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ABSTRACT

Understanding the interactions of atoms such as forces in 3D atomistic systems
is fundamental to many applications like molecular dynamics and catalyst design.
However, simulating these interactions requires compute-intensive ab initio calcu-
lations and thus results in limited data for training neural networks. In this paper,
we propose to use denoising non-equilibrium structures (DeNS) as an auxiliary
task to better leverage training data and improve performance. For training DeNS,
we first corrupt a 3D structure by adding noise to its 3D coordinates and then
predict the noise. Different from previous works on pre-training via denoising,
which are limited to equilibrium structures, the proposed DeNS generalizes to a
much larger set of non-equilibrium structures without relying on another dataset for
pre-training. The key enabler is the encoding of input forces. A non-equilibrium
structure has non-zero forces and thus many possible atomic positions, making
denoising an ill-posed problem. To address the issue, we additionally take the
forces of the original structure as inputs to specify which non-equilibrium structure
we are denoising. Concretely, given a corrupted non-equilibrium structure and the
forces of the original one, we predict the non-equilibrium structure satisfying the
input forces instead of any arbitrary structures. Since DeNS requires encoding
forces, DeNS favors equivariant networks, which can easily incorporate forces and
other higher-order tensors in node embeddings.
We demonstrate the effectiveness of training equivariant networks with DeNS on
OC20, OC22 and MD17 datasets. For OC20, EquiformerV2 (Liao et al., 2023)
trained with DeNS achieves better Structure to Energy and Forces (S2EF) results
and comparable Initial Structure to Relaxed Energy (IS2RE) results. For OC22,
EquiformerV2 trained with DeNS establishs new state-of-the-art results. For MD17,
Equiformer (Lmax “ 2) (Liao & Smidt, 2023) trained with DeNS achieves better
results and saves 3.1ˆ training time compared to Equiformer (Lmax “ 3) without
DeNS, where Lmax denotes the maximum degree. We also show that DeNS can
improve other equivariant networks like eSCN (Passaro & Zitnick, 2023) on OC20
and SEGNN-like networks (Brandstetter et al., 2022) on MD17.

1 INTRODUCTION

Graph neural networks (GNNs) have made remarkable progress in approximating high-fidelity,
compute-intensive quantum mechanical calculations like density functional theory (DFT) for atomistic
systems (Gilmer et al., 2017; Zhang et al., 2018; Unke et al., 2021; Batzner et al., 2022; Rackers
et al., 2023; Lan et al., 2022), enabling new insights in applications such as molecular dynamics
simulations (Musaelian et al., 2023) and catalyst design (Chanussot* et al., 2021; Lan et al., 2022).
However, unlike other domains such as natural language processing (NLP) and computer vision (CV),
the scale of atomistic data is quite limited since generating data requires compute-intensive ab initio
calculations. For example, the largest atomistic dataset, OC20 (Chanussot* et al., 2021), contains
about 138M examples while GPT-3 (Brown et al., 2020) is trained on hundreds of billions of words
and ViT-22B (Dehghani et al., 2023) is trained on around 4B images.

To start addressing this gap, we take inspiration from self-supervised learning methods in NLP and
CV and explore how we can adapt them to learn better atomistic representations from existing labeled
data. Specifically, one of the most popular self-supervised learning methods in NLP (Devlin et al.,
2019) and CV (He et al., 2022) is training a denoising autoencoder (Vincent et al., 2008), where the
idea is to mask or corrupt a part of the input data and learn to reconstruct the original, uncorrupted
data. Denoising assumes we know a unique target structure to denoise to – e.g., a sentence and an
image in the case of NLP and CV. Indeed, this is the case for equilibrium structures (e.g., Seq at a local
energy minimum in Figure 1b) as has been demonstrated by previous works leveraging denoising
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Figure 1: Illustration of denoising equilibrium and non-equilibrium structures. In this figure, we relax a non-
equilibrium structure (red point) and form a local relaxation trajectory (black dotted arrow). All the points along
the trajectory except the blue point are non-equilibrium structures.

for pretraining on atomistic data (Jiao et al., 2022; Zaidi et al., 2023; Liu et al., 2023; Wang et al.,
2023; Feng et al., 2023a). However, most previous works are limited to equilibrium structures, and
equilibrium structures constitute a small portion of available data since structures along a trajectory
to get to a local minimum are all non-equilibrium. Hence, there is a need to generalize denoising to
leverage the larger set of non-equilibrium structures.

Since a non-equilibrium structure has atom-wise forces and atoms are not confined to energy local
minima, it has more possible atomic positions than an equilibrium one. As shown in Figure 1a, this
can make denoising an ill-posed problem since there are many possible target structures to denoise
to. To address the issue, we propose to take the forces of the original non-equilibrium structure as
inputs when denoising non-equilibrium structures. Intuitively, the forces constraint atomic positions
of a non-equilibrium structure. With the additional information, we are able to predict the original
non-equilibrium structure satisfying the input forces instead of predicting any arbitrary structures
as shown in Figure 1c. Previous works on denoising equilibrium structures (Jiao et al., 2022; Zaidi
et al., 2023; Liu et al., 2023; Feng et al., 2023b;a) end up being a special case where the forces of
original structures are close to zeros.

Based on the insight, in this paper, we propose to use denoising non-equilibrium structures (DeNS)
as an auxiliary task to better leverage atomistic data. For training DeNS, we first corrupt a structure
by adding noise to its 3D atomic coordinates and then reconstruct the original uncorrupted structure
by predicting the noise. For noise predictions, a model is given the forces of the original uncorrupted
structure as inputs to make the transformation from a corrupted non-equilibrium structure to a
uncorrupted non-equilibrium structure tractable. When used along with original tasks like predicting
energy and forces of non-equilibrium structures, DeNS improves the performance of the original
tasks with a marginal increase in training cost. We further discuss how DeNS can leverage more from
training data and the connection to self-supervised learning methods in other domains.

Because DeNS requires encoding forces, it favors equivariant networks. They build up equivariant
features at each node with vector spaces of irreducible representations (irreps) and have interactions
or message passing between nodes with equivariant operations like tensor products. Since forces
can be projected to vector spaces of irreps with spherical harmonics, equivariant networks can easily
incorporate forces in node embeddings. Moreover, with the reduced complexity of equivariant
operations (Passaro & Zitnick, 2023) and incorporating Transformer network design (Liao & Smidt,
2023; Liao et al., 2023) from NLP (Vaswani et al., 2017) and CV (Dosovitskiy et al., 2021), equivariant
networks have become the state-of-the-art methods on large-scale atomistic datasets.

We conduct extensive experiments on OC20 (Chanussot* et al., 2021), OC22 (Tran* et al., 2022)
and MD17 (Chmiela et al., 2017; Schütt et al., 2017; Chmiela et al., 2018) datasets and focus on
how DeNS can improve the performance of equivariant networks. EquiformerV2 trained with DeNS
achieves better S2EF results and comparable IS2RE results on OC20. EquiformerV2 trained with
DeNS sets new state-of-the-art results on OC22. EquiformerV1 (Lmax “ 2) (Liao & Smidt, 2023)
trained with DeNS achieves better results on MD17 than EquiformerV1 (Lmax “ 3) without DeNS
and saves 3.1ˆ training time. DeNS can improve other equivariant networks like eSCN (Passaro &
Zitnick, 2023) on OC20 and SEGNN-like networks (Brandstetter et al., 2022) on MD17.

2 RELATED WORKS
Denoising 3D Atomistic Structures. Denoising structures have been used to boost the performance
of GNNs on 3D atomistic datasets (Godwin et al., 2022; Jiao et al., 2022; Zaidi et al., 2023; Liu
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et al., 2023; Feng et al., 2023b; Wang et al., 2023; Feng et al., 2023a). The approach is to first
corrupt data by adding noise and then train a denoising autoencoder to reconstruct the original data
by predicting the noise, and the motivation is that learning to reconstruct data enables learning
generalizable representations (Devlin et al., 2019; He et al., 2022; Godwin et al., 2022; Zaidi et al.,
2023). Since denoising equilibrium structures do not require labels and is self-supervised, similar
to BERT (Devlin et al., 2019) and MAE (He et al., 2022), it is common to pre-train via denoising
on a large dataset of equilibrium structures like PCQM4Mv2 (Nakata & Shimazaki, 2017) and then
fine-tune with supervised learning on smaller downstream datasets. Besides, Noisy Nodes (Godwin
et al., 2022) use denoising equilibrium structures as an auxiliary task along with original tasks without
pre-training on another larger dataset. However, most of the previous works are limited to equilibrium
structures, which occupy a much smaller amount of data than non-equilibrium ones. In contrast, the
proposed DeNS generalizes denoising to non-equilibrium structures with force encoding so that we
can improve the performance on the larger set of non-equilibrium structures. We provide a detailed
comparison to previous works on denoising in Section A.2.

SE(3)/E(3)-Equivariant Networks. Refer to Section A.1 for discussion on equivariant networks.

3 METHOD

3.1 PROBLEM SETUP

Calculating quantum mechanical properties like energy and forces of 3D atomistic systems is
fundamental to many applications. An atomistic system can be one or more molecules, a crystalline
material and so on. Specifically, each system S is an example in a dataset and can be described
as S “ tpzi,piq | i P t1, ..., |S|uu, where zi P N denotes the atomic number of the i-th atom and
pi P R3 denotes the 3D atomic position. The energy of S is denoted as EpSq P R, and the atom-wise
forces are denoted as F pSq “

␣

fi P R3 | i P t1, ..., |S|u
(

, where fi is the force acting on the i-th
atom. In this paper, we define a system to be an equilibrium structure if all of its atom-wise forces
are close to zeros. Otherwise, we refer to it as a non-equilibrium structure. Since non-equilibrium
structures have non-zero atomic forces and thus are not at an energy minimum, they have more
degrees of freedom and constitute a much larger set of possible structures than those at equilibrium.

In this work, we focus on the task of predicting energy and forces given non-equilibrium structures.
Specifically, given a non-equilibrium structure Snon-eq, GNNs predict energy ÊpSnon-eqq and atom-

wise forces F̂ pSnon-eqq “

!

f̂ipSnon-eqq P R3 | i P t1, ..., |Snon-eq|u

)

and minimize the loss function:

λE ¨LE `λF ¨LF “ λE ¨ |E1pSnon-eqq´ ÊpSnon-eqq|`λF ¨
1

|Snon-eq|

|Snon-eq|
ÿ

i“1

|f 1
ipSnon-eqq´ f̂ipSnon-eqq|2

(1)
λE and λF are energy and force coefficients controlling the relative importance between energy and
force predictions. E1pSnon-eqq “

EpSnon-eqq´µE

σE
is the normalized ground truth energy obtained by first

subtracting the original energy EpSnon-eqq by the mean of energy labels in the training set µE and
then dividing by the standard deviation of energy labels σE . Similarly, f 1

i “ fi
σF

is the normalized
atom-wise force. For force predictions, we can either directly predict them from latent representations
like node embeddings as commonly used for OC20 and OC22 datasets or take the negative gradients
of predicted energy with respect to atomic positions for datasets like MD17.

3.2 DENOISING NON-EQUILIBRIUM STRUCTURES (DENS)

3.2.1 FORMULATION OF DENOISING

Denoising structures have been used to improve the performance of GNNs on 3D atomistic
datasets. They first corrupt data by adding noise and then train a denoising autoencoder to re-
construct the original data by predicting the noise. Specifically, given a 3D atomistic system
S “ tpzi,piq | i P t1, ..., |S|uu, we create a corrupted structure S̃ by adding Gaussian noise with a
tuneable standard deviation σ to the atomic positions pi of the original structure S:

S̃ “ tpzi, p̃iq | i P t1, ..., |S|uu , where p̃i “ pi ` ϵi and ϵi „ N p0, σI3q (2)

We denote the set of noise added to S as NoisepS, S̃q “
␣

ϵi P R3 | i P t1, ..., |S|u
(

. When training
a denoising autoencoder, GNNs take S̃ as inputs, output atom-wise noise predictions ϵ̂pS̃qi and
minimize the L2 difference between normalized noise ϵi

σ and noise predictions ϵ̂pS̃qi:
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EppS,S̃q

»

–

1

|S|

|S|
ÿ

i“1

ˇ

ˇ

ˇ

ϵi
σ

´ ϵ̂pS̃qi

ˇ

ˇ

ˇ

2

fi

fl (3)

ppS, S̃q denotes the probability of obtaining the corrupted structure S̃ from the original structure S.
We divide the noise ϵi by the standard deviation σ to normalize the outputs of noise predictions.

When the original structure S is an equilibrium structure, denoising is to find the structure corre-
sponding to the nearest energy local minima given a high-energy corrupted structure. This makes
denoising equilibrium structures a many-to-one mapping and a well-defined problem. However, when
the original structure S is a non-equilibrium structure, denoising, the transformation from a corrupted
non-equilibrium structure to the original non-equilibrium one, can be an ill-posed problem since there
are many possible target structures to denoise to as shown in Figure 1a.
3.2.2 FORCE ENCODING

The reason that denoising non-equilibrium structures can be ill-posed is because we do not provide
sufficient information to specify the properties of the target structures. Concretely, given an original
non-equilibrium structure Snon-eq and its corrupted counterpart S̃non-eq, some structures interpolated
between Snon-eq and S̃non-eq could be in the same data distribution and therefore be the potential target
structures of denoising. In contrast, when denoising equilibrium structures as shown in Figure 1b,
we implicitly provide the extra information that the target structure should be at equilibrium with
near-zero forces, and this therefore limits the possibility of the target of denoising. Motivated
by the assumption that the forces of the original structures are close to zeros when denoising
equilibrium ones, we propose to encode the forces of original non-equilibrium structures when
denoising non-equilibrium ones as illustrated in Figure 1c. Specifically, when training denoising
non-equilibrium structures (DeNS), GNNs take both a corrupted non-equilibrium structure S̃non-eq
and the forces F pSnon-eqq of the original non-equilibrium structure Snon-eq as inputs, output atom-wise

noise predictions ϵ̂
´

S̃non-eq, F pSnon-eqq

¯

i
and minimize the L2 difference between normalized noise

ϵi
σ and noise predictions ϵ̂

´

S̃non-eq, F pSnon-eqq

¯

i
:

LDeNS “ EppSnon-eq,S̃non-eqq

»

–

1

|Snon-eq|

|Snon-eq|
ÿ

i“1

ˇ

ˇ

ˇ

ϵi
σ

´ ϵ̂
´

S̃non-eq, F pSnon-eqq

¯

i

ˇ

ˇ

ˇ

2

fi

fl (4)

Equation 4 is more general and reduces to Equation 3 when the target of denoising becomes equilib-
rium structures. Since we train GNNs with S̃non-eq and F pSnon-eqq as inputs and NoisepSnon-eq, S̃non-eqq

as outputs, they implicitly learn to leverage F pSnon-eqq to reconstruct Snon-eq instead of predicting any
arbitrary non-equilibrium structures. Comparing Index 1 and Index 2 in Table 1e, force encoding
enables DeNS to significantly improve the performance.

Since DeNS requires encoding of forces, DeNS favors equivariant networks, which can easily
incorporate forces as well as other higher-degree tensors into their node embeddings. Specifically, the
node embeddings of equivariant networks are equivariant irreps features built from vectors spaces of
irreducible representations (irreps) and contain CL channels of type-L vectors with degree L being
in the range from 0 to maximum degree Lmax. CL and Lmax are architectural hyper-parameters of
equivariant networks. To obtain the force embedding xf from the input force f , we first project f
into type-L vectors, with 0 ď L ď Lmax, with spherical harmonics Y pLq

´

f
||f ||

¯

and then expand the
number of channels from 1 to CL with an SOp3q linear layer (Geiger et al., 2022; Geiger & Smidt,
2022):

x
pLq

f “ SO3_LinearpLq

ˆ

||f || ¨ Y pLq

ˆ

f

||f ||

˙˙

(5)

x
pLq

f denotes the channels of type-L vectors in force embedding xf , and SO3_LinearpLq denotes the
SOp3q linear operation on type-L vectors. Since we normalize the input force when using spherical
harmonics, we multiply Y pLq

´

f
||f ||

¯

with the norm of input force ||f || to recover the information
of force magnitude. After computing force embeddings for all atom-wise forces, we add the force
embeddings to initial node embeddings to encode forces in equivariant networks.

On the other hand, it might not be that intuitive to encode forces in invariant networks since their
internal latent representations such as node embeddings and edge embeddings are scalars not geo-
metric tensors. One potential manner of encoding forces in latent representations is to project them
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Figure 2: Training process when incorporating DeNS as an auxiliary task. The upper blue block corresponds to
the original task of energy and force predictions (Equation 1), and the lower red block corresponds to training
DeNS (Equation 6). “Equivariant GNN” and “energy head” are shared across the two tasks. For each batch of
structures, we use the original task for some structures and DeNS for the others.

into edge embeddings by taking inner products between forces and edge vectors of relative positions.
This process is the inverse of how GemNet-OC (Gasteiger et al., 2022) decodes forces from latent
representations. Since equivariant networks have been shown to outperform invariant networks on
datasets containing non-equilibrium structures and are simpler to encode forces, in this work, we
mainly focus on equivariant networks and how DeNS can further advance their performance.
3.2.3 TRAINING DENS
Auxiliary Task. We propose to train DeNS as an auxiliary task along with the original task
of predicting energy and forces to improve the performance of energy and force predictions and
summarize the training process in Figure 2. Specifically, given a batch of structures, for each structure,
we decide whether we optimize the objective of DeNS (Equation 6) or the objective of the original
task (Equation 1). This introduces an additional hyper-parameter pDeNS, the probability of optimizing
DeNS. We use an additional noise head for noise predictions, which slightly increases training
time. Additionally, when training DeNS, similar to Noisy Nodes (Godwin et al., 2022), we also
leverage energy labels and predict the energy of original structures. Therefore, given an original
non-equilibrium structure Snon-eq and the corrupted counterpart S̃non-eq, training DeNS corresponds to
minimizing the following loss function:

λE ¨ LE ` λDeNS ¨ LDeNS “ λE ¨

ˇ

ˇ

ˇ
E1pSnon-eqq ´ Ê

´

S̃non-eq, F pSnon-eqq

¯ˇ

ˇ

ˇ
` λDeNS ¨ LDeNS (6)

where LDeNS denotes the loss function of denoising as defined in Equation 4. We note that we
also encode forces as discussed in Section 3.2.2 to predict the energy of Snon-eq, and we share the
energy prediction head across Equation 1 and Equation 6. The loss function introduces another
hyper-parameter λDeNS, DeNS coefficient, controlling the importance of the auxiliary task. Besides,
the process of corrupting structures also results in another hyper-parameter σ as shown in Equation 2.
We provide the pseudocode in Section E. We note that we only train DeNS with force encoding on
the training set without using any force labels on the validation and testing sets.
Multi-Scale Noise. Inspired by prior works on denoising score matching (Song & Ermon, 2019;
2020), we empirically find that incorporating multiple noise scales together for denoising improves
energy and force predictions on OC20 and OC22 datasets. Specifically, we choose the standard
deviations tσkuTk“1 to be a geometric progression that satisfy σT

σT´1
“ ... “ σ3

σ2
“ σ2

σ1
ą 1:

σk “ exp
ˆ

loge σlow `
k ´ 1

T ´ 1
¨ ploge σhigh ´ loge σlowq

˙

where k “ 1, ..., T (7)

Here we use σ1 “ σlow “ 0.01 and T “ 50 and only tune σT “ σhigh when multi-scale noise
is adopted. When training with DeNS, for each structure, we first sample a single noise standard
deviation σ from the T values, and then follow Equations 2 and 4. We surmise that multi-scale noises
are more likely to span the distribution of meaningful non-equilibrium structures across a diverse
range of atom types and geometries compared to a fixed σ.
3.2.4 DISCUSSION

How DeNS Can Improve Performance. DeNS enables leveraging more from training data to
improve the performance in the following two manners. First, DeNS adds noise to non-equilibrium
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structures to generate structures with new geometries and therefore naturally achieves data augmenta-
tion (Godwin et al., 2022). Second, training DeNS enourages learning a different yet highly correlated
interaction. Since we encode forces as inputs and predict the original structures in terms of noise
corrections, DeNS enables learning the interaction of transforming forces into structures, which is the
inverse of force predictions. As demonstrated in the works of Noisy Nodes (Godwin et al., 2022) and
UL2 (Tay et al., 2023), training a single model with multiple correlated objectives to learn different
interactions can help the performance on the original task.

Connection to Self-Supervised Learning. DeNS shares similar intuitions to self-supervised
learning methods like BERT (Devlin et al., 2019) and MAE (He et al., 2022) and other denoising
methods (Vincent et al., 2008; 2010; Godwin et al., 2022; Zaidi et al., 2023) – they remove or corrupt
a portion of input data and then learn to predict the original data. Learning to reconstruct data can help
learning generalizable representations, and therefore these methods can use the task of reconstruction
to improve the performance of downstream tasks. However, since DeNS requires force labels for
encoding, DeNS does not belong to self-supervised learning strictly but instead provides another way
to learn more from data. Therefore, we propose to use DeNS as an auxiliary task optimized along
with original tasks and do not follow the previous practice of first pre-training and then fine-tuning.
Additionally, we note that before obtaining a single equilibrium structure, we need to run relaxations
and generate many intermediate non-equilibrium ones, which is the labeling process as well. We
hope that the ability to leverage more from non-equilibrium structures as proposed in this work can
encourage researchers to release data containing intermediate non-equilibrium structures in addition
to final equilibrium ones. Moreover, we note that DeNS can be used in fine-tuning. For example,
we can first pre-train models on PCQM4Mv2 dataset and then fine-tune them on the smaller MD17
dataset with both the original task and DeNS.

Marginal Increase in Training Time. Since we use an additional noise head for denoising, training
with DeNS marginally increases the time of each training iteration. We optimize DeNS for some
structures and the original task for the others for each training iteration, and we demonstrate that
DeNS can improve the performance given the same amount of training iterations. Therefore, training
with DeNS only marginally increase the overall training time.

4 EXPERIMENTS

4.1 OC20 DATASET

Dataset and Tasks. We start with experiments on the large and diverse Open Catalyst 2020 dataset
(OC20) (Chanussot* et al., 2021), which consists of about 1.2M Density Functional Theory (DFT)
relaxation trajectories. Each DFT trajectory in OC20 starts from an initial structure of an adsorbate
molecule placed on a catalyst surface, which is then relaxed with the revised Perdew-Burke-Ernzerhof
(RPBE) functional (Hammer et al., 1999) calculations to a local energy minimum. Relevant to DeNS,
all the intermediate structures from these trajectories, except the relaxed structure, are considered
non-equilibrium structures. The relaxed or equilibrium structure has forces close to zero.

The primary task in OC20 is Structure to Energy and Forces (S2EF), which is to predict the energy
and per-atom forces given an equilibrium or non-equilibrium structure from any point in the trajectory.
These predictions are evaluated on energy and force mean absolute error (MAE). Once a model is
trained for S2EF, it is used to run structural relaxations from an initial structure using the predicted
forces till a local energy minimum is found. The energy predictions of these relaxed structures are
evaluated on the Initial Structure to Relaxed Energy (IS2RE) task.

Training Details. Please refer to Section B.1 for details on DeNS, architectures, hyper-parameters
and training time.

4.1.1 ABLATION STUDIES

We use EquiformerV2 (Liao et al., 2023) and S2EF-2M split of OC20 to investigate how DeNS-
related hyper-parameters affect the performance, compare the results of training with and without
DeNS and verify some design choices of DeNS.

Hyperparameters. In Tables 1a, 1b, 1c, we vary σhigh, the upper bound on standard deviations
of Gaussian noise, pDeNS , the probability of optimizing DeNS, and λDeNS , the loss coefficient for
DeNS, to study how the hyper-parameters of DeNS affect performance. We find that the optimal
settings are similar when training for different epochs and have the following observations. First, as
we increase σhigh, force predictions become worse monotonically, while energy predictions improve
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Epochs σhigh forces energy

12 0.125 19.10 284
12 0.250 19.11 276
12 0.500 19.31 273
12 0.750 19.43 273
12 1.000 19.52 274

20 0.250 18.41 271
20 0.500 18.48 263
20 0.750 18.66 263
20 1.000 18.66 261

30 0.250 17.85 265
30 0.500 17.96 255
30 0.750 18.06 255
30 1.000 18.06 256

(a) Upper bound on standard devia-
tions of Gaussian noise σhigh.

Epochs pDeNS forces energy

12 0.125 19.64 276
12 0.250 19.31 273
12 0.500 19.32 271
12 0.750 19.90 281

20 0.250 18.66 263
20 0.500 18.49 262
20 0.750 18.92 269

30 0.250 18.06 255
30 0.500 17.83 255
30 0.750 18.24 262

(b) Probability of optimizing DeNS
pDeNS .

Epochs λDeNS forces energy

12 5 19.64 277
12 10 19.31 273
12 15 19.25 275

20 5 19.02 262
20 10 18.66 263
20 15 18.56 263

30 5 18.40 260
30 10 18.06 255
30 15 17.94 258

(c) Loss coefficient for DeNS
λDeNS .

EquiformerV2 EquiformerV2 + DeNS

Epochs forces energy # params training time forces energy # params training time

12 20.46 285 83M 1398 19.32 271 89M 1501
20 19.78 280 83M 2330 18.49 262 89M 2501
30 19.42 278 83M 3495 17.83 255 89M 3752

eSCN eSCN + DeNS

20 20.61 290 52M 1802 19.07 279 52M 1829

(d) Comparison of training with and without DeNS.

Index forces energy

1 DeNS 19.32 271

2 Without force encoding 20.16 271
3 λE “ 0 in Eq. 6 19.57 281
4 Fixed σ “ 0.1 19.58 283
5 With σ encoding 19.66 279

(e) Design Choices.

Table 1: Ablation results of EquifomerV2 trained with DeNS on the 2M subset of the OC20 S2EF dataset. We
report mean absolute errors for forces in meV/Å and energy in meV, and lower is better. Errors are averaged
over the four validation sub-splits of OC20. The training time is in GPU-hours and measured on V100 GPUs.
(a)-(c) We use σhigh “ 0.5 for 12 epochs, σhigh “ 0.75 for 20 and 30 epochs, pDeNS “ 0.25, and λDeNS “ 10
as the default DeNS-related hyper-parameters and vary them to study how they affect the performance. The
settings with the best energy-force trade-offs are marked in gray . (d) We train EquiformerV2 and eSCN and
compare the results of training with and without DeNS. The results of EquiformerV2 are from (b). (e) We train
EquiformerV2 for 12 epochs with the best setting in (b) to verify the design choices of DeNS.

but saturate at σhigh “ 0.5. Second, pDeNS “ 0.5 and λDeNS “ 10 and 15 work better than any other
values across the three different epochs.

Comparison of Training with and without DeNS. Table 1d summarizes the results of training
with and without DeNS. For EquiformerV2, incorporating DeNS as an auxiliary task boosts the
performance of energy and force predictions, and only increases training time by 7.4% and the
number of parameters from 83M to 89M. Particularly, EquiformerV2 trained with DeNS for 12
epochs outperforms EquiformerV2 trained without DeNS for 30 epochs, saving 2.3ˆ training time.
Additionally, we also show that DeNS can be applicable to other equivariant networks like eSCN, and
training eSCN with DeNS improves both energy and force MAE while slightly increasing training
time by 1.5%. The different amount of increase in training time between EquiformerV2 and eSCN is
because they use different modules for noise predictions.

Design Choices. We conduct experiments to verify the design choices of DeNS and summarize the
results in Table 1e. All the models follow the best setting of training with DeNS for 12 epochs in
Table 1b. Comparing Index 1 and Index 2, we show that encoding forces F pSnon-eqq in Equations 4
and 6 enables denoising non-equilibrium structures to further improve performance. DeNS without
force encoding only results in slightly better force MAE than training without DeNS as in Table 1d.
We also compare DeNS with and without force encoding on the MD17 dataset in Section D.3 and
find that force encoding is critical. Comparing Index 1 and Index 3, we demonstrate that predicting
energy of original structures given corrupted ones can be helpful to the original task. Additionally,
we compare the performance of using a fixed σ and multi-scale noise, and the comparison between
Index 1 and Index 4 shows that multi-scale noise improves both energy and force predictions. Since
we sample standard deviation σ when using multi-scale noise, we also investigate whether we need to
encode σ. The comparison between Index 1 and Index 5 shows that DeNS without σ encoding works
better, and thus we can use the same approach when we use either a fixed σ or multi-scale noise.

4.1.2 MAIN RESULTS

All + MD. We train EquiformerV2 (160M) with DeNS on the S2EF-All+MD split of OC20. The
model follows the same configuration as EquiformerV2 (153M) trained without DeNS, and the
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Throughput S2EF validation S2EF test IS2RE test

Samples / Energy MAE Force MAE Energy MAE Force MAE Energy MAE
Model GPU sec. Ò (meV) Ó (meV/Å) Ó (meV) Ó (meV/Å) Ó (meV) Ó

GemNet-OC-L-E (Gasteiger et al., 2022) 7.5 239 22.1 230 21.0 -
GemNet-OC-L-F (Gasteiger et al., 2022) 3.2 252 20.0 241 19.0 -
GemNet-OC-L-F+E (Gasteiger et al., 2022) - - - - - 348
SCN L=6 K=16 (4-tap 2-band) (Zitnick et al., 2022) - - - 228 17.8 328
SCN L=8 K=20 (Zitnick et al., 2022) - - - 237 17.2 321
eSCN L=6 K=20 (Passaro & Zitnick, 2023) 2.9 243 17.1 236 16.2 323
EquiformerV2 (λE “ 4, 31M) (Liao et al., 2023) 7.1 232 16.3 228 15.5 315
EquiformerV2 (λE “ 2, 153M) (Liao et al., 2023) 1.8 230 14.6 227 13.8 311
EquiformerV2 (λE “ 4, 153M) (Liao et al., 2023) 1.8 227 15.0 219 14.2 309

EquiformerV2 + DeNS (λE “ 4, 160M) 1.8 221 14.2 216 13.4 308

Table 2: OC20 results on S2EF validation and test splits and IS2RE test split when trained on OC20 S2EF-
All+MD split. Throughput is reported as the number of structures processed per GPU-second during training
and measured on V100 GPUs.

S2EF-Total validation S2EF-Total test IS2RE-Total test

Number of Energy MAE (meV) Ó Force MAE (meV/Å) Ó Energy MAE (meV) Ó Force MAE (meV/Å) Ó Energy MAE (meV) Ó

Model parameters ID OOD ID OOD ID OOD ID OOD ID OOD

GemNet-OC (Gasteiger et al., 2022) 39M 545 1011 30 40 374 829 29.4 39.6 1329 1584
GemNet-OC (trained on OC20 + OC22) (Gasteiger et al., 2022) 39M 464 859 27 34 311 689 26.9 34.2 1200 1534
eSCN (Passaro & Zitnick, 2023) 200M - - - - 350 789 23.8 35.7 - -
EquiformerV2 (λE “ 1, λF “ 1) (Liao et al., 2023) 122M 343 580 24.42 34.31 182.8 677.4 22.98 35.57 1084 1444
EquiformerV2 (λE “ 4, λF “ 100) (Liao et al., 2023) 122M 433 629 22.88 30.70 263.7 659.8 21.58 32.65 1119 1440

EquiformerV2 + DeNS (λE “ 4, λF “ 100) 127M 395 532 22.76 31.53 226.9 619.2 21.30 32.42 1029 1392

Table 3: OC22 results on S2EF-Total validation and test splits and IS2RE-Total test split. Models are trained on
the OC22 S2EF-Total training split unless otherwise noted.

additional parameters are due to force encoding and one additional equivariant graph attention for
noise predictions. We report results in Table 2. All test results are computed via the EvalAI evaluation
server1. EquiformerV2 trained with DeNS achieves better S2EF results and comparable IS2RE
results, setting the new state-of-the-art results. The improvement is not as significant as that on OC20
S2EF-2M and MD17 (Section 4.3) datasets since the OC20 S2EF-All+MD training set contains much
more structures along relaxation trajectories, making new 3D geometries generated by DeNS less
helpful. However, DeNS is valuable because most datasets are not as large as OC20 S2EF-All+MD
dataset but have sizes closer to OC20 S2EF-2M and MD17 datasets.

4.2 OC22 DATASET

Dataset and Tasks. The Open Catalyst 2022 (OC22) dataset (Tran* et al., 2022) focuses on oxide
electrocatalysis and consists of about 62k DFT relaxations obtained with Perdew-Burke-Ernzerhof
(PBE) functional calculations. One crucial difference in OC22, compared to OC20, is that the energy
targets in OC22 are DFT total energies. DFT total energies are harder to predict but are the most
general and closest to a DFT surrogate, offering the flexibility to study property prediction beyond
adsorption energies. Analogous to the task definitions in OC20, the primary tasks in OC22 are
S2EF-Total and IS2RE-Total. We train models on the OC22 S2EF-Total dataset, which has 8.2M
structures, and evaluate them on energy and force MAE on the S2EF-total validation and test splits.
After that, we use these models to perform structure relaxations starting from initial structures in the
IS2RE-Total test split and evaluate the predicted relaxed energies on energy MAE.

Training Details. Please refer to Section C.1 for details on architectures, hyper-parameters and
training time.

Results. First, we conduct ablation studies to investigate the effects of DeNS-related hyper-
parameters in Section C.2. Second, we use the best hyper-parameter setting in Section C.2 to train
EquiformerV2 of 18 blocks with DeNS and report the results in Table 3. Compared to EquiformerV2
trained with different energy and force coefficients but without DeNS, EquiformerV2 trained with
DeNS improves the trade-offs between energy and force MAE, achieving comparable energy MAE
to EquiformerV2 (λE “ 1, λF “ 1) trained without DeNS and overall better force MAE than
EquiformerV2 (λE “ 4, λF “ 100) trained without DeNS. For IS2RE-Total, EquiformerV2 trained
with DeNS achieves the best energy MAE results. The improvement on IS2RE-Total from training
with DeNS on only OC22 is comparable to that of training on the much larger OC20 and OC22
datasets in previous works. Specifically, training GemNet-OC on OC20 and OC22 datasets (about
138M + 8.4M structures) improves IS2RE-Total energy MAE ID by 129meV and OOD by 50meV
compared to training GemNet-OC on only OC22 dataset (8.4M structures). Compared to training
without DeNS, training EquiformerV2 with DeNS improves ID by 90meV and OOD by 48meV.
Thus, training with DeNS clearly improves sample efficiency and performance on OC22.

1eval.ai/web/challenges/challenge-page/712
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Aspirin Benzene Ethanol Malonaldehyde Naphthalene Salicylic acid Toluene Uracil Training time Number of

Model energy forces energy forces energy forces energy forces energy forces energy forces energy forces energy forces (GPU-hours)Ó parameters

SchNet (Schütt et al., 2017) 16.0 58.5 3.5 13.4 3.5 16.9 5.6 28.6 6.9 25.2 8.7 36.9 5.2 24.7 6.1 24.3 - -
DimeNet (Gasteiger et al., 2020) 8.8 21.6 3.4 8.1 2.8 10.0 4.5 16.6 5.3 9.3 5.8 16.2 4.4 9.4 5.0 13.1 - -
PaiNN (Schütt et al., 2021) 6.9 14.7 - - 2.7 9.7 3.9 13.8 5.0 3.3 4.9 8.5 4.1 4.1 4.5 6.0 - -
TorchMD-NET (Thölke & Fabritiis, 2022) 5.3 11.0 2.5 8.5 2.3 4.7 3.3 7.3 3.7 2.6 4.0 5.6 3.2 2.9 4.1 4.1 - -
NequIP (Lmax “ 3) (Batzner et al., 2022) 5.7 8.0 - - 2.2 3.1 3.3 5.6 4.9 1.7 4.6 3.9 4.0 2.0 4.5 3.3 - -

Equiformer (Lmax “ 2) 5.3 7.2 2.2 6.6 2.2 3.1 3.3 5.8 3.7 2.1 4.5 4.1 3.8 2.1 4.3 3.3 17 3.50M
Equiformer (Lmax “ 3) 5.3 6.6 2.5 8.1 2.2 2.9 3.2 5.4 4.4 2.0 4.3 3.9 3.7 2.1 4.3 3.4 59 5.50M

Equiformer (Lmax “ 2) + DeNS 5.1 5.7 2.3 6.1 2.2 2.6 3.2 4.4 3.7 1.7 4.3 3.9 3.5 1.9 4.2 3.3 19 4.00M

Table 4: Mean absolute error results on the MD17 testing set. Energy and force are in units of meV and meV/Å.
We additionally report the time of training different Equiformer models averaged over all molecules and the
numbers of parameters to show that the proposed DeNS can improve performance with minimal overhead.

Method Aspirin Benzene Ethanol Malonaldehyde Naphthalene Salicylic acid Toluene Uracil

Index Attention Layer normalization DeNS energy forces energy forces energy forces energy forces energy forces energy forces energy forces energy forces

1 ✓ ✓ 5.3 7.2 2.2 6.6 2.2 3.1 3.3 5.8 3.7 2.1 4.5 4.1 3.8 2.1 4.3 3.3
2 ✓ ✓ ✓ 5.1 5.7 2.3 6.1 2.2 2.6 3.2 4.4 3.7 1.7 4.3 3.9 3.5 1.9 4.2 3.3
3 ✓ 5.2 7.7 2.4 6.2 2.3 3.9 3.3 6.2 3.8 2.2 4.1 4.7 3.3 2.4 4.2 4.4
4 ✓ ✓ 5.2 6.1 2.4 6.1 2.2 2.9 3.2 5.1 3.7 1.7 4.2 3.9 3.4 2.0 4.2 3.4

5 5.3 9.3 2.4 9.2 2.3 4.5 3.4 8.2 3.7 2.4 4.2 5.5 3.3 2.9 4.2 4.8
6 ✓ 5.2 7.3 2.4 8.1 2.2 3.4 3.4 6.7 3.7 1.9 4.2 4.4 3.4 2.2 4.2 3.8

Table 5: Mean absolute error results of variants of Equiformer (Lmax “ 2) without attention and layer
normalization on the MD17 testing set. Energy and force are in units of meV and meV/Å. Index 1 and Index 2
correspond to “Equiformer (Lmax “ 2)” and “Equiformer (Lmax “ 2) + DeNS” in Table 4.

4.3 MD17 DATASET

Dataset. The MD17 dataset (Chmiela et al., 2017; Schütt et al., 2017; Chmiela et al., 2018) consists
of molecular dynamics simulations of small organic molecules. The task is to predict the energy and
forces of these non-equilibrium molecules. We use 950 and 50 different configurations for training
and validation sets and the rest for the testing set.
Training Details. Please refer to Section D.2 for additinoal implementation details of DeNS,
hyper-parameters and training time.
Results. We train Equiformer (Lmax “ 2) (Liao & Smidt, 2023) with DeNS based on their
implementation and summarize the results in Table 4. DeNS improves the results on all molecules,
and Equiformer (Lmax = 2) trained with DeNS achieves overall best results. Particularly, Equiformer
(Lmax “ 2) trained with DeNS acheives better results on all the tasks and requires 3.1ˆ less training
time than Equiformer (Lmax “ 3) trained without DeNS. This demonstrates that for this small
dataset, training an auxiliary task and using data augmentation are more efficient and result in larger
performance gain than increasing Lmax from 2 to 3. Besides, training with DeNS marginally increase
the training time and the number of parameters since we have one additional equivariant graph
attention for noise predictions. Additionally, we find that the gains from training DeNS as an auxiliary
task are comparable to pre-training. Zaidi et al. (2023) uses TorchMD-NET (Thölke & Fabritiis,
2022) pre-trained on the PCQM4Mv2 dataset and report results on Aspirin. Their improvement on
force MAE is about 17.2% (Table 3 in Zaidi et al. (2023)). Training Equiformer with DeNS results in
20.8% improvement on force MAE without relying on another dataset. Note that we only increase
training time by 10.5% while their method takes much more time since PCQM4Mv2 dataset is
3000ˆ larger than MD17. Moreover, we also train variants of Equiformer (Lmax “ 2) by removing
attention and layer normalization to investigate the performance gain of DeNS on different network
archtiectures. The results are summarized in Table 5, and DeNS improves all the models. We note
that Equiformer without attention and layer normalization reduces to SEGNN (Brandstetter et al.,
2022) but with a better radial basis function. Since the models cover many variants of equivariant
networks, this suggests that DeNS is general and can be helpful to many equivariant networks.

5 CONCLUSION
In this paper, we propose to use denoising non-equilibrium structures (DeNS) as an auxiliary task
to better leverage training data and improve performance of original tasks of energy and force
predictions. Denoising non-equilibrium structures can be an ill-posed problem since there are many
possible target structures to denoise to. To address the issue, we propose to take the forces of
original structures as inputs to specify which non-equilibrium structures we are denoising. With
force encoding, DeNS successfully improve the performance of original tasks when it is used as an
auxiliary task. We conduct extensive experiments on OC20, OC22 and MD17 datasets to demonstrate
DeNS can boost the performance of energy and force predictions with minimal increase in training
cost and are applicable to many equivariant networks.
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6 REPRODUCIBILITY STATEMENT

We include details on DeNS, architectures, hyper-parameters and training time in Sec. B.1 (OC20),
Sec. C.1 (OC22) and Sec. D (MD17).

We submit our code reproducing the results of EquiformerV2 trained with DeNS on OC20 S2EF-2M
dataset and Equiformer (Lmax “ 2) trained with DeNS on MD17 dataset. Following the author
guide, after the discussion forums are opened for all submitted papers, we will make a comment
directed to the reviewers and area chairs and put a link to an anonymous repository.
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A RELATED WORKS

A.1 SE(3)/E(3)-EQUIVARIANT NETWORKS

Equivariant neural networks (Thomas et al., 2018; Kondor et al., 2018; Weiler et al., 2018; Fuchs
et al., 2020; Miller et al., 2020; Townshend et al., 2020; Batzner et al., 2022; Jing et al., 2021; Schütt
et al., 2021; Satorras et al., 2021; Brandstetter et al., 2022; Thölke & Fabritiis, 2022; Le et al., 2022;
Musaelian et al., 2022; Batatia et al., 2022; Liao & Smidt, 2023; Passaro & Zitnick, 2023; Liao et al.,
2023) use vector spaces of irreducible representations (irreps) for equivariant irreps features and
adopt equivariant operations such as tensor products to achieve equivariance to 3D rotation. Previous
works differ in which equivariant operations are used and the combination of those operations.
TFN (Thomas et al., 2018) and NequIP (Batzner et al., 2022) use tensor products for equivariant
graph convolution with linear messages, with the latter utilizing extra gate activation (Weiler et al.,
2018). SEGNN (Brandstetter et al., 2022) applies gate activation to messages passing for non-linear
messages (Gilmer et al., 2017; Sanchez-Gonzalez et al., 2020). SE(3)-Transformer (Fuchs et al.,
2020) adopts equivariant dot product attention with linear messages. Equiformer (Liao & Smidt,
2023) improves upon previous models by combining MLP attention and non-linear messages and
additionally introducing equivariant layer normalization and regularizations like dropout (Srivastava
et al., 2014) and stochastic depth (Huang et al., 2016). However, these networks rely on compute-
intensive SOp3q convolutions built from tensor products, and therefore they can only use small values
for maximum degrees Lmax of irreps features. eSCN (Passaro & Zitnick, 2023) significantly reduces
the complexity of SOp3q convolutions by first rotating irreps features based on relative positions
and then applying SOp2q linear layers, enabling higher values of Lmax. EquiformerV2 (Liao et al.,
2023) adopts eSCN convolutions and proposes an improved version of Equiformer to better leverage
the power of higher Lmax, achieving the current state-of-the-art results on OC20 (Chanussot* et al.,
2021) and OC22 (Tran* et al., 2022) datasets.

We refer readers to the works (Liao & Smidt, 2023; Liao et al., 2023) for detailed background on
equivariant networks.

A.2 COMPARISON TO PREVIOUS WORKS ON DENOISING

We discuss the comparisons between previous works on denoising (Godwin et al., 2022; Zaidi et al.,
2023; Feng et al., 2023b; Wang et al., 2023) and this work in chronological order as below.

Godwin et al. (2022) first proposes the idea of adding noise to 3D coordinates and then using
denoising as an auxiliary task. The auxiliary task is trained along with the original task without
relying on another large dataset. Their approach requires known equilibrium structures and therefore
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is limited to QM9 (Ramakrishnan et al., 2014; Ruddigkeit et al., 2012) and OC20 IS2RE datasets
and can not be applied to force prediction. For QM9, all the structures are at equilibrium, and for
OC20 IS2RE, the target of denoising is the equilibrium relaxed structure. Denoising without force
encoding is well-defined on both QM9 and OC20 IS2RE. In contrast, this work proposes using force
encoding to generalize their approach to force prediction and non-equilibrium structures, which have
much larger datasets than equilibrium ones. Force encoding can achieve better results on OC20 S2EF
dataset without any overhead (Index 1 and Index 2 in Table 1(e)) and is necessary on MD17 dataset
(Section D.3).

Zaidi et al. (2023) adopts the denoising approach proposed by Godwin et al. (2022) as a pre-training
method and therefore requires another large dataset containing unlabelled equilibrium structures for
pre-training. On the other hand, Godwin et al. (2022) and this work use denoising along with the
original task and do not use any additional unlabeled data.

Feng et al. (2023b) follows the same practice of pre-training via denoising (Zaidi et al., 2023) and
proposes a different manner of adding noise. Specifically, they separate noise into dihedral angle
noise and coordinate noise and only learn to predict coordinate noise. However, dihedral angle noise
requires tools like RDKit to obtain rotatable bonds and cannot be applied to other datasets like OC20
and OC22.

Although Zaidi et al. (2023) and Feng et al. (2023b) report results of force prediction on MD17
dataset, they first pre-train models on PCQM4Mv2 dataset (Nakata & Shimazaki, 2017) and then
fine-tune the pre-trained models on MD17 dataset. We note that their setting is different from ours
since we do not use any dataset for pre-training. As for fine-tuning on MD17 dataset, Zaidi et al.
(2023) simply follows the same practice in standard training. Feng et al. (2023b) explores fine-tuning
with objectives similar to Noisy Nodes (Godwin et al., 2022), but the performance gain is much
smaller than ours. Concretely, in Table 5 in Feng et al. (2023b), the improvement on force prediction
on Aspirin is about 2.6% while we improve force MAE by 20.8%.

Wang et al. (2023) uses the same pre-training method as Zaidi et al. (2023) but applies it to ANI-
1 (Smith et al., 2017) and ANI-1x (Smith et al., 2018) datasets, which contain non-equilibrium
structures. However, Wang et al. (2023) does not encode forces, and denoising non-equilibrium
structures without force encoding can sometimes lead to worse results compared to training without
denoising.

B DETAILS OF EXPERIMENTS ON OC20

B.1 TRAINING DETAILS

Since each structure in OC20 S2EF dataset has pre-defined fixed atoms with zero forces and free
atoms with non-zero forces, when training DeNS, we only add noise to free atoms and denoise
corrupted free atoms. Additionally, we find that multi-scale noise works better than using a fixed σ
and thus corrupt structures with multi-scale noise when training DeNS.

We add an additional equivariant graph attention to EquiformerV2 for noise predictions. We mainly
follow the hyper-parameters of training EquiformerV2 without DeNS on OC20 S2EF-2M and S2EF-
All+MD datasets. For training EquiformerV2 on OC20 S2EF-All+MD dataset, we increase the
number of epochs from 1 to 2 for better performance. This results in higher training time than other
methods. However, we note that we already demonstrate training with DeNS can achieve better results
given the same amount of training time in Table 1d. Table 6 summarizes the hyper-parameters of
training EquiformerV2 with DeNS for the ablation studies on OC20 S2EF-2M dataset in Section 4.1.1
and for the main results on OC20 S2EF-All+MD datasets in Section 4.1.2. Please refer to the work
of EquiformerV2 (Liao et al., 2023) for details of the architecture.

V100 GPUs with 32GB are used to train models. We use 16 GPUs for training on OC20 S2EF-2M
dataset and 128 GPUs for OC20 S2EF-All+MD dataset. The training time and the numbers of
parameters of different models on OC20 S2EF-2M dataset can be found in Table 1d. For OC20
S2EF-All+MD dataset, the training time is 44281 GPU-hours and the number of parameters is 160M.
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EquiformerV2 (160M) on
Hyper-parameters S2EF-2M S2EF-All+MD

Optimizer AdamW AdamW
Learning rate scheduling Cosine learning rate with linear warmup Cosine learning rate with linear warmup
Warmup epochs 0.1 0.01
Maximum learning rate 2 ˆ 10´4 for 12 epochs 4 ˆ 10´4

4 ˆ 10´4 for 20, 30 epochs
Batch size 64 512
Number of epochs 12, 20, 30 2
Weight decay 1 ˆ 10´3 1 ˆ 10´3

Dropout rate 0.1 0.1
Stochastic depth 0.05 0.1
Energy coefficient λE 2 4
Force coefficient λF 100 100
Gradient clipping norm threshold 100 100
Model EMA decay 0.999 0.999
Cutoff radius (Å) 12 12
Maximum number of neighbors 20 20
Number of radial bases 600 600
Dimension of hidden scalar features in radial functions dedge p0, 128q p0, 128q

Maximum degree Lmax 6 6
Maximum order Mmax 2 3
Number of Transformer blocks 12 20
Embedding dimension dembed p6, 128q p6, 128q

f
pLq

ij dimension dattn_hidden p6, 64q p6, 64q

Number of attention heads h 8 8

f
p0q

ij dimension dattn_alpha p0, 64q p0, 64q

Value dimension dattn_value p6, 16q p6, 16q

Hidden dimension in feed forward networks dffn p6, 128q p6, 128q

Resolution of point samples R 18 18

Upper bound on standard deviations of Gaussian noise σhigh - 0.75
Probability of optimizing DeNS pDeNS - 0.25
Loss coefficient for DeNS λDeNS - 10

Table 6: Hyper-parameters of training EquiformerV2 with DeNS on OC20 S2EF-2M dataset and OC20 S2EF-
All+MD dataset. For OC20 S2EF-2M dataset, the DeNS-related hyper-parameters, σhigh, pDeNS and λDeNS, can
be found in Table 1.

C DETAILS OF EXPERIMENTS ON OC22

C.1 TRAINING DETAILS

Different from OC20, all the atoms in a structure in OC22 are free. Therefore, we add noise to and
denoise all atoms when training DeNS. We follow the practice on OC20 dataset and use multi-scale
noise to corrupt structures.

We add an additional equivariant graph attention to EquiformerV2 for noise predictions. Table 7
summarizes the hyper-parameters of ablation results on OC22 in Table 8. The DeNS-related hyper-
parameters can be found in Table 8. As for the result in Table 3, we increase the number of
Transformer blocks to 18, increase the batch size to 256 and train for 12 epochs. For DeNS-related
hyper-parameters, we use σhigh “ 0.5, pDeNS “ 0.5 and λDeNS “ 50.

We use 32 V100 GPUs (32GB) for the ablation results, and the training time and the numbers of
parameters can be found in Table 8. We use 64 V100 GPUs (32GB) for the result in Table 3. The
training time is 10163 GPU-hours, and the number of parameters 127M.

C.2 ABLATION RESULTS

We train EquiformerV2 of 12 blocks with DeNS to study how the hyper-parameters of DeNS
affect the performance and compare with EquiformerV2 trained without DeNS. The results are
summarized in Table 8. Compared to EquiformerV2 trained without DeNS, EquiformerV2 trained
with DeNS achieves significantly better energy MAE and comparable force MAE. We find the best
hyper-parameter setting is σhigh “ 0.5, pDeNS “ 0.5 and λDeNS “ 50.
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Hyper-parameters Value or description

Optimizer AdamW
Learning rate scheduling Cosine learning rate with linear warmup
Warmup epochs 0.1
Maximum learning rate 2 ˆ 10´4

Batch size 128
Number of epochs 6
Weight decay 1 ˆ 10´3

Dropout rate 0.1
Stochastic depth 0.1
Energy coefficient λE 4
Force coefficient λF 100
Gradient clipping norm threshold 50
Model EMA decay 0.999
Cutoff radius (Å) 12
Maximum number of neighbors 20
Number of radial bases 600
Dimension of hidden scalar features in radial functions dedge p0, 128q

Maximum degree Lmax 6
Maximum order Mmax 2
Number of Transformer blocks 12
Embedding dimension dembed p6, 128q

f
pLq

ij dimension dattn_hidden p6, 64q

Number of attention heads h 8

f
p0q

ij dimension dattn_alpha p0, 64q

Value dimension dattn_value p6, 16q

Hidden dimension in feed forward networks dffn p6, 128q

Resolution of point samples R 18

Table 7: Hyper-parameters for OC22 dataset.

Energy MAE (meV) Ó Force MAE (meV/Å) Ó

# Parameters Training time (GPU-hours) σhigh pDeNS λDeNS ID OOD ID OOD

EquiformerV2 (Liao et al., 2023) 83M 3184 - - - 436 641 23.37 31.77

EquiformerV2 + DeNS 89M 3446
0.25 0.25 50 415 590 23.13 31.32
0.50 0.25 50 420 586 22.93 31.38
0.75 0.25 50 419 623 23.25 32.04
1.00 0.25 50 429 621 23.11 31.49
0.50 0.50 50 408 579 23.02 31.41
0.50 0.25 25 415 639 23.34 32.22
0.50 0.25 75 429 588 23.02 31.74
0.50 0.25 100 424 665 22.96 31.68

Table 8: Ablation results of training EquiformerV2 with DeNS on OC22. All models have 12 blocks and are
trained on the OC22 S2EF-Total training split with energy coefficient λE “ 4 and force coefficient λF “ 100.
Errors are evaluated on the validation split. The best hyperparameter settings are marked in gray .

D DETAILS OF EXPERIMENTS ON MD17

D.1 ADDITIONAL DETAILS OF DENS

Denoising Partially Corrupted Structures. Empirically, we find that adding noise to all atoms in
a structure can lead to limited performance gain of DeNS on the MD17 dataset, and we surmise that
there are several structures satisfying input forces if we add noise to all atoms, making denoising
a less well-defined problem. We note that the issue can depend on datasets, and adding noise to
all atoms can still result in better performance on the OC20 and OC22 datasets. To address the
issue, we propose to only add noise to a subset of atoms and denoise partially corrupted structures.
Specifically, for corrupted atoms, we encode their atom-wise forces and predict the noise. For other
uncorrupted atoms, we do not encode forces but predict them as in the original task. We also predict
the energy of the original structures given partially corrupted structures. This solution introduces
an extra hyper-parameter rDeNS, the ratio of the number of corrupted atoms to that of all atoms. For
OC20 and OC22 datasets, we add noises to all atoms when training DeNS, and therefore rDeNS “ 1.0.

Implementation Details. It is necessary that gradients consider both the original task and DeNS
when updating learnable parameters, and this affects how we sample structures for DeNS when only
a single GPU is used for training models on the MD17 dataset. We zero out forces corresponding
to structures used for the original task so that a single forward-backward propagation can consider
both DeNS and the original task. In contrast, if we switch between DeNS and the original task for
different iterations, gradients only consider either DeNS or the original task, and we find that this
does not result in better performance on the MD17 dataset than training without DeNS.
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Hyper-parameter Aspirin Benzene Ethanol Malonaldehyde Naphthalene Salicylic acid Toluene Uracil

Energy coefficient λE 1 1 1 1 2 1 1 1
Force coefficient λF 80 80 80 100 20 80 80 20
Probability of optimizing DeNS pDeNS 0.25 0.25 0.25 0.25 0.25 0.125 0.125 0.25
Standard deviation of Gaussian noises σ 0.05 0.05 0.05 0.05 0.05 0.025 0.025 0.05
DeNS coefficient λDeNS 5 5 5 5 5 5 5 5
Ratio of the number of corrupted atoms to that of all atoms rDeNS 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25

Table 9: Hyper-parameters of training with DeNS on the MD17 dataset. The other hyper-parameters not listed
here are the same as the original Equiformer (Lmax “ 2) trained without DeNS.

Aspirin Benzene Ethanol Malonaldehyde Naphthalene Salicylic acid Toluene Uracil

Index Method energy forces energy forces energy forces energy forces energy forces energy forces energy forces energy forces

1 Equiformer (Lmax “ 2) 5.3 7.2 2.2 6.6 2.2 3.1 3.3 5.8 3.7 2.1 4.5 4.1 3.8 2.1 4.3 3.3
2 Equiformer (Lmax “ 2) + DeNS without force encoding 8.6 9.1 2.3 6.3 2.3 3.3 3.2 5.8 7.7 6.1 5.2 10.6 3.7 2.0 5.5 6.5
3 Equiformer (Lmax “ 2) + DeNS with force encoding 5.1 5.7 2.3 6.1 2.2 2.6 3.2 4.4 3.7 1.7 4.3 3.9 3.5 1.9 4.2 3.3

Table 10: Comparison between denoising with and without force encoding on MD17 dataset. Mean absolute
error results are evaluated on the MD17 testing set. Energy and force are in units of meV and meV/Å. Index 1
and Index 3 correspond to “Equiformer (Lmax “ 2)” and “Equiformer (Lmax “ 2) + DeNS” in Table 4.

D.2 TRAINING DETAILS

We use the same codebase as Equiformer (Liao & Smidt, 2023) for experiments on the MD17 dataset
and follow most of the original hyper-parameters for training with DeNS. For training DeNS, we
use an additional equivariant graph attention for noise predictions, which slightly increases training
time and the number of parameters. We use single-scale noise with a fixed standard deviation σ when
corrupting structures. The hyper-parameters introduced by training DeNS and the values of energy
coefficient λE and force coefficient λF on different molecules can be found in Table 9. Empirically,
we find that linearly decaying DeNS coefficient λDeNS to 0 thoughout the training can result in better
performance. For the Equiformer variant without attention and layer normalization, we find that
using normal distributions to initialize weights can result in training divergence and therefore we use
uniform distributions. For some molecules, we find training Equiformer variant without attention and
layer normalization with DeNS is unstable and therefore reduce the learning rate to 3 ˆ 10´4.

We use one A5000 GPU with 24GB to train different models for each molecule. We report the training
time averaged over all molecules. Training Equiformer (Lmax “ 2) without DeNS takes about 17
hours, and training Equiformer (Lmax “ 3) without DeNS takes about 59 hours. When DeNS is used
as an auxiliary task, training Equiformer (Lmax “ 2) takes 19 hours. As for numbers of parameters,
Equiformer (Lmax “ 2) without DeNS has 3.50M parameters, Equiformer (Lmax “ 2) with DeNS
has 4.00M parameters, and Equiformer (Lmax “ 3) without DeNS has 5.50M parameters.

D.3 COMPARISON BETWEEN DENOISING WITH AND WITHOUT FORCE ENCODING

We compare DeNS with and without force encoding on MD17 to demonstrate that force encoding is
critical. The results are summarized in Table 10. DeNS with force encoding (Index 3) achieves the
best results across all molecules. Compared to training without denoising (Index 1), training with
DeNS without force encoding (Index 2) only achieves slightly better results on some molecules (i.e.,
Benzene, Malondaldehyde, and Toluene) and much worse results on others. For molecules on which
training DeNS without force encoding is helpful, adding force encoding can further achieve even
better results. For other molecules, force encoding is critical for DeNS to be effective.

E PSEUDOCODE FOR TRAINING WITH DENS

We provide the pseudocode for training with DeNS in Algorithm 1 and note that Line 5 can be
parallelized. For denoising partially corrupted structures discussed in Section D.1, we only add noise
to a subset of atoms (Line 14) and predict the corresponding noise (Line 21).
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Algorithm 1 Training with DeNS

1: Input:
pDeNS: probability of optimizing DeNS
λDeNS: DeNS coefficient
σ: standard deviation of Gaussian noise if multi-scale noise is not used
σhigh: upper bound on standard deviations of Gaussian noise if multi-scale noise is used
σlow: lower bound on standard deviations of Gaussian noise if multi-scale noise is used
λE : energy coefficient
λF : force coefficient
GNN: graph neural network for predicting energy, forces and noise

2: while training do
3: Ltotal “ 0
4: Sample a batch of B structures tpSnon-eqq

j
| j P t1, ..., Buu from the training set

5: for j “ 1 to B do Ź This for loop can be parallelized
6: Let pSnon-eqq

j
“

!

pzi,piq | i P t1, ..., | pSnon-eqq
j

|u

)

7: Sample p from a uniform distribution Up0, 1q to determine whether to optimize DeNS
8: if p ă pDeNS then Ź Optimize DeNS based on Equation 6
9: if multi-scale noise is used then

10: Sample σsample from tσkuTk“1
11: else
12: σsample “ σ
13: end if
14: for i “ 1 to | pSnon-eqq

j
| do

15: ϵi „ N p0, σsampleI3q

16: p̃i “ pi ` ϵi
17: end for
18: Let pS̃non-eqqj “

!

pzi, p̃iq | i P t1, ..., | pSnon-eqq
j

|u

)

19: Ê, _, ϵ̂ Ð GNN
´

pS̃non-eqqj , F
`

pSnon-eqqj
˘

¯

20: LE “

ˇ

ˇ

ˇ
E1

`

pSnon-eqqj
˘

´ Ê
ˇ

ˇ

ˇ

21: LDeNS “ 1
|pSnon-eqqj |

ř|pSnon-eqq
j

|

i“1

ˇ

ˇ

ˇ

ϵi
σsample

´ ϵ̂i

ˇ

ˇ

ˇ

2

Ź Calculate LDeNS based on Equation 4
22: Ltotal “ Ltotal ` λE ¨ LE ` λDeNS ¨ LDeNS
23: else Ź Optimize the original task based on Equation 1
24: Ê, F̂ , _ Ð GNN

`

pSnon-eqqj
˘

25: LE “

ˇ

ˇ

ˇ
E1

`

pSnon-eqqj
˘

´ Ê
ˇ

ˇ

ˇ

26: LF “ 1
|pSnon-eqqj |

ř|pSnon-eqq
j

|

i“1 |f 1
i

`

pSnon-eqqj
˘

´ f̂i|
2

27: Ltotal “ Ltotal ` λE ¨ LE ` λF ¨ LF

28: end if
29: end for
30: Ltotal “ Ltotal

B
31: Optimize GNN based on Ltotal
32: end while

F VISUALIZATION OF CORRUPTED STRUCTURES

We visualize how adding noise of different scales affect structures in OC20, OC22 and MD17 datasets
in Figure 3, Figure 4 and Figure 5, respectively.
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Figure 3: Visualization of corrupted structures in OC20 dataset. We add noise of different scales to
original structures (column 1). For each row, we sample ϵi „ N p0, I3q, multiply ϵi with σ “

0.1 (column 2), 0.3 (column 3) and 0.5 (column 4), and add the scaled noise to the original structures. For
columns 2, 3 and 4, the ligher colors denote the atomic positions of the original structures.

21



Under review as a conference paper at ICLR 2024

Figure 4: Visualization of corrupted structures in OC22 dataset. We add noise of different scales to
original structures (column 1). For each row, we sample ϵi „ N p0, I3q, multiply ϵi with σ “

0.1 (column 2), 0.3 (column 3) and 0.5 (column 4), and add the scaled noise to the original structures. For
columns 2, 3 and 4, the ligher colors denote the atomic positions of the original structures.
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Figure 5: Visualization of corrupted structures in MD17 dataset. We add noise of different scales
to original structures (column 1). For each row, we sample ϵi „ N p0, I3q, multiply ϵi with σ “

0.01 (column 2), 0.03 (column 3), 0.05 (column 4) and 0.07 (column 5), and add the scaled noise to the origi-
nal structures. For columns 2, 3, 4 and 5, the ligher colors denote the atomic positions of the original structures.
Here we add noise to all the atoms in a structure for better visual effects.
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