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ABSTRACT

Large-scale pretrained diffusion models have significantly enhanced the quality of
generated videos, and yet their use in real-time streaming remains limited. Autore-
gressive models offer a natural framework for sequential frame synthesis but require
heavy computation to achieve high fidelity. Diffusion distillation can compress
these models into efficient few-step variants, but existing video distillation ap-
proaches largely adapt image-specific methods that neglect temporal dependencies.
These techniques often excel in image generation but underperform in video synthe-
sis, exhibiting reduced motion coherence, error accumulation over long sequences,
and a latency–quality trade-off. We identify two factors that result in these limita-
tions: insufficient utilization of temporal context during step reduction and implicit
prediction of subsequent noise levels in next-chunk prediction (exposure bias). To
address these issues, we propose Diagonal Distillation, which operates orthogo-
nally to existing approaches and better exploits temporal information across both
video chunks and denoising steps. Central to our approach is an asymmetric genera-
tion strategy: more steps early, fewer steps later. This design allows later chunks to
inherit rich appearance information from thoroughly processed early chunks, while
using partially denoised chunks as conditional inputs for subsequent synthesis. By
aligning the implicit prediction of subsequent noise levels during chunk generation
with the actual inference conditions, our approach mitigates error propagation and
reduces oversaturation in long-range sequences. We further incorporate implicit
optical flow modeling to preserve motion quality under strict step constraints. Our
method generates a 5-second video in just 2.61 seconds (up to 31 FPS), achieving
a 277.3× speedup over the undistilled model and doubling the acceleration ratio of
the state-of-the-art (140×) without sacrificing visual quality. The source code and
trained models will be released and we have uploaded the video to an anonymous
hosting service at: https://diagonal-distillation.github.io/.

1 INTRODUCTION

Recent years have witnessed the rapid progress of diffusion models in video generation. A major
enabler of such progress has been Diffusion Transformer architectures (Peebles & Xie, 2023), which
leverage bidirectional attention to denoise all video frames simultaneously (Blattmann et al., 2023a;b;
Brooks et al., 2024; Kong et al., 2024; Polyak et al., 2024; Villegas et al., 2022; Wan et al., 2025;
Yang et al., 2024). While effective for offline generation, this design requires the entire video to be
generated at once, as each frame can attend to all others, including future ones. As a result, such
models face fundamental limitations in real-time applications, including game simulation (Deng
et al., 2024; Peebles & Xie, 2023; Song et al., 2023; Vondrick et al., 2016) and robot learning (Ge
et al., 2022; Jolicoeur-Martineau, 2018; Wang et al., 2023), where future frames are unavailable when
generating the current frame.

Autoregressive (AR) models are well-suited for streaming video generation, as their chunk-by-chunk
synthesis naturally aligns with real-time constraints (Bruce et al., 2024; Kondratyuk et al., 2023; Ren
et al., 2025; Wang et al., 2024; Weissenborn et al., 2019; Yan et al., 2021). However, traditional GPT-
style models (Wang et al., 2024; Yan et al., 2021) often suffer from limited visual quality (Gao et al.,
2024a). To address this, recent works (Jin et al., 2024; Weng et al., 2024; Teng et al., 2025) integrate
diffusion processes into AR generation. Yet these methods still require multiple denoising steps per
chunk, which hinders real-time deployment. To reduce inference latency, step distillation (Yin et al.,
2025; Huang et al., 2025; Yin et al., 2024b) has been introduced to distill multi-step diffusion models
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Causvid 4.91s

Ours 2.61s

1s 3s 5s

Self Forcing 4.91s
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Figure 1: Our Diagonal Distillation framework achieves comparable quality to the full-step model while
significantly reducing latency. The method yields a 1.88× speedup on 5-second short video generation on a
single H100 GPU.

into efficient few-step sampling AR model. Recent training methods (Chen et al., 2024; Gao et al.,
2024b; Gu et al., 2025; Hu et al., 2024; Li et al., 2024b; Liu et al., 2024b; Weng et al., 2024; Yin
et al., 2025; Zhang et al., 2025a;b) have further improved stability and efficiency, making interactive
applications increasingly feasible (Arriola et al., 2025; Liu et al., 2024c).

Despite these advances, existing video distillation methods are largely adapted from image generation,
and their direct extension to video often yields suboptimal results. This limitation arises from
insufficient consideration of the temporal dimension and the neglect of inter-frame consistency. As
a result, multi-step sampling remains essential for maintaining high-quality video generation. For
example, while autoregressive frameworks such as Causvid (Yin et al., 2025) and Self Forcing (Huang
et al., 2025) can reduce latency, they still require multiple steps per segment, and compressing them
to fewer steps leads to noticeable performance degradation.

Our guiding insight is that, in autoregressive video generation, predicting the next chunk inherently
requires predicting the next noise level (see Figure 2). This implicit prediction, however, introduces
two critical challenges. First, autoregressive video models often suffer from exposure bias. When
predicting the next chunk conditioned on previously generated clean frames, the model must implicitly
predict the next noise level for subsequent frames. This can lead to progressive degradation, such as
over-saturation in later frames, as errors in noise-level prediction accumulate over time. Although
techniques like Self Forcing (Huang et al., 2025) have been proposed to mitigate exposure bias by
using model-generated content during training, they still struggle to maintain visual quality over
long sequences. Second, the same phenomenon implies that if structural priors are captured in
early chunks, later chunks can generate relatively clear frames even with fewer denoising steps.
However, existing distillation approaches often discard valuable temporal context accumulated across
denoising steps in video generation models, which is essential for preserving coherence and detail
when reducing the sampling steps.

Motivated by these insights, we introduce a flow-aware diagonal distillation framework – DiaDistill
that redefines the temporal context incorporation by leveraging information across both time and
denoising steps. Departing from standard practices that process chunks in isolation, our method
employs a novel diagonal forcing mechanism operating jointly across time and denoising steps. This
results in a diagonal denoising trajectory wherein earlier chunks are denoised with more steps, while
later chunks use progressively fewer. This strategy improves computational efficiency by using less
denoising steps in total and allows each chunk to inherit denoising trajectories from prior chunks as
contextual priors—a training paradigm we term Diagonal Forcing. By explicitly simulating diagonal
denoising paths during training through controlled noise injection, Diagonal Forcing enhances self-
conditioned generation and mitigates error accumulation in long videos. Furthermore, we empirically
observe that employing very few steps in later chunks can attenuate motion amplitude. To counteract
this, we introduce Flow Distribution Matching, which integrates explicit temporal modeling into the
distillation loss. This approach preserves dynamic consistency by ensuring the predicted motion
distributions align with those of the full-step model, thus ensuring that the student model not only
matches the teacher in image quality but also faithfully preserves motion characteristics. The
contributions of this work are:

• We propose Diagonal Distillation, a method for high-quality video generation during model
distillation and inference. It allocates more denoising steps to earlier chunks and progressively
fewer to later ones, rather than keeping the number of steps constant across all chunks. This
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1s 3s 5s 1s 3s 5s

Figure 2: We find that when the training data uses explicit noise frames as conditions in Causvid (Yin et al.,
2025), the next chunk prediction essentially functions as an implicit next noise level prediction. It can be
observed that even with single-step prediction, the image progressively becomes clearer.

approach achieves an improved trade-off between quality and efficiency by leveraging contextual
structured priors in AR video generation.

• We introduce Diagonal Forcing based on diagonal distillation, a unified method that operates
along both temporal and denoising-step dimensions. It leverages trajectories from prior chunks
as contextual priors and explicitly simulates diagonal denoising paths during training through
controlled noise injection, thereby reducing long-term error accumulation.

• We present Flow Distribution Matching as a complementary component to diagonal distillation,
designed to mitigate motion degradation and amplitude attenuation in later chunks. By incorporating
explicit temporal modeling into the distillation loss, this approach enhances dynamic consistency
and ensures smooth motion transitions.

2 RELATED WORK

Diffusion Distillation. Diffusion distillation accelerates sampling via deterministic or distributional
approaches. Deterministic methods (e.g., progressive distillation (Salimans & Ho, 2022), consis-
tency distillation (Li et al., 2023; Song et al., 2023), rectified flow (Lamb et al., 2016)) regress
noise-to-sample mappings but often yield blurry outputs with few steps due to optimization chal-
lenges (Kingma et al., 2021), typically requiring multiple steps (e.g., eight) for acceptable quality (Li
et al., 2023; 2024a). Distributional methods approximate the teacher’s distribution using adversarial
training (Brooks et al., 2024; Ho et al., 2022), score distillation (Li et al., 2022; Luo et al., 2024), or
hybrid objectives. Recent hybrids combine both paradigms but still suffer from one-step artifacts
and commonly need multi-step sampling. Representative works include LADD (Sauer et al., 2024a)
(relies on expensive pre-generated teacher targets), Lightning (Lin et al., 2024) and Hyper (Ren
et al., 2024) (require intermediate timestep supervision), and DMD/DMD2 (Yin et al., 2024b;a) and
ADD (Sauer et al., 2024b) (integrate adversarial and score matching losses). While these distillation
methods have shown impressive results in image generation, their direct application to video often
yields suboptimal results due to insufficient consideration of the temporal dimension and inter-frame
consistency. Our work addresses this gap by proposing a flow-aware diagonal distillation framework
specifically designed for video generation, which leverages temporal context across both time and
denoising steps to maintain coherence while reducing sampling steps.

Autoregressive, Diffusion, and Hybrid Video Generation. Modern video generation is dominated
by scalable diffusion and autoregressive (AR) models. Video diffusion models use bidirectional
attention to denoise all frames concurrently (Blattmann et al., 2023a;b; Brooks et al., 2024; Deng
et al., 2024; Kong et al., 2024; Polyak et al., 2024; Villegas et al., 2022; Wan et al., 2025; Yang
et al., 2024), while AR models generate spatiotemporal tokens sequentially via next-token prediction
(Bruce et al., 2024; Kondratyuk et al., 2023; Ren et al., 2025; Wang et al., 2024; Weissenborn
et al., 2019; Yan et al., 2021; Liu et al., 2025). Hybrid models that merge these two paradigms
have recently emerged as a promising direction (Chen et al., 2024; Gao et al., 2024b; Gu et al.,
2025; Hu et al., 2024; Jin et al., 2024; Li et al., 2024b; Liu et al., 2024a;b; Weng et al., 2024; Yin
et al., 2025; Zhang et al., 2025a;b), also in other sequence domains (Arriola et al., 2025; Liu et al.,
2024c). These hybrids typically integrate diffusion into AR generation to boost visual quality, but
they still require multiple denoising steps per chunk, hindering real-time deployment. Our work
builds on these hybrids, drawing inspiration from Yin et al. (2025) and Huang et al. (2025) to mitigate
exposure bias. However, these methods still face challenges with long-term error accumulation and
motion degradation when compressed to fewer steps. Our proposed Diagonal Distillation framework
addresses these issues via a novel diagonal forcing mechanism operating jointly across time and
denoising steps, enabling efficient computation while preserving temporal coherence. The Diagonal
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Chunk 1 Chunk 2 Chunk 3 Chunk 4 Chunk 5 Chunk 6 Chunk 7

5-steps Distilled
Model

4-steps Distilled
Model

3-steps Distilled
Model

2-steps Distilled
Model

2-steps Distilled
Model

2-steps Distilled
Model

2-steps Distilled
Model

KV cache Denoising Output videoMulti Step Warm Up

Few-Step Model Conditioned on Frames at 
Different Noise Levels and Temporal Positions

Figure 3: Diagonal Denoising with Diagonal Forcing and Progressive Step Reduction. We illustrate our method
starting with 5 denoising steps for the first chunk and progressively reducing them to 2 steps by Chunk 7 (see
Section 4.3 for more parameters). For chunks with k ≥ 4, we use a fixed two-step denoising process, reusing the
Key-Value (KV) cache from the previous chunk’s last noisy frame. This approach maintains temporal coherence
while reducing latency, the pseudo-code is provided in the appendix.

Forcing training paradigm explicitly simulates diagonal denoising paths to enhance self-conditioned
generation, and Flow Distribution Matching ensures motion consistency with reduced steps.

3 METHODOLOGY

3.1 PRELIMINARY AND FRAMEWORK OVERVIEW

Diffusion Models generate data through an iterative denoising process. The forward diffusion process
progressively corrupts a sample x ∼ preal over T steps, such that at timestep t, the diffused sample
follows preal,t(xt) =

∫
preal(x)q(xt|x)dx, with qt(xt|x) ∼ N (αtx, σ

2
t I), where αt, σt > 0 are

determined by the noise schedule. The model learns to reverse this process by predicting a denoised
estimate µ(xt, t). The score function of the diffused distribution is:

sreal(xt, t) = ∇xt log preal,t(xt) = −xt − αtµreal(xt, t)

σ2
t

. (1)

Sampling typically requires many iterative steps. Distribution Matching Distillation (DMD) distills a
multi-step diffusion model (teacher) into a one-step generator G by minimizing the KL divergence
between the diffused real and generated distributions, preal,t and pfake,t. The gradient of this loss is:

∇LDMD=Et

(
∇θKL(pfake,t∥preal,t)

)
=−Et

(∫
(sreal(F (Gθ(z), t), t)−sfake(F (Gθ(z), t), t))

dGθ(z)

dθ
dz

)
,

(2)
where z ∼ N (0, I), F is the forward diffusion process, and sreal, sfake are scores from models trained
on real and generated data. An additional regression loss is often used for regularization:

Lreg = E(z,y)d(Gθ(z), y), (3)

where y is an image generated by the teacher from z. Directly applying DMD to video generation
faces a significant challenge: the regression loss Lreg primarily ensures per-frame quality but fails
to explicitly capture the underlying temporal coherence and long-range dependencies between
frames, which are critical for video quality. This often results in degraded fluidity and consistency.
To overcome this, we extend the DMD framework with two core innovations: 1) a Diagonal
Denoising with Diagonal Forcing strategy that manages long-sequence generation and reduces error
accumulation (Section 3.2)) a novel Flow Distribution Matching objective that explicitly aligns the
temporal dynamics of the student and teacher models (Section 3.3).
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3.2 DIAGONAL DENOISING WITH DIAGONAL FORCING

Building upon the DMD foundation, we present diagonal distillation, a framework for efficient video
generation. As illustrated in Figure 3, our approach introduces a Diagonal Denoising strategy that
progressively reduces denoising steps across video chunks, combined with a novel Diagonal Forcing
mechanism to maintain temporal coherence and mitigate error accumulation.

Diagonal Denoising: Progressive Step Reduction Strategy Our core innovation is a diagonal
denoising strategy that allocates computation based on temporal importance. The method assigns
more denoising steps to earlier chunks and progressively fewer to later ones, rather than maintaining
a constant number of steps across all chunks. This approach achieves an improved trade-off between
quality and efficiency by leveraging contextual structured priors in autoregressive video generation.
For the first three chunks (k = 1, 2, 3), we use distilled models with decreasing steps (sk = 5, 4, 3):

Xk = Dsk(Zk|X̃<k), (4)

where Xk is the k-th chunk output, Zk ∼ N (0, I) is Gaussian noise, and X̃<k contains previously
noised chunks. For k ≥ 4, we employ efficient two-step denoising:

Ck = T (X̃k−1),Xk = D2(D1(Zk|Ck)|Ck), (5)

where Ck is the conditioning signal derived from previous chunks, T denotes the conditioning
module, and D1, D2 represent the first and second denoising steps respectively.

Diagonal Forcing: Contextual Prior Propagation The core innovation of Diagonal Forcing
lies in its explicit modeling of diagonal denoising trajectories during training through controlled
noise injection. This approach ensures temporal coherence across chunks while minimizing error
accumulation by conditioning each new chunk on the final noised state from the previous chunk’s
diffusion process. Specifically, the conditioning input for chunk k is derived from the clean output
Xk−1 of chunk k − 1 through a noise injection operation:

X̃k−1 =
√
αk−1Xk−1 +

√
1− αk−1 · ϵ, ϵ ∼ N (0, I) (6)

where αk−1 controls the noise schedule along the diagonal path and ϵ is standard Gaussian noise.
This formulation explicitly maintains the diagonal denoising trajectory Xk → X̃k−1 → Xk−1,
where X̃k−1 serves as the KV cache input for chunk k. By propagating these noised representations
across chunks, the method effectively leverages denoising trajectories from prior chunks as contextual
priors. The diagonal alignment of these trajectories ensures that error accumulation is minimized
while preserving long-range coherence in the generated output.

3.3 FLOW DISTRIBUTION MATCHING

Motion attenuation in few-step denoising stems from truncated noise estimation paths. We quantify
the temporal distribution mismatch through flow-based divergence:

Emotion = DKL (pteacher(F(x)|xt)∥pstudent(F(x)|xt)) (7)

where F(x) represents the motion flow field extracted from video sequence x. This measures the
distributional divergence between teacher and student in the temporal dimension.

The standard Distribution Matching Distillation (DMD) framework minimizes spatial divergence
through reverse KL minimization. We extend this to the temporal domain by defining flow distribution
matching:

∇ϕLflow
DMD ≜ Et (∇ϕKL (pgen,flow,t∥pdata,flow,t)) (8)

where pdata,flow,t = p(F(x) | Ψ(x, t)) is the smoothed flow distribution from real data, and
pgen,flow,t = p(F(x) | Ψ(Gϕ(ϵ), t)) is the generator’s flow distribution. The gradient approximation
for flow distribution matching follows the DMD framework:

∇ϕLflow
DMD ≈ −Et

[ ∫ (
sflow

data (Ψ(Gϕ(ϵ), t), t)− sflow
gen,ξ (Ψ(Gϕ(ϵ), t), t)

)dGϕ(ϵ)

dϕ
dϵ

]
, (9)

where sflow
data and sflow

gen,ξ are the flow score functions defined as:

sflow(xt, t) = ∇xt log p(F(x)|xt). (10)
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Self Forcing

Causvid

Ours

Ours

Self Forcing

Causvid

1s 3s 5s 1s 3s 5s

Ours

Self Forcing

Causvid

Figure 4: Comparing the results from three different models. For more results, please refer to our supplementary
material.

To operationalize this framework, we employ a flow regression loss for feature alignment:

Lflow
reg = Et,ϵ

[
∥F(Gteacher

ϕ (ϵ, t))−F(Gstudent
ϕ (ϵ, t))∥22

]
, (11)

where Gϕ(ϵ, t) denotes the generator output at timestep t. Our method uses a lightweight, self-
contained motion feature extraction module F(·) that operates directly on latent representations,
avoiding dependencies on external pre-trained optical flow estimators. Specifically, we implement
F(·) as a learnable representation with convolution on latent difference: it first computes the difference
between consecutive latent frames, then applies convolutional layers to extract local motion patterns,
followed by an MLP for feature adaptation. The student version is trainable with gradient flow, while
the teacher components are updated via EMA, ensuring stable and efficient motion representation
learning. The overall training objective combines both spatial and temporal distribution matching:

LTotal = λspatialLDMD + Lreg + γ
(
λflowLflow

DMD + Lflow
reg

)
, (12)

where γ weights the temporal terms. Where we set λspatial=4 and λflow=4 This framework jointly
minimizes motion distribution divergence while maintaining spatial fidelity in the distilled video
model.
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Figure 5: Ablation study results:(a)Performance evaluation across different diagonal forcing timesteps, demon-
strating optimal outcomes at 100 steps (1000 steps correspond to complete noise addition, while 0 steps represent
the clean frame);(b)Impact of motion loss weight on model performance.

4 EXPERIMENTS AND RESULTS

4.1 IMPLEMENTATION DETAILS

Training Details We implemented DiaDistill using Wan2.1-T2V-1.3B (Wan et al., 2025), a model
based on Flow Matching (Lipman et al., 2022) that is capable of generating 5 videos at 16 FPS with a
resolution of 832 × 480. For both ODE initialization and Diagonal Distillation training, we sampled
text prompts from a filtered and LLM-extended version of VidProM (Wang & Yang, 2024).
Inference Details To assess real-time applicability, we measured both throughput (frames per
second) and first-frame latency, acknowledging that true real-time performance requires exceeding
video playback rates while maintaining imperceptible delay. All speed tests were conducted on a
single NVIDIA H100 GPU with tiny vae Boer Bohan (2025). The core component is the rolling KV
cache mechanism following Self-Forcing Huang et al. (2025), which operates with a chunk size of 3
frames. Our buffering strategy is implemented using a fixed-size KV cache that maintains context
from the most recent 4 chunks, resulting in a consistent memory footprint of 17.5 GB. For detailed
ablation analysis please refer to our supplementary.
Evaluation Details We evaluated visual quality and semantic consistency using VBench (Huang
et al., 2024). Temporal Quality is the average of Subject Consistency, Background Consistency,
Temporal Flickering, Motion Smoothness, and Dynamic Degree. Frame Quality is the average of
Aesthetic Quality and Imaging Quality. Text Alignment is the average of Object Class, Multiple
Objects, Human Action, Color, Spatial Relationship, Scene, Appearance, Style, and Temporal Style.
The aggregation method for each score is a simple arithmetic mean of the normalized scores from
its constituent sub-dimensions. This approach is consistent with prior works like Causvid and
Self-Forcing for fair comparison.

4.2 COMPARISON WITH STATE-OF-THE-ART METHODS

Model Throughput↑
First-Frame
Latency ↓ Speedup Total↑ Quality↑ Semantic↑

Wan2.1 (Wan et al., 2025) 0.78 103 1.0× 84.26 85.3 80.09
SkyReels-V2 (Chen et al., 2025) 0.49 112 0.91× 82.67 84.70 74.53
MAGI-1 (Teng et al., 2025) 0.19 282 0.36× 79.18 82.04 67.74
Causvid (Yin et al., 2025) 17.0 0.69 149.3× 81.20 84.05 69.80
Self Forcing (Huang et al., 2025) 17.0 0.69 149.3× 84.31 85.07 81.28
DiaDistill (Ours) 31.0 0.37 277.3× 84.48 85.26 81.73

Table 1: Comprehensive comparison of video generation methods

We evaluate DiaDistill
against five state-of-the-
art video generation
methods: Wan2.1 (Wan
et al., 2025), SkyReels-
V2 (Chen et al., 2025),
MAGI-1 (Teng et al.,
2025), Causvid (Yin
et al., 2025), and Self
Forcing (Huang et al., 2025). As shown in Table 1, our method achieves a 277.3× speedup over the
Wan2.1 baseline while maintaining competitive visual quality (85.26 vs. 85.3). This represents a
1.53× improvement in latency over the previous fastest method, Self Forcing (149.3×), alongside
superior overall performance and semantic consistency . Qualitative results in Figure 4 further
demonstrate advantages in temporal consistency, with smoother frame transitions and fewer dynamic
artifacts. Visual fidelity improvements are most apparent in complex motions and textures, where
baseline methods exhibit blurring or distortion. These findings collectively show that DiaDistill
effectively balances the traditional trade-off between generation quality and computational efficiency.

4.3 ABLATION STUDIES

Key Components Diagonal Denoising assigns more denoising steps to early video chunks to establish
a high-quality foundation and progressively reduces denoising steps for subsequent chunks, whereas

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

(b) with flow loss(a) w/o flow loss

3s 5s1s

3s 5s

1s 3s 5s

Figure 6: Visual comparison of motion effects: (a) Without motion loss shows minimal motion amplitude
with only slight object movement; (b) With motion loss demonstrates significantly increased motion amplitude
throughout the entire frame, validating our method’s effectiveness.

Ours

Self Forcing

Causvid

Causvid

Causvid

Ours

Self Forcing

Self Forcing

Ours

15s 30s 45s 15s 30s 45s

Figure 7: Qualitative comparison of long video generation(45s) with Self Forcing and Causvid. The visual
results show that other methods suffer from noticeable saturation distortion and quality decay over time, whereas
our approach preserves detail and consistency. Additional results are provided in the supplementary material.

without it, the same number of steps is applied uniformly across all chunks. Diagonal Forcing refers to
using noisy frames instead of clean frames as the Key-Value (KV) cache in autoregressive generation.
Our ablation study shows that removing either flow distribution matching loss or Diagonal Forcing
significantly degrades video quality across all metrics (Table 2). Without Diagonal Denoising—which
corresponds to the inference cost of Self Forcing in Table 1—we observe that the model achieves
performance comparable to ours, but our method achieves a 1.53× speedup. Notably, we find that
flow distribution matching loss primarily benefits the few-step denoising regime and helps align its
performance with the many-step denoising baseline (i.e., without Diagonal Denoising), and provides
limited benefits when applied to a many-step denoising setting.

Diagonal Forcing Timesteps Moreover, we systematically evaluated diagonal forcing using metrics
across different noise levels of timesteps for the kv cache. As Figure 5(a) shows, 100 timesteps
achieved optimal scores across all evaluation dimensions, including temporal quality, frame quality,
and text alignment. The performance peaks at this specific noise level before degrading as timesteps
approach complete noise addition (1000 steps) or clean frames (0 steps). This can be attributed to the
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Figure 8: Quantitative evaluation of long video generation. The plot compares human preference scores and
quality consistency over time for different methods under identical conditions. Our approach maintains stable
quality throughout extended sequences, achieving scores above 50%, and attains a significant reduction in
inference latency.

fact that excessive noise (high timesteps) blurs the structural priors in the video context, leading to
reduced motion magnitude. This also explains why our method generates larger motion amplitudes
compared to MAGI (Teng et al., 2025). Conversely, insufficient noise (low timesteps) causes the next
chunk prediction to implicitly perform next noise level prediction, which can result in over-denoising
of subsequent chunks and ultimately lead to over-saturated outputs.

Ablation Variant
Temporal
Quality ↑

Frame
Quality ↑

Text
Alignment ↑

Total
Score ↑

Without Diagonal Forcing 92.1 60.1 26.9 83.58

Without Flow Loss 92.5 60.8 27.8 84.18

Without Diagonal Denoising 95.1 63.2 28.6 84.46

Full Method (Ours) 94.9 63.4 28.9 84.48
Table 2: Ablation Study on Key Components of DiaDistill.

Steps
Temporal
Quality ↑

Frame
Quality ↑

Text
Alignment ↑

NFEs
In-Flight

Latency (s) ↓
Throughput

(FPS) ↑

4322222 94.9 63.4 28.9 34 0.23 ± 0.02 31.0
5433333 95.1 63.2 29.3 48 0.34 ± 0.02 23.3
5432222 94.8 63.1 29.0 40 0.23 ± 0.02 29.7
5333333 95.0 63.9 29.1 46 0.34 ± 0.02 22.5
4333333 95.0 63.7 28.5 44 0.34 ± 0.02 23.5
4222222 93.4 62.3 27.8 32 0.23 ± 0.02 32.0

Table 3: Performance evaluation of denoising step configura-
tions

Flow Loss Weight We conducted a comprehensive ablation study across eight motion loss weight
configurations. Figure 5(b) reveals the crucial balance between motion guidance (via Flow Distribu-
tion Matching) and the DMD learning objectives, with optimal performance observed at a weight of
1.0. This balanced weighting scheme ensures the harmonious optimization of temporal consistency,
frame quality, and textual alignment metrics.

Denoising Configurations We evaluated six denoising configurations (represented by 7-digit se-
quences specifying steps per chunk as a 5 seconds video have 7 chunks in our setting) across quality
and computational metrics. As shown in Table 3, these configurations exhibit trade-offs between
generation quality and efficiency. Among them, configuration 5333333 achieves the highest quality,
while 4222222 offers the maximum throughput. To balance video quality and real-time performance,
we selected configuration 4322222, as it has the second-lowest number of NFEs and delivers per-
formance comparable to configurations with significantly higher latency and throughput, with only
marginal differences.

Attention
Window Size

Total
Score

In-Flight
Latency (s)

Memory (GB)

3 80.9 0.37 ± 0.01 14.9
6 81.3 0.38 ± 0.01 15.8
9 82.3 0.40 ± 0.01 16.6
12 84.3 0.46 ± 0.02 17.5
15 84.2 0.51 ± 0.02 18.4
18 84.4 0.54 ± 0.02 19.2
21 84.5 0.59 ± 0.02 20.1
24 84.3 0.64 ± 0.02 20.9
27 84.5 0.68 ± 0.02 21.8

Table 4: KV cache scaling analysis

KV Cache Scaling Analysis We further analyze the trade-
offs between attention window size, video quality (Total
Score), and in-flight interaction latency—the delay in re-
sponding to a new input signal during steady-state genera-
tion. As shown in Table 4, a larger window size generally
improves quality at the cost of higher memory usage and,
crucially, a longer delay in responding to user interactions.
Performance plateaus around a window size of 18-27, lead-
ing us to select an optimal size that balances responsiveness
with quality and efficiency.

4.4 LONG VIDEO GENERATION EVALUATION

We evaluated our long video generation framework using both simple and complex prompts. As shown
in Figure 8, our model maintains consistent perceptual quality over time, whereas baseline methods
suffer from rapid quality decay due to error accumulation. A large-scale user study (93 participants,
150 comparisons per model pair) on the first 50 prompts from MovieGenBench further validated
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0s 9s 18s 27s 36 45

Figure 9: Illustration of long video generation with dynamic prompting. This feature allows for the integration
of new prompts at arbitrary time points, facilitating the creation of coherent long videos with changing narratives.
The specific prompts used for each segment are detailed in the appendix.

our method’s superiority in overall visual quality, text faithfulness, and long-term consistency. User
study results, consistent with the qualitative comparison in Figure 7, confirm that baseline methods
degrade with issues like saturation distortion, while our approach sustains high quality. A key feature
of our framework is its support for dynamic prompting (Figure 9), allowing users to input new text
descriptions at any timeline point to create complex narratives with evolving scenes and actions.

5 CONCLUDING REMARKS

In this work, we introduce Diagonal Distillation, a novel framework for efficient autoregressive
video generation. It leverages temporal dependencies across video chunks and denoising steps
through an asymmetric denoising strategy—allocating more steps to early chunks and progressively
fewer to later ones. This design significantly reduces the total number of denoising steps while
preserving motion coherence and visual quality. Diagonal Forcing explicitly models the temporal
denoising trajectory, reducing error accumulation and aligning training with inference for stable
long-range synthesis. Additionally, Flow Distribution Matching ensures dynamic consistency under
strict step constraints by aligning the optical flow distributions of generated and real videos. Extensive
experiments demonstrate our method’s superior trade-off between efficiency and quality.
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ETHICS STATEMENT

While the real-time video generation technology presented in this study significantly improves
generation efficiency (achieving a 277.3× speedup compared to the baseline model), we are fully
aware of its dual-use nature. This technology could potentially be misused to create misleading
content or deepfake videos. To mitigate this risk, we commit to embedding usage guidelines and
restrictions when open-sourcing the code and models, and we advocate for the adoption of traceability
technologies such as digital watermarks and content authentication. Concurrently, this technology
holds significant positive potential in fields such as education, the creative industries, and assistive
tools. We aim to maximize its societal benefits and minimize potential harms through ongoing
discussions on technology ethics and responsible release practices.

REPRODUCIBILITY STATEMENT

For detailed reproducibility information, including full implementation details, training configurations,
hyperparameters, and evaluation protocols, please refer to the appendix sections. All source code,
trained model weights, and configuration files will be released to ensure the full reproducibility of
our results.
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