
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

PARADIGM SHIFT OF GNN EXPLAINER FROM LABEL
SPACE TO PROTOTYPICAL REPRESENTATION SPACE

Anonymous authors
Paper under double-blind review

ABSTRACT

Post-hoc instance-level graph neural network (GNN) explainers are developed to
identify a compact subgraph (i.e., explanation) that encompasses the most influen-
tial components for each input graph. A fundamental limitation of existing meth-
ods lies in the insufficient utilization of structural information during GNN ex-
plainer optimization. They typically optimize the explainer by aligning the GNN
predictions of input graph and its explanation in the graph label space which inher-
ently lacks expressiveness to describe various graph structures. Motivated by the
powerful structural expression ability of vectorized graph representations, we for
the first time propose to shift the GNN explainer optimization from the graph label
space to the graph representation space. However, the paradigm shift is challeng-
ing due to both the entanglement between the explanatory and non-explanatory
substructures, and the distributional discrepancy between the input graph and the
explanation subgraph. To this end, we meticulously design IDEA1, a universal
dual-stage optimization framework grounded in a prototypical graph representa-
tion space, which can generalize across diverse existing GNN explainer architec-
tures. Specifically, in the Structural Information Disentanglement stage, a graph
tokenizer equipped with a structure-aware disentanglement objective is designed
to disentangle the explanatory substructures and encapsulate them into explana-
tory prototypes. In the Explanatory Prototype Alignment stage, IDEA aligns the
representational distributions of the input graph and its explanation unified in the
prototypical representation space, to optimize the GNN explainer. Comprehensive
experiments on real-world and synthetic datasets demonstrate the effectiveness
of IDEA, with the average improvements of ROC-AUC by 4.45% and precision
by 48.71%. We further integrate IDEA with diverse explainer architectures and
achieve an improvement by up to 10.70%, which verifies its generalizability.

1 INTRODUCTION

Post-hoc instance-level graph neural network (GNN) explainer (Ying et al., 2019; Luo et al., 2020;
Schlichtkrull et al., 2021; Wang et al., 2021; Chen et al., 2023; Wang et al., 2023b; Zhang et al.,
2023; Zhao et al., 2023; Chen et al., 2024) is a prominent research line to reveal the opaque decision-
making mechanism of GNNs utilized in different domains (Fan et al., 2019; He et al., 2020b; Wu
et al., 2023b; Liu et al., 2021; Yang et al., 2024b; Li et al., 2020; Mao et al., 2020). For each input
graph, post-hoc instance-level GNN explainer aims to identify a compact explanation subgraph that
is the most influential to the prediction made by the target GNN model.

Most existing GNN explainers are developed under the label preserving framework (Zhao et al.,
2023; Zhang et al., 2023) as illustrated in Figure 1(a). Within this framework, a variety of explainer
architectures have been proposed. For example, GNNExplainer (Ying et al., 2019) determines the
importance of edges and nodes through optimizable soft masks. PGExplainer (Luo et al., 2020) in-
troduces a parametric graph generator to capture global explanatory structures. D4Explainer (Chen
et al., 2023) combines the explanation search process with the denoising diffusion model (Ho et al.,
2020). V-InFoR (Wang et al., 2023b) and ProxyExplainer (Chen et al., 2024) incorporate the varia-
tional graph auto-encoder (Kipf & Welling, 2016) to improve the robustness of GNN explainer.

1Our code and datasets are available at https://anonymous.4open.science/r/Idea-2736
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Despite promising achievements, the label preserving framework exhibits a fundamental limitation
in utilizing structural information to identify the explanation subgraphs, thus restricting the perfor-
mance of GNN explainers. As shown in Figure 1(a), the label preserving framework optimizes
the explainer by aligning the GNN predictions of the input graph and the explanation subgraph in
the graph label space. Nevertheless, the graph label inherently lacks expressiveness to capture the
characteristics of topological structures (Yang et al., 2024a; Wang et al., 2023a). During the GNN
explanation process, the topological structures are critical, especially for complex graph domains
such as molecular property prediction (Kazius et al., 2005; Agarwal et al., 2023; Wu et al., 2023a;
Funke et al., 2023), where multiple distinct substructures can correspond to the same label.
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Figure 1: Overview of (a). Currently prevalent label pre-
serving framework and (b). Direct alignment framework in
GNN encoded representation space.

In order to mitigate the limitation of
label preserving framework, we ad-
vocate, for the first time, to shift the
GNN explainer optimization frame-
work from the graph label space to
the graph representation space. Com-
pared with discrete graph labels, the
continuous graph representations can
provide fine-grained descriptions of
topological structures (Sun et al.,
2020; Thakoor et al., 2022; Tian
et al., 2022; Yang et al., 2024a). Con-
sequently, developing a graph rep-
resentation space based optimization
framework is promising to facilitate
the GNN explainer to sufficiently uti-
lize structural information during ex-
planation process. As shown in Fig-
ure 1(b), a straightforward implemen-
tation of this blueprint is the direct alignment framework, which optimizes the explainer by aligning
the GNN encoded representations of the input graph and the corresponding explanation. However,
the direct alignment framework is far from an effective optimization framework for GNN explainers,
due to the following two critical challenges.

The first challenge lies in the entanglement between the explanatory and non-explanatory substruc-
tures of the input graph. As revealed by causal inference theory (Wu et al., 2022; Sui et al., 2022),
the explanatory substructure causally determines the GNN prediction, while the non-explanatory
counterpart merely exhibits statistical correlations. Due to the message passing mechanism (Kipf
& Welling, 2017; Veličković et al., 2018; Xu et al., 2019), the GNN encoded representation of the
input graph inevitably aggregates explanatory and non-explanatory substructures. Directly aligning
the representations of the input graph and the explanation risks misleading the GNN explainer to
non-explanatory substructures. The second challenge arises from the distributional discrepancy be-
tween the input graph and its explanation subgraph within the GNN encoded representation space.
Since the explanation subgraph is a structurally reduced version of the input graph, the explanation
representation naturally follows a deviated distribution in the GNN encoded representation space
(Zhang et al., 2023; Chen et al., 2024). Simplistically enforcing the representation similarity within
the GNN encoded space tends to obscure the most influential subgraph rather than reveal it.

To overcome the challenges above, we propose IDEA, a universal dual-stage GNN explainer opti-
mization framework grounded in a prototypical graph representation space, which is generalizable
across various existing GNN explainer architectures. Specifically, IDEA consists of a Structural
Information Disentanglement stage and an Explanatory Prototype Alignment stage. In the struc-
tural information disentanglement stage, we design a hierarchical graph tokenizer equipped with a
customized structure-aware disentanglement objective, to disentangle the explanatory substructures
from confounding non-explanatory counterpart and then cluster them into prototypical representa-
tions. In the explanatory prototype alignment stage, IDEA first unifies the GNN encoded represen-
tations of the input graph and the explanation in the prototypical representation space, to mitigate
the distributional discrepancy. Subsequently, IDEA aligns the unified representational distributions
to optimize the GNN explainer, enabling accurate identification of GNN explanations.

The main contributions of this work are summarized as follows.

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

• We propose, for the first time, the paradigm shift of GNN explainer optimization framework from
the graph label space to the graph representation space. Furthermore, we design IDEA, the first
graph representation space based GNN explainer optimization framework.

• We propose a hierarchical graph tokenizer equipped with a structure-aware disentanglement ob-
jective, to disentangle the explanatory substructures and encapsulate them into prototypical rep-
resentations. We formulate a novel explanation identification strategy based on the prototypical
representation space, which aligns the unified representational distributions of the input graph and
the explanation, to circumvent the deviated distribution of the explanation subgraph.

• Extensive experiments conducted on real-world and synthetic datasets validate the effectiveness
of IDEA compared with SOTA GNN explainers, with the average improvements of ROC-AUC
by 4.45% and precision by 48.71%. Meanwhile, the consistent superiority of the collaboration
between IDEA and various explainer architectures demonstrates the generalizability of IDEA.

2 NOTATION AND PROBLEM FORMULATION

Notation. We use G = (A,X) with the adjacency matrix A ∈ RN×N and the feature matrix
X ∈ RN×D to denote a graph data of N nodes, where D represents the graph feature dimension.
If node vi and node vj are connected, the element in the i-th row and the j-th column Aij = 1,
and 0 otherwise. Without losing generality, in this work, we focus on the graph classification task
(Hu et al., 2022), since node classification can be converted into a computation graph classification
problem (Chen et al., 2024). For graph classification, each graph G is associated with a label y ∈
R1×C where C denotes the total number of classes. The target graph neural network model f(·)
has been well-trained to predict the class of any given graph G. Generally, the to-be-explained
GNN model consists of the following three modules, the feature encoder fe(·), the pooling function
Pool(·) (e.g., mean pooling and max pooling) (Ying et al., 2018), and the task predictor fp(·). The
GNN prediction procedure can be represented as follows,

HN = fe(G), HG = Pool(HN ), ŷ = fp(HG), (1)

where HN ∈ RN×d is the matrix of d-dimensional node representations, HG ∈ R1×d is the pooled
graph representation, and ŷ is the predicted label. Refer to Appendix A for notation summary.

Problem Formulation. Given a well-trained GNN model f(·) to be explained and an input graph
G, the post-hoc instance-level GNN explainer ψ(·, ·) aims to identify a compact subgraph g∗ =
ψ(G, f) ⊂ G, which retains the most influential components during the GNN predicting procedure.
Within the label preserving framework, the identified subgraph is reinforced to maintain the original
prediction of G. Typically, the optimization objective of the label preserving framework is defined
as the mutual information between the predictions of the input graph and the explanation subgraph,
i.e., MI(f(g), f(G)). In this work, we shift the GNN explainer paradigm from the label space to the
graph representation space, to sufficiently utilize the structural information for GNN explanations.

3 METHODOLOGY

Procedurally, IDEA consists of two successive stages, the Structural Information Disentanglement
and the Explanatory Prototype Alignment, centered on the hierarchical graph tokenizer (HGTok-
enizer). To tackle the structural entanglement problem, in the first stage, we design a structure-aware
disentanglement (SAD) objective for HGTokenizer to stratify the explanatory and non-explanatory
substructures. During the disentanglement process, the explanatory substructures are clustered into
a collection of explanatory prototypes. In the second stage, based on the HGTokenizer and the pro-
totypes, we first unify the representations of the input graph and the explanation subgraphs into the
prototypical representation space, to circumvent the distribution discrepancy problem. Afterwards,
the GNN explainer is optimized by aligning the two unified representational distributions.

3.1 STRUCTURAL INFORMATION DISENTANGLEMENT

In Figure 2, we outline the overview of structural information disentanglement, which empowers the
HGTokenizer with the ability to decouple the explanatory substructures from the non-explanatory
counterpart. Technically, the HGTokenizer is consist of two cascade-connected graph quantizers

3
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Figure 2: Overview of the Structural Information Disentanglement in IDEA. The node representa-
tionHN is decomposed into two quantization representationsQ∗

S andQ∗
D, by the cascade-connected

graph quantizers in HGTokenizer. The two quantizers aim to capture the explanatory and non-
explanatory substructures respectively, following the guidance of the SAD objective.

(Zeghidour et al., 2021) which take insights of the semantic tokenization (Rajput et al., 2023; Yin
et al., 2025), to compactly represent the structural information with discrete codebooks.

Given the node representation matrix HN , HGTokenizer approximates it based on the shallow and
the deep graph quantizers. For the representation to be quantized, the graph quantizer looks up the
nearest codeword in the codebook. Since the codebook scaleK is significantly smaller than the total
number of nodes, it can serve as a collection of prototypes (Dai & Wang, 2025; Zhu et al., 2025)
that succinctly summarizes the input representations. Using the representation hi of node vi as an
example, the cascade quantization procedure of HGTokenizer is formulated as follows,

q∗S,i = GQS(hi) = argmin
q∈CS

D(hi, q), h
′
i = hi − q∗S,i (2)

q∗D,i = GQD(h
′
i) = argmin

q∈CD

D(h′i, q), q
∗
i = q∗S,i + q∗D,i, (3)

where GQS(·) and GQD(·) denote the shallow graph quantizer and the deep graph quantizer, CS and
CD denote the codebooks of quantizers, q denotes the codeword inside, and D(·, ·) is the distance
metric for quantization. The deep graph quantizer takes the residual of the shallow one, in order to
spontaneously dichotomize the fused representations encoded by the target GNN model.

The SAD objective utilized to optimize the HGTokenizer consists of three terms, i.e., the structure-
awareness objective, the disentanglement objective, and the standard quantization objective. The
structure-awareness objective LS aims to recover the topological structures and node features based
on the quantized node representations, enhancing the ability of HGTokenizer to capture the graph
structural characteristics. Formally, LS is defined as follows,

LS =
∥∥∥A− σ(Q∗Q∗T )

∥∥∥2
2
+

∥∥∥X − fd(Q
∗)
∥∥∥2
2
, (4)

where Q∗ is the matrix of quantized node representations q∗i , σ(·) is the sigmoid function, and fd(·)
is a linear decoder. The disentanglement objective LD enforces the prediction of the non-explanatory
substructures towards a uniform distribution, and guides the prediction of the explanatory substruc-
tures towards the original prediction. Formally, LD is defined as follows,

LD = KL
[
ŷS∥UC

]
+CrossEntropy

(
ŷD, ŷ

)
, (5)

where ŷS and ŷD denote the GNN predictions of the shallow and deep quantized representations,
respectively. U

C
denotes the uniform distribution in the graph label space.

By minimizing the Kullback-Leibler divergence between ŷS and U
C

, IDEA reinforces the shallow
graph quantizer to capture non-explanatory substructures that are unable to determine the GNN
decision-making process. Meanwhile, the second term instructs the deep graph quantizer to encap-
sulate the explanatory substructures that are more influential. Consequently, the codebook CD inside

4
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GQD can not only maintain the GNN prediction of the input graph, but also recover the graph topo-
logical structures along with CS . IDEA regards CD as a collection of explanatory prototypes which
naturally induces a prototypical representation space for the GNN explainer optimization.

In addition, following the standard vector quantization process (van den Oord et al., 2017; Zeghidour
et al., 2021), the quantization objective LQ below is adopted for the basic quantization ability,

LQ =
∥∥HN −Q∗∥∥2

2
. (6)

Hence, the structure-aware disentanglement objective is defined as follows,

LSAD = LD + λS · LS + λQ · LQ, (7)

where λS , λQ are the weighted hyper-parameters. We present a hyper-parameter analysis on the
weights λS and λQ of the structure-aware disentanglement objective in Appendix C.1.

3.2 EXPLANATORY PROTOTYPE ALIGNMENT
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Figure 3: Overview of the Explanatory Prototype Alignment in IDEA.
The input graph representation HG is first purified by the shallow graph
quantizer, to eliminate the non-explanatory information. Then, the ex-
planation representation Hg and the purified input graph representation
H ′
G are implicitly projected into the prototypical space. At last, IDEA

aligns the assignment distributions P ′
G and Pg to optimize the explainer.

Following the guidance
of the SAD objective, the
HGTokenizer can disen-
tangle the explanatory in-
formation from the fused
graph representation en-
coded by the target GNN.
The deep quantizer fur-
ther encompasses a col-
lection of prototypes to
describe the explanatory
information. To circum-
vent the deviated distri-
bution of the explana-
tion subgraphs, we for-
mulate a novel explana-
tion identification strat-
egy on the basis of the
prototypical representa-
tion space. The overview
of the explanatory proto-
type alignment is illus-
trated in Figure 3.

Given the target GNN model f(·) to be explained and an input graph G, the explanation subgraph
g is generated by ψ(G, f), where ψ denotes the GNN explainer. In our implementation, a typical
probabilistic generator, which is well-investigated among the GNN explanation community (Luo
et al., 2020; Wang et al., 2021; 2023b; Wang & Shen, 2023), is adopted as the GNN explainer
backbone. The implementation details are elaborated in Appendix B.3. Formally, we denote the
GNN encoded representation of the input graph as HG and that of the explanation subgraph as Hg .

To filter out the non-explanatory information from the input graph representation, we feed HG to
the HGTokenizer (i.e., the cascade of GQS and GQD), formulated as follows,

HS,G = GQS(HG), H
′
G = HG −HS,G, HD,G = GQD(H

′
G), (8)

where HS,G is the non-explanatory fraction of the input graph representation and H ′
G is the purified

input graph representation after removing HS,G. For the explanation representation Hg , we directly
feed it into the deep graph quantizer GQD, formulated as follows,

HD,g = GQD(Hg). (9)

Based on the quantization procedure of GQD, we can implicitly unify the purified representation
of the input graph H ′

G and the explanation representation Hg into the prototypical representation
space, instead of explicit representation projection. To be more specific, the assignment distribution
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of the to-be-quantized representation (i.e., H ′
G or Hg) over the explanatory codebook CD ∈ RK×d

is able to indicate its location within the prototypical representation space. Formally, the assignment
distributions corresponding to H ′

G and Hg are measured as follows,

P ′
G = Norm

(
D(H ′

G, CD)
)
, Pg = Norm

(
D(Hg, CD)

)
, (10)

where P ′
G and Pg denote the assignment distributions and Norm(·) normalizes the quantization dis-

tance to the probability value. Theoretical justification for this practice is presented in Appendix G.
Since the assignment distributions P ′

G and Pg are identically measured over the implicit prototypical
representation space, the distribution discrepancy of the explanation subgraph in the GNN encoded
space is ingeniously circumvented.

Subsequently, IDEA adopts the entropy-regularized Wasserstein distance (Reshetova et al., 2024)
between P ′

G and Pg as the optimization objective of the GNN explainer ψ. The Wasserstein distance
not only encourages the consistency between the two assignment probabilities P ′

G and Pg , but also
is insensitive to the sparsity issue of probabilistic distributions. For the stability of the explainer
optimization, IDEA adopts the symmetric variant defined as follow,

LIDEA =Wϵ(P ′
G,Pg) +

1

2

(
Wϵ(P ′

G,P ′
G) +Wϵ(Pg,Pg)

)
. (11)

Wϵ(P ′
G,Pg) = min

γ∈Π(P′
G,Pg)

∑
i,j

γijSij + ϵ
∑
i,j

γij log γij . (12)

Π(P ′
G,Pg) denotes the transport polytope and S denotes the cost matrix defined as follows,

Π(P ′
G,Pg) =

{
Π ∈ RK×K

+ |Π1 = P ′
G,Π

T1 = Pg
}
, Sij = (P ′

G,i − Pg,j)2. (13)

We implement IDEA as a dual-stage framework in order to avoid the counteraction between the
optimization terms within LSAD and LIDEA. In Appendix F.2, we further investigate a variant of
IDEA where the two stages are conducted jointly.

4 EXPERIMENT

To comprehensively validate the practicality of IDEA , we conduct extensive experiments which are
designed to investigate the following research questions.

• RQ1: How effective is IDEA compared to the label preserving based SOTA baselines?
• RQ2: How generalizable is IDEA collaborated with different explainer architectures?
• RQ3: How does each component of IDEA influence the overall explanation performance?

Furthermore, we present the hyper-parameter analysis, the explanation visualization, and the time
complexity analysis in Appendix C, D, and E, respectively.

4.1 EXPERIMENTAL SETUP

Dataset. We evaluate IDEA and baselines on both real-world and synthetic datasets. The evalu-
ated real-world datasets include Mutagenicity (Kazius et al., 2005), Benzene (Sanchez-Lengeling
et al., 2020), Fluoride-Carbonyl (Sanchez-Lengeling et al., 2020), and Alkane-Carbonyl (Sanchez-
Lengeling et al., 2020). The synthetic datasets is BA-2Motifs (Luo et al., 2020).

Baseline. The baselines include SOTA post-hoc instance-level GNN explainers based on various
techniques, i.e., GNNExplainer (Ying et al., 2019), PGExplainer (Luo et al., 2020), GraphMask
(Schlichtkrull et al., 2021), ReFine (Wang et al., 2021), V-InFoR (Wang et al., 2023b), D4Explainer
(Chen et al., 2023), MixupExplainer (Zhang et al., 2023), ProxyExplainer (Chen et al., 2024).

Evaluation. Following the standard experimental settings (Luo et al., 2020; Chen et al., 2024),
we train a 3-layer Graph Convolutional Network (GCN) model (Kipf & Welling, 2017) on each
dataset, as the target model to be explained. To evaluate the explanation quality, we reformulate
the explanation task as an edge binary classification task. Edges that belong to the expert-notated
ground truth are labeled as positive, and negative otherwise. Hence, we adopt the ROC-AUC score
as the main metric to evaluate the explanation performance (Ying et al., 2019; Luo et al., 2020).
Refer to Appendix B for the experimental details.
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Table 1: Explanation performance (ROC-AUC ↑) of IDEA and eight SOTA post-hoc instance-level
GNN explainers on five datasets, in the form of mean±std. Average reports the mean result over all
the evaluated datasets. Improvement is defined as (IDEA− Best-Baseline)/Best-Baseline. The
superscript * indicates the improvement is statistically significant with the p-value less than 0.01.
Bold font and underline highlight the best and the runner-up performance, respectively.

Model Mutagenicity Benzene Alkane Fluoride BA-2Motifs Average
GNNExplainer 0.6155±0.0087 0.6863±0.0126 0.6884±0.0055 0.5399±0.0102 0.5619±0.0162 0.6184±0.0103

PGExplainer 0.7016±0.0201 0.8855±0.0023 0.7446±0.0086 0.8091±0.0209 0.8594±0.0072 0.8000±0.0115

GraphMask 0.6377±0.0083 0.5523±0.0062 0.6311±0.0139 0.5843±0.0028 0.6119±0.0035 0.6035±0.0068

ReFine 0.6833±0.0052 0.8720±0.0262 0.7293±0.0077 0.5600±0.0117 0.6115±0.0027 0.6912±0.0104

V-InfoR 0.6075±0.0149 0.6642±0.0112 0.6507±0.0162 0.6437±0.0169 0.7755±0.0243 0.6683±0.0156

D4Explainer 0.5467±0.0279 0.7239±0.0165 0.7736±0.0059 0.7484±0.0099 0.7478±0.0174 0.7081±0.0128

MixupExplainer 0.5428±0.0074 0.5399±0.0020 0.7385±0.0043 0.5400±0.0002 0.8355±0.0129 0.6393±0.0035

ProxyExplainer 0.6948±0.0035 0.8593±0.0127 0.9334±0.0033 0.8804±0.0126 0.8717±0.0028 0.8479±0.0068

Direct-Align 0.6567±0.0068 0.8809±0.0008 0.3562±0.0160 0.7988±0.0042 0.8653±0.0060 0.7116±0.0056

IDEA 0.7379∗±0.0084 0.9138∗±0.0002 0.9355±0.0030 0.8868±0.0018 0.9541∗±0.0107 0.8856∗±0.0047

Improvement 5.17% 3.20% 0.22% 0.73% 9.45% 4.45%

Table 2: Explanation performance (Precision ↑) of IDEA and SOTA baselines across five datasets.

Model Mutagenicity Benzene Alkane Fluoride BA-2Motifs Average
GNNExplainer 0.0736±0.0030 0.1901±0.0024 0.0104±0.0013 0.0652±0.0019 0.1373±0.0034 0.0953±0.0022

PGExplainer 0.1038±0.0067 0.4484±0.0041 0.0761±0.0077 0.3253±0.0176 0.6072±0.0016 0.3122±0.0072

GraphMask 0.0748±0.0070 0.1373±0.0075 0.0104±0.0082 0.0443±0.0029 0.2337±0.0043 0.1001±0.0036

ReFine 0.0833±0.0058 0.1951±0.0272 0.1304±0.0123 0.3027±0.0117 0.5054±0.0033 0.2434±0.0119

V-InFoR 0.1230±0.0075 0.3195±0.0134 0.1304±0.0010 0.2374±0.0019 0.1380±0.0161 0.1897±0.0075

D4Explainer 0.2087±0.0299 0.3538±0.0107 0.0109±0.0061 0.3685±0.0003 0.3153±0.0173 0.2514±0.0106

MixupExplainer 0.0682±0.0083 0.1385±0.0018 0.0652±0.0038 0.2929±0.0034 0.3194±0.0105 0.1768±0.0034

ProxyExplainer 0.3365±0.0058 0.5908±0.0135 0.3261±0.0035 0.1486±0.0032 0.6229±0.0089 0.4050±0.0067

Direct-Align 0.0805±0.0050 0.5443±0.0009 0.0109±0.0057 0.4890±0.0028 0.5872±0.0054 0.3424±0.0025

IDEA 0.4020∗±0.0063 0.7523∗±0.0003 0.4565∗±0.0161 0.6119∗±0.0183 0.7885∗±0.0201 0.6022∗±0.0119

Improvement 19.47% 27.34% 39.99% 25.13% 26.59% 48.71%

4.2 EXPLANATION PERFORMANCE (RQ1)

The evaluation result of IDEA and SOTA post-hoc instance-level GNN explainers is presented in
Table 1, in terms of the ROC-AUC score. Direct-Align corresponds to the direct alignment frame-
work in Figure 1(b), which optimizes the GNN explainer by directly aligning the GNN encoded
representations of the input graph and the explanation.

The result sufficiently demonstrates the effectiveness of IDEA, which can consistently achieve the
supreme performance on all the evaluated datasets. On average, the improvement of IDEA over the
best baseline is 4.45%. For the Mutagenicity dataset, which is a complex molecular property predic-
tion dataset, IDEA advances the explanation quality by up to 5.17%, compared to the benchmark-
leading baseline PGExplainer (Luo et al., 2020). Despite the primitive explanation identification
strategy, Direct-Align achieves the second-tier performance among the evaluated explainers, show-
casing the considerable potential of GNN explainer optimization framework based on the graph
representation space. On the other hand, the inferiority of Direct-Align to the top-tier explainers, in-
cluding PGExplainer, ProxyExplainer (Chen et al., 2024), and IDEA, justify the necessity of further
advance on the direct alignment framework.

In light of the critical importance of precision in the GNN explanation evaluation, we further report
the result of IDEA and SOTA baselines in Table 2. In general, the average precision of IDEA is
0.6022, achieving a significant improvement by 48.69% over the runner-up ProxyExplainer. Specif-
ically, for the Alkane-Carbonyl dataset, whose ground-truth explanation is the union of an alkane
chain (CnH2n+2) and a carbonyl group (C=O), the improvement of IDEA is the highest over the five
evaluated datasets, by up to 39.99%. This advancement demonstrates the ability of IDEA to explain
graphs from complex domains. Similarly, the naive contestant Direct-Align maintains the moderate
position among the evaluated GNN explainers.
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Table 3: Explanation performance (ROC-AUC ↑) of IDEA with different explainer architectures.
Model Mutagenicity Benzene Alkane Fluoride BA-2Motifs Average

PGExplainer 0.7016±0.0201 0.8855±0.0023 0.7446±0.0086 0.8091±0.0209 0.8594±0.0072 0.8000±0.0115

+IDEA 0.7379∗±0.0084 0.9138∗±0.0002 0.9355∗±0.0030 0.8868∗±0.0018 0.9541∗±0.0107 0.8856∗±0.0047

Improvement 5.17% 3.20% 25.64% 9.60% 11.02% 10.70%

ReFine 0.6833±0.0052 0.8720±0.0262 0.7293±0.0077 0.5600±0.0117 0.6115±0.0027 0.6912±0.0104

+IDEA 0.7832∗±0.0028 0.8759±0.0197 0.8428∗±0.0018 0.5809∗±0.0094 0.6861∗±0.0016 0.7538∗±0.0067

Improvement 14.62% 0.45% 15.56% 3.73% 12.20% 9.05%

V-InfoR 0.6075±0.0149 0.6642±0.0112 0.6507±0.0162 0.6437±0.0169 0.7755±0.0243 0.6683±0.0156

+IDEA 0.5734±0.0057 0.6713±0.0103 0.6776∗±0.0008 0.6483±0.0111 0.7772±0.0058 0.6696±0.0059

Improvement -5.61% 1.07% 4.13% 0.71% 0.22% 1.38%

ProxyExplainer 0.6948±0.0035 0.8593±0.0127 0.9334±0.0033 0.8804±0.0126 0.8717±0.0028 0.8479±0.0068

+IDEA 0.7215∗±0.0134 0.8864∗±0.0099 0.9509∗±0.0099 0.8931±0.0104 0.8930∗±0.0047 0.8690∗±0.0081

Improvement 3.84% 3.15% 1.87% 1.44% 2.44% 2.48%

4.3 GENERALIZABILITY ACROSS EXPLAINER ARCHITECTURE (RQ2)

We scrutinize the generalizability of IDEA by integrating various leading GNN explainer architec-
tures and the evaluation result in terms of ROC-AUC is presented in Table 3. In detail, PGExplainer
(Luo et al., 2020) adopts a well-investigated subgraph generator based on the concrete distribution
(Maddison et al., 2017). ReFine (Wang et al., 2021) implements a subgraph generator for each graph
class to capture the contrastive information. V-InFoR (Wang et al., 2023b) introduces a graph vaira-
tional auto-encoder (GVAE) to refine the GNN encoded representations for robustness to structural
corruptions. ProxyExplainer (Chen et al., 2024) merges a GAVE and a standard graph auto-encoder
as the proxy generator to resist distribution discrepancy caused by the explanation subgraph.

The evaluation result sufficiently demonstrates that IDEA is generalizable across four different GNN
explainer architectures, with the average improvement by 10.70%, 9.05%, 1.38%, and 2.48%, re-
spectively. The greatest advancement is achieved by the IDEA-enhanced PGExplainer, whose av-
erage performance (0.8856) even slightly exceeds the counterpart of the current leading baseline
ProxyExplainer (0.8690). For ProxyExplainer that already exhibits strong performance, IDEA can
further advance its explanation capacity. The IDEA-enhanced ProxyExplainer provides the best
explanations for the Alkane-Carbonyl and Fluoride-Carbonyl datasets, among all the evaluated ex-
plainers. The sole exception occurs with the IDEA-enhanced V-InFoR on the Mutagenicity dataset,
where the explanation performance drops by 5.61%. The possible reason for the degradation and
the marginal improvement of IDEA-enhanced V-InFoR is that V-InFoR is specialized for structurally
corrupted graphs, while the evaluated graphs are uncorrupted.

4.4 ABLATION STUDY (RQ3)

In this section, we probe into the influence of each component in the IDEA framework. First,
we replace the Wasserstein distance in Eq.11 with the Kullback-Leibler divergence KL[Pg∥P ′

G]
and denote the variant as IDEA-KL. Afterwards, to validate the effectiveness of the Explanatory
Prototype Alignment stage, we implement two variants, ID-MSE and ID-InfoNCE, which optimize
the GNN explainer by aligning the purified representation of input graph H ′

G and the explanation
representation Hg . ID-MSE adopts the mean square error MSE(Hg, H

′
G) as the loss function, and

ID-InfoNCE adopts the InfoNCE loss function (He et al., 2020a) for in-batch contrastive learning.
At last, we omit the Structural Information Disentanglement stage and denote the variant as EA. The
evaluation result of IDEA and four variants is presented in Figure 4.

We can draw the following conclusions according to the ablation result. First, the distributional dis-
crepancy caused by the explanation subgraph deteriorates the explanation performance. By unifying
the representations of the input graph and the explanation subgraph, IDEA and IDEA-KL signifi-
cantly surpass the two variants ID-MSE and ID-InfoNCE that straightforwardly align the disunified
representations. Second, although EA is a competitive baseline, structural information disentangle-
ment can further boost the explanation performance. EA is inferior to the unabridged IDEA, with
an average performance gap by 0.0682. Third, compared with KL divergence, Wasserstein distance
is more suitable for GNN explainer optimization in the prototypical representation space. IDEA
consistently outperforms IDEA-KL, with an average improvement of 3.33%.

In Appendix F, we investigate the cooperation of IDEA and the label preserving framework, where
the optimization objective is defined as the convex combination of LIDEA and MI(f(g), f(G)).
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Figure 4: Explanation performance (ROC-AUC ↑) of IDEA and its four variants.

5 RELATED WORK

Post-hoc Instance-level GNN Explainers have become a primary approach to explain GNN mod-
els, with various methods proposed to identify the critical substructures responsible for predictions.
GNNExplainer (Ying et al., 2019) perturbs graph components to estimate their importance. PGEx-
plainer (Luo et al., 2020) introduces a parametric generator to capture global explanatory signals.
GraphMask (Schlichtkrull et al., 2021) and ReFine (Wang et al., 2021) advance explanations through
edge selection and multi-grained analysis, respectively. D4Explainer (Chen et al., 2023) adopts dif-
fusion models to generate explanations from random noise. MixupExplainer (Zhang et al., 2023)
leverages data augmentation to resist distribution shift. V-InFoR (Wang et al., 2023b) and ProxyEx-
plainer (Chen et al., 2024) employ variational autoencoders to enhance explanation robustness.

Prototype-based GNN explanation methods aim to improve the intrinsic interpretability of GNN
models. ProtGNN (Zhang et al., 2022) introduces prototype learning into GNNs, enabling class-
specific prototypical subgraphs to serve as intuitive analogical explanations. PAGE (Shin et al.,
2024) extends this idea to model-level interpretability by constructing a global prototype dictionary
in latent space, offering explanations of the overall decision boundary. Ragno et al. (2024) refine
prototype separability and semantic consistency through enhanced architectures and training strate-
gies. Dai & Wang (2025) further integrates prototype learning with self-explaining mechanisms,
jointly optimizing prediction and interpretability.

Vector Quantization (VQ) techniques provide a powerful way to discretize continuous embeddings
into discrete codewords. Since the number of the codewords tends to be significantly smaller than
that of the embeddings to be quantized, VQ thereby clusters similar embeddings into a collection of
prototypes. Early successes in domains such as audio (Zeghidour et al., 2021) highlight the capacity
of VQ to encode complex signals into compact tokens. Combined with large language models,
VQ facilitates the revolution of generative recommender systems (Rajput et al., 2023; Yin et al.,
2025). Recent advances in graph community (Yang et al., 2024a) extend this principle to graph data,
developing the structure-aware codebooks by tokenizing local substructures.

6 CONCLUSION

We for the first time propose the paradigm shift of GNN explainer optimization framework from the
graph label space to the graph representation space, and we design IDEA, the first GNN explainer
optimization framework grounded in a prototypical graph representation space. IDEA consists of a
structural information disentanglement stage, which disentangles and encapsulates the explanatory
substructures into prototypes, and an explanatory prototype alignment stage, which aligns the repre-
sentational distributions of input graph and explanation unified in the prototypical space. Extensive
experiments demonstrate the effectiveness and generalizability of IDEA.
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A NOTATION

In Table 4, we summarize the notations used throughout this manuscript and their descriptions.

Table 4: Notations and corresponding descriptions.

Notation Description
G Graph instance

A,X Adjacency matrix, node feature matrix
N Number of graph nodes
D Node feature dimension
vi The i-th node
Aij Element at the i-th row, j-th column of adjacency matrix A
y, ŷ Graph label, GNN prediction
C Number of graph classes

f, fe, fp Graph neural network model, encoder of f , predictor of f
HN , HG Node representation matrix, graph representation vector

hi Node representation of vi
ψ Post-hoc instance-level GNN explainer
g, g∗ Explanatory subgraph (i.e., explanation)
Lψ Label preserving loss of ψ
Ω Regularization term
λΩ Weighted hyper-parameter of Ω

GQS,GQD Shallow graph quantizer, deep graph quantizer
CS , CD Codebook of GQS, codebook of GQD

D Distance metric of vector quantization
q, q∗ Codeword, the nearest codeword
q∗S , q

∗
D The nearest codeword in GQS, the nearest codeword in GQD

h′i Residual representation after GQS quantization
LQ,LS ,LD Quantization objective, structure-aware objective, disentanglement objective

Q∗ Quantization matrix
σ Sigmoid function
fd Linear decoder
ŷS GNN prediction of GQS quantized representation
ŷD GNN prediction of GQD quantized representation
U

C
Uniform distribution

LSAD Structure-aware disentanglement objective
λQ, λS Weighted hyper-parameter of LQ and LS
HG, Hg Representation of original graph, representation of explanation
H ′
G Residual representation of Ho after GQS quantization

P ′
G,Pg Assignment probability of H ′

o and He representation of explanation
Wϵ Entropy-regularized Wasserstein distance
Π, S Transport polytope and cost matrix of Wϵ

LIDEA IDEA optimization objective
LMix Weighted combination of Lψ and LIDEA

α Weighted parameter in LMix

B EXPERIMENTAL DETAIL

Here, we elaborate the details of the evaluated datasets, baselines, and IDEA implementation.

B.1 DATASET

The dataset details are introduced as follows and the dataset statistics are summarized in Table 5.

• Mutagenicity (Kazius et al., 2005) is a collection of molecular compounds labeled for their ability
to cause mutations (i.e., mutagenic vs. non-mutagenic), widely used in cheminformatics and
toxicology for developing predictive models. Mutagenicity contains 4,337 molecule graphs with
NO2 and NH2 chemical groups notated as ground truth explanations.
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Table 5: The statistics of the evaluated datasets.

Statistic Mutagenicity Benzene Alkane Fluoride BA-2Motifs
Graphs 4,337 12,000 4,326 8,671 1,000

Average Nodes 30.32 20.58 21.13 21.36 25.00
Average Edges 30.77 43.65 44.95 45.37 50.90
Node Features 14 14 14 14 10
GNN Accuracy 0.8300 0.9054 0.9620 0.9340 1.0
GT Explanation NO2, NH2 Benzene Alkane + C=O F− + C=O Motif

• Benzene (Agarwal et al., 2023) is a binary classification dataset of 12,000 molecular graphs sam-
pled from ZINC15 (Sterling & Irwin, 2015). The goal is to decide whether a molecule contains at
least one benzene ring. Within this dataset, the atoms that constitute the benzene ring serve as the
ground-truth explanation. Multiple disjoint benzene rings are treated as separate explanations.

• Alkane-Carbonyl (Agarwal et al., 2023) is a binary classification set of 4,326 molecular graphs.
A positive label marks a molecule that simultaneously contains an unbranched alkane chain and
a carbonyl (C=O) group. The ground-truth explanation is defined as the arbitrary union of these
two functional fragments present in the structure.

• Fluoride-Carbonyl (Agarwal et al., 2023) contains 8,671 molecular graphs. A molecule is la-
beled positive only if it contains both a fluoride atom (F) and a carbonyl group (C=O). The expla-
nation is defined as the arbitrary union of these two functional units found in the structure.

• BA-2Motifs (Ying et al., 2019) is a synthetic binary class dataset designed to benchmark GNN
explanation methods. Each graph is labeled by the presence of either a house or a cycle motif, and
the respective motif itself provides the ground truth explanation for that class.

We present the accuracy of the to-be-explained GNN model for each dataset in Table 5 as well.

B.2 BASELINE

The evaluated baselines include eight SOTA post-hoc instance-level GNN explainers based on vari-
ous search strategies. The details are introduced as follows.

• GNNExplainer (Ying et al., 2019) is a GNN explainer based on data perturbation that jointly
masks edges and node features, then scores their contribution by searching for a subgraph GS that
maximizes the mutual information with the model’s overall prediction ŷ.

• PGExplainer (Luo et al., 2020) masks graph topology and uses a learnable neural network to
assign edge importance scores, optimizing the same mutual-information objective.

• GraphMask (Schlichtkrull et al., 2021) learns an amortized classifier that predicts whether the
edge can be dropped (replaced by a learned baseline) for every edge in every GNN layer, without
changing the model output, yielding a sparse post-hoc explanation.

• ReFine (Wang et al., 2021) adopts a pre-train and fine-tune strategy to probe GNN decisions,
delivering multi-granularity insights into the model’s reasoning process.

• V-InfoR (Wang et al., 2023b) is a robust GNN explainer specialized for the structurally corrupted
graphs, which employs the variational inference to learn the robust graph representations and gen-
eralizes the GNN explanation exploration to a graph information bottleneck (GIB) optimization
task without any predefined rigorous constraints.

• D4Explainer (Chen et al., 2023) a generative explainer for counterfactual and model-level expla-
nations based on a discrete denoising diffusion model, which frames the explanation problem as a
distribution learning task for more reliable explanations with better in-distribution property.

• MixupExplainer (Zhang et al., 2023) addresses the distribution shifting issue by mixing up the
explanation with a randomly sampled base graph structure.

• ProxyExplainer (Chen et al., 2024) extends the GIB by innovatively including in-distributed
proxy graphs and derives a tractable objective function for practical implementations, where two
graph auto-encoders are utilized to generate proxy graphs.
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B.3 IDEA IMPLEMENTATION

Within the main experiment, we adopt a well-investigated subgraph generator as the backbone im-
plementation of the IDEA framework. According to the Gilbert random graph theory, an arbitrary
graph G can be represented as a random graph variable, and each edge of G is associated with a
binary random variable r to reveal its existence. Additionally, the existence of one edge is con-
ditionally independent of the other edges. εij = 1 means there is an edge (i, j) from vi to vj ,
otherwise εij = 0. Hence, an arbitrary graph G can be represented as follows,

p(G) =
∏
(i,j)

p(εij). (14)

A common instantiation of the binary variable εij is the Bernoulli distribution εij ∼ Bern(ϱij),
where ϱij = p(εij = 1) is the probability of edge (i, j) existing in the random graph G. Since
the Bernoulli distribution cannot be directly optimized, we introduce categorical reparameterization
(Jang et al., 2017) to εij . The continuous relaxation of εij can be formulated as follows,

εij = σ
( logU − log

(
1− U

)
+ µij

τ

)
, µij = log

ϱij
1− ϱij

, U ∼ Uniform(0, 1). (15)

where τ controls the approximation between the relaxed distribution and Bern(ϱij). When τ ap-
proaches 0, the limitation of Eq.(15) is Bern(ϱij).

According to Eq.(15), the Bernoulli parameter ϱij is associated with the parameter µij . To enable
end-to-end optimization, we use a multi-layer perceptron (MLP) to compute µij . The MLP takes
the GNN node representation as input and concatenates the representations of two nodes vi, vj as
the representation of the corresponding edge (i, j), which can be formulated as follows,

µij = MLP
(
[hi∥hj ]

)
, (16)

where [·∥·] is the concatenation operator. Based on µ = {µij |i, j = 1, 2, · · · , N} and Eq.(15), we
obtain the probability matrix Mµ whose elements indicate the existence of the corresponding edges.
Afterwards, we can sample the explanation g based on the probabilities in the matrixMµ as follows,

g =
(
XS , AS =Mµ ⊙A). (17)

So far, we have derived the optimizable representation of g utilized in IDEA. All experiments are
finished on a machine with 4 NVIDIA GeForce RTX 3090 24GiB GPUs.

B.4 STEP-BY-STEP BREAKDOWN OF HGTOKENIZER

Given the input embedding hi ∈ R1×d, the shallow codebook CS ∈ RK×d, and the deep codebook
CD ∈ RK×d, the details of HGTokenizer process are elaborated as follows.

• Step 1. Feed the input embedding hi into the shallow quantizer. The shallow quantizer first
calculates the pair-wise distance between hi and each codeword q ∈ R1×d within the shallow
codebook CS . Afterwards, the shallow quantizer select the closest codeword to hi according to
the K-dimensional distance vector. Step 1 is formulated by the formula q∗S,i = GQS(hi) =

argminq∈CS
D(q, hi) in Equation 2.

• Step 2. Calculate the quantization residual of the shallow quantizer, which is formulated by the
formula h′i = hi − q∗S,i in Equation 2.

• Step 3. Feed the residual embedding h′i into the deep quantizer, the detailed quantization
process in the same the that in Step 1. The deep quantizer will select the closest codeword
q∗D,i = GQD(h

′
i) = argminq∈CD

D(q, h′i), as shown in Equation 3.

Subsequently, the quantized representations q∗S,i and q∗D,i provide by the shallow and deep quantizers
are used to compute the disentanglement loss LD. The sum of them, i.e., q∗i = q∗S,i+q

∗
D,i in Equation

3, is used to compute the structure-awareness loss LS .
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Table 6: The optimal configuration of hyper-parameters in IDEA.

Hyper-parameter Mutagenicity Benzene Alkane Fluoride BA-2Motifs
ID Epochs 10 10 5 5 15

ID Learning Rate 0.01 0.01 0.005 0.0005 0.001
EA Epochs 20 10 15 10 10

EA Learning Rate 0.0001 0.0005 0.001 0.001 0.0001
Batch Size 20 64 64 32 20

Codebook Size 16 32 64 32 48

(a). Mutagenicity (b). Benzene

(c). Alkane (d). Fluoride

Figure 5: Explanation performance (ROC-AUC ↑) versus the weighted parameter λQ (y-axis) and
λS (x-axis) in the SAD objective, on (a). Mutagenicity, (b). Benzene, (c).Alkane, and (d). Fluoride.

C HYPER-PARAMETER ANALYSIS

In Table 6, we summarize the optimal configuration of hyper-parameters in IDEA for each dataset.

C.1 STRUCTURE-AWARE DISENTANGLEMENT OBJECTIVE

Here, we investigate the impact of the weighted parameters λQ and λS in the strcuture-aware disen-
tanglement objective defined as Eq.7,

LSAD = LD + λS · LS + λQ · LQ.

The evaluated result is presented in Figure 5. As the weighted hyper-parameters range from 0.1 to
5.0, we can notice that the optimal performance is more likely to be achieved when the objective
weights are balanced, i.e., along the diagonal direction of the heatmap. For the Mutagenicity and
Benzene datasets, the best performance is achieved by setting λS = λQ = 1.0. For the Alkane
and Fluoride datasets, the best configurations of weighted parameters are λS = 0.5, λQ = 0.1 and
λS = 0.1, λQ = 0.5, without severe unbalance.
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Figure 6: Explanation performance (ROC-AUC ↑) versus the codebook size in IDEA framework,
on Mutagenicity, Benzene, Alkane, Fluoride, and BA-2Motifs datasets.

Table 7: Runtime (Second ↓) of four native explainers with different architectures and the corre-
sponding IDEA variants. Times is defined as IDEA/Native.

Model Mutagenicity Benzene Alkane Fluoride Average
PGExplainer 4.92 3.80 2.24 6.67 4.41

+IDEA 14.53 10.34 5.43 19.13 12.36
Times 2.95 2.72 2.42 2.87 2.80

ReFine 13.14 39.44 13.21 28.10 23.47
+IDEA 21.04 61.90 20.29 50.45 38.42
Times 1.60 1.57 1.54 1.80 1.64

V-InFoR 5.31 11.70 7.17 18.69 10.72
+IDEA 13.66 29.19 19.25 45.48 26.90
Times 2.57 2.49 2.68 2.43 2.51

ProxyExplainer 20.90 15.23 7.33 14.82 14.57
+IDEA 21.52 16.52 7.90 15.85 15.45
Times 1.03 1.08 1.08 1.07 1.06

C.2 CODEBOOK SIZE

In this section, we investigate the impact of the codebook size, i.e., the number of the code-
words within the graph quantizer. As shown in Figure 6, the codebook size ranges among
{4, 8, 16, 32, 48, 64}. In general, a codebook with appropriate size can improve the explanation
performance, since it serves as the foundation during structural information disentanglement and
explanatory prototype modeling. For the Fluoride dataset, a codebook consisting of 8 codewords
causes a performance degradation by 0.1299.

D EXPLANATION VISUALIZATION

From Figure 7 to Figure 10, we present the explanation visualization of the ground truth, IDEA, and
four SOTA GNN explainers based on the label preserving framework.

As shown in Figure 7, only IDAE assigns the highest importance score to NH2. PGExplainer and
ProxyExplainer assign medium scores to NH2, V-InFoR identifies part of the NH2 group, and GN-
NExplainer fails to detect NH2. In Figure 8, IDEA, PGExplainer, and ProxyExplainer successfully
identify the benzene ring. In particular, IDEA detects the two rings within the molecule, while
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Figure 7: Explanation visualization of ground truth, IDAE, and four baselines on Mutagenicity.

Figure 8: Explanation visualization of ground truth, IDAE, and four baselines on Benzene.

PGExplainer and ProxyExplainer notice only part of the second benzene ring. GNNExplainer and
V-InFoR fail to assign high scores to the benzene rings. For the Alkane dataset, IDEA and GNNEx-
plainer identify the chlorine atom Cl as the explanation, yet the other three explainers completely
ignore the influential substrcutures. In Figure 10, only IDEA and V-InFoR can discriminate the
explanatory structure from the confounding structures to some extent. The other three explainers
assign nearly identical scores to all edges.

E TIME COMPLEXITY

In this section, we first provide a theoretical analysis of the time complexity of the IDEA framework.
Then, we report the runtime of diverse explainer architectures, incorporating with both the IDEA
framework and the label preserving framework. Given the node presentation matrix HN ∈ RN×d,
HGTokenizer approximates it by two graph quantizers, including two matrix multiplication opera-
tions and two argmin operations. The codebook within the graph quantizer belongs to a matrix in
RK×d. Hence, the time complexity of quantization distance D is

ϑD = NKd. (18)
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Figure 9: Explanation visualization of ground truth, IDAE, and four baselines on Alkane.

Figure 10: Explanation visualization of ground truth, IDAE, and four baselines on Fluoride.

Since the time complexity of argmin is NK, the total complexity of HGTokenizer is

ϑHGT = 2NK(d+ 1). (19)

Therefore, the complexity of IDEA, including the structural information disentanglement and the
explanatory prototype alignment, is derived as,

ϑIDEA = 2NK(d+ 1) + 3K(d+ 1) = O(NKd). (20)

According to Eq.20, the time complexity is linear to the node number of input graph, the codebook
size, and the hidden dimension of target GNN.

In Table 7, we report the runtime of four different GNN explainers and their counterparts shifted to
the IDEA framework. One can note that the runtime of IDEA variants is of the same magnitude,
compared with the native explainer adopting the label preserving framework.

F SUPPLEMENTARY EXPERIMENT

F.1 WEIGHTED COMBINATION

As a natural expansion, we integrate IDEA with the label preserving framework and the mixed
optimization objective is defined as the convex combination as follows,

LMix = α · LIDEA + (1− α) · Lψ, 0 ≤ α ≤ 1, (21)

where Lψ denotes the label preserving loss. Typically, Lψ is defined as the mutual information be-
tween the predictions of the input graph and the explanation subgraph, i.e., MI(ŷ, ŷg). The evaluate
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Figure 11: Explanation performance (ROC-AUC ↑) of the combination of the IDEA objective and
the label preserving objective, on Mutagenicity, Benzene, Alkane, Fluoride, and BA-2Motifs.

Table 8: Explanation performance (ROC-AUC ↑) of IDEA and the conjoint variant.

Model Mutagenicity Benzene Alkane Fluoride Average
IDEA 0.7379 0.9138 0.9319 0.8868 0.8676

IDEA-Joint 0.4805 0.5447 0.8725 0.8349 0.6832

results reveal that the effectiveness of the integration depends on the specific dataset. For the Mu-
tagenicity dataset, the integration with α equals 0.3 achieves a significant improvement over both
IDEA and the label preserving framework. However, for the Benzene, Alkane, and Fluoride datasets,
the weighted integration is inferior to both IDEA and the label preserving framework, which might
be caused by the counteract effect between the two optimization objectives.

F.2 CONJOINT OPTIMIZATION OF IDEA

In our main experiment, IDEA is a dual-stage framework, where the Structural Information Dis-
entanglement and the Explanatory Prototype Alignment are conducted separately. The dual stage
implementation not only reduces the difficulty of IDEA optimization, but also avoids the counter-
action effect between the optimization objectives. To empirically validate the rationality of dual-
stage IDEA, we further implement an IDAE variant IDEA-Joint where the two stages are conducted
jointly. The optimization objective of IDEA-Joint is defined as follows,

LJoint = LIDAE + λSAD · LSAD, (22)

with LIDEA and LSAD defined by Eq.11 and Eq.7, respectively. In Table 8, we present the perfor-
mance comparison between IDEA and the conjoint variant, within the same hyper-parameter search
range. We can notice the evident gap between IDEA-Joint and IDEA, which implies the difficulty
of IDEA-Joint optimization, despite a possible performance upper bound better than IDEA.

F.3 ROBUSTNESS TO LABEL NOISE

To investigate the robustness of the IDEA explainer to label noise (Zhong et al., 2023), we perturb the
information disentanglement stage by flipping the GNN prediction ŷ in Eq.5 and present the result
in Table 9. For comparision, we evaluate the explanation performance of two typical explainers,
i.e., GNNExplainer (Ying et al., 2019) and PGExplainer (Luo et al., 2020), with the same setting
of label noise. Specifically, the intensity of the label noise ranges from 0.00% to 50.00%, with an
interval of 5.00%. As shown by the result, the IDEA explainer stably maintains the high quality of
the generated explanation, with the maximum performance degradation of 0.0076 and 0.0070 in the
Mutagenicity and Benzene datasets, respectively. In contrast, two typical GNN explainers based on
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Table 9: Explanation performance (ROC-AUC ↑) versus label noise intensity on Mutag and Benzene
datasets. ∆max presents the maximum performance degradation with noise intensity increasing.

Noise Intensity Mutagenicity Benzene
GNNExplainer PGExplainer IDEA GNNExplainer PGExplainer IDEA

0.00% 0.6155 0.7016 0.7379 0.6886 0.8855 0.9138
5.00% 0.6140 0.6989 0.7358 0.6662 0.8856 0.9128
10.00% 0.6063 0.6824 0.7359 0.6505 0.8856 0.9135
15.00% 0.5937 0.6819 0.7363 0.6326 0.8860 0.9139
20.00% 0.5954 0.6810 0.7320 0.6149 0.5784 0.9132
25.00% 0.5965 0.6805 0.7366 0.5966 0.5931 0.9128
30.00% 0.6050 0.6802 0.7319 0.5788 0.5932 0.9128
35.00% 0.6048 0.6801 0.7303 0.5636 0.6302 0.9132
40.00% 0.6065 0.6798 0.7366 0.5431 0.6591 0.9131
45.00% 0.6048 0.6795 0.7327 0.5282 0.7033 0.9068
50.00% 0.6058 0.6791 0.7328 0.5056 0.7340 0.9130
∆max ↓ 0.0218 0.0225 0.0076 0.1830 0.3071 0.0070

the label preserving framework, GNNExplainer and PGExplainer, suffer from severe performance
degradation, which is 14.03× times and 22.58× times greater than that of IDEA.

G THEORETICAL JUSTIFICATION

During the explanatory prototype alignment stage, we adopt the assignment probability of the input
representation (H ′

G or Hg) over the explanatory codebook CD to reflect its location within the pro-
totypical representation space. In this section, we elaborate the justification of this practice. Within
the explanatory codebook CD, we have K prototype codewords {q1, q2, · · · , qK} ⊂ Rd, which ex-
pand the prototypical representation space. Taking the prototype codewords {q1, q2, · · · , qK} as the
anchors, the L2 distance between the input representation h and the anchor qk is

φk = ∥h− qk∥2 = hTh+ qTk qk − 2qTk h. (23)

For k ≥ 2, by subtracting φ1 = ∥h− q1∥2, we can derive the following equation

φk − φ1 = (qTk qk − qT1 q1)− 2(qk − q1)
Th, (24)

which is equivalent to the equation below,

(qk − q1)
Th =

1

2

(
qTk qk − qT1 q1 + φ1 − φk

)
. (25)

For k = 2, 3 · · · ,K, stacking (qk − q1)
Th induces the following equation in matrix formulation,

(q2 − q1)
T

(q3 − q1)
T

...
(qK − q1)

T

h =
1

2


qT2 q2 − qT1 q1 + φ1 − φ2

qT3 q3 − qT1 q1 + φ1 − φ3

...
qTKqK − qT1 q1 + φ1 − φK

 , (26)

which can be briefly noted as

Ah = b, A ∈ R(K−1)×d, b ∈ R(K−1). (27)

Theoretically, the prototype codewords and the induced prototypical representation space are gen-
erated by a collection of latent variables {z1, z2, · · · , zt} ⊂ Rd′ with d′ < d, which objectively
determine the explanatory substructures while being unobservable. Therefore, Eq.27 implies a coun-
terpart in the latent space Rd′ as follows,

A′h′ = b′, A′ ∈ R(K−1)×d′ , b′ ∈ R(K−1). (28)

In this equation, when K ≥ d′ + 1, h′ has a unique solution. Therefore, we adopt the assignment
probability based on the quantization distance to indicate the location of the input representation,
instead of training an additional projector.
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(a). Mutagenicity: -0.059±0.31 (b). Benzene: -0.062±0.51

(c). Alkane: 0.016±0.44 (d). Fluoride: -1.83e-05±0.44

Figure 12: Pair-wised cosine similarity of codewords. The number behind the dataset name repre-
sents Mean ± Std.

We denote the unknown mapping function from the latent space Rd′ to the prototypical space Rd as
H : Rd′ → Rd. For two representations x, y ∈ Rd, the corresponding representations in Rd′ are
denoted as x′ = H−1(x) and y′ = H−1(y). In our method, we minimize the difference between the
assignment probabilities of x and y over the prototypes {q1, q2, · · · , qK}, in order to minimize the
distance between x′ and y′ in the latent space. Theoretically, the strict validity of this measurement
lies in three conditions. First, K ≥ d′, which holds with large probability. Second, the prototype
representations {q1, q2, · · · , qK} are linearly independent. As illustrated in Figure 12, we present
the cosine similarity of the codewords, demonstrating that the codewords approximately satisfy the
linearly independent requirement. Third, the hypothetical mapping function H is linear or can be
approximated by linear functions.

H PROTOTYPE CASE STUDY

Assignment Probability. First, to explore the implicit relationship between the prototypical embed-
dings (i.e., codebooks) and human-intelligible substructures, we present the assignment probabilities
distribution in Figure 13. Specifically, for real-world dataset Benzene and synthetic dataset BA-
2Motifs, we visualize the average probabilistic distributions of class 0 and class 1 over the shallow
and deep codebooks. For the real-world dataset Benzene, the distributions of class 0 and class 1 over
the shallow codebook are similar, and the codeword 5 with the largest probability may correspond
the most frequent non-explanatory substructure (carbon-chlorine bond). On the deep codebook, the
distribution patterns obviously differ. For the deep codebook, the codeword 0 may correspond to
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(a). Assignment probabilities on Benzene dataset
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(b). Assignment probabilities on BA-2Motifs dataset

Figure 13: Average probabilistic distributions over the shallow and deep codebooks on (a). Benzene
dataset and (b). BA-2Motifs dataset.
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Figure 14: t-SNE visualization of codewords on (a). Mutagenicity dataset and (b) Benzene dataset.

the benzene rings which directly decides the labels of class 1, and the codeword 2 may correspond
to the carbon-oxygen bond which is common in class 0. For the synthetic dataset BA-2Motifs, the
shallow distribution patterns of class 0 and class 1 are also similar. The deep shallow distribution
has two peaks, i.e., codeword 1 and codeword 5, which may correspond to the two kinds of motifs in
BA-2Motifs. To sum up, the similar distribution pattern on shallow codebook and significantly dif-
ferent patterns on deep codebook can indicate that the learned prototypes in codebooks are implicitly
related to substructures.

t-SNE Visualization. Furthermore, we visualize the learned codewords in shallow and deep code-
books based on t-SNE algorithm (van der Maaten & Hinton, 2008). As shown by Figure 14 and
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Figure 15: t-SNE visualization of codewords on (a). Alkane dataset and (b) Fluoride dataset.

Table 10: Explanation performance (Fidelity+ ↑) of IDEA and SOTA baselines across five datasets.

Fidelity+ Mutagenicity Benzene Alkane Fluoride BA-2Motifs
GNNExplainer 0.2136± 0.0005 0.5614± 0.0005 0.5435± 0.0130 0.1242± 0.0026 0.4067± 0.0033

PGExplainer 0.2012± 0.0097 0.7250± 0.0028 0.7826± 0.0063 0.4097± 0.0118 0.4375± 0.0030

GraphMask 0.0982± 0.0080 0.4450± 0.0169 0.5659± 0.0180 0.2070± 0.0029 0.3750± 0.0043

ReFine 0.2161± 0.0041 0.5690± 0.0048 0.6224± 0.0033 0.6132± 0.0077 0.2068± 0.0024

V-InFoR 0.1954± 0.0004 0.5265± 0.0031 0.6883± 0.0013 0.6298± 0.0005 0.3793± 0.0058

D4Explainer 0.0698± 0.0181 0.5248± 0.0080 0.6093± 0.0058 0.6047± 0.0026 0.2127± 0.0014

MixupExplainer 0.1277± 0.0074 0.4910± 0.0047 0.4579± 0.0053 0.3672± 0.0009 0.2131± 0.0082

ProxyExplainer 0.1841± 0.0132 0.7473± 0.0118 0.6904± 0.0052 0.6607± 0.0351 0.3064± 0.0027

IDEA 0.2207± 0.0093 0.8292∗± 0.0081 0.8043∗± 0.0160 0.6988∗± 0.0042 0.4450∗± 0.0004

Improvement 2.13% 10.96% 2.77% 5.77% 1.71%

Figure 15, the first row presents the t-SNE visualization of the initial codewords, and the second row
presents that of the codewords after optimization, i.e., prototypes. We can notice that in the initial
state, the shallow and deep codewords mix together without clear boundary. After optimization, the
deep codewords are approximately separable from the shallow ones. The deep codewords prefer to
cluster into a mass, while the shallow codewords still distribute dispersedly.

I FAITHFULNESS EVALUATION

To comprehensively evaluate the effectiveness of IDEA, we present faithfulness metrics based on
fidelity in this section (Amara et al., 2022). Specifically, Fidelity+ measures the change degree of
the GNN prediction after removing the explanation subgraph, Fidelity− measures the change degree
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Table 11: Explanation performance (1-Fidelity− ↑) of IDEA and SOTA baselines.

1-Fidelity− Mutagenicity Benzene Alkane Fluoride BA-2Motifs
GNNExplainer 0.5975± 0.0053 0.4370± 0.0051 0.1658± 0.0070 0.2679± 0.0114 0.7366± 0.0031

PGExplainer 0.7714± 0.0165 0.5222± 0.0037 0.3787± 0.0048 0.2232± 0.0167 0.9055± 0.0033

GraphMask 0.6174± 0.0032 0.4365± 0.0065 0.2683± 0.0058 0.1487± 0.0013 0.5005± 0.0051

ReFine 0.6604± 0.0044 0.5056± 0.0082 0.3237± 0.0022 0.2863± 0.0104 0.8330± 0.0140

V-InFoR 0.6375± 0.0020 0.4524± 0.0039 0.3886± 0.0070 0.2871± 0.0004 0.7872± 0.0093

D4Explainer 0.6451± 0.0240 0.4497± 0.0019 0.3691± 0.0086 0.2577± 0.0151 0.9710± 0.0038

MixupExplainer 0.6745± 0.0115 0.4962± 0.0063 0.3750± 0.0014 0.2665± 0.0051 0.9513± 0.0077

ProxyExplainer 0.7912± 0.0058 0.6483± 0.0156 0.4191± 0.0028 0.3594± 0.0177 0.9697± 0.0062

IDEA 0.8018∗± 0.0086 0.6964∗± 0.0148 0.4190± 0.0158 0.3612∗± 0.0010 0.9981∗± 0.0003

Improvement 1.34% 7.42% -0.02% 5.00% 2.93%

Table 12: Explanation performance (Harmonic mean ↑) of IDEA and SOTA baselines.

Harmonic Mean Mutagenicity Benzene Alkane Fluoride BA-2Motifs
GNNExplainer 0.3146± 0.0013 0.4914± 0.0031 0.2541± 0.0096 0.1696± 0.0019 0.5240± 0.0035

PGExplainer 0.3191± 0.0136 0.6071± 0.0035 0.5104± 0.0056 0.2888± 0.0169 0.5899± 0.0034

GraphMask 0.1693± 0.0119 0.4404± 0.0069 0.3640± 0.0089 0.1731± 0.0019 0.4287± 0.0031

ReFine 0.3256± 0.0051 0.5354± 0.0066 0.4259± 0.0027 0.3903± 0.0110 0.3313± 0.0036

V-InFoR 0.2991± 0.0006 0.4866± 0.0035 0.4967± 0.0060 0.3944± 0.0005 0.5119± 0.0063

D4Explainer 0.1254± 0.0301 0.4843± 0.0042 0.4597± 0.0080 0.3612± 0.0152 0.3490± 0.0021

MixupExplainer 0.2146± 0.0106 0.4935± 0.0034 0.4123± 0.0030 0.3088± 0.0037 0.3481± 0.0106

ProxyExplainer 0.2985± 0.0178 0.6943± 0.0140 0.5216± 0.0036 0.4655± 0.0232 0.4657± 0.0036

IDEA 0.3460∗± 0.0114 0.7569∗± 0.0119 0.5509∗± 0.0171 0.4762± 0.0018 0.6156∗± 0.0004

Improvement 6.26% 9.02% 5.62% 2.30% 4.36%

of the GNN prediction when only retain the explanation subgraph, formally defined as follows,

Fidelity+ = 1− 1

|Gtest|
∑
i

I
(
f(Gi\gi) = f(Gi)

)
, (29)

Fidelity− = 1− 1

|Gtest|
∑
i

I
(
f(gi) = f(Gi)

)
, (30)

where Gtest is the test set, f is the target GNN model, Gi is the i-th test graph sample, and gi is the
corresponding explanation subgraph identified by GNN explainer.

For readability, we report Fidelity+, 1-Fidelity−, and their harmonic mean in Tables 10, 11, and 12
respectively, which are better when they are higher and belong to [0, 1]. The results also demonstrate
the superiority of IDEA when compared with the SOTA baselines.

J LIMITATION

Accessibility to target GNN. According to the taxonomy of GNN explanation methods, the acces-
sibility of the GNN explainer to the target GNN to be explained can be categorized into black-box,
gray-box, and white-box. The black-box accessibility takes the GNN model as an oracle and only
requires the GNN predictions. On the contrary, the white-box accessibility demands the permission
to the model internal parameters or the model gradients (Pope et al., 2019). Actually, IDEA requires
the gray-box accessibility to utilize the GNN encoded representations, which limits the application
of IDEA to completely black-box GNN models.

Approximately linear assumption on unknown mapping function H. In Appendix G, we intro-
duce a unobserved function H that maps the latent space Rd′ to our prototypical space Rd. The strict
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validity of LIDEA in the explanatory prototype alignment stage necessitates that H is approximately
linear at least. Hence, a highly non-linear function H might become a potential limitation of IDEA.

K FUTURE WORK

A promising direction for future work is to extend the proposed quantization-based explanation
framework from instance-level to model-level interpretability. One possibility is to construct a
global dictionary of reference quantization prototypes that summarizes the model’s decision be-
havior across the entire dataset. By analyzing how deep quantization patterns cluster in latent space,
such a dictionary could reveal class-level structural regularities or decision boundaries, analogous
to prototype-based global explanations in prior work. Furthermore, integrating hierarchical or dy-
namic prototype discovery may help capture more nuanced variations in quantized representations,
enabling a more comprehensive characterization of the model’s reasoning process.

L USE OF LARGE LANGUAGE MODELS

Large language models (LLMs) are used in this work solely for auxiliary purposes. Specifically, they
assisted in improving the accuracy of writing by identifying and correcting grammatical issues and
refining terminology choice, as well as in suggesting appropriate color schemes for figure design.
All research ideas, methodological developments, experiments, and the main body of the manuscript
are independently conceived, conducted, and written by the authors.
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