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ABSTRACT

Recent works in volume rendering, e.g. NeRF and 3D Gaussian Splatting (3DGS),
significantly advance the rendering quality and efficiency with the help of the
learned implicit neural radiance field or 3D Gaussians. Rendering on top of an ex-
plicit representation, the vanilla 3DGS and its variants deliver real-time efficiency
by optimizing the parametric model with single-view supervision per iteration
during training which is adopted from NeRF. Consequently, certain views are
overfitted, leading to unsatisfying appearance in novel-view synthesis and im-
precise 3D geometries. To solve aforementioned problems, we propose a new
3DGS optimization method embodying four key novel contributions: 1) We trans-
form the conventional single-view training paradigm into a multi-view training
strategy. With our proposed multi-view regulation, 3D Gaussian attributes are
further optimized without overfitting certain training views. As a general solution,
we improve the overall accuracy in a variety of scenarios and different Gaussian
variants. 2) Inspired by the benefit introduced by additional views, we further
propose a cross-intrinsic guidance scheme, leading to a coarse-to-fine training pro-
cedure concerning different resolutions. 3) Built on top of our multi-view regulated
training, we further propose a cross-ray densification strategy, densifying more
Gaussian kernels in the ray-intersect regions from a selection of views. 4) By fur-
ther investigating the densification strategy, we found that the effect of densification
should be enhanced when certain views are distinct dramatically. As a solution, we
propose a novel multi-view augmented densification strategy, where 3D Gaussians
are encouraged to get densified to a sufficient number accordingly, resulting in
improved reconstruction accuracy. We conduct extensive experiments to demon-
strate that our proposed method is capable of improving novel view synthesis of
the Gaussian-based explicit representation methods about 1 dB PSNR for various
tasks. Codes are available.

1 INTRODUCTION
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Figure 1: MVGS supplements general improvements for novel view synthesis on top of GaussianSplat-
ting (Kerbl et al., 2023) representations, as shown in (b) and (c). Extensive experiments are conducted
to prove that our proposed method delivers consistent advantages in (d) in extremely challenging
scenes with strong reflection, transparency, and fine-scale details against baseline methods.

Photorealistic rendering towards unbounded scenes or single object is proven to hold significant values
in both the industrial and academic areas, e.g. multi-media generation, virtual reality, and autonomous
driving. Conventional primitive-based representations such as mesh and point cloud (Botsch et al.,
2005; Lassner & Zollhofer, 2021; Yifan et al., 2019; Munkberg et al., 2022) make real-time rendering
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possible with the help of efficient rasterization. Although such a rendering mechanism delivers high
efficiency, revealing a fine-grained and sufficiently precise appearance is still struggling, where blurry
artifacts and discontinuity happen. On the contrary, implicit representation (Erler et al., 2020) and
neural radiance field (Mildenhall et al., 2021; Barron et al., 2022; Müller et al., 2022)(NeRF), employ
the multi-layer perceptron (MLP) to improve the potentiality of rendering high-fidelity geometries
where more detailed structures are preserved. However, their inference efficiency is still limited even
with accelerating operators such as Instant-NGP (Müller et al., 2022).

Recently, 3D Gaussian-based explicit representation, e.g. Gaussian Splatting (3DGS) (Kerbl et al.,
2023; Jiang et al., 2024; Lu et al., 2024; Wu et al., 2024) achieve both state-of-the-art rendering
quality and efficiency contributed by its tailored rasterization technique, following the paradigm of
NeRF, i.e. training with a sample from a single camera view per iteration. Such a training strategy
is commonly adopted in NeRF because of its pixel-wise rendering behavior for the convenience
of utilization of supervision. As for 3DGS (Kerbl et al., 2023), 3D Gaussians kernels are directly
rasterized on the image plane and get optimized with pixel-wise losses compared to the ground truth
as well. However, because of the explicit characteristic of 3DGS representation, we observe the
single-view training paradigm encourages 3D Gaussian kernels overfitting certain views for reducing
training losses, making it not robust enough to precisely present all details in the scene.

In this paper, we propose MVGS, a general optimization method, empowering a large variety of
Gaussian-based explicit approaches for better NVS precision as shown in Fig. 1 (d), with an exemplar
case as shown in Fig. 1 (a), (b) and (c). The most crucial contribution of our work is altering
the traditional training paradigm using a single-view supervision per iteration. We propose to
incorporate multiple views per iteration during training by the proposed multi-view-regulated learning.
Specifically, the overall set of 3D Gaussians towards the scene is forced to learn the structure and
appearance of multiple views jointly without suffering the overfitting issues from a specific view.
Consequently, such an optimization enables 3DGS kernels to get constrained to satisfy the rendering
for a selection of views instead of overfitting to a certain view. To incorporate more information upon
multi-view supervision, we propose cross-intrinsic guidance from low resolution to high resolution
during training. The low-resolution training allows plenty of multi-view information as a powerful
constraint to build more compact 3D Gaussians, which also conveys learned scene structure for
high-resolution training to sculpt finer detail. Intuitively, the 3D Gaussians in overlapped 3D regions
of cross rays should be densified to improve reconstruction performance for these views since these
3D Gaussians jointly serve and play an important role in the rendering of these views. To foster
the effectiveness of learning multi-view information, we further propose a cross-ray densification
strategy to guide the densification process, utilizing the ray-marching techniques with the guidance
of the 2D loss maps. In addition, we propose a multi-view augmented densification strategy when
discrepancies between perspectives are significant. This approach encourages 3D Gaussian to densify
more primitives, enabling better fitting across various perspectives and improving performance.

Extensive experiments are conducted to demonstrate that our method effectively improves NVS
performance for state-of-the-art Gaussian-based methods on various tasks, including general and
reflective object reconstruction, 4D reconstruction, and large-scale scene reconstruction. Particularly,
our experiments indicate that the NVS precision improves as the number of views increases in each
optimization round. Moreover, our method encourages the learned 3D Gaussians to be more compact
for representing the entire scene due to our proposed multi-view regulated learning. In conclusion,
we summarize our contributions as below:
• We first propose a multi-view regulated training strategy that can be easily adapted upon existing
single-view supervised 3DGS framework and its variants optimized for a large variety of tasks, where
the NVS and normal precision can be consistently improved.
• Inspired by the benefit introduced by multi-view supervision with different extrinsic setups, a
cross-intrinsic guidance scheme is proposed to train 3D Gaussians in a coarse-to-fine way. So that
3D Gaussians can accommodate higher consistency with pixel-wise local features.
• As densification strategy is crucial for 3DGS, we further propose a cross-ray densification strategy,
emitting rays under 2D loss map guidance and densifying for overlapped 3D regions. The densified
3D Gaussians in those overlapped regions facilitate the fitting of multiple views, improving the
performance of novel view synthesis.
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• Last but not least, we propose a multi-view augmented densification strategy, intensifying densifica-
tion while the discrepancies of multiple views are significant. It ensures that 3D Gaussians can be
densified sufficiently to fit well with dramatically changed multi-view supervised information.

• In summary, extensive experiments demonstrate our method is a universal optimization solution for
existing Gaussian-based methods to improve novel view synthesis performance by about 1 dB PSNR
for various tasks, including static object or scene reconstruction and dynamic 4D reconstruction.

2 RELATED WORK

Volume Rendering. Significant advancements have been achieved in novel-view synthesis, particu-
larly since the introduction of NeRF (Barron et al., 2021; Mildenhall et al., 2021), which employs
MLP to parameterize the geometry and view-dependent appearance with the help of implicitly defined
radiance field. Moreover, the training and inference efficiency of NeRF has been enhanced using
hash-grid (Müller et al., 2022) and explicitly defined samplers (Li et al., 2023). Built on top of the
radiance field, NeuS (Wang et al., 2021), NeuS2 (Wang et al., 2023), and HF-NeuS (Wang et al.,
2022) also perform more precise surface reconstruction against traditional MVS fusion such as
MeshMVS (Shrestha et al., 2021). Given all the advantages of neural rendering, its efficiency is still
not implausible. Recently, 3D Gaussian Splatting (3DGS) (Kerbl et al., 2023) has emerged, demon-
strating impressive real-time NVS performance. Gaussian-based methods, typically represented by
3D Gaussian Splating (Kerbl et al., 2023), are recent advancements in 3D reconstruction, enabling
high-quality and real-time rendering.

Gaussian Splatting. 3D Gaussian splitting Kerbl et al. (2023); Wu et al. (2024) rasterizes through
α-blending and depth-sorting to get Gaussians projected, thus achieving real-time rendering efficiency
by avoiding the complex ray marching. Thanks to its real-time rendering speed and high-quality
reconstruction performance, 3DGS has been improved and applied to numerous tasks, such as
autonomous driving, reflective object reconstruction (Jiang et al., 2024), and 4D reconstruction (Wu
et al., 2024). Subsequent works focus on improving Gaussian representation, such as techniques
about low-pass filtering (Huang et al., 2024a) and structure grid representations (Lu et al., 2024).
GaussianPro (Cheng et al., 2024) proposes a normal propagation method to bridge a gap from
SfM initialization and mitigate densification limitations. Pixel-GS (Zhang et al., 2024b) proposes
a gradient-based scaling densification strategy to avoid the generation of floater near the camera.
However, these Gaussian-based explicit representation methods adopt a single-image optimization
strategy (Mildenhall et al., 2021; Kerbl et al., 2023), leading to overfitting certain views and not
robust to novel view synthesis, especially when challenging scenarios are encountered, e.g. dynamic,
reflective, or few-shot reconstruction. Built on pre-trained networks, the extracted multi-view
features can solve some of the mentioned difficulties. For example, MVSplat (Chen et al., 2024)
builds a cost volume representation to store cross-view similarities for the estimation of depth.
LatentSplat (Wewer et al., 2024) proposes a representation encoding uncertainty with latent 3D
Gaussian features. PixelSplat (Charatan et al., 2024) predicts a dense probability distribution over 3D
sampled Gaussian positions. In this paper, our proposed method provides a more general solution
without relying on other pre-trained networks.

3 METHODOLOGY

Gaussian Splatting (Kerbl et al., 2023) is recently proposed for real-time novel-view synthesis and
high-fidelity 3D geometric reconstruction. Instead of employing implicit representations such as
density field in NeRF(Mildenhall et al., 2021) and SDF in NeuS (Wang et al., 2021), Gaussian
Splatting leverages a set of anisotropic 3D Gaussians comprising their locations, colors, covariances,
and opacities to parameterize a scene. Such an explicit representation dramatically improves the
training and inference efficiency compared to previous methods like NeRF and NeuS. In the rendering
process, Gaussian Splatting also adopts the point-based volume rendering technique (Kopanas
et al., 2021; 2022a) following NeRF. As denoted in Fig. 2 (a), we diagram that NeRF cannot
receive multi-view supervision in a training iteration due to its point-sampling strategy and implicit
representation. The view-dependent radiance C(.) of each pixel p in the image with the camera
extrinsics E and intrinsics K is calculated by blending a set of 3D Gaussians along ray r(p,E,K).
While NeRF (Mildenhall et al., 2021) approximately blends with points assigned by a sampler (Li
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Figure 2: Illustration of the previous single-view training paradigm and our proposed MVGS, where
(a) describes NeRF cannot be optimized in a multi-view training way. (b) points out the original
3DGS following the single-view training strategy of NeRF. (c) The proposed MVGS transforms
the original training protocol followed by 3DGS and its variants. (d) The proposed cross-intrinsic
guidance strategy enables multi-view training in a coarse-to-fine way. The bottom of this figure
illustrates the pipeline of our proposed MVGS.

et al., 2023) in the radiance field, 3DGS precisely blends by rasterizing with N parameterized kernels
G(r) = {gi | i = 1, . . . , N} along ray r(p,E,K). Assuming that the color ci ∈ R3, the opacity
oi ∈ R, and the covariance Σi ∈ R3×3 describe the attributes of the i-th Gaussian gi respectively, the
rendered pixel radiance C(r) is represented as

C(r) = C({gi | i = 1, . . . , N}) =
N∑
i=1

ciαi

i−1∏
j=1

(1− αj) , (1)

where the color ci is weighted by the transmittance αi = oi exp (− 1
2 (xi)

TΣ−1
i (xi)). Here xi denotes

the distance between the position µi ∈ R3 of Gaussian kernel and the query pixel p. N represents the
number of 3D Gaussians. Considering that 3DGS directly blends with the individually parameterized
kernels gi = {oi, ci,Σi}, which makes it possible to investigate optimization towards specific kernels
across different views, we propose to improve the performance of 3DGS by a novel multi-view
constraint in Sec. 3.1, stabilize rays by enriching different intrinsic setups in Sec. 3.2, and adapt the
densification strategy in Sec. 3.3 and Sec. 3.4.

3.1 MULTI-VIEW REGULATED TRAINING

Given T pairs of ground-truth images I and their corresponding camera extrinsics E and intrinsics
K, which are {(Im, Em,Km) | m = 1, . . . , T}, the goal of 3DGS is to reconstruct a 3D model
described by the multi-view stereo data. As for the training strategy, 3DGS adheres to the convention
of NeRF (Mildenhall et al., 2021) which optimizes the parametric model through single-view
supervision per iteration. Regarding training, 3DGS is normally optimized by supervision from a
single view of information per iteration, where the supervision in one iteration is randomly selected
as (Ii, Ei,Ki). Such that the loss function of the original 3DGS can be formulated accordingly as

L(G,Ei,Ki) =
1

HW

HW∑
p=0

(1− λ)L1(Ii(p),C(r(p,Ei,Ki))) + λLD-SSIM(Ii(p),C(r(p,Ei,Ki))),

(2)
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where L1 and LD-SSIM denote the mean absolute error and D-SSIM loss (Kerbl et al., 2023), respec-
tively. G denotes partial G would be largely affected by gradients in single-view supervision mode.
Practically, the hyperparameter λ is used to control the proportion between these two loss terms.

Considering that implicit representations, e.g. NeRF, depend on pre-trained samplers to approximate
the most confident blending points, multi-view supervision per iteration does not ensure improvement
against single-view training, especially when the sampler is not well-trained as illustrated in Fig. 2
(a). The explicitly defined Gaussian kernels, on the other hand, do not depend on the sampler to get
allocated as shown in Fig. 2 (b) which makes our proposed multi-view training strategy applicable
as shown in Fig. 2 (c), where most of the blending kernels in G could be back-propagated with
multi-view weighted gradients to overcome over-fitting problems towards certain perspectives.

Different from the original single-view iterative training, we propose a multi-view regulated training
approach, optimizing 3D Gaussians in a multi-view supervision way. In particular, we sample M
pairs of supervised images and camera parameters at an iteration. Note that M sets of matched
images and camera parameters are sampled and different from each other. Therefore, our proposed
multi-view regulated learning in a single iteration integrating in gradients can be represented as:

∂L
∂{G}

=
∂L(G1, E1,K1)

∂G1
+

∂L(G2, E2,K2)

∂G2
+ · · ·+ ∂L(GM , EM ,KM )

∂GM
, (3)

where G = {G1, G2, . . . , GM} meaning that a portion of 3D Gaussians GM would be affected with
large gradients for each view during multi-view training. The only difference with the original 3DGS
loss is that our proposed method provides a multi-view constraint toward gradients for optimizing a
set of 3D Gaussians G. In this way, optimizing each Gaussian kernel gi would possibly get regulated
by multi-view information so that over-fitting problems to certain views can be overcome. Moreover,
the multi-view constraint enables 3D Gaussians to learn and deduce view-dependent information,
like reflection as highlighted in the left part of Fig. 4, so our method can perform well in novel view
synthesis for reflection scenes.

3.2 CROSS-INTRINSIC GUIDANCE

As shown in the bottom of Fig. 2, inspired by the benefits introduced by image pyramid (Adelson
et al., 1984), we propose a coarse-to-fine training scheme with different camera setups, i.e. intrinsic
parameters K, by simply supplementing more rasterization planes. Specifically, a 4-layer image
pyramid with downsampling factors S = {2k−1 | k = 4 . . . 1} could be constructed as shown
in Fig. 2 (d). Empirically, the largest downsampling factor set as 8 is enough to accommodate
sufficient training images for multi-view training and the smallest downsampling factor set as 1
means that the downsampling operation is not applied. For each layer, we have matched multi-view
settings Ms = {M1,M2,M3,M4}. In particular, the larger downsampling factor enables more views
accommodated to provide stronger multi-view constraints. In the initial three training stages, we run
only a few thousand iterations per stage without completely training the model. Since target images
are downsampled, the model cannot capture fine details during these early stages. Therefore, we treat
the first three training stages as coarse training. During coarse training, incorporating more multi-view
information imposes more powerful constraints on the entire 3D Gaussians. In this case, the rich
multi-view information provides thorough supervision for the whole 3DGS and encourages fast fitting
with coarse texture and structure. Once the coarse training is finished, fine training is started. Thanks
to the previous coarse training stages providing a coarse architecture of 3DGS, the fine training stage
only needs to refine and sculpt fine details for each 3D Gaussian. Especially, the coarse training
stages provide a large number of multi-view constrain. It conveys the learned multi-view constraint to
the next fine training. This scheme effectively enhances multi-view constraints and further improves
the novel view synthesis performance.

3.3 CROSS-RAY DENSIFICATION

Due to the nature of volume rendering and the explicit representation of 3DGS, 3D Gaussians in
some regions have a significant impact on distinct views when rendering. For instance, the central 3D
Gaussians are crucial when rendering with cameras shooting the center in different poses. However,
finding these regions is not trivial, especially in 3D space. As illustrated in Fig. 2, we propose a cross-
ray densification strategy, starting from 2D space and then searching in 3D adaptively. Specifically,
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we first calculate loss maps of multiple views and then locate the regions containing the largest
average loss values with a sliding window with size (h,w). Afterward, we cast rays from the vertices
of these regions with four rays per window. Then, we calculate the intersection points across rays
of different perspectives. Since we cast four rays per perspective, the intersection points can form
several cuboids. These cuboids are the overlapped regions containing significant 3D Gaussians that
play an important role when rendering for multiple views. Therefore, we densify more 3D Gaussians
in these overlapped regions to facilitate the training of multi-view supervision. This strategy relies
on the accurate searching of overlapped regions containing 3D Gaussians with high significance to
several views. First, we choose the loss guidance, since it highlights the lowest-quality regions that
should be improved for every view. Second, the ray casting technology allows us to locate the 3D
regions containing a set of 3D Gaussians that contributes significantly to these views. Based on the
accurate location, 3D Gaussians in these regions can be seen as pivotal for the joint optimization of
multiple views. Note that we follow the densification mode of the original 3DGS to density one 3D
Gaussian into two 3D Gaussians. In this way, we densify these 3D Gaussians to a certain amount to
improve the reconstruction performance jointly for these views.

3.4 MULTI-VIEW AUGMENTED DENSIFICATION

To get fast convergence, avoid local minimum, and learn fine-grained Gaussian kernels while dis-
crepancies between different views are significant, we propose a multi-view augmented densification
strategy. Specifically, our strategy builds on the densification strategy of the original 3DGS with a
predefined threshold β used to determine which 3D Gaussians should be densified. As depicted in
Fig. 2, we first identify whether the training views are strongly distinct. Instead of using the original
camera translations directly, we normalize the camera translations of sampled views into a unit sphere.
This approach makes our strategy adaptable to various scenes. Then, the relative translation distances
{ri | i = 1, 2, . . . , n} between each camera and another is computed, where the number of distances
n is M2 −M assuming that we have M training views. In our multi-view augmented densification,
we have a self-adaptive criterion β̂ that can be formulated as

β̂ =
β

2
H

(ri
τ

− 1
)
+ β

(
1−H

(ri
τ

− 1
))

, (4)

where H(·) is Heaviside function, returning 1 if the input is larger or equal 0. τ is a predefined
hyperparameter. In this way, when the discrepancies between each view become large, the extent
of 3D Gaussian densification is also enhanced. Consequently, our proposed multi-view augmented
densification strategy allows 3D Gaussians to fit better for each view and capture finer details.

3.5 IMPLEMENTATION

In our experiments, we utilize novel view synthesis metrics like PSNR, SSIM, and LPIPS to evaluate
the performance of models. For general object reconstruction, 3DGS (Kerbl et al., 2023) and Scaffold-
GS (Lu et al., 2024) are selected as our baselines due to their state-of-the-art performance. For
reflective object reconstruction, we choose 3DGS-DR (Ye et al., 2024) as our main baseline since it
is the recent SOTA method to reconstruct glossy objects. As for 4D reconstruction, 4DGS (Wu et al.,
2024) is selected as our baseline due to its fast rendering speed and high-quality 4D reconstruction
performance. In large-scale scene reconstruction, Octree-GS (Ren et al., 2024) is adopted as our
baseline since its level-of-detail structure is suitable for this kind of scene. In our proposed method,
we set Ms = {48, 24, 12, 8} and τ = 1. As for the other setting, we follow the implementation setting
of these baselines. Our method can be easily integrated into existing Gaussian-based methods without
200 lines of code.

4 EXPERIMENTS

We conduct extensive experiments on various tasks that improve the performance of each baseline
approach, ranging from static synthetic object-level scenes to indoor, outdoor, large-scale, and
dynamic scenes. The validation results on each dataset prove that our method performs well especially
in challenging cases, such as insufficient observations, texture-less area, view-dependent lighting
effects, and fine-scale details.
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Table 1: Quantitative results of state-of-the-art 3D reconstruction methods on real-world
datasets. We report results on three commonly used datasets, including Mip-NeRF 360 (Barron et al.,
2022), Tank&Temples (Knapitsch et al., 2017), and Deep Blending (Hedman et al., 2018). The best ,
second best , and third best results are denoted by red, orange, and yellow, respectively.

Dataset Mip-NeRF360 Tanks&Temples Deep Blending
Method & Metrics PSNR ↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

Instant-NGP (Müller et al., 2022) 26.43 0.725 0.339 21.72 0.723 0.330 23.62 0.797 0.423
Plenoxels (Fridovich-Keil et al., 2022) 23.62 0.670 0.443 21.08 0.719 0.379 23.06 0.795 0.510
Mip-NeRF 360 (Barron et al., 2022) 29.23 0.844 0.207 22.22 0.759 0.257 29.40 0.901 0.245
2DGS(Huang et al., 2024b) 28.98 0.867 0.185 23.43 0.845 0.181 29.70 0.902 0.250
Fre-GS (Zhang et al., 2024a) 27.85 0.826 0.209 23.96 0.841 0.183 29.93 0.904 0.240
GES (Hamdi et al., 2024) 28.69 0.857 0.206 23.35 0.836 0.198 29.68 0.901 0.252
3DGS (Kerbl et al., 2023) 28.69 0.870 0.182 23.14 0.841 0.183 29.41 0.903 0.243
Scaffold-GS (Lu et al., 2024) 28.84 0.848 0.220 23.96 0.853 0.177 30.21 0.906 0.254

3DGS (+Ours) 29.61 0.873 0.173 24.44 0.865 0.143 29.74 0.909 0.221
Scaffold-GS(+Ours) 29.82 0.877 0.171 25.54 0.902 0.093 30.37 0.915 0.153

3DGS 3DGS+Ours Ground-Truth Scaffold-GS Scaffold-GS+Ours Ground-Truth

Figure 3: Qualitative comparisons of 3DGS (Kerbl et al., 2023), Scaffold-GS (Lu et al., 2024)
and their improved version integrating our method across various datasets. We use red close-up
patches to highlight the visual differences for clearer visibility. We can observe that our proposed
method can improve the original 3DGS and Scaffold-GS for extremely challenging scenes with
strongly changed lighting effects, powerful reflection, and fine details.

General Object Reconstruction. To assess the performance of our proposed approach, we compare
our improved version on 3DGS (Kerbl et al., 2023) and Scaffold-GS (Lu et al., 2024) baselines with
their original methods. The quantitative results are shown in Table 1. As shown in Table 1, we conduct
general object reconstruction experiments on three commonly used datasets, such as Mip-NeRF
360 (Barron et al., 2022), Tank&Temples (Knapitsch et al., 2017), and Deep Blending (Hedman et al.,
2018). In Table 1, It can be observed that our method integrated into 3DGS and Scaffold-GS achieves
SOTA results in terms of PSNR, SSIM, and LPIPS. In particular, Tank&Temples (Knapitsch et al.,
2017) is a more challenging dataset than the others, containing more challenging scenes with the
presence of texture-less regions, lighting changes, and reflections. As for qualitative comparisons, we
present them in Fig. 3, showing the comparisons of 3DGS, Scaffold-GS, and their improvements by
integrating our method. It can be observed that our method can improve the novel view synthesis
performance quantitatively and qualitatively. In particular, previous methods are struggling to
deal with scenes with strong reflection, fine details, and powerful lighting changes, leading to
the phenomena of floaters, distortion, and over-smoothness. In contrast, our proposed multi-view
regulated learning can impose multi-view constraints into the learning phase of 3D Gaussians so the
trained model can interpolate novel views accurately. It indicates that previous methods integrated
with our method can achieve better quantitative results and reconstruct more satisfying details.

Reflective Object Reconstruction. To demonstrate the universality of our proposed method, we
conduct experiments for the reflective object reconstruction task. In particular, this task is more
challenging than general object reconstruction because it contains objects with strong reflections
and dramatic lighting effect changes. As depicted in Table 2, we compare several state-of-the-art
reflective object reconstruction methods. Specifically, we conduct experiments on two commonly
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Table 2: Quantitative comparisons of state-of-the-art reflective object reconstruction methods.
We demonstrate our method can improve reconstruction performance for challenging reflection
scenes. We report results on Shiny Blender and Glossy Synthetic datasets.

Dataset Shiny Blender Glossy Synthetic

Method & Metrics PSNR ↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓
Ref-NeRF (Verbin et al., 2022) 33.12 0.961 0.079 27.49 0.927 0.100
NPC (Kopanas et al., 2022b) 27.48 0.921 0.145 21.96 0.841 0.181
3DGS (Kerbl et al., 2023) 30.35 0.946 0.083 26.49 0.917 0.092
GaussianShader (Jiang et al., 2024) 31.96 0.957 0.067 27.53 0.921 0.086
ENVIDR (Liang et al., 2023) 33.46 0.967 0.045 29.56 0.952 0.059
3DGS-DR (Ye et al., 2024) 34.08 0.971 0.052 30.13 0.953 0.058

3DGS-DR (+Ours) 34.61 0.974 0.051 30.81 0.962 0.047

Table 3: Quantitative results for 4D reconstruction on the D-NeRF (Pumarola et al., 2021)
dataset. We integrate our method into 4DGS and improve its 4D reconstruction performance. We
also report the rendering speed (FPS) and storage size (MB) to demonstrate our method better. The
rendering resolution is set to 800×800.

Method PSNR↑ SSIM↑ LPIPS↓ FPS ↑ Storage (MB)↓

TiNeuVox-B (Fang et al., 2022) 32.67 0.971 0.044 1.5 48
KPlanes (Fridovich-Keil et al., 2023) 31.61 0.974 - 0.97 418
HexPlane-Slim (Cao & Johnson, 2023) 31.04 0.973 0.044 2.5 38
3DGS (Kerbl et al., 2023) 23.19 0.937 0.081 170 10
FFDNeRF (Guo et al., 2023) 32.68 0.973 0.041 < 1 440
MSTH (Wang et al., 2024) 31.34 0.977 0.024 - -
4DGS (Wu et al., 2024) 34.05 0.978 0.023 82 18

4DGS (+Ours) 35.11 0.980 0.021 102 12

used public datasets, like Shiny Blender (Verbin et al., 2022) and Glossy Synthetic dataset (Liu et al.,
2023). In Table 2, it can be observed that our method integrated into 3DGS-DR achieves SOTA
results compared with existing methods. In addition, we also present visual comparisons in the left
part of Fig. 4 to assess our method qualitatively. We can find that 3DGS-DR cannot accurately recover
lighting effects on glossy surfaces and fine details reflecting surrounding environments. In contrast,
our method can reconstruct these details due to our proposed multi-view constraint. It is because
our proposed multi-view regulated learning encourages the Gaussian-based explicit representation
method following the constraint from multiple views to update and optimize the Gassuian attributes
so that achieves better results. Moreover, it demonstrates our method can also be applied in reflection
object reconstruction tasks and further indicates the universality of our proposed method.

4D Reconstruction. To further demonstrate the effectiveness of our proposed method, we con-
duct experiments for the task of 4D reconstruction. 4D reconstruction, known as dynamic scene
reconstruction, is more challenging than 3D reconstruction since it contains the dimension of time,
and the scenes are changed over time. In Table 3, we present detailed quantitative results on the
D-NeRF (Pumarola et al., 2021) dataset for the evaluation of 4D reconstruction performance across
state-of-the-art methods. It can be observed that our method integrated into 4DGS (Wu et al., 2024)
achieves state-of-the-art results compared with existing state-of-the-art 4D reconstruction methods. In
addition, we also report the rendering speed (FPS) and storage size (MB) metrics. We find that 4DGS
integrated with our method achieves faster rendering speed with fewer 3D Gaussians. It indicates our
method not only achieves better rendering performance but also faster rendering speed. The right part
of Fig. 4 also demonstrates the effectiveness of our proposed method by reconstructing finer details.
It is attributed to our proposed multi-view constraint method that constrains the optimization of 3D
Gaussians with multi-view information, especially to dynamic scenes with temporal changed views.

Large-scale Scene Reconstruction. We additionally conduct experiments on a large-scale scene
dataset, BungeeNeRF (Xiangli et al., 2022) to further prove the effectiveness of our method. As
depicted in Table 4, we report results on three representative scenes. Note that our proposed method
improves the recent SOTA Octree-GS for better novel view synthesis results. This improvement is
due to the proposed multi-view training and densification strategies, constraining with multi-view
supervision and generating more 3D Gaussians for faster convergence and finer details reconstruction.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

(a) 3DGS-DR (b) 3DGS-DR + Ours (c) Ground-truth

Reflective Object Reconstruction

(d) 4DGS (e) 4DGS + Ours (f) Ground-truth

4D Reconstruction

Figure 4: Qualitative results of 3DGS-DR (Ye et al., 2024), 4DGS (Wu et al., 2024) and their
improved version by integrating our method across various challenging datasets. It can be
observed that 3DGS-DR and 4DGS integrated with our method can achieve better results for extremely
challenging senses with strong reflection and dynamic changes.

Table 4: Quantitative comparisons of state-of-the-art multi-scale scene reconstruction methods.
We demonstrate our method can also improve novel view synthesis performance for challenging
multi-scale scenes. We report results on BungeeNeRF datasets (Xiangli et al., 2022).

Scene Chicago Rome Hollywood

Method & Metrics PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

3DGS 28.17 0.930 0.084 27.54 0.916 0.100 26.24 0.869 0.133
Mip-Splatting 28.28 0.930 0.081 28.33 0.922 0.093 26.59 0.876 0.130
Scaffold-GS 28.55 0.929 0.080 28.24 0.924 0.087 26.36 0.866 0.157
Octree-GS 28.62 0.934 0.075 28.50 0.932 0.077 26.70 0.885 0.126

Octree-GS (+Ours) 28.82 0.936 0.069 28.79 0.933 0.073 26.73 0.887 0.122

This result also demonstrates that our method contains strong generalization to diverse scenes although
they are not object-centered. The qualitative results can be found in the appendix.

4.1 ABLATION STUDY

To comprehensively demonstrate the effectiveness of our proposed method, we conduct ablation
studies to evaluate the contributions of each component. As outlined in our method section, our
proposed MVGS consists of four key components, such as multi-view regulated learning, cross-ray
densification, multi-view augmented densification, and cross-intrinsic guidance. In our experiments,
we find the appropriate multi-view training settings significantly improve rendering performance
compared to existing Gaussian-based methods. This improvement is a distinguishing feature of our
proposed method. As shown in Fig. 5, we compare existing state-of-the-art Gaussian methods with
their counterparts enhanced by our proposed multi-view training. Fig. 5 investigates the relation
between rendering improvements and the multi-view training settings. We observe that incorporating
our multi-view training into existing methods leads to a substantial improvement in novel view
synthesis quality. This enhancement is primarily attributed to our proposed multi-view regulated
learning that constrains the optimization of the entire 3D Gaussians with multi-view information.
However, when the number of multi-views increases to a certain number, the performance begins to
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Figure 5: Analysis of the multi-view training settings. We improve four representative state-of-the-
art Gaussian-based methods with the proposed multi-view regulated training. We report results on
three representative datasets.

Table 5: Detailed ablation studies across various Gaussian-based methods We present the
ablation studies on three state-of-the-art 3D reconstruction methods, 3DGS (Kerbl et al., 2023),
Scaffold-GS (Lu et al., 2024), and Octree-GS (Ren et al., 2024). We report results on Mip-NeRF 360
dataset (Barron et al., 2022).

Method 3DGS Scaffold-GS Octree-GS
PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS

Baseline 28.70 0.905 0.204 29.34 0.914 0.191 29.70 0.911 0.183
+Multi-view regulated learning 29.76 0.919 0.174 30.46 0.923 0.167 30.34 0.913 0.171
+Cross-ray densification 29.86 0.920 0.170 30.59 0.925 0.165 30.42 0.921 0.168
+Multi-view augmented densification 30.14 0.926 0.153 30.86 0.926 0.159 30.51 0.922 0.158
+Cross-intrinsic guidance (full) 30.21 0.928 0.151 30.98 0.929 0.149 30.57 0.924 0.153

degrade. This occurs because an excessive number of multi-views leads to a large number of sampled
views analogous to a region of views, encouraging 3D Gaussians to overfit in an area of the scene.
Therefore, a moderate or scanty multi-view setting is more conducive to the optimization of 3DGS.

To further demonstrate the effectiveness of the proposed components, we conduct detailed ablation
studies across various Gaussian-based 3D reconstruction methods as shown in Table 5. To be specific,
we utilize three representative methods, including 3DGS (Kerbl et al., 2023), Scaffold-GS (Lu et al.,
2024), and Octree-GS (Ren et al., 2024) as baselines and integrate our proposed method into them.
As we can see in Table 5, the original performance of these baselines is inferior. When we incorporate
the proposed multi-view regulated learning (MVRL) into baselines, the performance is improved by a
huge margin. For example, the PSNR metric is improved over 1 dB for 3DGS and Scaffold-GS by our
MVRL. This huge improvement is due to the proposed MVRL imposing multi-view constraints on
the optimization of 3D Gaussians to enable 3D Gaussians robust for synthesizing more photorealistic
results for novel views. In addition, we also propose two novel densification strategies, like cross-ray
densification and multi-view augmented densification, to clone and split more 3D Gaussian primitives
into appropriate regions for fitting better with the multi-view supervision. To fully leverage multi-
view information, we propose cross-intrinsic guidance to train models with an image pyramid way
for accommodating more views for multi-view training. With all of these proposed components,
3DGS can be improved over 1.5 dB. Scaffold-GS is also improved over 1.6 dB and Octree-GS gets
improvement by over 0.8 dB. These results demonstrate the effectiveness of our proposed method
and also indicate our method can improve existing methods to reach state-of-the-art performance.

5 CONCLUSION

In this work, we propose MVGS, a novel and universal method to improve the novel view synthesis
performance for existing Gaussian-based methods. The core of MVGS lies in the proposed multi-view
regulated learning, constraining the optimization of 3D Gaussians with multi-view information. We
show that our method can be integrated into existing methods to achieve state-of-the-art rendering
performance. We further demonstrate our proposed cross-intrinsic guidance scheme introducing
powerful muti-view constraints for better results. We also prove the effectiveness of the proposed
multi-view augmented densification and cross-ray densification in enhancing densification to facilitate
the optimization of 3D Gaussians. Extensive experiments demonstrate the effectiveness of our method
and indicate that our method achieves state-of-the-art novel view synthesis results.
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A ADDITIONAL ABLATION STUDIES

We present additional ablation studies in Fig. 6. We leverage 3DGS as our baseline and integrate
our proposed components progressively into it to demonstrate the effectiveness of the proposed
methods. Specifically, the integration of the proposed multi-view regulated learning (MVRL) into
3DGS imposes the multi-view constraint for the optimization of the model to learn a more accurate
multi-view structure. After that, we also progressively embed our proposed cross-ray densification
(CRD) method into the baseline enforcing 3D Gaussians to split more primitives for better results.
When the multi-view augmented densification (MVAD) is employed, the model has better capability
to split more 3D Gaussians for arduous multi-view scenes. As we can see, the performance is
improved by a huge margin. Finally, we integrate our proposed cross-intrinsic guidance (CIG)
strategy, the model captures finer details in every scale training and obtains better results. These
results demonstrate the effectiveness of our proposed components and indicate our method can be
integrated into existing Gaussian-based methods for better novel view synthesis results.

B TRAINING WITH MORE ITERATIONS

For a faithful comparison, we also conduct an experiment to investigate the effect of training
with more iterations. As illustrated in Fig. 7, we conduct experiments on three representative
datasets, such as Mip-NeRF 360 (Barron et al., 2022), Shiny Blender (Verbin et al., 2022), and
Tanks&Temples (Knapitsch et al., 2017) with 3DGS (Kerbl et al., 2023) as our baseline and its
improved version by integrating with our proposed method. As seen in Fig. 7, the performance of
3DGS is obviously lower than ours. The original 3DGS method, despite being trained for more
iterations, failed to reach the performance levels achieved by our proposed method. This indicates
that mere increases in training duration do not compensate for the multi-view constraint absent in the
original 3DGS. Our method not only speeds up the training convergence but also delivers massive
performance improvement. These results indicate that the original 3DGS trained with more iterations
cannot achieve performance improvement reaching like ours. It also demonstrates the significance of
our proposed method.

C ADDITIONAL RESULTS ON 3D RECONSTRUCTION

In this section, we present additional experimental results for 3D reconstruction. To sufficiently
demonstrate the effectiveness of our proposed method, we showcase per-scene quantitative results of
the Mip-NeRF 360 dataset (Barron et al., 2022) in Table 6. As we can see in Table 6, 3DGS (Kerbl
et al., 2023) and Scaffold-GS (Lu et al., 2024) integrated with our proposed method are better than
their original performance. It demonstrates the effectiveness of our proposed method to improve 3D
reconstruction results. We also present per-scene results of Tank&Temples (Knapitsch et al., 2017)
and Deep Blending (Hedman et al., 2018) in Table 7. To be specific, we select representative scenes,
including Truck and Train from Tank&Temples, and Playroom and Drjohnson from Deep Blending,
respectively. It can be observed that our proposed method also demonstrates superior performance.
In addition, we display additional visual comparisons of the task of 3D reconstruction in Fig. 8. We
observe the original 3DGS and Scaffold-GS cannot recover details of the transparent surface or far
objects. By integrating our proposed method, our proposed multi-view constraint encourages 3D
Gaussians to capture finer details of multiple views and improve reconstruction quality.

D EXTRA COMPARISONS ON REFLECTIVE OBJECT RECONSTRUCTION

We also present additional experimental results and analysis for the task of reflective object reconstruc-
tion. As depicted in Table 8, we display per-scene quantitative results of Shiny Blender (Verbin et al.,
2022) and Glossy Synthetic dataset (Liu et al., 2023). It is obvious that 3DGS-DR integrated with our
proposed method achieves state-of-the-art results compared with other advanced methods. In addition,
we also show visualization comparisons in Fig.9 and 10. Fig.9 displays additional visual comparisons
of 3DGS-DR (Ye et al., 2024) with its improved version integrated with our proposed method. It
demonstrates our proposed method can reconstruct better details on the glossy surface. Fig. 10 shows
the reconstruction results of HDR and normal maps. HDR represents the environmental lighting
effects of objects. The normal map can be seen as a geometry attribute that can indicate surface
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reconstruction performance. As we can see in Fig. 10, our reconstructed HDR and normal maps
are more approaching the references. It indicates that our reconstruction performance is better than
the original 3DGS-DR. Thanks to our proposed multi-view constraint method leveraging multi-view
information to constraint the optimization of the whole 3D Gaussians so that obtain better results.

E ADDITIONAL QUANTITATIVE AND QUALITATIVE RESULTS ON 4D
RECONSTRUCTION

To further substantiate the effectiveness of our approach, we provide additional results for 4D
reconstruction. As illustrated in Table 9, we offer per-scene quantitative results of D-NeRF (Pumarola
et al., 2021), which serve to comprehensively analyze the performance improvements brought by
our proposed method. The data clearly indicates that, when integrated into 4DGS (Wu et al., 2024),
our method achieves state-of-the-art results in 4D reconstruction, marking a significant leap in
reconstructing fidelity and accuracy. In addition to the quantitative analysis, we also present visual
comparisons in Fig. 11 to further evaluate the qualitative performance of our method. As depicted in
the visual results, 4DGS on its own struggles to reconstruct fine details, often failing to capture subtle
textures and intricate structural elements. In contrast, our approach, when integrated into 4DGS,
yields a substantial improvement, enabling the reconstruction of much finer details with clearer and
more accurate texture representation. These visual results, alongside the quantitative improvements,
demonstrate that our method not only enhances the clarity and sharpness of the reconstructed scenes
but also significantly reduces artifacts and inaccuracies, leading to a more realistic and lifelike
representation of 4D dynamic scenes.

The combination of qualitative and quantitative evidence strongly supports the superiority of our
method over existing approaches. Our method consistently leads to performance improvements
across a wide range of tasks, proving its versatility and robustness in enhancing 4D reconstruction.
Furthermore, the ability of our approach to adapt to different scenes and capture intricate details in
dynamic reconstructions showcases its potential for a broad array of applications in areas such as
motion capture, virtual reality, and high-fidelity simulations. The results solidify the contribution of
our method to progress the state-of-the-art in 4D reconstruction.

F VISUALIZATION OF MULTI-SCALE SCENE RECONSTRUCTION

We also provide the visualization results of multi-scale scene reconstruction on the BungeeNeRF
dataset (Xiangli et al., 2022) in Fig.12. Upon analysis, we observe that the original Octree-GS(Ren
et al., 2024) struggles to reconstruct intricate details and tends to produce noticeable artifacts, which
hinders its overall reconstruction quality. In contrast, the enhanced version of Octree-GS, empowered
by our proposed method, successfully captures and renders finer texture details, closely resembling
the ground truth. This improvement underscores the robustness and precision of our approach, as it
significantly reduces artifacts while enhancing visual quality across complex scenes.

These experiments offer comprehensive evidence that not only highlights the effectiveness of our
method but also demonstrates its ability to generalize well to a wide variety of scenes. This includes
both simple and complex environments, reinforcing the applicability of our approach across different
reconstruction tasks. Moreover, the results indicate that our method consistently improves rendering
quality, particularly for novel view synthesis. Its versatility extends across multiple applications such
as general object reconstruction, reflective object reconstruction, 4D dynamic scene reconstruction,
and multi-scale scene reconstruction. These findings emphasize the broad potential of our approach
in advancing the state-of-the-art Gauissian-based methods for novel view synthesis.
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30.14/0.926 30.21/0.927 PSNR/SSIM28.70/0.913
Baseline

29.76/0.919
+MVRL +MVAD GT+CIG (Completed)

29.86/0.920
+CRD

Reference

Figure 6: Visualization comparisons of the ablation of the proposed components. We employ
3DGS as our baseline and improve it by gradually integrating our proposed components into it. It can
be observed our method gradually improves the novel view synthesis performance of the baseline.
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Figure 7: Study on the effect of additional training iterations. We leverage state-of-the-
art 3DGS (Kerbl et al., 2023) as our baseline and conduct experiments on three representative
datasets, such as Mip-NeRF 360 (Barron et al., 2022), Shiny Blender (Verbin et al., 2022), and
Tanks&Temples (Knapitsch et al., 2017).

Table 6: Detailed quantitative results of state-of-the-art 3D reconstruction methods on Mip-
NeRF 360 dataset (Barron et al., 2022). The best , second best , and third best results are
denoted by red, orange, and yellow, respectively.

Metrics PSNR ↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓
3D Scenes Stump Room Counter bonsai

Mip-NeRF 360 (Barron et al., 2022) 26.40 0.744 0.261 31.63 0.913 0.211 29.55 0.894 0.204 33.46 0.941 0.176
3DGS (Kerbl et al., 2023) 26.55 0.775 0.210 30.63 0.914 0.220 28.70 0.905 0.204 31.98 0.938 0.205
Scaffold-GS (Lu et al., 2024) 26.27 0.784 0.284 31.93 0.925 0.202 29.34 0.914 0.191 32.70 0.946 0.185
3DGS (+Ours) 26.39 0.760 0.243 32.84 0.932 0.184 30.21 0.928 0.151 33.05 0.949 0.167
Scaffold-GS(+Ours) 26.74 0.775 0.232 33.08 0.935 0.174 30.98 0.929 0.149 33.69 0.953 0.163

3D Scenes Bicycle Garden Kitchen
Mip-NeRF 360 (Barron et al., 2022) 24.37 0.685 0.301 26.98 0.813 0.170 32.23 0.920 0.127
3DGS (Kerbl et al., 2023) 25.25 0.771 0.205 27.41 0.868 0.103 30.32 0.922 0.129
Scaffold-GS (Lu et al., 2024) 24.50 0.705 0.306 27.17 0.842 0.146 31.30 0.928 0.126
3DGS (+Ours) 25.08 0.752 0.226 27.23 0.856 0.123 32.57 0.934 0.113
Scaffold-GS(+Ours) 25.23 0.760 0.226 27.48 0.855 0.124 31.96 0.933 0.114

Table 7: Detailed quantitative comparisons of state-of-the-art 3D reconstruction methods on
Tank&Temples (Knapitsch et al., 2017) and Deep Blending (Hedman et al., 2018). We choose
two challenging scenes, Truck and Tran from the Tank&Temples dataset for evaluation. As for Deep
Blending, we select two representative scenes, Playroom and Drjohnson for assessment.

Dataset Tanks&Temples Deep Blending

3D Scenes Truck Train Playroom Drjohnson
Method PSNR ↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

3DGS (Kerbl et al., 2023) 25.18 0.879 0.148 21.09 0.802 0.218 30.04 0.906 0.241 28.77 0.899 0.244
Mip-NeRF 360 (Barron et al., 2022) 24.91 0.857 0.159 19.52 0.660 0.354 29.66 0.900 0.252 29.14 0.901 0.237
Scaffold-GS (Lu et al., 2024) 25.77 0.883 0.147 22.15 0.822 0.206 30.62 0.904 0.258 29.80 0.907 0.250
3DGS (+Ours) 26.14 0.893 0.125 22.74 0.838 0.162 30.33 0.927 0.201 29.16 0.892 0.241
Scaffold-GS(+Ours) 27.19 0.926 0.071 23.88 0.878 0.116 30.84 0.925 0.152 29.91 0.905 0.154
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3DGS 3DGS+Ours Ground-Truth Scaffold-GS Scaffold-GS+Ours Ground-Truth

Figure 8: Additional qualitative comparisons of general object reconstruction. We compare
3DGS (Kerbl et al., 2023) and Scaffold-GS (Lu et al., 2024) with their improved version by
integrating our method across various datasets. We employ red close-up patches to highlight the
visual differences for better differentiation. It can be observed that our proposed method can improve
the original 3DGS and Scaffold-GS for challenging scenes.

Table 8: Detailed quantitative results of state-of-the-art reflective object reconstruction methods.
We report PSNR, SSIM, and LPIPS metrics on each scene from Shiny Blender (Verbin et al., 2022)
and Glossy Synthetic (Liu et al., 2023).

Datasets
Shiny Blender Glossy Synthetic

ball car coffee helmet teapot toaster bell cat luyu potion tbell teapot

PSNR ↑

Ref-NeRF (Verbin et al., 2022) 33.16 30.44 33.99 29.94 45.12 26.12 30.02 29.76 25.42 30.11 26.91 22.77
NPC (Kopanas et al., 2022b) 23.76 24.19 30.39 25.59 41.22 19.76 22.41 25.35 23.68 23.09 19.03 18.21
3DGS (Kerbl et al., 2023) 27.65 27.26 32.3 28.22 45.71 20.99 25.11 31.36 26.97 30.16 23.88 21.51
GShader (Jiang et al., 2024) 30.99 27.96 32.39 28.32 45.86 26.28 28.07 31.81 27.18 30.09 24.48 23.58
ENVIDR (Liang et al., 2023) 41.02 27.81 30.57 32.71 42.62 26.03 30.88 31.04 28.03 32.11 28.64 26.77
3DGS-DR (Ye et al., 2024) 33.66 30.39 34.65 31.69 47.12 27.02 31.65 33.86 28.71 32.29 28.94 25.36
3DGS-DR (+Ours) 34.51 30.83 34.81 32.24 47.93 27.36 33.20 33.93 29.31 32.90 29.31 26.91

SSIM ↑

Ref-NeRF (Verbin et al., 2022) 0.971 0.950 0.972 0.954 0.995 0.921 0.941 0.944 0.901 0.933 0.947 0.897
NPC (Kopanas et al., 2022b) 0.908 0.898 0.955 0.938 0.994 0.835 0.892 0.921 0.854 0.877 0.742 0.762
3DGS (Kerbl et al., 2023) 0.937 0.931 0.972 0.951 0.996 0.894 0.908 0.959 0.916 0.938 0.900 0.881
GShader (Jiang et al., 2024) 0.966 0.932 0.971 0.951 0.996 0.929 0.919 0.961 0.914 0.936 0.898 0.901
ENVIDR (Liang et al., 2023) 0.997 0.943 0.962 0.987 0.995 0.922 0.954 0.965 0.931 0.960 0.947 0.957
3DGS-DR (Ye et al., 2024) 0.979 0.962 0.976 0.971 0.997 0.943 0.962 0.976 0.936 0.957 0.952 0.936
3DGS-DR (+Ours) 0.983 0.965 0.976 0.974 0.998 0.949 0.974 0.979 0.947 0.963 0.965 0.942

LPIPS ↓

Ref-NeRF (Verbin et al., 2022) 0.166 0.050 0.082 0.086 0.012 0.083 0.102 0.104 0.098 0.084 0.114 0.098
NPC (Kopanas et al., 2022b) 0.237 0.120 0.119 0.156 0.013 0.226 0.203 0.121 0.101 0.174 0.243 0.246
3DGS (Kerbl et al., 2023) 0.162 0.047 0.079 0.081 0.008 0.125 0.104 0.062 0.064 0.093 0.125 0.102
GShader (Jiang et al., 2024) 0.121 0.044 0.078 0.074 0.007 0.079 0.098 0.056 0.064 0.088 0.122 0.091
ENVIDR (Liang et al., 2023) 0.020 0.046 0.083 0.036 0.009 0.081 0.054 0.049 0.059 0.072 0.069 0.041
3DGS-DR (Ye et al., 2024) 0.098 0.033 0.076 0.049 0.005 0.081 0.046 0.040 0.053 0.075 0.067 0.067
3DGS-DR (+Ours) 0.089 0.030 0.074 0.042 0.004 0.067 0.031 0.035 0.044 0.062 0.048 0.060
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3DGS-DR 3DGS-DR +Ours Ground-Truth 3DGS-DR 3DGS-DR +Ours Ground-Truth

Figure 9: Additional qualitative results of 3DGS-DR (Ye et al., 2024) and our enhanced version
across diverse reflective object datasets. We can find that 3DGS-DR enhanced by our proposed
method can be more robust for challenging scenes with reflection effects to obtain better reflective
reconstruction performance.

Scenes 3DGS-DR 3DGS-DR+Ours Reference 3DGS-DR +Ours Normal

Figure 10: Qualitative comparisons of HDR reconstruction and normal reconstruction by
3DGS-DR (Ye et al., 2024) and our proposed method. The better performance of HDR and normal
reconstruction means better reflective object reconstruction performance.

Table 9: Per-scene quantitative results for 4D reconstruction on the D-NeRF (Pumarola et al., 2021)
dataset. We integrate our method into 4DGS and improve its 4D reconstruction performance.

Method
Bouncing Balls Hellwarrior Hook Jumpingjacks

PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS

3DGS 23.20 0.959 0.060 24.53 0.933 0.058 21.71 0.887 0.103 23.20 0.959 0.060
K-Planes 40.05 0.993 0.032 24.58 0.952 0.082 28.12 0.948 0.066 31.11 0.970 0.046
HexPlane 39.86 0.991 0.032 24.55 0.944 0.073 28.63 0.957 0.050 31.31 0.972 0.039
TiNeuVox 40.23 0.992 0.041 27.10 0.963 0.076 28.63 0.943 0.063 33.49 0.977 0.040
4DGS 40.62 0.994 0.015 28.71 0.973 0.036 32.73 0.976 0.027 35.42 0.985 0.012
4DGS + (Ours) 41.60 0.995 0.011 29.29 0.976 0.029 33.67 0.979 0.021 37.69 0.990 0.011

Method
Lego Mutant Standup Trex

PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS

3DGS 23.06 0.929 0.064 20.64 0.929 0.082 21.91 0.930 0.078 21.93 0.953 0.048
K-Planes 25.49 0.948 0.033 32.50 0.971 0.036 33.10 0.979 0.031 30.43 0.973 0.034
HexPlane 25.10 0.938 0.043 33.67 0.9802 0.026 34.40 0.983 0.020 30.67 0.974 0.027
TiNeuVox 24.65 0.906 0.064 30.87 0.960 0.047 34.61 0.979 0.032 31.25 0.966 0.047
4DGS 25.03 0.937 0.038 37.59 0.988 0.016 38.11 0.989 0.007 34.23 0.985 0.013
4DGS (+Ours) 24.70 0.932 0.057 38.82 0.991 0.012 40.81 0.993 0.008 34.26 0.985 0.019
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4DGS 4DGS+Ours Ground-Truth 4DGS 4DGS +Ours Ground-Truth

Figure 11: Additional visualization comparisons of 4DGS (Wu et al., 2024) and its improved
version integrating with our method for 4D reconstruction. It can be found that our proposed
method can enhance 4DGS to reconstruct finer dynamic details and obtain better performance.

Octree-GS Octree-GS +Ours Ground-Truth Octree-GS Octree-GS +Ours Ground-Truth

Figure 12: Qualitative comparisons of multi-scale scene reconstruction on BungeeNeRF
dataset (Xiangli et al., 2022). We compare Octree-GS (Ren et al., 2024) and its improved
version by integrating our method. We utilize red close-up patches to stand out the visual dif-
ferences for clear comparisons. We can find that our proposed method can improve the original
Octree-GS for challenging multi-scale scenes.

19


	Introduction
	Related Work
	Methodology
	Multi-View Regulated Training
	Cross-intrinsic guidance
	Cross-ray Densification
	Multi-view Augmented Densification
	Implementation

	Experiments
	Ablation Study

	Conclusion
	Additional Ablation Studies
	Training with More Iterations
	Additional Results on 3D Reconstruction
	Extra Comparisons on Reflective Object Reconstruction
	Additional Quantitative and Qualitative Results on 4D Reconstruction
	Visualization of Multi-scale Scene Reconstruction

