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Abstract

How do we imagine visual objects and combine them to create new forms? To
answer this question, we need to explore the cognitive, computational and neural
mechanisms underlying imagery and creativity. The body of research on deep
learning models with creative behaviors is growing. However, in this paper we
suggest that the complexity of such models and their training sets is an impediment
to using them as tools to understand human aspects of creativity. We propose using
simpler models, inspired by neural and cognitive mechanisms, that are trained
with smaller data sets. We show that a standard deep learning architecture can
demonstrate imagery by generating shape/color combinations using only symbolic
codes as input. However, generating a new combination that was not experienced
by the model was not possible. We discuss the limitations of such models, and
explain how creativity could be embedded by incorporating memory mechanisms
to combine the network’s output into new combinations and use that as new training
data.

1 Introduction

For millennia philosophers have been interested in our ability to conjure memories and objects as a
functional component of our visual system. Visual imagery allows us to re-experience remembered
content and may enable us to mentally manipulate that information in a format that is similar to the
original input from the eyes (Kosslyn, Thompson & Gianis 2006).

Computational models can provide a functional intuition about how information is transformed from
sensory input, memories and visual knowledge, into an experienced visual form. However, recent
models that allege to demonstrate “creative” behavior (e.g. Ramesh at al., 2021) are too complex
to be understood as a model for human imagery and creativity. It is also difficult to determine the
boundaries of creativity in such models. For instance, models like GPT-3 (Brown al., 2020), CLIP
(Radford et al., 2021) and DALL-E (Ramesh at al., 2021) have been trained on datasets that are so
large that it is impossible to understand the full scope of the examples they have been exposed to.
While the generative output of these models is impressive, it is difficult to determine if such output is
an interpolated sample that provides intermediate variation from the training set. Moreover, models
with large training sets generate harmful and inappropriate contents which creates further barriers
for using them as inspiration for studying creativity (Birhane et al., 2021). The emphasis in artificial
intelligence research is often to build ever larger models with the idea that models that are large and
trained on sufficiently massive data sets will approach human levels. However, the larger the systems
get, the harder it will be to understand how they work, to know whether they are truly creative, and
to use them as a lens to study human creativity. With this regard, truly creative means being able to
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utilize learned knowledge while combining elements in a way that generates a novel form. Our goal
is to move in the opposite direction, with a cognitively and biologically plausible model that uses
simpler machinery.

Bearing in mind the importance of avoiding inappropriate inference from artificial networks to neural
systems (Guest & Martin, 2021), we are not arguing that our model is similar to human imagery
and creativity. Rather, we are using this model to develop more accurate intuitions about how high
dimensional systems can operate, which in turn allows us to think more clearly when developing
theories. The proposed model in this paper is based on the Memory of Latent Representations
(MLR) model developed by Hedayati, O’Donnell and Wyble (2021). The MLR model uses a fully
connected neural network that shows how hierarchical visual knowledge generates and retrieves
visual stimuli and stores these into working memory tokens. Due to its generative feature and its
biological relevance to the visual system (i.e., resembling the hierarchical structure of visual ventral
stream with more generic representations at early levels and more compressed representations at
higher levels; Figure1A), we modified this model to explore visual imagery and creativity. Finally,
previous research has shown the critical role of working memory in creative tasks (Benedeck et
al., 2014).Therefore another advantage of using MLR is that it has an embedded working memory
component that can, if necessary, be used to combine information and generate new forms. It is
important to bear in mind that the common notion of creativity is generating something that is novel
and useful. In this sense we are focusing on novelty, because usefulness is outside of the scope of our
model. In the the proposed model, the visual knowledge system was trained on a colorized MNIST
(LeCun, 1998) dataset, and we will be testing 1) generating color-shape combinations in the absence
of a direct visual stimuli by using symbolic codes as demonstrated by imagery 2) generating novel
shape-color combinations as a form of visual creativity.

2 Method and Results

2.1 Model Components

Our model consists of a modified variational autoencoder representing distinct features (dfVAE;
Kingma & Welling, 2013) as used in the MLR model, and two multiple layer perceptron (MLP)
networks. The former approximates the visual knowledge that is trained on a colorized version of
the MNIST dataset, whereas the latter converts categorical labels into latent representations. We
trained the model on MNIST consisting of 60,000 of handwritten digits ranging from 0-9, which was
colorized by 10 prototype colors with minor variations and had the dimension of 28x28x3 pixels.
The training and testing data were chosen based on the original MNIST dataset and the model’s
parameters were identical to the dfVAE model proposed by Hedayati et al.(2021) with the addition of
the label networks. We implemented the model with Pytorch 1.4.0 and CUDA v.10.0. The model
was trained using a single Nvidia 2080 Ti GPU with a batch size of 100. The full training took
approximately 1-2 hours.The code is available at: https://github.com/Shekoo93/Imagery.

2.2 dfVAE

This part was directly taken from the MLR model. The encoder and the decoder of the dfVAE
are similar to the original VAE proposed by Kingma and Welling (2013), except for the bottleneck
layer (i.e., mid-layer) that was separated to represent shape and color information disjointedly by
using two distinct objective functions. This disentanglement allowed for reconstructing a specific
feature (shape or color) in the output. Layers of the model have L1=256, L2=128, bottleneckshape=4,
bottleneckcolor=4, L4 = 128 and L5=256 neurons. The VAE learns to compress and decode the visual
stimuli by generating them in the output, and comparing them with the input image to accomplish the
training in an unsupervised fashion. As shown in Figure 1A, we can see layers of the VAE coarsely
correspond to the anatomical architecture of the visual ventral stream.

2.3 Label network

For the purpose of generating images in the absence of a direct visual stimulus, we added two
MLPs each of which had 10 input neurons, 7 neurons in the middle layer and terminate on the
4-neuron shape or color map respectively. The label network started with a categorical (one-hot)
coded representation and learned to map those codes onto representations in the shape and color maps
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Figure 1: Panel A: the architecture of the dfVAE with separate shape and color maps in the bottleneck
(BN). Each layer of the dfVAE corresponds to a region of the ventral visual stream. The dfVAE
reconstructs the input image in the output layer. Panel B: The proposed model’s architecture with
label networks attached to a pre-trained dfVAE. Initial training of the label networks is shown on
the left (stage 1), and after training the label networks are able to generate arbitrary shape-color
combinations in the absence of visual inputs (stage 2). The binding pool, which stores and retrieve
from working memory is not shown.

that were generated by the dfVAE’s encoder based on the visual stimuli.Training the label network
involved activating a color/shape label while presenting the corresponding input image (Figure1B).
Gradient descent minimized the mean squared error between the activation generated by the labels
and the activation generated by the corresponding image. After the training phase was completed,
our model could create combinations of handwritten digits with different colors using the one-hot
codes which we take as an analog of visual imagery.

2.4 Imagery Simulation 1: Familiar combinations

Figure 2 (Panel A) shows how imagining a “purple two” changes as we add increasing noise to the
shape/color maps. The label networks first activate a representation in the shape and color maps that
collectively produce a purple 2 at the output. Increasing amounts of noise are then added to these
latent representations which are passed through the decoder to generate the images. This simulation
demonstrates that random perturbation of a representation does not generate new shapes or colors.

2.5 Imagery Simulation 2: Novel combinations

In simulation 1, the model was trained on all 100 combinations of the 10 shapes and 10 colors. To test
the model’s ability to generate novel shape-color combinations, in Simulation 2 we trained the model
on red 0-4 and green 5-9 MNIST digits and tested its ability to generate red 5-9 or green 0-4 With
150 attempts. This model was unable to generate a combination outside of its training set. Figure
2B shows 50 examples of noisy imaginations of red 2, green 5 and green 2. The model generates
only combinations of the red and green digits that it was trained on. In the lower third panel the label
network tries to reconstruct a specific combination that it was not trained on (green 2) and the model
is unable to do so.Also see Figure3A (top) for a TSNE map illustration of the shape map and its
comparison with a TSNE map (Figure 3A, bottom) for a model that was trained on red and green
digits with complete overlap.

2.6 Imagery Simulation 3: Novel combinations with overlapped training

In the previous simulation, the two sets of training stimuli were completely disjoint (red 0-4, green
5-9). It is possible that partial overlap of color-digits in the training set would allow the dfVAE
decoder to generate more flexible representations that enable the reconstruction of novel digit-color
pairings. To evaluate this possibility, a new model was trained with the following sets: red 0-3 and
green 2-5, such that digits 2 and 3 were presented in both red and green. As shown in Figure 2C, even
with this new training set, red 5 could not be generated but green 5 could be generated.
To explore the latent space of the model that failed to generate a green 2 combination, we trained
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Figure 2: The image within the green rectangle is the reconstructed “purple 2” in the absence of noise
on the model that was trained on all combinations of 10 digits and colors. Panel B, Imagined images
of the model that was trained on red 0-4 and green 5-9. The 50 images shown for each digit-color
combination are the result of combining the label network’s output with Gaussian noise (SD=1)
added to the shape map. On the bottom, the label network tries and fails to generate a green 2. In
Panel C, for the third simulation, even a model with overlapping shape and color combinations is
unable to generate representations that are outside of its set of trained combinations.

classifiers on shape and color maps respectively. The average accuracy of decoding color from
the shape map for 5 models was 75.8% (SE= 1.24, chance=50%) when the model was trained on
non-overlapping digits (red 0-4 and green 5-9). On the other hand, the average accuracy of decoding
color from the shape map was 60.6% (SE=1.46) when the model was trained on all combinations
of red and green digits. Figure 3A shows TSNE maps for shape and color categories for different
training sets. The clusters within the maps show that red and green representations are more entangled
with how entangled digits are based on their colors, and that clusters are more spread out when
combinations have complete overlap.

2.7 Imagery Simulation 4: Novel combinations with diverse overlapped training

In this manipulation, we aimed to increase the latent space generalization by training the dfVAE on
MNIST and Fashion-MNIST (f-MNIST; Xiao et al., 2017) examples represented in green and red,
except that “2” was available only in red and “6” was available only in green. The results indicated
that the dfVAE could not combine the shape and color to generate new forms such as a “green 2” or
“red 6”. Figure 3B indicates reconstruction examples directly from dfVAE.

3 Discussion

MLR provides a simple, biologically plausible model of visual imagery that combines a hierarchical
visual representation with a highly flexible working memory system. The training set uses clearly
delineated combinations that we can use to study the building blocks of creativity in neural systems,
such as imagery.

The model exhibits imagery in the sense that it can generate specific examples of targeted combina-
tions of digits and colors based on labels provided by other putative cognitive system (e.g. executive
control or perhaps mechanisms associated with mind-wandering). For example if asked to create a
"“red 2" and provided with noise, it is able to generate a variety of images that are a red-2 in the
absence of actual visual input. When noise is increased the imagined digits can change from one
category to the next, but exhibit very little in the way of intermediate forms. Moreover, the model
exhibits no ability to generate novel combinations of shape and color, such that it cannot generate a
green 2 if it was trained on red 2’s and green 5’s. Even when the green and 2 latent representations
have been activated by the label networks, the decoder has not learned how to combine these specific
representations at the output, so the failure to combine the features is in the decoder. Note that all of
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Figure 3: TSNE illustration for the shape map in panel A, when the model was trained on red 0-4 and
green 5-9 (up) vs. when it was trained on red and green digits from 0 to 9 (bottom). The figure shows
TSNE reconstruction of the latent representation of the digits red 0-4 and green 5-9 for both models.
Panel B illustrates examples of the direct reconstructions from dfVAE for red 2’s and green 6’s, when
the model was trained on red and green MNIST and f-MNIST, but "2" was presented in only red and
"6" was presented only in green. The model is unable to generate green "2" and red "6"

the green pixels required for a 2 can be found in the green 7 and 5, which means that the model has
learned to generate green pixels along the bottom of the image, and yet, the closest approximation of
a green 2 is a green 7 (Figure 2B). This suggests that that there is no pathway connecting the latent
representation of 2 in the shape map to green pixels in the output.

The simulations indicate that at least the comparatively simple VAE architecture is unable to generate
truly novel combinations. While it remains an open question as to whether more complex models
such as GPT-3, CLIP and DALL-E are genuinely creative, the example provided here suggests that we
should develop more explicit means to evaluate the extent to which they can generate novel content.

3.1 Adding Mechanisms for learned creativity

Since MLR is inspired by cognitive and neurally plausible mechanisms of visual representation
and working memory, it gives us a framework to explore possible mechanisms to induce creativity
by using memory. Creativity in humans is often a process of memory retrieval combined with
recombination (Dietrich, 2004; Feldhusen 2010) and the MLR model provides a conceptual platform
to explore these ideas. Furthermore, because autoencoders like a VAE generate output that matches
the format of the input, any output can be used to generate new training examples for the input space.
This allows the model’s expertise to grow to include a superset of combinations of real-world stimuli
it has been trained on through self-generated replay. This requires additional mechanisms that can
be explored via models that have cognitive components such as working or episodic memory. For
instance, any given image can be generated and briefly stored in memory at the decoder’s output to be
combined with other pieces of output. The combination could then be used as new data for training.
As a simple example of this, if the model is trained on a horizontal line and a vertical line but not a
‘+’ shape, it would be unable to simulate the imagination of a ‘+’, since there is no representation
of this more complex shape in any of its latent spaces. However, it would be possible for the model
to retrieve a memory of the two lines and superimpose them on the output space, and then use this
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newly generated ‘+’ shape as training data, allowing it to learn representations of the ‘+’ in all of its
latent spaces, as if that symbol had been present in its original training set.

More complex compositional learning and generation algorithms (e.g. Lake et al., 2011) could be
used to achieve more complex representational combinations of shape as well. This form of providing
additional training to the model based on recombination of its existing representations might be akin
to the act of dreaming, in which hippocampal areas of the brain are often highly active and thought
to be retrieving information. The advantage of using imagined visual forms as training data for the
model is that these new forms become part of the permanent representational architecture of the
system and thereby allow it to respond rapidly and efficiently to those forms in the future, despite
having never experienced them before.

Other forms of representational manipulation and combination are also possible in a cognitively
inspired system. For example, color information is thought to be represented in a way that allows it
to be projected across surfaces even when it is not physically present (Figure 4).

Figure 4: Watercolor illu-
sion, in which the visual sys-
tem expands the colors of
red and green to create an
illusory percept of colored
surfaces.(Brenna, Brelstaff &
Spillman 2001).

Similar mechanisms of color projection could conceivably be used
to generate new color-shape combinations at the output layer. For
example, if a given color is first projected from the decoder to the
output space, and this is followed by a shape, the visual system
might map the color onto the shape to create a new combination
of shape and color. While it is premature to stipulate exactly what
neural circuits would be responsible for such a transform, it is within
the scope of functions that the intricate circuitry of visual cortex
could accommodate. As suggested above, these novel shape/color
combinations could then be projected back through the model as a
form of training, allowing them to be ensconced into the encoder,
decoder and shape/color maps.

Such imagination of novel combinations thus seems within the scope
of a model that has both memory and generative output. A better
question than how does creativity occur is perhaps how a creative
model would guide its creative imagination so that such retraining
did not include all possible combinations of stimuli which might
overload the model’s representational space with conjunctions that
never occur in the real world and thus are not helpful.

Another important point to consider is that there could be adaptive
value in having an imaginative output at the earliest levels of vision
(I.e. the output layer of MLR, that we consider to correspond to visual cortex which receives extensive
feedback connections from higher level brain areas) to be constrained during waking behavior to
imagine only stimuli that correspond to actual objects that have been experienced. A visual system
without such controls might be overly prone to hallucinations that interfere with the ability to perceive.
In such a case, the aspect of creative imagery that generates entirely novel forms in a visual format
could be the province of generative visual workspaces that are not associated with perception. This
would be unlike the framing of the MLR model, which assumes that the pixel level representations of
both input and output correspond to early visual areas. It is notable that visual imagery of remembered
items tends to activate early visual areas (Kosslyn Alpert 1993;Kosslyn, Ganis & Thompson 2001)
and this would support the MLR interpretation, but it is possible that other brain areas are involved in
the imagination of novel forms and this is supported by studies that fail to find visual cortex activation
when using imagery to solve a problem (Knauff, Kassubek, Mulack & Greenlee 2000).

In conclusion, we have explored the ability of a modified VAE to create novel combinations of highly
familiar visual features and found that it is not able to do so, even when the training sets for the two
features (color and shape) overlap in the training set. However, when coupled with memory systems
and other aspects of representational interplay within visual areas, it is easy to theorize about how
an autoencoder could generate new forms and then use those as training data to expand the model’s
representational repertoire in a way that would be more consistent with some of the simplest aspects
of creativity.
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Checklist

The checklist follows the references. Please read the checklist guidelines carefully for information on
how to answer these questions. For each question, change the default [TODO] to [Yes] , [No] , or
[N/A] . You are strongly encouraged to include a justification to your answer, either by referencing
the appropriate section of your paper or providing a brief inline description. For example:

• Did you include the license to the code and datasets? [Yes] See Section ??.

• Did you include the license to the code and datasets? [No] The code and the data are
proprietary.

• Did you include the license to the code and datasets? [N/A]

Please do not modify the questions and only use the provided macros for your answers. Note that the
Checklist section does not count towards the page limit. In your paper, please delete this instructions
block and only keep the Checklist section heading above along with the questions/answers below.

1. For all authors...

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope? [Yes]

(b) Did you describe the limitations of your work? [Yes] Described in the discussion.
(c) Did you discuss any potential negative societal impacts of your work? [N/A] .
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]

2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [N/A]
(b) Did you include complete proofs of all theoretical results? [N/A]

3. If you ran experiments...

(a) Did you include the code, data, and instructions needed to reproduce the main experi-
mental results (either in the supplemental material or as a URL)? [Yes] . Described in
the method section.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] Specified in the method section.

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [N/A]

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes] . Described in the method section.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...

(a) If your work uses existing assets, did you cite the creators? [Yes]
(b) Did you mention the license of the assets? [N/A]
(c) Did you include any new assets either in the supplemental material or as a URL? [No]
(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [N/A] .
(e) Did you discuss whether the data you are using/curating contains personally identifiable

information or offensive content? [Yes]

5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A]
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