electricity,
airplanes, yelpCHI, and epicgames datasets, the partitions are determined based on the timestamp of each sample (i.e., the
datasets are divided in temporal sequence).

• electricity (?) is a binary classification where the task is to predict the rise or fall of electricity prices in New South
Wales, Australia. The distribution evolve due to change in consumption patterns.

• airplanes (Gomes et al., 2017) is also a binary task where the task is to predict if a flight will be delayed. We
follow Mahadevan & Mathioudakis (2024) and use the Sklearn Multiflow library version (Montiel et al., 2018) of the
airplane dataset.

• yelpCHI (Dou et al., 2020) is a spam dataset. The dataset contains users, hotels and restaurants. An interaction occurs
when a user submits a review for one of these hotels or restaurants. Reviews are categorized as either filtered (indicating
spam) or recommended (indicating legitimate content).

• epicgames (Ozmen et al., 2024) includes critiques from authors on games released on the epicgames platform.
Interaction features are created by vectorizing the critiques using TF-IDF and incorporating the author’s overall rating.
The interaction label indicates whether the critique was chosen as a top critique.

• Gauss is a 2 dimensional synthetic dataset. The input features as generated as Xt ∼ N (µ1(t), µ2(t), σ1) where
µ1(t) =

(t+1)
100

, µ2(t) = 0.5 −
(t+1)
100

, σ = 0.1. The label is generated using a fixed rule y = 1[4 ∗ r1 − 0.5) ∗ ∗2 > r2].

• circles is a 2 dimensional synthetic dataset. The input features as uniformly generated as Xt ∼ U[0,1] The label is
generated using a moving rule yt = 1[(r1 − (0.2 + 0.02t))

2 + (r2 − (0.2 + 0.02t))
2 ≤ 0.5 ∈].

• iWild (Beery et al., 2020) is a multiclass dataset featuring images of animals captured in the wild at various locations.
Originally used as a domain transfer benchmark, we adapted it into a standard classification dataset by including
the location ID as a feature for the model. To obtain a long enough sequence of datasets D0,D1, . . . , we create the
individual datasets Di using overlapping windows on the timeframe, i.e., half of the most recent images in Di are
contained in Di+1. We avoid data leakage by ensuring that the train/val/test splits are maintained.
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A.6.1. BASE MODEL OF THE IWILD DATASET

To motivate our cost considerations, we present an experiment where the base model architecture is not fixed and is searched
for across a list of potential model architectures. This could happen in practice for important applications; nothing forces a
practitioner to use the same base model f at each timestep.

Our architecture involves using a pretrained vision model, with a new output layer added to match the correct number of
classes for our task, which is then fine-tuned for up to 20 epochs. The fine-tuning process uses the Adam optimizer with a
fixed learning rate of 10−4 and a weight decay parameter of 10−5. Training was conducted using 4 H100 GPUs for 2 days.

At each timestep ft, we perform a random search over the pretrained vision models made available from timm, which
includes 188 vision models of varying configuration and base architecture. We include the list in Appendix A.15. We also
include in our search the option to early stop or not, using the validation set. The model used for ft is the one that obtains
the best validation accuracy.

A.7. Performance forecaster

In this section, we provide additional details on the proposed algorithm to forecast the performance.

To restate, instead of learning the α(ri,j), β(ri,j parameters, we learn the mean and variance parameters;

µ(ri,j) (49)
σ(ri,j). (50)

And convert the learned parameters to the parameters of a beta distribution using the following relation (with appropriate
clipping if needed):

α = µ(
µ(1 − µ)

σ2
− 1) (51)

β = (1 − µ)(
µ(1 − µ)

σ2
− 1) (52)

Inputs ri,j As stated, the input of our performance forecaster model contains the model index i, the timesteps j, the time
since retrain j − i and summary statistics of the distribution shift zshift . zshift is constructed by taking the average feature
shift between the features of the most recently available subsequent datasets Dt and Dt−1 (where t denotes the time step of
the most recent available dataset). We compute the mean features of each dimension for a given dataset; x̄ = 1

∣Dt∣ ∑
∣Dt∣
i=1 xi

and compute the ℓ1 distance between the mean feature vector of the two subsequent datasets;

zshift = ∣∣x̄t − x̄t−1∣∣1 (53)

The input features are thus given by concatenating ri,j = [i, j, j − i, zshift].

Since our methodology involves forecasting the performance of future models and on future datasets to be used by our
decision algorithm, we assess the regression performance of our forecasting models and analyze how it impacts the overall
performance of our UPF algorithm.

To do so, we construct two versions of our forecaster module µϕ(ri,j) that are designed to be less performant than our
proposed method.

• UPF overfit: A baseline designed to overfit the training data. We use a Gaussian Process-based µϕ(ri,j) with no white
noise kernel, using a single dot product kernel from scikit-learn.

• UPF overfit+noise: This variant further decreases performance by using the same overfitting model and adding random
noise to the target values.

We report two metrics, the average mean absolute error of our prediction µ and the average bias of our prediction
µϕ(ri,j) − ai,j on the test set. We start by reporting the retraining performance of each baseline w.r.t. our base retraining
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metric, the AUC of cost values evaluated at different α in Table 5. As expected, the best performing method is the method
with our proposed UPF baseline which is expected to reach the best MAE error on it’s performance prediction, on all
datasets.

Table 5. AUC of the combined performance/retraining cost metric Ĉα(θ), computed over a range of α values, for all datasets. The bolded
entries represent the best, and the underlined entries indicate the second best. The ∗ denotes statistical significance with respect to the
next best baseline, evaluated using a Wilcoxon test at the 5% significance level.

Gauss circles epicgames electricity yelp airplanes

UPF overfit+noise 0.3845 0.0722 0.3253 2.6389 0.1194 2.3767
UPF overfit 0.3849 0.0663 0.3224 2.6001 0.1194 2.3352
UPF 0.3836* 0.0662* 0.3203* 2.5910* 0.1175* 2.3094*

We then visualize the effect of the performance forecasting precision (measured with MAE and bias) on the decision
algorithm’s performance (measured by Ĉα(θ)) in the following figures.

Overall, we observe that the impact of poor performance depends on the difficulty of the underlying dataset.

For the airplane dataset, which is of standard difficulty, we can observe a gradual impact of the degradation in forecasting
performance on the overall retraining metric in Figure 5. The best MAE leads to the best cost metric Ĉα(θ), and the
performance gradually decreases as the MAE and bias worsen.

The Epicgame dataset 6, which is more challenging due to its less regular performance trends, shows a different behavior.
Here, the overall forecasting performance is worse (the best achievable MAE is higher), and we observe a less regular pattern
where poorer MAE does not always result in a proportional increase in cost, as shown in terms of scale. Similarly, when
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Figure 5. Airplanes. Cost Ĉα(θ) vs α with the forecasting performance metrics (mae and bias).
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Figure 6. Epicgames. Cost Ĉα(θ) vs α with the forecasting performance metrics (mae and bias).
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turning to the synthetic datasets, the circle dataset, which is constructed with concept drift (changing p(Y ∣X)), is more
challenging than the Gauss dataset, which only exhibits feature drift (where p(X) changes, but p(Y ∣X) remains constant).
This impacts the effect of poor forecasting performance. In Figure 7, for the circle dataset, we observe that a small decrease
in MAE paired with stronger bias can have a more sudden and drastic effect on the decision policy. Conversely, in the Gauss
dataset (Figure 8), the effect of poorer forecasting performance is less pronounced.
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Figure 7. Circles. Cost Ĉα(θ) vs α with the forecasting performance metrics (mae and bias).
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Figure 8. Gauss. Cost Ĉα(θ) vs α with the forecasting performance metrics (mae and bias).
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A.8. Extension to non-bounded metrics

In this section, we show how we can extend our methodology to model non-bounded metrics often used in regression tasks,
such as the root mean square error (RMSE) or mean absolute error (MAE).

To do so, we replace the use of a Beta distribution to a log Normal distribution to model our performance metric r.v. Ai,j .

A log normal distribution is parameterized with location m and scale parameter v. We can learn the mean and variance
parameters using the same Gaussian approximation;

LogNorm(m(ri,j), v(ri,j)) ≈ N (µ(ri,j), σ(ri,j)), (54)

and recover the location and scale parameters using the relation;

v =

√

ln(1 +
µ

σ2
) (55)

m = ln(v) −
v2

2
. (56)

A.8.1. BETA APPROXIMATION VS NORMAL

In our method, we approximate the Beta distribution with a Normal distribution to ease the learning process;

Beta(α(ri,j), β(ri,j)) ≈ N (µ(ri,j), σ(ri,j)). (57)

We verify here that this approximation doesn’t have too big an effect on the end performance. We compare the UPF method,
which uses Ai,j ∼ Beta(α(ri,j), β(ri,j)), with a UPF (Gaussian), which doesn’t use the Beta distribution and instead uses
a Gaussian with learned parameters to model the performance metric: Ai,j ∼ N (µ(ri,j), σ(ri,j)). In Figures 9, 10, 11 and
12, we can see that this does not have too big an effect on the overall behavior and performance.
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A.9. Training complexity

In this section, we compare the training complexity of each baseline. We report the average time required for the offline
training process, online inference and discuss runtime complexity.

The CARA baseline comprises two computationally intensive components. First, it constructs the C matrix, representing
its performance estimation. This algorithm involves inferring, with a modified model, each point of the new dataset and
reweighting each, which scales with O(∣Dnew∣). This needs to be done in both offline and online phases. Then, in the offline
phase, it performs an annealing search over parameters to find the best value that minimizes this cost approximation, taking
into account the retraining cost associated with each decision. In Table 6, we can see that this result in the highest runtime
for both online and offline phases.

Table 6. Average runtime of the baselines on the circles dataset.

CARA cum. CARA CARA per. UPF ADWIN FHDDM KSWIN

Offline ms 8.4871 8.6608 7.8461 0.0947 0.0274 0.0122 0.3392
Online (one step)ms 1.5604 1.5046 1.5940 0.0247 0.0351 0.0103 0.3438

In comparison, our approach consists of fitting a linear model on a small dataset. The shift distribution features must be
obtained, but they involve comparing two histograms, scaling as O(w2∣Dt∣) rather than exponentially with ∣Dt∣.

The distribution shift baselines do not have an offline phase, as they monitor shifts in the underlying distribution continuously.
Their runtime complexity is therefore very low, at O(∣Dt∣), as reflected in Table 6

A.10. Additional results

In this section, we include additional figures to visualize our results in Figures 13, 14, 15, 16, 17, 18, and Figures 19. Overall,
the results are generally consistent and exhibit a similar trend. The EpicGames dataset, however, is more challenging and
presents greater difficulties for all baselines. In particular, UPF performs worse than other baselines at low values of the
retraining cost ratio α. For those operating points, UPF does reach the correct retraining frequency; however, it is unable
to pinpoint the optimal moments to retrain, resulting in worse performance than baselines that retrain more frequently, as
shown in the right panel of Figure 19.
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Figure 13. Result on the electricity dataset. left) Cost Ĉα(θ) vs α. right) Number of retrains vs α.
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Figure 15. Result on the epicgames dataset. left) Cost Ĉα(θ) vs α. right) Number of retrains vs α.
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Figure 16. Result on the Gauss dataset. left) Cost Ĉα(θ) vs α. right) Number of retrains vs α.
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Figure 17. Result on the circles dataset. left) Cost Ĉα(θ) vs α. right) Number of retrains vs α.
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Figure 18. Result on the airplanes dataset. left) Cost Ĉα(θ) vs α. right) Number of retrains vs α.

We additionally include results with the oracle baselines in Figures 19. We can see that the UPF baseline is reasonably
close to the optimal algorithm in two of the datasets (circles and electricity), but struggles for the more challenging dataset,
epicgames. Looking at the number of retrains, we can see that UPF more closely follows the retraining frequency of the
oracle for all datasets.
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Figure 19. Result on the circles (left), electricity (middle) and epicgames (right) datasets. Top) Cost Ĉα(θ) vs α. Bottom) Number of
retrains vs α.

A.11. Methodology as offline RL

We can frame the retraining problem as an offline RL task (Levine et al., 2020). We define a state space where each state is
described by the index of the trained model and the timestep; S ∈ {T} × {T}. The action space is to either retrain or not, so
A = {0,1}. The state transitions are deterministic and known:

T (St+1∣St = (i, t),A) =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

1 if A = 0, St+1 = (i, t + 1)

1 if A = 1, St+1 = (t + 1, t + 1)

0 o.w.
. (58)

Figure 20 provides a visualization of the MDP. Since the state transitions are deterministic, we can define the deterministic
transition function:

st+1 = t(at, st). (59)

The reward function only depends on the end state (which describes the performance of a model i evaluated at timestep t)
and on the action. Using peS to denote the performance at a state S and reusing of tradeoff parameter α, we have the reward

28



When to retrain a machine learning model

t=0,
f=0

t=1,
f=0

t=2,
f=0

t=3,
f=0

t=1,
f=1

t=2,
f=1

t=3,
f=1

t=2,
f=2

t=3,
f=3

t=3,
f=2

Time t 

Model 
f 

No retrain (keep)

Retrain

…

…

Figure 20. Visualization of the MDP

function:

r(at, st+1) = −αat − pest+1 . (60)

To match our setting, the discount factor has to be set to one γ = 1.

The goal is to learn a policy π on offline data to generalize to the online period. The offline dataset is given by: Doffline =

{sn, an, rn}
N
n=1.

The objective is defined as:

J(π) = Eτ∼pπ(τ)[
T+w
∑
t=w

r(st, at)], (61)

which is the same objective as we defined, with the added option of defining a random policy to make decisions pπ(θ):

J(π) = Eθ∼pπ(θ)[
T+w
∑
t=w

r(st, at)] (62)

= −Eθ∼pπ(θ)[
T+w
∑
t=w

αat + pest+1] (63)

= Eθ∼pπ(θ)[Cα(θ)]. (64)

Q-learning (approximate dynamic methods) The basic idea of Q-learning is to define a Q function and to derive a
deterministic policy π from it. The Q function is defined as follows;

Qπ
(st, at) = Eτ∼pτ ∣st,at

[
T+w
∑
t′=t

r(st′ , at′)] (65)

and the policy is set to:

π(at∣st) = δ(at = argmaxQ(st, at)). (66)

29



When to retrain a machine learning model

Since the optimal policy π∗ should satisfy

Q∗(st, at) = r(st, at) +Est∼T (st+1∣st,at)[max
at+1

Q∗(st+1, at+1)] , (67)

one algorithm is to train Qϕ until that equation is satisfied.

In our case, the transition is deterministic, so we can define st+1 = t(st, at) and have

Q∗(st, at) = r(st, at) +maxat+1Q
∗
(t(st, at), at+1) . (68)

The idea is then to parameterize Qϕ, and minimize the following for all samples in the dataset using the Bellman update:

∑
n

(Qϕ(sn, an) − [r(sn, an) +max
a′

Qϕ(s
′, a′)])2 . (69)

First we set the target:

yn = r(sn, an) +max
a′

Qϕ(s
′, a′) (70)

then we optimize

∂

∂ϕ
∑
n

(Qϕ(sn, an) − yn)
2. (71)

and the algorithm iterates between those two steps. We can therefore apply any Q-learning method to our problem, provided
that it uses a standard Qϕ parameterization.

Connecting Q-learning to our UPF algorithm

In our setting, we have special knowledge of the structure of Q. First, there is no randomness on the transition state, so we
know that:

yn = r(sn, an) +max
an+1

Qϕ(t(sn, an), an+1) (72)

By definition, we have that:

Qϕ(st, at) = −atα − pes,t +max
at+1

Qϕ(t(st, at), at+1) (73)

While computing the Bellman update and setting the target, we can see that the Q function of one of the last states Qϕ(sT,x, ⋅)
will have to predict the end performance:

Qϕ(sT,x, ⋅) = −pesT,x
, (74)

= −fϕ(sT,x) . (75)

By the DAG structure of the transition function, and since the α value is known, we can parameterize recursively all the Qϕ

functions with shareable components:

Qϕ(sT−1,x, aT−1,x) = −αaT−1,x − fϕ(sT−1,x) +max(−α − fϕ(sT,T ),−fϕ(sT,x)), (76)

where each fϕ(sT−1,x) is modeling the performance pesT,x
at that given state.

The MSE objective that is traditionally applied (Eqn. 71) can then be decomposed into 2 terms, where one of the terms
corresponds to our objective:

L =∑
n

(Qϕ(sn, an) − yn)
2 (77)

= ( − αan,x − fϕ(sn) +max(−α − fϕ(sT,T ),−fϕ(sT,x)) (78)

− (anα + pesn +max
an+1

Qϕ(t(sn, an), an+1)))
2

(79)

= (fϕ(sn) − pesn +max(−α − fϕ(sT,T ),−fϕ(sT,x)) +max
an+1

Qϕ(t(sn, an), an+1)))
2

(80)

L =∑
n

(fϕ(sn) − pesn)
2

+C. (81)
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The term (fϕ(sn) − pesn)
2

in the loss function aligns with our objective, as Ai,j represents our model’s approximation
of the performance metric pei,j . Therefore, with this specific parameterization, we can establish a connection between
Q-learning and our learning method.

However, as noted in the main text, applying existing ORL methods to this problem would not be effective. The problem
involves a deterministic transition matrix and a highly structured reward, both of which are uncommon in typical RL settings.
Additionally, most RL methods prioritize scalability to large state or action spaces, use complex models, and assume access
to plentiful data, making them ill-suited for our scenario. A key requirement for our approach is training efficiency, given our
limited performance data and the need for online adaptation as more information becomes available. If the computational
cost of deciding when to retrain is comparable to the retraining process itself, the approach becomes impractical.

A.11.1. OFFLINE RL BASELINES

In this section, we present results using an offline RL baseline that is appropriate for low-data settings: Least-Squares
Policy Iteration (LSPI) (Lagoudakis & Parr, 2003). We follow the detailed RL formulation as previously presented. To
implement LSPI, we use the model index i and timesteps t as states (following the formulation from the previous section).
In LSPI, various approximation methods are introduced to solve the linear equation, but these are unnecessary in our case,
as we can solve it exactly due to the small size of our problem. We present various versions of this baseline by changing
the λ parameter. In Table 7, we can see that this proposed baseline is not competitive. These initial results for this basic
formulation of the offline RL problem indicate that more care and design should be taken to appropriately solve this problem
using offline RL, supporting that existing RL methods, as they are, may not be well-suited to solve the problem.

Table 7. AUC of the combined performance/retraining cost metric Ĉα(θ), computed over a range of α values, for all datasets. The bolded
entries represent the best, and the underlined entries indicate the second best. The ∗ The ∗ denotes statistically significant difference with
respect to the next best baseline, evaluated using a Wilcoxon test at the 5% significance level.

electricity Gauss circles airplanes yelpCHI epicgames iWild

ADWIN-5% 2.8099 0.4533 0.0753 2.6353 0.1298 0.3217 3.7371
ADWIN-50% 2.8131 0.4848 0.0753 2.7147 0.1298 0.3238 4.2564
KSWIN-5% 3.8979 0.3975 0.0753 3.2300 0.1322 0.3420 4.4268
KSWIN-50% 4.0521 0.9530 0.0794 3.2042 0.1655 0.3537 4.4268
FHDDM-5% 3.1525 0.3893 0.0753 2.6577 0.1324 0.3298 4.4267
FHDDM-50% 3.4037 0.5918 0.0772 2.7077 0.1450 0.3389 4.4268
CARA cumul. 2.7147 0.3862 0.0731 2.2900 0.1299 0.3228 3.8922
CARA per. 2.8986 0.4678 0.0800 2.4061 0.1318 0.3260 3.7527
CARA 2.7198 0.3841 0.0726 2.2753* 0.1294 0.3202 3.9506

LSPI λ = 1 4.3820 1.0530 0.2412 3.7140 0.1493 0.3523 -
LSPI λ = 0.5 4.5260 1.0837 0.2455 3.6924 0.1442 0.3566 -
LSPI λ = 0.0 4.5317 1.0933 0.2478 3.5862 0.1378 0.3573 -

UPF (ours) 2.5782* 0.3829* 0.0668* 2.2865 0.1293* 0.3189* 3.0498*

oracle 2.4217 0.3724 0.0627 2.2298 0.1275 0.3170 2.4973

A.12. Relating our objective to the CARA formulation

In (Mahadevan & Mathioudakis, 2024), even though they are also tackling the retraining problem, they are formulating the
problem differently.

Instead of using a binary vector to model the retraining decisions, they use a sequence of model indices S = [s1, . . . , sT ]
with the constraint that st ∈ {0, . . . , t}. If st = t, it signifies a retrain.

The cost objective they consider is similar to ours; they sum over the timesteps to get the cumulative total cost. The cost per
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timestep is encoded in an upper triangular matrix C:

C[t′, t] =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

Ψ̄t,t′ if t′ < t
κ if t′ = t (cost of retraining)
∞ o.w.

(82)

where Ψ̄t,t′ is defined as some “relative staleness cost”. The total cost is defined as:

Ccara
(S) =

T

∑
t=1

C[st, t]. (83)

The staleness cost is defined as the cost of using a model f1 to classify data from Q2, approximated by dataset D3:

Ψ(Q2,D3, f1) ≜ ∑
q∼Q2

1

∣D3∣
∑

x,y∼D3

sim(q, x)ℓ(f1, x, y) (84)

The aim of this metric is to predict the performance of f1 on the query points in Q2 by computing the loss on a reference
dataset D3. The idea is to weight the loss at each sample of D3 by how similar they are to the query samples in Q2 (this is
the role of sim(q, x)).

ℓ(f3(q), yq) ≈
1

∣D3∣
∑

x,y∼D3

sim(q, x)ℓ(f1, x, y) (85)

Ψ(Q2,D3, f1) ≈ NeEQ2[ℓ(f3(X), Y )] (86)
≈ Nepet3,t2 (87)

The relative staleness cost is defined as the difference between staleness costs:

Ψ̄t,t′ = Ψ(Qt,Dt, ft′) −Ψ(Qt,Dt′ , ft′) . (88)

This is intended to approximate the relative gap of performance:

Ψ̄t,t′ ≈ Ne(pet′,t − pet,t) (89)

In our experiment, we directly use Ψ(Qt,Dt, ft′) as an approximation of pet′,t and apply the CARA algorithm directly on
the staleness costs instead of using the relative staleness cost.

Relating it to our formulation Our objective is given by;

C(θ) = c∣∣θ∣∣1 + eN
T

∑
t=1

perθ,t. (90)

To understand the connection with our formulation, we start by rewriting the CARA cost as:

Ccara
(S) =

T

∑
t=1

1[st = t]κ + 1[st < t]Ψ̄t,st (91)

=
T

∑
t=1

1[st = t]κ + 1[st < t]Ψ̄t,st (92)

≈
T

∑
t=1

1[st = t]κ +Ne1[st < t](pest,t − pet,t) from (89) (93)

Ccara
(θ) = κ∣∣θ∣∣1 +Ne

T

∑
t=1
(perθ,t − pet,t) switching to our notation with θ. (94)

This reveals the assumptions that are required for both solutions to coincide. First, this approximation for the loss of a future
model ft should hold:

ℓ(ft(xq), yq) ≈
1

∣Dt∣
∑

x,y∼Dt

sim(xq, x)ℓ(f1, x, y) (95)
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Second, in order to have:

C(θ) = Ccara
(θ) (96)

we need

κ = c +
Ne∑

T
t=1 pet,t
∣∣θ∣∣1

. (97)

Proof: We require that:

c∣∣θ∣∣1 +Ne
T

∑
t=1

perθ,t = κ∣∣θ∣∣1 +Ne
T

∑
t=1
(perθ,t − pet,t) . (98)

This implies that:

c∣∣θ∣∣1 +Ne
T

∑
t=1

perθ,t = κ∣∣θ∣∣1 +Ne
T

∑
t=1

perθ,t −Ne
T

∑
t=1

pet,t , (99)

and hence that:

κ = c +
Ne∑

T
t=1 pet,t
∣∣θ∣∣1

. (100)

The cost of retraining κ in the CARA formulation must thus scale with the minimum performance cost that can be obtained
by always using the most recent model Ne∑

T
t=1 pet,t, divided by the number of retrains that have been made. It is of course

not possible to set κ to this value, as it depends on θ, but it gives insight into how the formulations relate to each other.

A.13. Varying training data size

In this section, we provide experimental results where we assume that we have access to fewer offline time steps and analyze
how it impacts the results. We display the relative improvement of the best baseline vs. the competing baselines by reporting
normalized AUC values in Tables 8,9, and10. Overall, our method remains effective in scenarios with reduced training data.
It demonstrates greater robustness compared to the CARA baselines, which can be explained by the fact that it can adapt to
new information received during the online process, which CARA cannot do. With very few training steps (w = 2), the
CARA baselines suffer the most, reaching more than twice the error for some datasets. With more data (w = 4), the relative
performance is more in line with larger datasets (w = 7), with UPF remaining the best.

Table 8. w = 2. Normalized AUC of the combined performance/retraining cost metric Ĉα(θ), computed over a range of α values, for all
datasets. We normalize by dividing by the best value for each dataset. The bolded entries represent the best. The ∗ denotes statistical
significance with respect to the next best baseline, evaluated using a Wilcoxon test at the 5% significance level.

w = 2 electricity airplanes yelpCHI epicgames Gauss circles

CARA 1.0000 1.0101 1.0100 1.0282 2.6519 1.4792
CARA c. 1.0669 1.0680 0.0544 2.7437 4.0150 1.6872
CARA per. 2.1971 1.6703 0.0661 2.9131 10.6965 1.8901

UPF 1.0258 1.0000* 1.0000* 1.0000 1.0000* 1.0000*

A.14. Results on the Wild Temporal dataset

In this section, we present preliminary results on one dataset from the suite of temporal datasets from Yao et al. (2022).
Specifically, we present preliminray results from the yearbook dataset.

To construct our sequence of datasets Dt, . . . , we follow the construction from (Yao et al., 2022). For training, we iteratively
add more samples from each year, spanning from 1930 to 2012. For testing, we evaluate only on samples from the most

33



When to retrain a machine learning model

Table 9. w = 4. Normalized AUC of the combined performance/retraining cost metric Ĉα(θ), computed over a range of α values, for all
datasets. We normalize by dividing by the best value for each dataset. The bolded entries represent the best. The ∗ denotes statistical
significance with respect to the next best baseline, evaluated using a Wilcoxon test at the 5% significance level.

w = 4 electricity airplanes yelpCHI epicgames Gauss circles

CARA 1.0093 1.0024 1.0000 1.0063 1.0049 1.0653
CARA per. 1.1029 1.0721 1.0017 1.0168 1.0984 1.0045
CARA c. 1.0153 1.0060 1.0025 1.0220 1.0042 1.0501
UPF 1.0000* 1.0000* 1.0008 1.0000* 1.0000* 1.0000*

Table 10. w = 7. Normalized AUC of the combined performance/retraining cost metric Ĉα(θ), computed over a range of α values, for all
datasets. We normalize by dividing by the best value for each dataset. The bolded entries represent the best. The ∗ denotes statistical
significance with respect to the next best baseline, evaluated using a Wilcoxon test at the 5% significance level.

w = 7 electricity airplanes yelpCHI epicgames Gauss circles

CARA c. 1.0530 1.0065 1.0046 1.0122 1.0086 1.0944
CARA per. 1.1244 1.0575 1.0193 1.0223 1.2219 1.1976
CARA 1.0549 1.0000* 1.0008 1.0041 1.0031 1.0868
UPF (ours) 1.0000* 1.0050 1.0000* 1.0000* 1.0000* 1.0000*

recent year. As for the model ft, we use the ERM model from (Yao et al., 2022), and follow the training procedure fromYao
et al. (2022). We use a similar setup to the one followed in our experiment, setting the offline window size w = 7, evaluating
over an online phase of T = 8 steps, and presenting results over 10 trials (See table 11). Preliminary results for this dataset
which can be seen in Table 12 are inline with the results from the main paper.

Table 11. Dataset description. w denotes the number of timestep of the offline phase, T denotes the number of timestep of the online
phase. The Model describes the architecture used for each ft.

Dataset Model αmax w ∣M<0∣ T Dataset size (∣D∣) Num. features Task

yearbook ERM 0.5 7 21 8 (varies) 32X32X3 Binary

A.15. List of timm pretrained vision models

’ b e i t b a s e p a t c h 1 6 2 2 4 ’ ,
’ b e i t v 2 b a s e p a t c h 1 6 2 2 4 ’ ,
’ c a f o r m e r s 1 8 ’ ,
’ c a i t s 2 4 2 2 4 ’ ,
’ c a i t x x s 2 4 2 2 4 ’ ,
’ c a i t x x s 3 6 2 2 4 ’ ,
’ c o a t l i t e m i n i ’ ,
’ c o a t l i t e s m a l l ’ ,
’ c o a t l i t e t i n y ’ ,
’ c o a t m i n i ’ ,
’ c o a t t i n y ’ ,
’ c o a t n e t 0 r w 2 2 4 ’ ,
’ c o a t n e t b n 0 r w 2 2 4 ’ ,
’ c o a t n e t n a n o r w 2 2 4 ’ ,
’ c o a t n e t r m l p 1 r w 2 2 4 ’ ,
’ c o a t n e t r m l p n a n o r w 2 2 4 ’ ,
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Table 12. AUC of the combined performance/retraining cost metric Ĉα(θ), computed over a range of α values, for all datasets. The
bolded entries represent the best, and the underlined entries indicate the second best. The ∗ The ∗ denotes statistically significant
difference with respect to the next best baseline, evaluated using a Wilcoxon test at the 5% significance level.

yearbook

CARA cumul 0.0351
CARA per. 0.0195
CARA 0.0322
UPF 0.0120*

Oracle 0.0105

’ c o a t n e x t n a n o r w 2 2 4 ’ ,
’ c o n v f o r m e r s 1 8 ’ ,
’ c o n v i t b a s e ’ ,
’ c o n v i t s m a l l ’ ,
’ c o n v i t t i n y ’ ,
’ c o n v m i x e r 1 0 2 4 2 0 k s 9 p 1 4 ’ ,
’ c o n v n e x t a t t o ’ ,
’ c o n v n e x t a t t o o l s ’ ,
’ c o n v n e x t b a s e ’ ,
’ c o n v n e x t f e m t o ’ ,
’ c o n v n e x t f e m t o o l s ’ ,
’ c o n v n e x t n a n o ’ ,
’ c o n v n e x t n a n o o l s ’ ,
’ c o n v n e x t p i c o ’ ,
’ c o n v n e x t p i c o o l s ’ ,
’ c o n v n e x t s m a l l ’ ,
’ c o n v n e x t t i n y ’ ,
’ c o n v n e x t t i n y h n f ’ ,
’ c o n v n e x t v 2 a t t o ’ ,
’ c o n v n e x t v 2 f e m t o ’ ,
’ c o n v n e x t v 2 n a n o ’ ,
’ c o n v n e x t v 2 p i c o ’ ,
’ c o n v n e x t v 2 t i n y ’ ,
’ c r o s s v i t 1 5 2 4 0 ’ ,
’ c r o s s v i t 1 5 d a g g e r 2 4 0 ’ ,
’ c r o s s v i t 1 5 d a g g e r 4 0 8 ’ ,
’ c r o s s v i t 1 8 2 4 0 ’ ,
’ c r o s s v i t 1 8 d a g g e r 2 4 0 ’ ,
’ c r o s s v i t 9 2 4 0 ’ ,
’ c r o s s v i t 9 d a g g e r 2 4 0 ’ ,
’ c r o s s v i t b a s e 2 4 0 ’ ,
’ c r o s s v i t s m a l l 2 4 0 ’ ,
’ c r o s s v i t t i n y 2 4 0 ’ ,
’ c s 3 d a r k n e t f o c u s l ’ ,
’ c s 3 d a r k n e t f o c u s m ’ ,
’ c s 3 d a r k n e t l ’ ,
’ c s 3 d a r k n e t m ’ ,
’ c s 3 d a r k n e t x ’ ,
’ c s 3 e d g e n e t x ’ ,
’ c s 3 s e e d g e n e t x ’ ,
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’ c s 3 s e d a r k n e t l ’ ,
’ c s 3 s e d a r k n e t x ’ ,
’ c s p d a r k n e t 5 3 ’ ,
’ c s p r e s n e t 5 0 ’ ,
’ c s p r e s n e x t 5 0 ’ ,
’ d a r k n e t 5 3 ’ ,
’ d a r k n e t a a 5 3 ’ ,
’ d a v i t b a s e ’ ,
’ d a v i t s m a l l ’ ,
’ d a v i t t i n y ’ ,
’ d e i t 3 b a s e p a t c h 1 6 2 2 4 ’ ,
’ d e i t 3 m e d i u m p a t c h 1 6 2 2 4 ’ ,
’ d e i t 3 s m a l l p a t c h 1 6 2 2 4 ’ ,
’ d e i t b a s e d i s t i l l e d p a t c h 1 6 2 2 4 ’ ,
’ d e i t b a s e p a t c h 1 6 2 2 4 ’ ,
’ d e i t s m a l l d i s t i l l e d p a t c h 1 6 2 2 4 ’ ,
’ d e i t s m a l l p a t c h 1 6 2 2 4 ’ ,
’ d e i t t i n y d i s t i l l e d p a t c h 1 6 2 2 4 ’ ,
’ d e i t t i n y p a t c h 1 6 2 2 4 ’ ,
’ d e n s e n e t 1 2 1 ’ ,
’ d e n s e n e t 1 6 1 ’ ,
’ d e n s e n e t 1 6 9 ’ ,
’ d e n s e n e t 2 0 1 ’ ,
’ d e n s e n e t b l u r 1 2 1 d ’ ,
’ d l a 10 2 ’ ,
’ d l a102x ’ ,
’ d l a102x2 ’ ,
’ d l a 16 9 ’ ,
’ d l a 3 4 ’ ,
’ d l a 4 6 c ’ ,
’ d l a 4 6 x c ’ ,
’ d l a 6 0 ’ ,
’ d l a 6 0 r e s 2 n e t ’ ,
’ d l a 6 0 r e s 2 n e x t ’ ,
’ d l a 60 x ’ ,
’ d l a 6 0 x c ’ ,
’ d m n f n e t f 0 ’ ,
’ d m n f n e t f 1 ’ ,
’ dpn68 ’ ,
’ dpn68b ’ ,
’ dpn92 ’ ,
’ dpn98 ’ ,
’ e c a n f n e t l 0 ’ ,
’ e c a n f n e t l 1 ’ ,
’ e c a n f n e t l 2 ’ ,
’ e c a r e s n e t 3 3 t s ’ ,
’ e c a r e s n e x t 2 6 t s ’
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