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Abstract: Our goal is to develop visual pre-training strategies that enable more1

robust and efficient manipulation policy learning. We find that a Vision Trans-2

former trained with a distillation loss that biases representations towards shape3

exhibits strong zero-shot transfer performance on the kitchen shift suite, even4

when compared to baselines trained on larger and more task-relevant datasets.5

When finetuned, the attention heads of a transformer trained with a shape bias can6

be visualized as a spatial feature map, which emergently segments manipulation-7

relevant objects in an image. By leveraging each of these insights, we are able to8

improve the average zero-shot performance of policies trained on the sliding door9

task within the FrankaKitchen environment by nearly 2x compared to the next best10

method. Additionally, we are able to improve maximum success in distribution by11

13% by masking out attention heads that attend to distractors.12

Keywords: Manipulation, visual pre-training, self-supervision13

1 Introduction14

Our goal is to learn robotic manipulation policies from images. For many computer vision tasks,15

models can be applied off-the-shelf in new environments with little to no task-specific tuning. In16

spite of this success, robotic policies learned from pixels remain surprisingly brittle. One common17

approach to learning from pixels follows a formula that is familiar to many computer vision practi-18

tioners: pre-train a self-supervised network on a broad and diverse image dataset before fine-tuning19

on task specific data and labels. We expect this strategy to yield a model that’s capable of general-20

izing the downstream task across visually diverse environments, but when roboticists try this same21

formula, learned policies break in the presence of a distractor, under subtle lighting changes, and22

after a slight change in the camera position.23

Recent work posits that the missing piece is a large dataset of object interactions across diverse24

environments—the ImageNet or CommonCrawl of manipulation. Indeed, training on large datasets25

of first person human interaction data increases policy performance downstream. However, these26

policies remain brittle to even small distribution shifts that commonly occur during deployment.27

Why are robotic policies learned from visual features so sensitive to distribution shift compared to28

other tasks that rely on visual information?29

Successful manipulation requires spatial reasoning. To that end, past work introduced structured30

representations (e.g., keypoints) that capture the spatial aspects of the visual observation space at the31

cost of expressivity. Instead of introducing explicit structure into the representation, we leverage an32

encoder pre-trained with a self-supervised distillation loss (DiNo) [1] that biases the representation33

towards shape. We show that policies learned on top of these representations are more robust in34

the presence of visual distribution shift even when compared to representations learned from larger35

and more task-relevant datasets. Unlike more structured approaches, pre-training with DiNo can be36

applied to any architecture or dataset and doesn’t require explicit supervision.37

Another benefit of this encoder choice is that the transformer attention heads can be visualized as38

a spatial heatmap. We find that the visualized attention heads can be interacted with in predictable39
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Figure 1: Encoders trained with losses that induce spatial heatmaps transfer to new viewpoints and
textures zero-shot.

ways. Concretely, by masking out attention heads that segment task irrelevant parts of the image,40

we can improve the average performance of a policy trained on top of this architecture. This hints at41

the possibility of using the segmentation performance of the attention heads as a heuristic to identify42

good models to serve as representations for manipulation.43

This work demonstrates that pre-training a visual encoder with a loss that is biased towards shape44

can dramatically improve policy performance under distribution shifts. We demonstrate this across45

27 different training settings of the door sliding task within the FrankaKitchen [2] environment and46

evaluate across 7 different texture and lighting changes adapted from the Kitchen Shift benchmark47

[3]. We find that a vision transformer trained with a shape-biased distillation loss (DiNo) strongly48

outperforms both Transformer [4] and ResNet [5] architectures trained on much larger and task49

relevant datasets. The attention heads from a shape-biased Vision Transformer can be visualized as50

spatial heatmaps, which can be visually inspected to idenitfy task relevant and irrelevant heads. We51

explore this idea by masking attention heads that attend to irrelevant background pixels and observe52

a 13% boost to policy performance. After fine-tuning on a robotics task, these attention maps also53

emergently highlight task-relevant keypoints in the scene that are robust across visual distribution54

shifts. This is true for even dramatic visual shifts such as camera viewpoint. We believe that shape-55

biased losses could be a new standard for pre-training visiual encoders for manipulation and that56

leveraging the attention heads of Vision Transformers (e.g., by masking) could lead to further policy57

improvements.58

2 Related Work59

Policy adaptation. Policies learned from pixels are known to be sensitive to distractors. Policy60

adaptation approaches aim to resolve this instability by continuing to train self-supervised visual61

representations between during deployment [6], improving the transferability of encoders through62

augmentations [7, 8], or collecting exploration data in the target environment to align source and63

target represnetations [9]. Unlike this work, our method doesn’t require any target domain data or64

hand-designed augmentations.65

Representation learning for manipulation. The correct approach to visual representation learn-66

ing for robotics is still an open question. Some work has analysed the transfer quality of a vari-67

ety different supervised vision tasks to robotics tasks [10]. Unlike this work, training with DiNo68
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Figure 2: Zero shot performance on the kitchen shift suite.

does not require any labels and so it can be readily adapted to more robotics-relevant datasets. We69

compare directly against works that have developed self-supervised losses for manipulation [11]70

on manipulation-relevant datasets [12] or directly evaluated existing self-supervision approaches on71

such datasets [13].72

3 Robust Manipulation with Spatial Features73

We study two questions: (1) Can encoders trained with a shape-biased loss perform better under74

visual distribution shifts than other self-supervised losses? (2) Can the intuitive interpretations of75

attention map visualizations be leveraged to improve policy performance during training?76

Shape bias improves zero-shot transfer. We follow the same evaluation protocol as R3M on77

the sliding door task. On top of each encoder, we train a two-layer MLP with imitation learning78

to perform the sliding door task. We compare across 3 seeds, 3 levels of demonstrations, and 379

camera angles. We then evaluate the performance of the policy and encoder across a subset of80

visual distribution shifts in the Kitchen Shift benchmark. This includes changing lighting—making81

the lighting darker, making the lighting brighter, lighting cast left, and lighting cast right—as well82

as changing the texture wrapping the cabinet of the sliding door to be wood, metal, or tile. The83

R3M training and testing environments modify FrankaKitchen by randomizing the position of the84

kitchen, so we reimplement these distribution shifts in the R3M evaluation environment. Because85

the kitchen position is randomized, the task is much more difficult to solve using memorization. We86

expect replay data to perform much worse than in the original Kitchen Shift benchmark.87

We compare a Vision Transformer trained with a shape-biased loss (DiNo) against three other visual88

representation learning approaches. In MVP we borrow the encoder from Radosavovic et al. [13]89

and finetune. MVP leverages a ViT trained with masked autoencoding (MAE) on a mixture of90

human interaction data including Ego-4D. We also compare against a frozen and finetuned model91

from R3M [11]. R3M utilizes a ResNet-50 architecture trained on top of Ego-4D.92

The zero-shot performance of each model across distribution shifts can be found in Figure 2. On93

the left, we present the performance of each model without any distribution shift. We then plot the94

performance the models by shift type and show the performance averaged across shifts on the right.95

For all of the shifts, we average results across level of demonstrations and camera angles and then96

take the average and standard error over seeds.97

Visualizations of the attention heads after training are presented in Figure 1. Similar to DiNo, we98

visualize attention heads by mapping the weight at each head at the output of the last block to a99

heat map and smoothing the final map with bilinear interpolation. The finetuned MVP model is100

visualized on the top and the fine-tuned DiNo model is visualized on the bottom. Of the six heads101

in the last block, we select the head that best attends to the manipulation relevant objects by visual102

inspection. At the best head, fine-tuning with DiNo appears to give more manipulation-relevant and103
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precise attention heads. Surprisingly, the same attention head is consistent across texture shifts and104

across viewpoints.105

Leveraging attention for better policy learning. In this section, we study the question: are the106

attention head visualizations useful to the extent that they enable the development of a better per-107

forming policy? This is an important proof-of-concept that opens the door for future work to improve108

policy performance by leveraging attention heads that segment objects that are relevant to the de-109

sired manipulation task. For example, a practitioner could decide to mask a head that attends to the110

microwave if the policy needs to open the cabinet.111

Heads Used Success

All Heads 38.0 ± 6.0
Hand-Selected Head 43.3 ± 1.8

Random Head 32.7 ± 4.4

(a) Average success with different heads (b) Hand-Selected Head (c) Random Head

Figure 3: (Left) If we mask out all but an intuitively-correct hand-selected head, we can boost
average policy performance by 13%. (Middle) A visualization of an attention head before fine-
tuning on the target task. Without any environment data, the attention head segments manipulation
relevant objects. (Right) A visualization of an attention head selected at random. Compared to the
hand selected head, the random head segments the background, which is irrelevant to the sliding
door task.

We focus on the sliding door task trained with 5 human demonstrations and the left camera view-112

point. We visually inspect each of the 6 attention heads of a DiNo-pretrained vision transformer113

and select the head that segments the most task-relevant objects. We mask all but the hand-selected114

head and compare the success of training an MLP without finetuning after 1000 training steps. We115

present the average performance results with standard error across 3 seeds in Table 3a. For an ad-116

ditional baseline, we also report the results of masking all but a random head. Attention heads are117

masked by zeroing out the weights that map from input vectors to query, key, and value vectors. We118

only visualize and mask heads at the last attention block. After masking out the hand-selected head,119

success after 1000 training steps sees a modest performance improvement with reduced variance120

compared to using all heads.121

4 Conclusion122

In this paper we studied two questions related to visual representation learning for manipulation.123

First, we find that pre-training with a loss that induces a shape bias can provide strong performance124

gains when evaluating policies under visual distribution shift. Second, we present a proof of concept125

that leverages the insight that the attention heads of a DiNo-trained Vision Transformer segment task126

relevant objects. Our findings open up important questions for future work, such as: could training127

larger and more task-relevant datasets, such as Ego-4D, with a shape-biased loss further improve128

policy learning performance?129
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