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Abstract

Unsupervised domain adaptive hashing has emerged as a promising approach
for efficient and memory-friendly cross-domain retrieval. It leverages the model
learned on labeled source domains to generate compact binary codes for unlabeled
target domain samples, ensuring that semantically similar samples are mapped
to nearby points in the Hamming space. Existing methods typically apply do-
main adaptation techniques to the feature space or the Hamming space, especially
pseudo-labeling and feature alignment. However, the inherent noise of pseudo-
labels and the insufficient exploration of complementary knowledge across spaces
hinder the ability of the adapted model. To address these challenges, we pro-
pose a Vision-language model assisted Pseudo-labeling and Dual Space adaptation
(VPDS) method. Motivated by the strong zero-shot generalization capabilities of
pre-trained vision-language models (VLMs), VPDS leverages VLMs to calibrate
pseudo-labels, thereby mitigating pseudo-label bias. Furthermore, to simultane-
ously utilize the semantic richness of high-dimensional feature space and preserve
discriminative efficiency of low-dimensional Hamming space, we introduce a dual
space adaptation approach that performs independent alignment within each space.
Extensive experiments on three benchmark datasets demonstrate that VPDS con-
sistently outperforms existing methods in both cross-domain and single-domain
retrieval tasks, highlighting its effectiveness and superiority.

1 Introduction

Hashing retrieval aims to map samples into compact low-dimensional binary codes, enabling fast
and memory-efficient retrieval via lightweight bit-wise operations in the Hamming space [12, 52,
53, 57, 65]. Existing hashing methods are typically categorized into supervised and unsupervised
approaches. Supervised hashing methods [38, 59, 63] benefit from rich label information and enable
the learning of highly discriminative representations, but they require large-scale labeled training
data and assume that training and query data are drawn from the same distribution, which are difficult
to be satisfied in real-world applications. Unsupervised hashing methods [24, 26, 46] eliminate the
dependency on labeled training data, but their performance is limited by the absence of reliable
supervision and they still struggle with the distribution shift between training and query data.

Unsupervised domain adaptation (UDA) [2, 5, 10, 34, 44, 45, 60] is developed to transfer knowledge
from the labeled source domain to the unlabeled target domain, releasing the need for distribution
consistency across domains. This makes UDA a compelling solution for addressing the challenges
in both supervised and unsupervised hashing. As a result, domain adaptive hashing retrieval [3, 14,

∗Corresponding author.

39th Conference on Neural Information Processing Systems (NeurIPS 2025).



49, 50, 51, 54] has gained increasing attention. The goal of domain adaptive hashing methods is to
reduce the distribution discrepancy between the training and query data, while maintaining semantic
structure within the Hamming space to ensure effective cross-domain retrieval.

To reduce distribution discrepancy across domains, most existing methods perform distribution align-
ment either in the high-dimensional feature space or in the low-dimensional Hamming space. Com-
mon strategies include minimizing the distribution difference measured by statistical metrics [14, 48]
or adversarial training with a discriminator [29, 49]. However, features in the feature space possess
richer semantic expressiveness than hash codes in the Hamming space, which are constrained by
their dimensionality. When alignment is performed solely in the feature space, the aligned feature
structure can be distorted when mapped into the Hamming space due to inevitable information loss.
Conversely, when alignment is performed solely in the Hamming space, due to limited representa-
tional capacity, semantically similar samples can be misaligned even if global distributions are well
aligned. Recent works have attempted to jointly align the feature and Hamming spaces, for example,
via concatenated feature-hash representations [49] or structural consistency constraints [3]. Despite
showing some effectiveness, such methods enforce a tight coupling between the feature and Ham-
ming spaces. Given the substantial disparity in their dimensionality and semantic capacity, we argue
that this tight coupling restricts alignment flexibility. Instead, we propose a decoupled alignment
strategy that performs domain alignment independently in the feature and Hamming spaces, without
imposing strict cross-space consistency. This relaxed design enables more flexible integration of
complementary information from each space, leading to improved adaptation performance.

To maintain semantic structure in the Hamming space, pseudo-labeling is one of the most commonly
used approaches. In the absence of ground-truth labels in the target domain, the generated pseudo-
labels inevitably contain noise, which can misguide the adaptation process. To alleviate this issue,
prior works have introduced various strategies, such as confidence-based thresholding [11, 43, 61],
auxiliary modules to reduce the bias to the source domain [28, 35, 50, 58], and uncertainty-based
weighting schemes to modulate the influence of noisy pseudo-labels [49, 64]. While these ap-
proaches alleviate pseudo-label noise, they remain susceptible to the bias introduced by the domain
gap, especially in the early stages of training. With the recent emergence of pre-trained vision-
language models (VLMs) [17, 36] that exhibit strong zero-shot generalization capabilities, we are
motivated to leverage VLMs to calibrate pseudo-labels, thereby enhancing the reliability of pseudo-
labels and providing more accurate supervision for target domain adaptation.

In this paper, we propose a VLM assisted Pseudo-labeling and Dual Space adaptation (VPDS)
method. Considering that the high-dimensional feature space provides richer semantic information,
while the low-dimensional Hamming space is essential for efficient and discriminative retrieval,
VPDS performs pseudo-labeling in the feature space and utilizes the generated pseudo-labels to
guide the learning of compact and discriminative hashing codes. To enhance the reliability of
pseudo-labels, VPDS leverages the strong generalization ability of VLMs to provide calibration
information. Moreover, VPDS achieves cross-domain alignment by reducing the domain gap in the
feature space and Hamming space separately, facilitating the utilization of space-specific knowledge
and enhancing overall adaptation performance.

The contributions of this paper are summarized as follows: (1) We propose VPDS that decouples
cross-domain alignment into independent alignments in the feature space and Hamming space, ex-
ploring the complementary information across spaces. (2) We propose a VLM assisted pseudo-
labeling strategy to enhance pseudo-label reliability. And this strategy is model-agnostic and can
be seamlessly incorporated into other unsupervised learning frameworks. (3) Experiments on three
standard benchmark datasets demonstrate that VPDS achieves superior performance in both cross-
domain and single-domain retrieval scenarios.

2 Related Works

Unsupervised Domain Adaptation. To achieve knowledge transfer from the labeled source domain
to the unlabeled target domain, UDA methods aim to learn a domain-invariant feature space. Early
approaches rely on statistical metrics, such as Maximum Mean Discrepancy (MMD) [30, 32], CORe-
lation ALignment (CORAL) [41, 42] and Maximum Density Divergence (MDD) [22], to quantify
the cross-domain distribution discrepancy, which are then minimized to mitigate the domain gap.
With the advent of generative adversarial networks, adversarial UDA methods [7, 31, 55, 56] in-
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troduce a domain discriminator to measure the separability of the two domains. Through training
the feature extractor and the discriminator in a min-max manner, domain-invariant features can be
obtained. More recently, pre-trained VLMs, especially the contrastive language-image pre-training
(CLIP) [36] model, have been incorporated into UDA frameworks. These methods typically freeze
the backbone parameters of CLIP and design auxiliary adaptation modules [8, 20, 40]. For in-
stance, DAMP [6] introduces a mutual prompting module to learn domain-agnostic prompts and
domain-invariant visual embeddings. UniMoS [23] employs a modality separation strategy to en-
hance vision-language interplay. While UDA has shown impressive progress in tasks such as image
classification and semantic segmentation, its application to image retrieval remains relatively under-
explored. In this work, we focus on advancing UDA techniques for image retrieval.

Domain Adaptive Hashing. Similar to UDA, domain adaptive hashing also needs to reduce the
domain gap. To achieve this, domain adaptive hashing methods typically employ alignment strate-
gies based on statistical metrics [14, 48, 62] or adversarial training [29, 49]. Domain adaptive
hashing first encodes data into a high-dimensional feature space and subsequently maps it to a low-
dimensional Hamming space. Consequently, alignment is typically performed either in the feature
space [14, 29, 48, 54] or in the Hamming space [50, 51]. As the feature space can provide rich
semantic information for knowledge transfer, and the Hamming space is crucial for efficient and
discriminative retrieval, some recent approaches attempt to exploit both and achieve joint alignment
of the two spaces. For example, PEACE [49] concatenates features with their corresponding hash
codes, and alignment is performed on the concatenated features. CPH [3] introduces a hypersphere
space for feature alignment, then the aligned feature structure is preserved in the Hamming space.
However, these joint alignment strategies tightly couple the two spaces, potentially restricting adap-
tation performance. To this end, we propose to perform alignment separately within each space,
allowing the model to exploit the distinct characteristics of each space more effectively.

Pseudo-Labeling Strategy. Pseudo-labeling is a widely adopted strategy for extracting discrimi-
native information from the unlabeled target domain. Due to the absence of ground-truth labels,
pseudo-label bias is inevitable. To mitigate this bias, some methods use threshold to select high-
confidence pseudo-labels [11, 43, 61]. Some methods design an auxiliary module, such as a teacher
network [35, 50, 58] or a target domain-specific model [28], to reduce the impact of source domain
information. The topological structure of the feature space provides an alternative strategy for gen-
erating pseudo-labels, allowing the model and class prototypes to be iteratively optimized and thus
mutually reinforcing [1, 3, 54]. Additionally, some works measure the pseudo-label uncertainty and
incorporate it as weighting in the learning objective [49, 64]. Despite these efforts, most methods
rely solely on the adapted model, which is affected by the domain gap especially in the early stages
of training. To thie end, we propose leveraging pre-trained VLMs to provide external calibration for
enhancing pseudo-label reliability. Our method mitigates early-stage pseudo-label bias and prevents
its accumulation throughout training, resulting in more stable and effective adaptation.

3 Method

The source domain containing Ns labeled samples is denoted as Ds = {(xsi , y
s
i )}

Ns

i=1
, and the target

domain containing Nt unlabeled samples is denoted as Dt = {xti}
Nt

i=1
. Assuming that Ds and

Dt follow different data distributions but share the same label space Y . The objective of domain
adaptive retrieval is to learn a model on Ds and Dt, which can map a sample x ∈ Ds∪Dt to a binary

code b ∈ {−1, 1}
L

, where L represents the code length. The learned model should ensure that
semantically similar samples are mapped to compact binary codes in the Hamming space, enabling
effective retrieval in both cross-domain and single-domain retrieval tasks. In cross-domain retrieval,
query and retrieval samples are from Dt and Ds, respectively. In single-domain retrieval, both query
and retrieval samples are from Dt. The framework of our method is shown in Figure 1.

3.1 Dual Space Adaptation

Feature space and Hamming space are two commonly used spaces where cross-domain alignment is
performed. The high-dimensional feature space provides rich semantic capacity, making it effective
for capturing transferable knowledge across domains. In contrast, the low-dimensional Hamming
space is crucial for efficient and discriminative retrieval via compact binary codes. Although exist-
ing approaches have attempted to leverage the complementary strengths of both spaces, they often
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Figure 1: Overview of the VPDS framework. Pseudo-labels are generated in the feature space
and used to guide the learning of discriminative hash codes. A frozen pre-trained VLM is utilized
to provide auxiliary corrective information for improving pseudo-label reliability. Classifiers in the
feature and Hamming spaces preserve the discriminability of learned representations, while memory
bank-based domain alignment within each space facilitates capturing transferable knowledge.

impose strict structural consistency constraints between them. However, the dimensionality reduc-
tion from feature space to Hamming space inevitably induces information loss, which can distort
semantic relationships and alter the space structure. Therefore, we argue that enforcing strict struc-
tural consistency between the two spaces suppress the leverage of advantages unique to each space,
thereby constraining the overall capacity for effective knowledge transfer. Based on this idea, we
propose a dual space adaptation strategy that performs domain alignment independently within each
space, while relaxing mutual constraints across spaces to preserve their respective strengths.

Both transferability and discriminability are essential for effective model adaptation. The discrim-
inability usually comes from two sources, including the ground-truth labels in the source domain
and the self-supervised information in the target domain. Therefore, the model is initially trained on
the labeled source domain and subsequently used to generate pseudo-labels for the unlabeled target
domain, thereby enabling self-supervised learning within the target domain. Since our dual space
adaptation strategy performs cross-domain alignment in two spaces separately, we introduce two
classifiers: CF in the feature space and CH in the Hamming space, to ensure that sufficient discrim-
inative information is retained in each space. These two classifiers are learned on source domain
features fs and hash codes bs, respectively, and the supervised loss function is formulated as:

Ls = −
1

Ns

Ns∑

i=1

CE(CF (f
s
i ), y

s
i ) + CE(CH(bsi ), y

s
i ), (1)

where ysi is the ground-truth label of xsi , CE(·) represents the cross-entropy loss, CF (·) and CH(·)
indicate the prediction results.

For the unlabeled target domain, we leverage the feature space to generate pseudo-labels, as it con-
tains richer semantic information, providing a sufficient knowledge foundation for capturing dis-
criminative information. The generated pseudo-labels are then used to supervise the learning of

4



discriminative hash codes in the Hamming space. Although this process introduces a connection
between the two spaces, the information in the Hamming space does not inversely affect the feature
space. Thus the mutual constraints between the two spaces of prior works are relaxed to a unidirec-
tional constraint. Formally, for the target domain feature f t, the pseudo-label can be obtained by the
adapted model, namely, ŷt = CF (f

t). This paper proposes a pseudo-labeling strategy to enhance ŷt

via VLM, which will be introduced in Section 3.2, and the enhanced pseudo-label is denoted as ỹt.
Then, ỹt is used for the self-supervised learning in the Hamming space:

Lt = −
1

Nt

Nt∑

i=1

CE(CH(bt
i), ỹ

t
i). (2)

In addition, we use the information maximization technique [6, 13, 25] in each space to further
mine semantic structure information of the unlabeled target domain. In each space, the information
maximization objective can be formalized as:

Li =
1

Nt

Nt∑

i=1

|Y|∑

c=1

p̂ci log p̂
c
i −

|Y|∑

c=1

pc log pc, (3)

where p̂ci denotes the confidence of CF predicting the feature f ti as the c-th class, or CH predicting

the hash code bt
i as the c-th class. pc = 1

Nt

∑Nt

i=1
p̂ci represents the average class confidence over

all target samples. The first term represents the entropy of the predictions, encouraging confident
and discriminative classification, while the second term promotes prediction diversity across classes,
mitigating the risk of class collapse.

To enhance transferability, we propose a prototype-based global alignment strategy. Unlike prior
works that perform class-level alignment using class prototypes, we treat prototypes as the most
representative samples and align domain-level distributions. Given that the model is continuously
updated during training, the constructed prototypes may deviate from the true class centers. There-
fore, rather than enforcing strict class-level alignment, we focus on global distribution alignment,
while the class-level alignment can be implemented via classifiers CF and CH . In the feature space,
we construct two memory banks to store class prototypes of the source and target domains, denoted

as Ms
F ∈ R|Y|×dF and Mt

F ∈ R|Y|×dF , respectively, where dF is the dimension of features in the
feature space. To improve training stability and robustness, we adopt a momentum-based strategy
to incrementally update the memory banks at each training iteration:

Ms
Fe+1

= αMs
Fe

+ (1− α)Ps
Fe+1

, Mt
Fe+1

= αMt
Fe

+ (1 − α)P t
Fe+1

, (4)

where e denotes the iteration number, α is a momentum coefficient controlling the update rate. Ps
F

and P
t
F represent the class prototypes of the source and target domains, respectively, computed by

the features in the feature space. These prototypes are formulated as:

P
s
Fc

=
1

|Bs
c |

∑

xs

i
∈Bs

c

fsi , P
t
Fc

=
1

|Bt
c|

∑

xt

i
∈Bt

c

f ti, (5)

where Bs
c denotes the set of source domain samples with ground-truth label c, and Bt

c denotes the
set of target domain samples with pseudo-label c. Then the domain-level alignment in the feature
space is achieved by aligning each source domain prototype with each target domain prototype:

LPF
= −

1

|Y|

∑
Ms

F × Mt
F

T
. (6)

Similar to the feature space, we construct two memory banks in the Hamming space, denoted as

Ms
H ∈ R|Y|×dH and Mt

H ∈ R|Y|×dH , where dH is the length of hash codes in the Hamming space.

The update strategy for Ms
H and Mt

H follows the same momentum-based rule as described in Eq. (4).

And the class prototypes Ps
H and P

t
H in the Hamming space are computed by the hash codes bs

and bt, following the same strategy as in Eq. (5). Then the domain-level alignment in the Hamming
space is achieved via:

LPH
= −

1

|Y|

∑
Ms

H × Mt
H

T
. (7)

As a result, the dual space alignment approach can be implemented by minimizing:

LP = LPF
+ LPH

. (8)
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3.2 VLM Assisted Pseudo-Labeling

In the previous section, pseudo-labels are utilized in Eqs. (2) and (5), thus their reliability plays a
critical role in the adaptation process. Most existing methods rely solely on the adapted model to
generate pseudo-labels, which can lead to pseudo-label bias due to the domain gap. To address this
challenge, we are motivated by the strong generalization capabilities of the pre-trained VLMs, and
propose to incorporate VLMs as auxiliary guidance for pseudo-label generation, particularly in the
early stages of training when the model has not yet adapted to the target domain. To be specific, the
final pseudo-labels are the combination of predictions from the VLM and from the adapted model,
where the relative contributions of two terms are dynamically adjusted throughout training. As train-
ing progresses, the model progressively learns more target domain-specific knowledge, resulting in
increasingly reliable predictions. Accordingly, we gradually increase the contribution of the adapted
model, while gradually reducing the reliance on the VLM.

In this paper, we use CLIP as the VLM framework. To obtain predictions based on CLIP, the textual
label descriptions are formalized as Tc = "a photo of a [CLASSc]". Based on the similarity of image
features and textual features, which are encoded by the image encoder FI and text encoder FT of
CLIP, the prediction result can be obtained through:

yclip = Cosine(FT (Tc), FI(x
t)). (9)

Based on ŷt and yclip, we construct the final pseudo-label by:

ỹt = arg maxcβŷ
t + (1− β)yclip, (10)

here, β is implemented as a linearly increasing parameter, namely β = e/E, where e denotes the
current training iteration and E is the total number of training iterations. Since CLIP is not optimized
in our method, yclip can be computed once in the first epoch and stored for use in subsequent
epochs. Therefore, this pseudo-labeling strategy incurs minimal computational overhead, and can
be seamlessly incorporated with other unsupervised learning frameworks.

3.3 Training and Inference

Finally, the overall training objective of our method is formalized as:

L = Ls + ηLt + γLi + LP , (11)

where η and γ are the trade-off parameters. Since the sign(·) function used to generate binary
hash codes is non-differentiable and thus unsuitable for gradient-based optimization [49], we adopt
its smooth approximation tanh(·) during training. Specifically, we use b = tanh(H(F (x))) for
training, and use b = sign(H(F (x))) for inference, whereF (·) and H(·) denote the feature encoder
and hash encoder, respectively.

4 Experiment

4.1 Setup

Datasets. We evaluate our method on three benchmark datasets. Office-Home [48] consists of 4
domains from 65 classes. Consistent with prior works [3, 50, 51], we construct 6 tasks based on this
dataset. Office-31 [37] contains 3 domains, with each domain containing 31 classes. Digits consists
of 2 domains, MNIST [21] and USPS [16], and each domain contains 10 handwritten digits.

Baselines. We compare our method with several state-of-the art methods, including unsupervised
hashing methods (i.e., ITQ [9], DSH [19], SGH [18], OCH [27] and GraphBit [53]) and domain
adaptive hashing methods (i.e., CTH-g [62], PWCF [15], DAPH [14], DHLing [54], PEACE [49],
DANCE [50], IDEA [51], CPH [3] and COUPLE [33]).

Implementation Details. For both cross-domain and single-domain retrieval tasks, 10% of the
target domain samples are randomly selected as the query set. The remaining 90% along with all
source domain samples constitute the training set. The retrieval set is constructed from the training
set, depending on whether the task is cross-domain or single-domain retrieval. The feature encoder
F is implemented using the VGG [39] backbone. For the VLM, we adopt the pre-trained CLIP [36]
with ViT-B/16 [4], and keep its parameters frozen during training. The model is optimized using
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Table 1: MAP (%) of cross-domain retrieval tasks with 64-bit hash codes on Office-Home and
Office-31. The best and second-best results are highlighted in bold and underlined.

Office-Home Office-31

Task A→R R→A C→R R→C P→R R→P A→D A→W D→A D→W W→A W→D Avg

ITQ 25.88 25.37 14.83 14.92 26.81 28.19 29.55 28.53 26.83 58.89 25.09 58.00 30.24
DSH 9.69 9.67 5.47 5.28 8.49 8.26 16.66 15.09 16.33 41.07 13.58 39.24 15.74
SGH 22.93 22.53 13.62 13.51 24.51 25.73 24.98 22.47 22.17 56.36 20.52 53.94 26.94
OCH 18.09 17.54 10.27 10.05 18.65 20.15 24.86 22.49 22.45 53.64 20.79 51.03 24.17
GraphBit 18.18 16.87 11.51 10.81 18.91 21.32 24.48 23.12 22.09 53.82 21.34 51.43 24.49
GTH-g 16.95 17.54 8.46 11.88 17.82 18.57 30.85 18.44 21.99 48.48 20.02 50.23 23.56
PWCF 34.57 28.95 24.22 18.42 34.03 34.44 39.78 34.86 35.12 72.91 35.01 67.94 38.35
DAPH 21.19 22.28 13.25 12.26 26.61 24.26 29.60 22.94 25.48 60.67 24.31 45.42 31.85
DHLing 48.47 30.81 38.68 45.24 25.15 43.30 41.96 45.10 75.23 42.89 41.74 79.91 46.54
PEACE 45.97 42.68 38.72 28.36 53.04 54.39 46.69 48.89 46.91 83.18 46.95 78.82 51.22
DANCE 44.53 43.54 39.03 28.87 53.73 55.14 44.78 47.66 46.68 84.75 48.61 78.39 51.31
IDEA 51.19 49.64 45.71 32.77 59.18 61.84 48.70 54.43 53.53 88.69 53.71 84.97 57.03
COUPLE 54.14 54.35 49.24 41.39 63.94 64.29 50.27 59.32 56.04 88.90 56.35 85.26 60.29
CPH 71.18 63.28 58.65 42.84 71.27 74.77 68.37 60.61 52.84 95.88 60.14 99.90 68.31
VPDS 72.54 63.36 63.58 41.95 75.17 81.80 87.22 91.40 65.88 98.91 64.88 100 75.56

Table 2: MAP (%) of cross-domain retrieval tasks with various bits on Digits. The best and second-
best results are highlighted in bold and underlined.

MNIST→USPS USPS→MNIST

Bit 16 32 48 64 96 128 16 32 48 64 96 128 Avg

ITQ 13.05 15.57 18.54 20.12 23.12 23.89 13.69 17.51 20.40 20.30 22.79 24.59 19.46
DSH 20.60 22.21 23.68 24.28 25.73 26.50 19.54 21.22 22.89 23.79 25.91 26.46 23.57
SGH 14.24 16.69 18.72 19.70 21.00 21.95 13.26 17.71 18.22 19.01 21.69 22.09 18.69
OCH 13.73 17.22 19.59 20.18 20.66 23.34 15.51 17.75 18.97 21.50 21.27 23.68 19.45
GTH-g 20.45 17.64 16.60 17.25 17.26 17.06 15.17 14.07 15.02 15.01 14.80 17.34 16.47
PWCF 47.47 51.99 51.44 51.75 50.89 59.35 47.14 50.86 52.06 52.18 57.14 58.96 52.60
DAPH 25.13 27.10 26.10 28.51 30.53 30.70 26.60 26.43 27.27 27.99 30.19 31.40 28.16
DHLing 49.24 54.90 56.30 58.28 58.80 59.14 50.14 51.35 53.67 58.65 58.42 59.17 55.67
PEACE 52.87 59.72 60.69 62.84 65.13 68.16 53.97 54.82 58.69 60.91 62.65 65.70 60.51
DANCE 53.18 57.98 61.23 63.15 65.92 68.87 54.31 55.64 57.26 61.49 63.43 66.23 60.72
IDEA 58.89 64.48 65.72 67.48 70.24 74.34 60.99 61.47 65.45 67.97 69.72 72.31 66.59
CPH* 64.55 63.33 65.94 71.04 68.06 71.85 54.36 61.64 64.17 65.59 68.47 70.70 65.81
COUPLE 60.56 66.05 66.23 67.98 73.02 75.12 63.28 64.94 67.44 70.19 72.87 74.62 68.53
VPDS 86.21 90.53 92.98 90.86 93.13 90.14 80.90 83.44 67.50 89.50 76.78 87.97 85.83

* indicates that the results for CPH are obtained by running its original code, while other results are obtained
directly from their original papers.

SGD with momentum 0.9 and weight decay 1e-5. We set the initial learning rate to 1e-3 and use a
batch size of 72. Training epoch is set to 20 for Digits and 100 for others. The hyperparameters are
fixed as α = 0.9, η = 0.2, γ = 0.2 across all datasets. All experiments are conducted on NVIDIA
A30 GPU. We evaluate the retrieval performance using 4 standard metrics: mean average precision
(MAP), precision-recall curve, Top-N precision curve and Top-N recall curve.

4.2 Comparison Results

Cross-Domain Retrieval. The MAP results of cross-domain retrieval tasks on three datasets are
presented in Tables 1–2. As shown in Table 1, the proposed VPDS method consistently achieves
the best performance on most tasks, with a notable average improvement of 7.25% over the second-
best method CPH. Among the datasets, Office-Home presents a greater challenge due to its larger
number of categories. The strong performance of VPDS on this dataset highlights its effectiveness
in learning discriminative hash codes even in more complex category spaces. Additionally, tasks
such as D→A and W→A from Office-31 require transferring knowledge from a source domain
with significantly fewer samples to a target domain with many more. On these tasks, VPDS yields
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Table 3: MAP (%) of single-domain retrieval tasks with various bits on Office-Home, Office-31 and
Digits. The best and second-best results are highlighted in bold and underlined.

Task P→R A→D MNIST→USPS

Bit 16 32 64 128 16 32 64 128 16 32 64 128

ITQ 20.07 29.64 33.15 34.81 40.83 49.27 56.16 59.41 13.39 22.58 39.67 40.16
DSH 6.10 11.44 16.61 14.45 22.45 33.38 40.09 46.31 41.42 45.30 47.85 50.76
SGH 18.97 26.18 32.61 34.97 38.67 45.59 53.57 57.37 15.60 30.78 35.55 41.78
OCH 13.45 21.14 25.34 28.02 33.30 41.65 50.78 53.74 24.23 32.90 36.34 44.36
GraphBit 15.42 21.80 24.89 28.97 33.21 41.17 51.46 53.48 24.96 32.54 37.54 44.82
GTH-g 15.05 21.20 27.67 28.40 37.11 45.69 50.22 55.81 45.41 39.72 34.34 34.73
PWCF 24.80 34.03 37.98 39.14 49.94 53.05 59.08 62.35 50.21 49.41 60.06 64.00
DAPH 20.77 29.01 33.35 34.92 46.74 49.43 58.63 60.41 47.53 54.86 60.15 60.39
DHLing 27.81 36.05 40.91 44.07 52.08 56.43 60.17 63.44 51.25 50.48 63.13 67.02
PEACE 28.99 37.93 42.97 47.29 55.43 57.89 61.21 64.14 52.77 56.25 65.27 69.99
DANCE 31.37 37.64 44.13 48.93 54.42 58.02 63.09 67.91 52.65 55.98 66.81 70.47
IDEA 34.88 44.83 49.91 54.40 61.25 62.65 67.06 70.04 60.81 63.32 72.11 76.73
CPH 44.99 49.35 52.45 51.40 60.60 62.11 65.76 68.20 66.76 71.34 72.64 72.46
VPDS 47.20 54.86 59.12 59.45 71.22 77.66 85.90 85.52 80.12 88.34 90.35 89.30

substantial improvements of 9.84% and 4.74%, respectively, further demonstrating its robustness
in handling severe domain shifts and data imbalance. Table 2 presents the retrieval performance
on the Digits dataset across different hash code lengths. Our method outperforms all compared
methods at each code length, achieving an average improvement of 17.30% over the second-best
method. These results demonstrate the robustness and effectiveness of VPDS in learning compact
and discriminative hash codes. Additional evaluations of cross-domain retrieval performance with
varying code lengths on Office-Home and Office-31 are provided in Appendix A.1.

Single-Domain Retrieval. We evaluate single-domain retrieval performance on three randomly
selected tasks, each from a different dataset. As shown in Table 3, VPDS outperforms all compared
methods by a substantial margin, highlighting its effectiveness and strong generalization capability
in single-domain retrieval scenarios.

4.3 Analyses.

Effect of VLM Assisted Pseudo-Labeling. To evaluate the effectiveness of our proposed VLM
assisted pseudo-labeling strategy, we construct two variants by replacing it with commonly used
strategies: (1) VPDS w/ Pred: pseudo-labels are generated from the predictions of the adapted
model, using only those with confidence scores above 0.9. (2) VPDS w/ Prot: pseudo-labels are
assigned based on the nearest class prototypes computed from the source domain. The experimental
results are shown in Table 4, we can see that VPDS outperforms the two variants of it, demonstrating
the effectiveness of our pseudo-labeling strategy.

Effect of Dual Space Adaptation. To assess the effectiveness of dual space adaptation approach,
we design two variants: (1) VPDS w/ Hamming: utilizing only the Hamming space for learn-
ing, discarding all information from the feature space. (2) VPDS w/ VLM_Hamm: generating
pseudo-labels based on predictions of the classifier in the Hamming space. As shown in Table 4,
both variants result in a noticeable performance drop, highlighting the critical role of transferring
knowledge from the semantically rich feature space to guide learning in the Hamming space.

Effect of Prototype-Based Global Alignment. The prototype-based global alignment strategy is
evaluated by replacing it with prototype-based class-level alignment and MMD-based global align-
ment, constructing VPDS w/ class_prot and VPDS w/ global_MMD. As shown in Table 4, VPDS
outperforms the two variants, which demonstrates the superiority of our alignment strategy over
conventional class-level and domain-level alignment strategies.

Ablation Study. To assess the contribution of each component in VPDS, we conduct an ablation
study by removing each component from VPDS. Details of variants are provided in Appendix A.2.
The results, denoted as VPDS w/o, are shown in Table 4. We observe performance degradation in
all ablation variants, demonstrating the effectiveness and necessity of each component.
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Table 4: MAP (%) of VPDS variants on Office-Home for cross-domain retrieval tasks.

Method A→R R→A C→R R→C P→R R→P Avg

VPDS w/ Pred 73.32 62.95 57.22 40.53 72.91 81.86 64.80
VPDS w/ Prot 68.68 58.73 43.54 35.64 61.56 74.32 57.08

VPDS w/ Hamming 56.90 51.97 13.54 21.33 45.77 50.18 39.95
VPDS w/ VLM_Hamm 67.28 57.68 18.97 29.78 41.29 66.00 46.83

VPDS w/ class_prot 71.57 62.05 61.01 40.19 75.59 82.74 65.53
VPDS w/ global_MMD 72.94 60.89 63.26 41.39 73.97 82.56 65.84

VPDS w/o LPF
70.23 60.25 60.91 40.15 73.49 80.02 64.18

VPDS w/o LPH
71.22 62.28 62.72 42.73 73.79 82.52 65.88

VPDS w/o LP 70.16 63.16 63.16 40.99 75.30 82.12 65.82
VPDS w/o Li (feat) 69.28 62.07 55.32 37.58 71.89 76.86 62.17
VPDS w/o Li (Hamm) 70.68 61.05 58.79 38.73 73.60 80.92 63.97
VPDS w/o Li 63.83 56.60 46.95 32.95 67.60 75.24 57.20
VPDS w/o Lt 71.92 60.67 58.79 40.76 74.60 80.23 64.50

VPDS 72.54 63.36 63.58 41.95 75.17 81.80 66.40

Table 5: Scalability (under the unsupervised hashing retrieval setting) and generalization (under the
out-of-sample hashing retrieval setting) of VPDS.

Cross-Domain Hashing

Tasks A→R R→A C→R R→C P→R R→P A→D A→W D→A D→W W→A W→D

Unsupervised 54.18 50.48 32.31 33.14 65.50 68.22 67.63 70.43 67.38 88.81 62.65 88.50
Out-of-Sample 46.68 47.27 45.75 30.95 62.55 64.75 80.58 70.69 62.70 90.15 69.16 98.20

Single-Domain Hashing

Tasks P→R A→D MNIST→USPS

Bit 16 32 64 128 16 32 64 128 16 32 64 128

Out-of-Sample 42.22 47.70 52.24 51.68 69.46 78.09 83.75 88.81 87.27 76.22 74.83 88.33

Parameter Sensitivity. We evaluate the sensitivity of our method to all hyperparameters, including
α, η and γ. The results in Figure 2 show that the performance remains stable across a wide range of
values, indicating that our method is robust to hyperparameter settings.

Precision-Recall Curve. We present the precision-recall curves on four cross-domain retrieval tasks
randomly selected from Office-Home and Office-31 in Figure 3. The results show that our method
works better than the compared methods. Additionally, the Top-N precision curves and Top-N recall
curves are presented in Appendix A.3.

Scalability. Our framework can be readily extended to unsupervised hashing retrieval scenarios.
Specifically, when labels for both source and target domain data are unavailable, our VLM assisted
pseudo-labeling approach can generate pseudo-labels for samples in both domains. By replacing
the ground-truth labels of the source domain in VPDS with these generated pseudo-labels, our
method can directly addresses the unsupervised hashing retrieval task. To validate this scalabil-
ity, we evaluate VPDS under the unsupervised hashing retrieval setting on the Office-Home and
Office-31 datasets. As shown in Table 5, our method outperforms all unsupervised baselines and
most domain adaptive methods when compared to the results reported in Table 1.

Generalization. To assess the generalization (out-of-sample) ability of our method, we split the
source domain data into a 70% training set and a 30% retrieval set, and we divide the target domain
data into a 60% training set, a 30% retrieval set and a 10% query set. We evaluate VPDS under
this out-of-sample setting, and the results are presented in Table 5. Comparing to the results in
Tables 1 and 3, we observe that although the retrieval data is not involved in the training process,
our method still outperforms most compared methods that leverage training data as the retrieval set.
This validates the strong generalization capability of our approach.
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Figure 2: Parameter sensitivity of VPDS to (a) α, (b) η and (c) γ. When γ ≥ 0.3, gradient vanishing
issue emerges in task MNIST→USPS, resulting in an incomplete curve in (c).
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Figure 3: Precision-recall curves on four tasks randomly selected from Office-Home and Office-31.
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Figure 4: t-SNE visualization of A→D in feature and Hamming spaces.

Visualization. To illustrate the effect of our dual space adaptation approach, we employ t-SNE [47]
to visualize the features in the feature space and hash codes in the Hamming space. We compare the
visualization results with PEACE, which enforces a strict relationship between the two spaces via
feature concatenation. As shown in Figure 4, our approach produces discriminative hash codes and
yields better clustering in the feature space compared to PEACE. These results validate our design of
relaxing the constraints across spaces to enable more flexible and effective cross-domain alignment.

5 Conclusion

This paper propose VPDS, a framework that performs independent domain alignment in both the
feature and Hamming spaces to exploit their complementary knowledge. To address potential bias
from prototype representations, we introduce a prototype-based global alignment strategy. Addition-
ally, we design a VLM assisted pseudo-labeling strategy to improve pseudo-label reliability, which
can be seamlessly integrated with other unsupervised learning methods. Extensive experiments on
multiple benchmarks validate the effectiveness and generalizability of our method.
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• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
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Justification: The theory assumptions are included in Section 3.

Guidelines:

• The answer NA means that the paper does not include theoretical results.

• All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

• All assumptions should be clearly stated or referenced in the statement of any theo-
rems.

• The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a
short proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be comple-
mented by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main
experimental results of the paper to the extent that it affects the main claims and/or conclu-
sions of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: All the information needed to reproduce the main experimental results of the
paper have been provided.

Guidelines:

• The answer NA means that the paper does not include experiments.

• If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps
taken to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture
fully might suffice, or if the contribution is a specific model and empirical evaluation,
it may be necessary to either make it possible for others to replicate the model with
the same dataset, or provide access to the model. In general. releasing code and data
is often one good way to accomplish this, but reproducibility can also be provided via
detailed instructions for how to replicate the results, access to a hosted model (e.g., in
the case of a large language model), releasing of a model checkpoint, or other means
that are appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all sub-
missions to provide some reasonable avenue for reproducibility, which may depend
on the nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear
how to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to re-
produce the model (e.g., with an open-source dataset or instructions for how to
construct the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case au-
thors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The code is available in Supplementary, and the datasets are publicly avail-
able.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.

• Please see the NeurIPS code and data submission guidelines
(https://nips.cc/public/guides/CodeSubmissionPolicy) for more de-
tails.

• While we encourage the release of code and data, we understand that this might not
be possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run
to reproduce the results. See the NeurIPS code and data submission guidelines
(https://nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: All the training and test details have been clearly introduced.

Guidelines:

• The answer NA means that the paper does not include experiments.

• The experimental setting should be presented in the core of the paper to a level of
detail that is necessary to appreciate the results and make sense of them.

• The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropri-
ate information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We evaluate the method through different metrics, and the details can be
found in Section 4 and Appendix A.

Guidelines:

• The answer NA means that the paper does not include experiments.

• The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).

• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should prefer-
ably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of
Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We have provided sufficient information on the computer resources needed to
reproduce the experiments.

Guidelines:

• The answer NA means that the paper does not include experiments.

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

• The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

• The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments
that didn’t make it into the paper).

9. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: This paper conforms with the NeurIPS Code of Ethics in every respect.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

• If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: The paper discusses broader impacts in Appendix B.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
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• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact spe-
cific groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitiga-
tion strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.

• Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by re-
quiring that users adhere to usage guidelines or restrictions to access the model or
implementing safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The codes, datasets and models used in this paper are publicly available. And
the compared methods are all designed for image retrieval task.

Guidelines:

• The answer NA means that the paper does not use existing assets.

• The authors should cite the original paper that produced the code package or dataset.

• The authors should state which version of the asset is used and, if possible, include a
URL.

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.

• For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the pack-
age should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the li-
cense of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets

Question: Are new assets introduced in the paper well documented and is the documenta-
tion provided alongside the assets?

Answer: [NA]

Justification: The paper does not release new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.

• Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can
either create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the pa-
per include the full text of instructions given to participants and screenshots, if applicable,
as well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.

• Including this information in the supplemental material is fine, but if the main contri-
bution of the paper involves human subjects, then as much detail as possible should
be included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, cura-
tion, or other labor should be paid at least the minimum wage in the country of the
data collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.

• Depending on the country in which research is conducted, IRB approval (or equiva-
lent) may be required for any human subjects research. If you obtained IRB approval,
you should clearly state this in the paper.
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• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity
(if applicable), such as the institution conducting the review.

16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.

Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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Appendix

A Additional Experimental Results

A.1 Performance of Cross-Domain Retrieval

Table 6 presents the MAP results for cross-domain retrieval tasks under varying hash code lengths.
Across all code lengths, VPDS consistently outperforms the compared methods on most tasks and
achieves a notable improvement in average performance, demonstrating its robustness and effective-
ness in different hash settings.

Table 6: MAP (%) of cross-domain retrieval tasks with various bits on Office-Home and Office-31.

Office-Home Office-31

Method Bit A→R R→A C→R R→C P→R R→P A→D A→W D→A D→W W→A W→D Avg

GTH-g
16 10.20 9.51 6.04 5.90 10.84 11.08 26.25 11.85 15.76 34.40 16.14 31.79 15.81
32 13.08 13.93 7.86 9.52 15.28 16.17 28.35 15.76 21.15 41.36 19.23 42.86 20.38

128 16.51 19.52 8.53 13.92 20.81 21.24 31.68 20.55 21.93 50.09 20.17 53.54 24.87

GTH-h
16 9.54 8.18 6.17 6.30 11.32 10.81 24.86 11.94 19.02 34.15 14.66 40.58 16.46
32 13.43 12.67 7.77 8.97 15.71 15.36 24.65 15.56 20.98 41.67 17.97 42.33 19.76

128 13.78 19.73 8.57 14.54 21.16 20.16 32.01 22.16 22.56 51.62 21.55 51.57 24.20

DAPH
16 11.92 14.46 8.16 8.12 17.11 14.37 22.46 15.94 19.69 52.39 19.44 34.01 19.84
32 17.72 19.63 10.48 10.64 22.47 20.25 25.15 19.09 21.99 54.28 22.00 36.58 23.36

128 22.27 23.78 14.32 13.39 28.25 25.34 32.90 27.49 29.11 64.25 26.58 47.59 29.61

CPH
16 62.19 53.41 53.47 35.64 64.18 66.65 59.54 52.54 43.47 90.86 55.53 98.33 61.32
32 67.87 60.16 56.71 39.71 68.31 71.72 64.00 56.33 49.34 95.04 59.18 99.49 65.66

128 72.17 64.62 53.25 42.71 72.89 75.50 69.20 61.18 54.89 97.54 61.49 99.99 68.79

VPDS
16 67.05 54.63 57.28 37.66 68.67 78.25 77.36 84.11 63.67 98.78 68.39 100 71.32
32 70.67 56.65 62.07 41.89 73.42 82.18 83.15 88.85 68.7 98.88 67.96 98.43 74.40

128 70.74 61.86 61.86 40.84 73.2 82.42 85.67 88.76 72.84 98.80 64.46 99.86 75.11

A.2 Details of Ablation Variants

In Section 4.3, we perform an ablation study to evaluate the contribution of each component in
VPDS. Specifically, we construct seven variants by removing individual components from the full
model, including:

(1) VPDS w/o LPF
: removing prototype-based alignment in the feature space.

(2) VPDS w/o LPH
: removing prototype-based alignment in the Hamming space.

(3) VPDS w/o LP : removing prototype-based alignments in both the feature and Hamming spaces.

(4) VPDS w/o Li (feat): excluding the information maximization technique in the feature space.

(5) VPDS w/o Li (Hamm): excluding the information maximization technique in the Hamming
space.

(6) VPDS w/o Li: excluding the information maximization technique in both the feature and Ham-
ming spaces.

(7) VPDS w/o Lt: removing the pseudo-label-based self-supervised learning objective.

A.3 Top-N Precision Curve and Top-N Recall Curve

The Top-N precision curves and Top-N recall curves for four randomly selected tasks are shown
in Figures 5 and 6. Our method consistently achieves higher precision and recall across different
values of N, highlighting its effectiveness in cross-domain retrieval tasks.
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Figure 5: Top-N precision curves on four tasks randomly selected from Office-Home and Office-31.
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Figure 6: Top-N recall curves on four tasks randomly selected from Office-Home and Office-31.

A.4 Time and Memory Consumption

To evaluate the computational efficiency of our method, we compare its time and memory consump-
tion against PEACE, which also exploits both feature and Hamming spaces. While CPH similarly
leverages dual-space information, it uses pre-encoded features as input, thereby bypassing the fea-
ture extraction stage. As shown in Table 7, we report the training time over 10 epochs using a fixed
batch size. Although our method incurs a higher training time compared to PEACE, it exhibits ob-
viously lower memory consumption. Considering the obvious performance improvements observed
in prior metrics such as MAP, the increased computational cost is a reasonable trade-off and can be
acceptable.

Table 7: Time and memory consumption.

Office-Home

Method A→R R→A C→R R→C P→R R→P Avg

Time (s)
PEACE 175.93 160.62 277.41 280.05 278.08 288.44 243.42
VPDS 193.26 174.29 308.36 299.77 303.58 302.57 263.64

Memory PEACE 17,688
(MiB) VPDS 9,840

Office-31

Method A→D A→W D→A D→W W→A W→D Avg

Time (s)
PEACE 37.82 55.08 39.08 39.97 59.09 37.22 44.71
VPDS 37.94 53.76 39.80 39.53 60.84 37.92 44.97

Memory PEACE 17,686
(MiB) VPDS 9,864

B Broader Impacts and Limitations

This paper proposes a novel domain adaptive retrieval method, which achieves substantial perfor-
mance gains over existing methods. We propose a VLM assisted pseudo-labeling strategy that
enhances the reliability of pseudo-labels. This strategy can be seamlessly integrated with other
unsupervised and cross-domain learning approaches, thereby improving performance in scenarios
with limited labeled data. Additionally, we present a dual space adaptation approach that leverages
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the semantically rich feature space to guide learning of discriminative hash codes, while eliminating
the explicit constraints from Hamming space to feature space, providing a new direction for advanc-
ing cross-domain retrieval. In this paper, we only focus on adaptive retrieval across two domains,
while adaptive retrieval across multiple domains is more practical in real-world, thus we will explore
such scenarios in our future work.

23


	Introduction
	Related Works
	Method
	Dual Space Adaptation
	VLM Assisted Pseudo-Labeling
	Training and Inference

	Experiment
	Setup
	Comparison Results
	Analyses.

	Conclusion
	Additional Experimental Results
	Performance of Cross-Domain Retrieval
	Details of Ablation Variants
	Top-N Precision Curve and Top-N Recall Curve
	Time and Memory Consumption

	Broader Impacts and Limitations

