
Under review as a conference paper at ICLR 2021

REFLECTIVE DECODING: UNSUPERVISED
PARAPHRASING AND ABDUCTIVE REASONING

Anonymous authors
Paper under double-blind review

ABSTRACT

Pretrained Language Models (LMs) generate text with remarkable quality, novelty,
and coherence. Yet applying LMs to the problems of paraphrasing and infilling
currently requires direct supervision, since these tasks break the left-to-right gen-
eration setup of pretrained LMs. We present REFLECTIVE DECODING, a novel
unsupervised approach to apply the capabilities of pretrained LMs to non-sequential
tasks. Our approach is general and applicable to two distant tasks – paraphrasing
and abductive reasoning. It requires no supervision or parallel corpora, only two
pretrained language models: forward and backward. REFLECTIVE DECODING op-
erates in two intuitive steps. In the contextualization step, we use LMs to generate
many left and right contexts which collectively capture the meaning of the input
sentence. Then, in the reflection step we decode in the semantic neighborhood
of the input, conditioning on an ensemble of generated contexts with the reverse
direction LM. We reflect through the generated contexts, effectively using them as
an intermediate meaning representation to generate conditional output. Empirical
results demonstrate that REFLECTIVE DECODING outperforms strong unsupervised
baselines on both paraphrasing and abductive text infilling, significantly narrowing
the gap between unsupervised and supervised methods. REFLECTIVE DECODING
introduces the concept of using generated contexts to represent meaning, opening
up new possibilities for unsupervised conditional text generation.

1 INTRODUCTION

Pretrained language models (LMs) have made remarkable progress in language generation. Trained
over large amounts of unstructured text, models like GPT2 (Radford et al., 2019) leverage enhanced
generation methods (Holtzman et al., 2020; Martins et al., 2020; Welleck et al., 2019) resulting in
fluent and coherent continuations to given input text – e.g. news articles or stories.

However, it’s unclear how to apply LMs to tasks that cannot be framed as left-to-right generation—e.g.
paraphrasing and text infilling—without supervision. LMs undeniably model notions of “semantic
neighborhood” and “contextual fit” inherent in these tasks: to predict the next sentence, a model must
implicitly capture a subspace of similar sentences related to the given context. Can we leverage this
implicit knowledge to apply pretrained LMs to non-sequential tasks without direct supervision?

We introduce REFLECTIVE DECODING—a novel decoding method that allows LMs to be applied to
naturally distributional tasks like paraphrasing and text-infilling, without direct supervision. REFLEC-
TIVE DECODING requires only two complementary LMs – one forward (

−→
LM) and one backward

(
←−
LM).

−→
LM and

←−
LM are trained to generate text left-to-right (forward) and right-to-left (backward).

Inspired by the distributional hypothesis for representing the meaning of a word using other words
it often co-occurs with (Firth, 1957), the two LMs generate contexts that collectively represent the
meaning of a given sentence (the contextualization step). In the reflection step we decode with this
meaning, by conditioning on an ensemble of these contexts with reverse-direction LMs.

Figure 1 (left) shows an example of REFLECTIVE DECODING applied to paraphrasing, with the
left-side contexts omitted for clarity. Given an input ssrc : How are circulatory system tissues formed?
the contextualization step generates contexts ci for ssrc with

−→
LM, each capturing different aspects of

the input sentence – e.g. c1: This is a medical question situates the input as a question, and c2: As
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!!"#: How are circulatory 
system tissues formed?

"!: How do circulatory 
systems form?
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+,()%&')

c1: This is a medical 
question best answered 
by a doctor…

…

c2: As with all tissue in 
the body, this begins 
with cell division …

c3: is one of  many key 
questions about the 
circulatory system … 

/: I picked her up and took her to 
San Francisco General hospital.

input
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1 Sample contexts  #$~%& (#|2*, 2*)
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…

c1: The day after her 
discharge she told 
me she was a lot 
better …1(: Amy had 

heart palpitations 
after a lot of 
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1): By the time 
she arrived her 
heart felt much 

better

+,(2*, 2*)

-NLG generated contexts

Figure 1: An illustration of how REFLECTIVE DECODING is applied to paraphrasing and αNLG.
Only the right-context is shown, although both are used in practice. First (1) the contextualization
step captures the meaning of an input by generating many contexts for it. Then, (2) the reflection step
samples generations using this meaning with

←−
RD (the REFLECTIVE DECODING sampling function).

←−
RD uses the reverse-direction language model

←−
LM to sample in the semantic neighborhood of the

input, with an ensemble of contexts that should also be likely to sample input (dashed arrow).

with all tissue in the body... presents an elaboration of the central concept in ssrc (tissue formation).
Collectively, many contexts capture the meaning of the input sentence. Next, we sample outputs in
the reflection step. By conditioning on the generated contexts with a backwards language model
(
←−
LM) in a weighted ensemble

←−
RD, we reflect back from the contexts to generate a sentence with the

same meaning as the input text.

REFLECTIVE DECODING shows strong unsupervised: On the Quora paraphrasing dataset, we test
with multiple levels of Novelty (variation from the source sentence) finding one setting (RD30)
outperforms unsupervised baselines on all but one metric, and supervised baselines on both the SARI
metric and human evaluation. Applying REFLECTIVE DECODING to αNLG (Bhagavatula et al.,
2020)—a text infilling task—we outperform the unsupervised baseline on overall quality by 30.7
points, significantly closing the gap with supervised methods. In both applications, REFLECTIVE
DECODING proceeds without domain finetuning, directly using pretrained models.

Empirical results suggest the possibility that completely unsupervised generation can solve a number
of tasks with thoughtful decoding choices, analogous to GPT-3 (Brown et al., 2020) showing the
same for thoughtfully designed contexts. We provide an intuitive interpretation of REFLECTIVE
DECODING in §2.7: sampling while prioritizing contextual (i.e. distributional) similarity with respect
to the source text. REFLECTIVE DECODING demonstrates how far unsupervised learning can take us,
when we design methods for eliciting specific kinds of information from pretrained LMs.

2 METHOD

2.1 NOTATION

We begin by defining notation used in explaining our method. Arrows are used to indicate the order
in which a sampling function conditions on and generates tokens: −→ indicates generating from the
left-most token and proceeding to the right, while←− indicates going from the rightmost token to
the left. One example of this is applying these to Language Models:

−→
LM, commonly referred to as

a “forward” LM processes and generates tokens from left to right. Any token generated by
−→
LM is

always directly following, or to the right of context c. In contrast,
←−
LM is what is typically called a

“backwards” LM, and proceeds left from the right-most token. When a token is generated, it is to the
left of the input context c.

This holds true for other functions. When we refer to the sampling function of our method (RD),
its arrow indicates whether it begins by generating the left-most or right-most token of the output
sentence (

−→
RD or

←−
RD, respectively). This also implicitly indicates which context it is conditioning on

(see §2 for more details):
−→
RD conditions on left context, and extends it in the left-to-right direction to
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Algorithm 1: Learn REFLECTIVE DECODING sampling function (right-to-left)

Input: Forward language model
−→
LM, backward language model

←−
LM, Source text: ssrc

1: Sample contexts, c1...cnc ∼
−→
LM(c|ssrc)

2: Initialize parameters w = w1...wnc s.t.
∑
wi = 1, wi ≥ 0

3:
←−
RD(s) ∝

∏
i

←−
LM(s|ci)wi normalized by token (equation ??)

4: learn w = argmaxw
←−
RD(ssrc) s.t.

∑
wi = 1, wi ≥ 0

Output:
←−
RD

generate the output.
←−
RD conditions on the right context, and generates backwards (right-to-left) to

extend it into the desired output.

2.2 OVERVIEW

REFLECTIVE DECODING is an unsupervised generation method that conditions on the content of an
input text, while abstracting away its surface form. This is useful in paraphrasing where we want
to generate a new surface form with the same content, but also when the surface form is difficult
to decode from. In text infilling for instance, unidirectional LMs cannot condition on bidirectional
context, but REFLECTIVE DECODING avoids directly conditioning on surface form, generating
contexts that capture the desired meaning in aggregate.

To justify how generated contexts do this, consider the example from figure 1 with input ssrc : How
are circulatory system tissues formed? By generating contexts for ssrc, we capture different aspects:
c1 situates ssrc as a question (This is a medical question...), while c2 and c3 explore central concepts
(as with all tissue...; about the circulatory system). While each context could follow many sentences,
together they form a fingerprint for ssrc. A sentence that could be followed by all of c1, c2, c3 will
likely be a question (c1) about tissue formation (c2) and the circulatory system (c3), semantically
similar to ssrc or even a paraphrase (ŝ: How do circulatory systems form?).

REFLECTIVE DECODING works on this principle. For an input text ssrc, we use a language model to
generate contexts that serve as a fingerprint for meaning. This is the contextualization step. Then in
the reflection step, we sample generations that also match these contexts. We consider right contexts
generated by

−→
LM here, but both directions are used. To effectively and efficiently sample with content

in ssrc, we learn the REFLECTIVE DECODING sampling function:

←−
RD (s) =

∏
i

←−
LM(s|ci)wi

Z(s, c,w)
(1)

This can be understood as a Product of Experts model (Hinton, 2002) between language model
distributions (

←−
LM) with different contexts, where the Z function just normalizes for token-by-token

generation (see equation 2 for its definition, with arguments source s, contexts c, weights w). This
matches the intuition above, that a paraphrase should fit the same contexts as the source:

←−
LM

conditions on an ensemble of these contexts, further informed by weights wi that maximize the
probability of ssrc under

←−
LM. In effect, we use weight contexts ci to best describe the source.

←−
RD samples generations that would also have generated these contexts, as in the example above.
This can be seen as sampling to minimize a notion of contextual difference or maximize similarity
between the sampled text s and ssrc (§2.7).

REFLECTIVE DECODING returns samples in the semantic neighborhood of ssrc, but the specific
application directs how these are ranked. In paraphrasing, we want the semantically closest sample,
using a contextual score (equation 3). In text infilling (αNLG) the goal is to fill-in the narrative “gap”
in the surrounding text rather than maximize similarity (equation 4).
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Task: !NLG
%!: Ray hung a tire on a rope to make his daughter a swing. __?__

%": Ray ran to his daughter to make sure she was okay.

RD He put her on the swing, and while she was on the swing, she fell off and was lying on 
the ground.

%!: Tom and his family were camping in a yurt. __?__ %": He chased it around until it left the yurt.

RD He went to the yurt and found a bear that was in the yurt

Task: Paraphrasing

what is it like to have a midlife crisis?
RD30 what does it mean to have a midlife crisis?

RD45 what do you do when you have a midlife crisis?

is it possible to make money as a film critic?

RD30 is there a way to make money as a film critic?

RD45 is it possible to make a living as a movie critic?

Figure 2: Example generations of REFLECTIVE DECODING on paraphrasing and abductive text
infilling (αNLG). RD45 encourages more difference from the input than RD30 (§3.1).

2.3 REFLECTIVE DECODING

Here, we explicitly describe the steps required to generate with REFLECTIVE DECODING. Centrally,
we construct a sampling function RD. We describe right-to-left

←−
RD in algorithm 1 but also use left-

to-right
−→
RD in practice (symmetrically described in §B.1 by reversing LMs). Algorithm 1 proceeds

using only the input ssrc, and two LMs (forward
←−
LM and backward

−→
LM). We explain algorithm 1

below:

contextualization step (line 1) We generate right contexts ci that follow the source text ssrc, using
forward language model

−→
LM. Following §2.2 and figure 1 these represent in meaning in ssrc.

reflection step (lines 2-4) Next, we define the sampling function
←−
RD we will use to generate outputs.

As discussed in §2.2, this takes the form of a Product of Experts model normalized by token (equation
1). More explicitly:

←−
RD (s) =

∏
i

←−
LM(s|ci)wi∏|s|

j=0

∑
t∈V

∏
i

←−
LM(t|sj+1:|s| + ci)wi

(2)

Algorithmically, the main step is learning informative weights wi for the generated contexts. As
outlined in §2.7, we would like to sample sentences that fit the context of ssrc. Intuitively, ssrc best
fits its own context, and so we learn weights wi to maximize probability of sampling ssrc.

we initialize (line 2) and learn (line 4) weights that maximize the probability of generating ssrc under
the sampling function

←−
RD (equation ??). From §2.7, §A.1 we are sampling text with low “contextual

distance” from ssrc; this guides weight-learning and implies weights form a proper distribution (line
2,4).

Finally, in the reflection step we use
←−
RD to sample text conditioned on the meaning of ssrc, captured

by the generated, weighted contexts (applied in §2.5 and §2.6).
←−
RD samples right-to-left, and a similar

left-to-right sampling function
−→
RD is learned symmetrically by reversing the roles of

−→
LM and

←−
LM

(detailed in §B.1). We describe some practical aspects for this process in §2.4.

2.4 IMPLEMENTATION

Here, we cover implementation details for §2.3.

Weight Pruning In practice, we sample tens of contexts (line 1), many ending up with negligible
weight in the final sampling function. For efficiency in sampling from an ensemble of these contexts
(equation 2), we then drop all but the top kc contexts and renormalize weights. Thus, kc < nc is the
actual number of contexts used during the reflection step of §2.3.

Parameters In line 1, we sample nc contexts to describe the source ssrc. We use nucleus sampling
(Holtzman et al., 2020) (described in §5) with parameter pc, and a maximum length of lenc. As stated
in Weight Pruning, we drop all but the top kc contexts by weight. Once a REFLECTIVE DECODING
sampling function is learned, we sample nŝ generations, of length lenŝ. Again, we use nucleus
sampling with p picked by entropy calibration (§B.3). Values for all parameters are available in §B.4.
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Language Models We train large forward (
−→
LM) and backward (

←−
LM) language models based on

GPT2 (Radford et al., 2019) using the OpenWebText training corpus (Gokaslan & Cohen, 2019). Our
implementation details follow those of past work retraining GPT21 (Zellers et al., 2019).

2.5 APPLICATION: PARAPHRASING

Following §2.3 the REFLECTIVE DECODING sampling function is learned in each direction (
−→
RD,

←−
RD) using the input sentence ssrc. Then, nŝ generations are sampled from both

−→
RD and

←−
RD:

ŝ1, ..., ŝnŝ
∼ −→RD, ŝnŝ+1, ..., ŝ2∗nŝ

∼ ←−RD

This gives a robust set of candidates using both sides of context. They are in the semantic
neighborhood of ssrc but must be ranked. REFLECTIVE DECODING is based on a notion of similarity
centered on contextual distance posed as cross-entropy (equation 6 and §2.7), so we use this as a final
scoring function leveraging the generated contexts of

−→
RD and

←−
RD:

score(ŝ) =
1

nc

∑
crh

−→
LM(crh|ŝ) +

1

nc

∑
clh

←−
LM(clh|ŝ) (3)

Where crh are the generated contexts used in
←−
RD, and clh for

−→
RD. Intuitively, we see this as how well

ŝ fits the contexts of ssrc, estimated with finite samples on each side.

2.6 APPLICATION: ABDUCTIVE REASONING

Abductive natural language generation (αNLG from Bhagavatula et al. (2020)) is the task of filling
in the blank between 2 observations o1 and o2, with a hypothesis h that abductively explains them.
Approaching this problem unsupervised is challenging, particularly with unidirectional language
models which cannot naturally condition on both sides when generating h.

REFLECTIVE DECODING simplifies this problem. Using concatenated o1 + o2 as ssrc in algorithm 1,
we learn a REFLECTIVE DECODING sampling function that captures the content of both observations.
We are interested in sampling in between o1 and o2, so when sampling hypotheses h from

←−
RD we

condition on the right-side observation o2 (and vice-versa for
−→
RD and o1):

h1, ..., hnŝ
∼ ←−RD(h|o2), hnŝ+1, ..., h2∗nŝ

∼ −→RD(h|o1)

Note that both
−→
RD and

←−
RD each contain information about both o1 and o2. Here we have a different

goal than the paraphrasing application: we would like to explain the gap between o1 and o2, rather
than rephrase o1 + o2 into a new surface form.

−→
RD and

←−
RD sample semantically related sentences to

the input, and so we simply sample with higher diversity (higher p in Nucleus Sampling) than for
paraphrasing, to encourage novel content while still using the information from o1 + o2.

We also use a task-specific scoring function to rank sampled hypotheses. We would like a hypothesis
that best explains both observations, and so use language models to measure this:

score(h) =
←−
LM(o1|h+ o2) +

−→
LM(o2|o1 + h) (4)

Adding h should help explain each observation given the other, meaning o2 is follows from o1 + h
and o1 from h+ o2. To filter hypotheses that only explain one of the two observations, we remove
any that make either observation less explained than no hypothesis, imposing:
←−
LM(o1|h+ o2) >

←−
LM(o1|o2),

−→
LM(o2|o1 + h) >

−→
LM(o2|o1)

1https://github.com/yet-another-account/openwebtext
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2.7 INTUITIONS AND THEORY

Here, we motivate and derive REFLECTIVE DECODING as a way to sample generations under a
notion of contextual “fit” with a source text, deriving the sampling function of equation ??. We start
by considering how to compare a generation ŝ with input ssrc.

We follow a distributional intuition (Firth, 1957), that textual meaning can be understood by the
contexts in which text appears. Many distributional approaches learn contentful neural representations
by predicting context given input text (Mikolov et al., 2013; Kiros et al., 2015), then compare these
representations for meaning. Instead, we compare contexts directly. Specifically, judging the
difference in meaning between texts ssrc and ŝ by their divergence:

DKL(
−→
LM(c|ssrc),

−→
LM(c|ŝ)) (5)

For simplicity, we use
−→
LM to denote both the theoretical left-to-right distribution of text, and the

model distribution estimating it.
−→
LM(c|s) is the distribution over right contexts c given sentence s, so

equation 5 can be understood as how different the right-contexts we expect ssrc and ŝ to appear in
are. Note, while we use right-hand context here, this explanation symmetrically applies to left-hand.

Measuring DKL exactly is infeasible, but for generation we are mainly interested in ranking or
optimizing for this score (e.g. picking the best paraphrase ŝ). We take inspiration from language
models, using a finite sample estimate of cross-entropy as an effective proxy for DKL:

Ĥ(
−→
LM(c|ssrc),

−→
LM(c|ŝ)) = 1

N

∑
ci∼
−→
LM(c|ssrc)

−log
−→
LM(ci|ŝ) (6)

Where ci ∼
−→
LM(c|ssrc) indicates contexts sampled from the LM conditioned on the input ssrc. This

objective makes intuitive sense: we want similar sentence ŝ to rank highly, so we “imagine” contexts
for ssrc and choose ŝ that most generates these contexts. Optimal ŝ fills approximately the same
contextual hole as ssrc, minimizing this “contextual distance”.

In this form, Ĥ requires a fully generated ŝ to compare, although we are trying to generate ŝ for
which this is low. We leverage the symmetric nature of the relationship between text and context to
“reflect” equation 6, into a function from which we can sample:

←−
RD(ŝj |, ŝj+1:n) =

∏
i

←−
LM(ŝj |ŝj+1:n + ci)

wi∑
t∈V

∏
i

←−
LM(t|ŝj+1:n + ci)wi

(7)

(equivalent to equation ??, derived in §A.1) ŝj is the jth token in ŝ (sampled right-to-left from n to
0), and V is vocabulary. Weights wi are learned, aligning probability with contextual similarity to
ssrc by maximizing probability of ssrc (best fits its own context). In effect, ŝ with low contextual
distance with source ssrc is likely. We can use left or right context by reversing the role of the LMs.

3 EXPERIMENTS

3.1 TASK: PARAPHRASE GENERATION

Task: Following past work, we test our paraphrasing method (§2.5) on the Quora question pair
dataset. We hold out 1000 examples for testing, with the rest for training and validation (used by
supervised baselines), disallowing overlap with the test set.

Metrics: Following past work, we include automatic metrics BLEU (Papineni et al., 2002), ME-
TEOR (Denkowski & Lavie, 2014), and TERp (Snover et al., 2009). These measure agreement with
references, but high overlap between references and inputs means copying input as-is gives high
scores (Mao & Lee, 2019); copying source sentences as-is beats all models on these metrics (table 1).

Past work has emphasized the important challenge of offering a novel phrasing in this task (Liu et al.,
2010; Chen & Dolan, 2011) beyond simply agreeing in meaning. Reference-agreement metrics don’t
explicitly measure this novelty. We address this in 3 ways. First, we explicitly quantify a simple
notion of novelty:

Novelty(ŝ) = 100−BLEU(ŝ, ssrc) (8)
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Method SARI↑ BLEU↑ METEOR↑ TERP ↓ Human↑ Novelty ↑
Human Source 17.8 56.0 37.6 48.0 - 0.0

Reference 91.9 100.0 100.0 0.0 71.7 43.9

Supervised PG-IL 32.8 49.1 33.8 49.0* 29.4 24.4
DiPS 38.8 41.0 27.9 56.0 36.6 48.5*
BART 36.1 44.7 34.7* 66.0 46.1 35.2

Supervised (Bilingual) MT 35.6 48.1 33.5 52.0 59.3 26.8

Unsupervised R-VQVAE 27.2 43.6 32.3 60.0 33.5 26.2
CGMHTop 32.3 42.0 28.2 59.0 27.0 27.6
CGMH30 33.9 40.9 27.5 60.0 31.5 29.7
CGMH45 32.6 33.8 23.4 65.0 15.8 44.5
RDTop (Us) 29.0 49.9* 33.9 52.0 27.5 20.8
RD30 (Us) 40.0* 46.8 32.2 57.0 63.2 30.0
RD45 (Us) 38.6 39.9 28.9 65.0 61.1 63.1

Table 1: Model performance on the Quora test split. Bold indicates best for model-type, * indicates
best overall (excluding human). The first 5 columns are measures of quality, while the last measures
novelty (equation 8) or difference from input. We rerun evaluations from past work.

to measure how agreement with the reference trades off with repeating the input. Second, we include
the SARI metric (Xu et al., 2016) which explicitly balances novelty from input with reference overlap.
Third, we quantify an overall human quality metric: the rate at which annotators find paraphrases
fluent, consistent with input meaning, and novel in phrasing. This is the “Human” column in table 1.

3 annotators evaluate models on 204 inputs for fluency, consistency, and novelty on Amazon Mechan-
ical Turk. The “Human” metric is the rate that examples meet the threshold for all 3: fluent enough to
understand, with at most minor differences in meaning and at least minor differences in wording. We
find rater agreement with Fleiss’ κ (Fleiss, 1971) to be 0.40 (fluency threshold), 0.54 (consistency
threshold), 0.77 (novelty threshold) and 0.48 (meets all thresholds) indicating moderate to substantial
agreement (Landis & Koch, 1977). Human evaluation is described more in §C.2.

Baselines: Parameters for REFLECTIVE DECODING are given in §B.4. We mainly compare against
2 unsupervised baselines: Controlled Sentence Generation by Metropolis Hastings (CGMH from
Miao et al. (2019)), and the residual VQ-VAE of Roy & Grangier (2019b) (R-VQVAE). This is a
cross-section of recent approaches (VAE, editing).

We also compare against a machine-translation approach (see Sec 5), by pivoting through German
using Transformer (Vaswani et al., 2017) models trained on WMT19 data (Barrault et al., 2019). MT
has access to bilingual data, and many past unsupervised paraphrasing works do not compare against
it. Thus, we include it in a separate section in our results, Table 1.

We include supervised baselines: the pointer generator trained by imitation learning (PG-IL) as in Du
& Ji (2019), the diversity-promoting DiPS model (Kumar et al., 2019), and a finetuned BART (Lewis
et al., 2019) model, which uses a more complex pretraining method than our LMs. Note that DiPS
generates multiple diverse paraphrases so we pick one at random.

CGMH and REFLECTIVE DECODING both return multiple ranked paraphrases. We can easily control
for Novelty by taking the highest-ranked output that meets a Novelty threshold. For each, we have
a version with no threshold (Top), and with thresholds such that average Novelty is 30 and 45.

3.2 TASK: ABDUCTIVE NLG

Task: The Abductive natural language generation task (αNLG) presented in Bhagavatula et al.
(2020) requires generating a hypothesis that fits between observations o1 and o2, and explains them.
We apply REFLECTIVE DECODING to this problem as outlined in §2.6, using available data splits.

Baselines: Parameters for REFLECTIVE DECODING are given in §B.4. We include baselines from
the original work: different supervised variants of GPT2 large with access to the observations, and
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optionally COMET (Bosselut et al., 2019) embeddings or generations. We include an unsupervised
baseline of GPT2 conditioned on o1 + o2 directly.

Metrics: For human evaluation, over 1000 examples we ask 3 raters on Amazon Mechanical Turk
about agreement between h and o1, o2, both, and overall quality on 4-value likert scales. We found
Fleiss’ kappa (Fleiss, 1971) of 0.31, 0.29, 0.28, and 0.30 respectively, indicating fair agreement
(Landis & Koch, 1977).

4 RESULTS AND DISCUSSION

Paraphrasing: On automatic metrics from past works (BLEU, METEOR, TERP ) our lowest-
Novelty model setting (RDTop) achieves the highest unsupervised scores, and highest overall on
BLEU. Other high scoring rows (Source, PG-IL) have similarly low-Novelty outputs . The SARI
metric explicitly balances novelty (i.e. difference from the source) with correctness (i.e. similarity to
the reference). On SARI we see such low-Novelty models perform worse. The best overall model
on SARI is our medium-Novelty setting (RD30) which outperforms MT and supervised models.

Ultimately, human annotation is the only way to validate the results of other metrics. Our human
evaluation measures what fraction of outputs are found to be fluent, consistent, and novel. As with
SARI, both our mid and high-Novelty models perform quite well. Our medium-Novelty setting
RD30 achieves the highest score overall (63.1), slightly higher than RD45 (61.1) and MT (59.3).
Further, our human evaluation validates SARI as a reasonable proxy, as they share the same top-5
models.

REFLECTIVE DECODING is able to compete on previously used quality metrics that favor low-
Novelty, but can easily produce more varied outputs preferred by humans. RD45 exceeds the novelty
of even the human reference, but is still among the highest ranked models by SARI and Human.

αNLG: Results on αNLG (table 2) present a strong case that REFLECTIVE DECODING can effec-
tively use bidirectional context. Strong hypotheses use information from both the initial observation
o1 and the future observation o2. Humans ranked the ability of REFLECTIVE DECODING to cap-
ture this 0.44, about 25 points above the unsupervised baseline and only 10 points below the best
supervised method tested. We see similar results for overall evaluation.

We also include example generations in figure 2 to demonstrate the ability of REFLECTIVE DECODING
to combine o1 and o2. For example, He put her on the swing, and while she was on the swing, she
fell off and was lying on the ground. incorporates information from both observations. Specifically, it
takes into account the swing that Ray is building for his daughter which is only mentioned in o1, and
hypothesises about a potential injury due to Ray checking on his daughter in o2.

Overall, the strong performance of REFLECTIVE DECODING on αNLG verifies applications beyond
paraphrasing. Indeed, all that was required to apply REFLECTIVE DECODING was a source text
whose content the generation should adhere to (o1 and o2 in this case), and two unidirectional LMs.

5 RELATED WORK

Decoding Techniques Holtzman et al. (2020) present nucleus sampling, a decoding technique to
improve generation quality. It utilized distribution truncation at the token level. When generating
a token at position i (given context x1:i−1), nucleus sampling operates by keeping the smallest
vocabulary Vp set that satisfies: ∑

x∈Vp

P (x|x1:i−1) ≥ p

where p is the sampling parameter and P is the generating distribution, which is then renormalized
to the reduced vocabulary. Rather than methods like tok-k sampling which take a static number of
most-likely samples, nucleus sampling takes a static segment of the probability mass, p. Nucleus
sampling is orthogonal to REFLECTIVE DECODING, which instead extends LM decoding to a new set
of problems and in fact includes nucleus sampling as a subroutine. Kajiwara (2019) use a constrained
decoding scheme to improve paraphrasing, but require a supervised system.

8
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Distributional Intuitions A key aspect of REFLECTIVE DECODING is using a distributional
intuition to represent the meaning of a text through many contexts. Kiros et al. (2015); Miao et al.
(2019) quantify semantic and Lin & Pantel (2001) identify paraphrastic relationships under similar
intuitions. A major point of difference between past work and ours is that we generate explicit
contexts to represent meaning, allowing unsupervised generation back from representations, while
past work typically attempts to compress the full contextual distribution into a fixed-length vector.

o1 o2 o1 + o2 all

human 86.7 84.3 78.0 83.8

Supervised

COMeTEmb+GPT2 72.4 61.9 55.1 60.1
COMeTTxt+GPT2 72.1 60.3 54.6 59.4
O1-O2-Only 72.5 61.6 55.7 60.9
Unsupervised

GPT2-Fixed 24.2 21.0 18.5 19.3
Reflect Decoding 56.7 55.3 46.2 50.0

Table 2: Model performance on αNLG. The first 3 scores
query agreement between hypothesis and given observa-
tion(s), and “all” indicates overall judgement.

Unsupervised Paraphrasing One ap-
proach trains neural variational auto-
encoders unsupervised to represent source
sentences, then decodes from these repre-
sentations to paraphrase (Roy & Grang-
ier, 2019a; Bao et al., 2019). This
requires training specialized representa-
tions, whereas REFLECTIVE DECODING
applies general-purpose LMs. We com-
pare against Roy & Grangier (2019a).

Paraphrasing by editing the input (Miao
et al., 2019; Liu et al., 2019) has shown
promise. Like REFLECTIVE DECODING,
these approaches can be applied without
training specialized models , but are neces-
sarily limited by edit-paths and local min-
ima, as edits are often restricted to single-
word replacement, insertion, and deletion.

REFLECTIVE DECODING and MT-bases paraphrasing both pivot through an alternative textual form
to paraphrase (context and translation, resp.). But MT paraphrase systems cycle-translate through
a pivot language (Federmann et al., 2019; Wieting & Gimpel, 2018), which requires supervised
bilingual translation data, with an implicit notion of cross-lingual paraphrasing.

Novelty in Paraphrasing Mao & Lee (2019) observe that paraphrases close to the source often win
on automatic quality metrics. However, dissimilarity from the source seems to correlate with human
notions of paraphrasing (Liu et al., 2010), necessitating more nuanced metrics. Alternative metrics
that consider novelty alongside quality have previously been used (Sun & Zhou, 2012; Federmann
et al., 2019). The SARI metric (Xu et al., 2016), included here, combines these notions into a single
metric. Kumar et al. (2019) increase novelty through their diversity-promoting sampling method.

6 CONCLUSIONS

We present REFLECTIVE DECODING, a novel unsupervised text generation method for tasks that do
not fit the left-to-right generation paradigm. REFLECTIVE DECODING uses two language models to
generate contexts that collectively represent the meaning of input text. It significantly outperforms
unsupervised baselines in quality and diversity for paraphrasing. Further, in abductive natural
language generation it outperforms the unsupervised baseline by a wide margin and closes the gap
with supervised models. REFLECTIVE DECODING introduces the concept of using generated contexts
to represent meaning, opening up new possibilities for unsupervised conditional text generation.
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A APPENDIX

A.1 DERIVATION OF SAMPLING FUNCTION

Here we derive the sampling function used for REFLECTIVE DECODING, working from a definition
of similarity based on context and deriving a function that allows generation. This section is meant to
supplement and expand upon §2.7.

To begin, for correctness we use the notation Pc|s to denote the distribution of contexts c for source
sentence s. In practice, this will be 1-sided context, for instance right-hand context crh. In this case,
Pc|s would be estimated by the left-to-right language model conditioned on s:

−→
LM(c|s). A clarifying

example is included in figure 1 where contexts are sampled from this distribution.

The reverse distribution Ps|c is the opposite: going back from context towards text. With right-hand
context, this is estimated by the the reverse language model

←−
LM(s|c). We will begin by using the

more general notation (Pc|s, Ps|c) while considering theoretical quantities, then transition to using
the language model distributions (

−→
LM,
←−
LM) when we are estimating these quantities in practice.

In §2.7, we consider the task of comparing a source sentence ssrc with another sentence ŝ. For
instance, we may want to know if ŝ is a paraphrase of ssrc. Following a distributional intuition
(Firth, 1957) that text with similar meaning will appear in similar contexts, we define a simple way to
compare meaning

DKL(Pc|ssrc , Pc|ŝ) (9)

Where DKL is the Kullback–Leibler measuring the difference between the distributions Pc|ssrc and
Pc|ŝ. This is a simple way to capture a notion above: we take the amount the contexts of ssrc and ŝ
differ as a proxy for their difference in meaning and connotation.
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While this equation (9) plays the same role as equation 5 in §2.7, we use the LM notation in that case,
for simplicity and because we are only considering single-sided context there. Equation 9 is more
general.

In a generation setting, we are most interested in selecting for contextual closeness, and therefore
only need to rank between options. Therefore we will instead be working with the cross-entropy:

H(
−→
LM(c|ssrc),

−→
LM(c|ŝ)) =

∑
c

−−→LM(c|ssrc)log(Pc|ŝ(c)) (10)

which is equivalent to DKL up to a constant offset, and will be easier to estimate in practice. Here,
the sum over c indicates a sum over every possible context c. In practice we will use a finite sample
estimate, but will use the theoretical formulation for now.

As stated in Sec 2.7, we are using this as a measure of contextual difference in meaning. For the
purposes of paraphrasing, we are trying to find a sentence ŝ that minimizes this, which is equivalent
to maximizing the exponent of its negation:

Score(ŝ) = e
∑

c−Pc|slog(Pc|ŝ(c))

=
∏
c

Pc|ŝ(c)
Pc|s(c)

=
∏
c

(
Pŝ|c(ŝ)P (c)

P (ŝ)

)Pc|s(c)

= a0
∏
c

(
Pŝ|c(ŝ)

P (ŝ)

)Pc|s(c)

=
a0
P (ŝ)

∏
c

Pŝ|c(ŝ)
Pc|s(c)

(11)

Note, a0 is a constant factor resulting from factors of P (c). We drop this for optimization. Also, Pŝ|c
simply gives the distribution of text given context c e.g. if c is right context, this is the distribution
estimated by a R2L LM conditioned on c.

The result of derivation 11 fits the Product of Experts model of Hinton (2002). In theory, the factor of
P (ŝ)−1 will prioritize more context-specific paraphrases as a low probability sentence that’s likely
in contexts for s is more related than a sentence that’s generally likely (i.e. generic), but this has a
few issues. For one, our estimators (language models) are not well equipped to handle very unlikely
text, as they’re trained on the real distribution and so spend relatively little capacity on very unlikely
sequences. Second, while a less likely sentence can have higher similarity for the reasons stated
above, this may not be the goal of our system.

In a real setting, we are interested in related sentences that are also fluent and reasonable. For
this reason, we drop the P (ŝ)−1 term when calculating our approximate score, the equivalent of
multiplying in P (ŝ) which is simply biasing the model towards likely sequences.

This gives an augmented score:

Score(ŝ) = c0
∏
c

Pŝ|c(ŝ)
Pc|s(c)

(12)

Optimizing this is equivalent to taking a product of experts of the following form:

Score(ŝ) =
∏
c

Pŝ|c(ŝ)
wc|s

(13)

There is then the question of how we should set the weights wc|s in the limited sample setting. In
the full setting, these weights are a set of probabilities Pc|ssrc(c) summing to 1 over all contexts c.
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This indicates the logarithm of the score corresponds to a convex combination of the logits of the
distributions Pŝ|c(ŝ). To keep in line with this notion, we will also enforce that weights constitute a
proper distribution.

In the limiting case with unlimited samples, these weights should be set to the probability of context
given s, Pc|s(c). A simple method to take this to the finite-sample case would be simply renormalizing
these probabilities given over the sampled contexts. However, it is not clear that these are the most
efficient weights for a good estimate of the scoring function. Further, while pretrained LMs are strong
estimators, exponentiating by their estimates will magnify any errors they make. Instead, we learn
these weights using a heuristic, discussed later.

As we transition to the finite-sample-setting and consider estimating this in practice, we replace
the theoretical distributions with estimates using language models. In doing so, we go from a
more general notion of context to 1-sided. Here we will consider right-context (meaning Pŝ|c is
estimated by

←−
LM) but the left-context case proceeds symmetrically. Substituting in the language

model distribution:

Score(ŝ) =
∏
c

←−
LM(ŝ|c)wc|s

(14)

Where now the product over c indicates product over the finite sampled contexts. We will discuss
how the weights are learned, but first we convert this to a sampling function. We can now decompose
the scoring function into tokens of generation ŝ = ŝ0...ŝn:

Score(ŝ0:n) =
∏
j

∏
c

←−
LM(ŝj |ŝj+1:n)

wc|ŝ (15)

This is simply restating equation 13 but factorizing LM probability by tokens.

Renormalizing and decomposing by token position, this gives a natural distribution to sample from:

Psample(ŝj |ŝj+1:n) =

∏
c

←−
LM(ŝj |hatsj+1:n)

wc|s∑
t∈V

∏
c

←−
LM(t|hatsj+1:n)

wc|s
(16)

Simply, we are normalizing at each point over tokens in the vocabulary V , making this a proper
token-wise distribution to sample from. Note that we are sampling right-to-left, so from index n
down, to match convention. This is the sampling function referred to as

←−
RD in the body of the paper,

and state in equation 7. We use this to sample candidate generations that encourage adherence to the
semantic scoring function. Note, in practice we refer to contexts by index i (ci) and the associated
weight as wi.

Finally, we learn the weights, following the convex combination constraint (weights are nonnegative,
summing to 1), to match one fundamental aspect of the scoring function. That is, ssrc should
receive the highest score (or similarly, should have the lowest contextual difference with itself). So
essentially, we learn weights that maximize the score/probability of ssrc, using a gradient-based
learning algorithm to achieve this. This assures that the entire algorithm can proceed using only the
two language models and input, as the signal for learning comes only from the self-generated context
and input.

B IMPLEMENTATION DETAILS

B.1 LEFT-TO-RIGHT REFLECTIVE DECODING SAMPLING FUNCTION

As mentioned in §2.3, a left-to-right REFLECTIVE DECODING sampling function
−→
RD is learned in a

similar manner to
←−
RD, simply by switching the roles of

−→
LM and

←−
LM in algorithm 1. For completeness

we elaborate on this here.

First, the roles of the language models are flipped in the sampling function:
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Algorithm 2: Learn REFLECTIVE DECODING sampling function (left-to-right)

Input: Left to right language model
−→
LM

Right to left language model
←−
LM

Source text: ssrc

1: Sample contexts, c1...cnc ∼
←−
LM(c|ssrc)

2: Initialize parameters w = w1...wnc s.t.
∑
wi = 1, wi ≥ 0

3:
−→
RD(s) ∝

∏
i

−→
LM(s|ci)wi normalized by token (equation 17)

4: learn w = argmaxw
−→
RD(ssrc)

under
∑
wi = 1, wi ≥ 0

Output:
−→
RD

−→
RD (s) =

∏
i

−→
LM(s|ci)wi∏|s|

j=0

∑
t∈V

∏
i

−→
LM(t|s0:j−1 + ci)wi

(17)

where contexts ci are now generated by the backwards language model
←−
LM (i.e. left-contexts). We

then present algorithm 2, which defines how to learn
−→
RD.

B.2 POST-PROCESSING GENERATIONS

Without learning stop-tokens, REFLECTIVE DECODING samples fixed number (lenŝ) of tokens.
Candidates are extracted from raw generations using a combination of sentence tokenization to trim
extra text to the sentence boundaries.

B.3 ENTROPY CALIBRATION

Entropy calibration is used when sampling candidate generations (§2.4). We expand on the earlier
definition here.

When sampling output generations, generation parameters (nucleus sampling pŝ in paraphrasing)
control how “greedy” or stochastic the sampling process is. However, the exact effect of a specific
value of pŝ depends on target length, number of generated contexts, complexity of meaning, desired
level of agreement with source etc. Setting pŝ too low may sample only the most likely option, but too
high can result in off-topic candidates. Simply, the “correct” value of pŝ is highly sample-dependent.

Instead, we define a technique, entropy calibration, designed to control how much “randomness” is
used in sampling in a more robust way. Rather than directly setting a pŝ for all examples, entropy
calibration allows the user to specify the amount of randomness or approximate entropy ĥ they would
like to sample with over each example. In the greedy case for instance, the desired entropy ĥ is set to
0, or equivalently we are picking from a set of 1 possible option. Likewise, the user might set ĥ to 4,
which would result in a higher pŝ (how much higher will be example-dependant).

In practical terms, we search for pŝ in each case that is expected to give the correct level of “random-
ness” over the entire generation, although pŝ is a token-level parameter. To estimate how random
a given value of pŝ will make a generated sentence, we take the sampling entropy over the source
string s0...sn under the nucleus-sampling truncated distribution Pp:

ĥ =
∑
i

∑
w∈Vp

−Pp(w|s0...si−1)logPp(w|s0...si−1)

Where Vp is the truncated vocabulary with parameter p. Roughly, this captures a branching-factor
over the sequence. We select pŝ that gives a desired entropy. We set this to values of 4 or 6 which we
found effective. Parameters are available in App. B.4.
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Param Paraphrasing αNLG

model size Mega Mega
lenŝ or lenh len(s) + 5 20
lenc 50 50
nŝ 30 20
nc 80 50
hsample 4. 6.
pc 0.7 0.9
kc 6 6

Table 3: Most parameters are explained in §2.4. hsample is entropy for sampling calibration in §B.3

B.4 PARAMETERS

In this section, we outline model settings for our 2 experimental settings, paraphrasing and αNLG.
See Table 3.

Broadly, αNLG achieves higher variety in output with a higher sampling entropy (hsample), more
diverse generated contexts (higher pc), and fewer generated contexts (nc).

To find these parameters, we experimented with different reasonable values on the dev set of each
model, and evaluated manually whether generated text appeared reasonable, specifically reading
examples and picking model settings that produced good paraphrases as judged by the authors. For
lenŝ and lenh we simply set this high enough to ensure desirable outputs would be a subsequence.

We trained our transformer language models on TPU pods (using code in TensorFlow) of size 512
until convergence. During our generation experiments, we transferred the model to Pytorch, and ran
locally on a machine with 2 NVIDIA Titan Xp GPUs.

C EVALUATION

C.1 AUTOMATIC METRICS

Links to the code we used for automatic evaluation is given here:

• ROUGE
• BLEU
• METEOR
• TERP

• SARI
• BERTScore
• BLEURT

We include a limited number of metrics in the main paper for space and clarity, but include fur-
ther metrics tested in table 4: ROUGE-1, ROUGE-2 (Lin, 2004), BLEURT Sellam et al. (2020),
BERTScore (Zhang et al., 2020). For BLEURT, we used the ”BASE” pretrained model suggested by
the authors. For BERTScore, we use the default settings of the official codebase.

C.2 HUMAN EVALUATION

For human evaluation in paraphrasing, we evaluate on 204 input sentences, having 3 raters evaluate
each model’s output. We ask about fluency, consistency with the source, and difference in wording
from the source (template in figure 4). In each case, we use a multi-point likert scale, but are mainly
interested in whether generations meet a threshold for each criterion: fluent enough to understand,
with at most minor differences in meaning and at least minor differences in wording. In table 5 we
give the rate for each model that humans found the generation meets these thresholds. The “Overall”
column is the rate that humans find generations meet all 3 measured criteria. We take Fleiss’ κ on
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Method R-1↑ R-2↑ BLEURT↑ BERTScore↑ Novelty ↑
Human Source 70.1 47.0 19.9 95.2 0.0

Reference 100.0 100.0 99.3 100.0 43.9

Supervised PG-IL 66.6 44.0 11.1 94.7 24.4
DiPS 56.7 33.7 -29.5 92.7 48.5
BART 63.6 41.6 9.6 94.4 35.2

Supervised (Bilingual) MT 64.7 39.8 16.7 94.8 26.8

Unsupervised R-VQVAE 68.2 32.0 -7.6 93.2 26.2
CGMHTop 55.6 29.6 -53.6 92.1 27.6
CGMH30 54.5 28.3 -58.9 91.9 29.7
CGMH45 48.5 22.1 -80.9 90.7 44.5
RDTop (Us) 65.8 42.3 15.3 94.8 20.8
RD30 (Us) 62.1 38.0 7.7 94.2 30.0
RD45 (Us) 56.8 31.1 -1.9 93.5 45.0

Table 4: Model performance on the Quora test split. Included here are extra metrics beyond what is
in the main paper. R-1 and R-2 refer to ROUGE-1 and ROUGE-2.

Human Quality↑
Method Fluency Consistency Novelty Overall (%)

Human

Reference 98.7 78.3 94.0 71.7

Supervised

PG-IL 95.9 79.9 51.0 29.4
DiPS 85.6 45.1 93.3 36.6
BART 97.2 77.6 68.8 46.1

Bilingual

MT 98.7 88.7 71.2 59.3

Unsupervised

R-VQVAE 84.2 76.3 60.3 33.5
CGMH-Top 79.4 43.1 85.6 27.0
CGMH-30 78.8 37.9 96.4 31.5
CGMH-45 71.6 19.9 98.5 15.8

RD-Top (Us) 98.0 84.6 43.5 27.5
RD-30 (Us) 98.7 75.3 88.2 63.2
RD-45 (Us) 97.5 67.3 95.3 62.1

Table 5: Model performance on the Quora test split, by human evaluation. Overall is calculated
as the percentage of generations that meet the basic criteria of a paraphrase: fluent (the paraphrase
can be understood), consistent with the source (the paraphrase shows at most minor differences in
meaning from the source) and giving a novel phrasing (paraphrase shows at least minor difference
in word choice). The first 3 columns indicate percentage of generations that meet the given criterion.
Note, the first 3 rows (fluency, consistency, and novelty) are all required to for our notion of a good
paraphrase, and each can be trivially maximized on its own.

these binary combined categories following Schouten (1986), finding agreement of 0.4 (fluency),
0.54 (consistency), 0.77 (wording), and 0.48 (overall) indicating moderate to substantial agreement
(Landis & Koch, 1977).

As stated in §3, for αNLG over 1000 examples we have 3 raters on Amazon Mechanical Turk evaluate
each model. We ask about agreement between h and o1, o2, both, and overall quality on 4-value likert
scales. We found Fleiss’ kappa of 0.31, 0.29, 0.28, and 0.30 respectively, indicating fair agreement
which is reasonable given the large number of options.

The template used for αNLG is in figure 3, and for paraphrasing in figure 4.
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Method SARI↑ BLEU↑ METEOR↑ TERP ↓ Novelty ↑
Human Source 13.6 36.7 25.0 75.0 0.0

Reference 90.7 100.0 100.0 0.0 63.3

Supervised (Bilingual) MT 36.1 29.4 22.1 80.0 30.4

Unsupervised R-VQVAE 31.1 25.2 21.0 90.0 40.4
CGMHTop 32.7 28.2 19.8 77.0 25.5
CGMH30 33.2 26.3 18.7 78.0 30.1
CGMH45 31.8 20.0 15.0 83.0 46.9
RDTop/30 (Us) 31.4 27.2 19.9 86.0 37.0
RD45 (Us) 36.4 25.5 18.9 89.0 47.0

Table 6: Model performance on the Twitter URL test split. Bold indicates best for model-type, *
indicates best overall (excluding human). The first 4 columns are measures of quality, while the last
measures novelty (equation 8) or dissimilarity from input. We rerun evaluations from past work.
Note: Diversity of RDTop is over 30 and so this model is equivalent to RD30 here.

C.3 TWITTER DATASET

We include here a secondary paraphrasing evaluation on the Twitter URL corpus Lan et al. (2017), a set
of paraphrase pairs created by linking tweets with matching shared URLs validated by human judges.
This marks a significant domain shift from our primary paraphrasing task (question paraphrasing).
We test the most comparable baselines to REFLECTIVE DECODING, mainly unsupervised models
CGMH and R-VQVAE as well as the backtranslation MT model. These are all described in detail in
§3.1. R-VQVAE the MT model, and REFLECTIVE DECODING do not use corpus-specific training
data. CGMH trains on un-paired sentences from the Twitter training set, as outlined in the original
work Miao et al. (2019). For all models, we use the same parameters as on the Quora dataset.

We include results on a number of automatic metrics in table 6. Results are similar to Quora: the most
novel setting of Reflective Decoding (in this case RD45) achieves the highest score on SARI, which
seemed most aligned with Human on Quora and is the only metric included here that accounts for
both novelty and quality. The metrics that do not account for novelty are unsurpisingly dominated by
generations with lower novelty: RDTop gets the highest unsupervised BLEU (MT is highest overall),
while R-VQVAE gets the highest unsupervised METEOR and CGMHTop the best unsupervised
TERP , while showing low levels of Novelty.

C.4 REFLECTIVE SCORING EVALUATION

While the effectiveness of sampled contexts as an intermediate representation for generation is
supported by our main experiments (§3), we would like to provide further validation of the seman-
tic capacity of generated contexts, and validate the underlying scoring function of REFLECTIVE
DECODING (equation 6).

Specifically, REFLECTIVE DECODING is based on the notion that generated contexts can capture
the main semantic aspects of a source text. To explicitly test this, we measure how well the
reflective scoring function of equation 6 captures semantic equivalence on the WMT18 metrics
task (Ma et al., 2018). We specifically test on the segment-level evaluation, where the task is rate the
semantic equivalence of a number of machine generated translations to a reference human translation.
Metrics/scoring functions are evaluated by their rank correlation (using a metric related to Kendall’s
Tau Kendall (1938)) with human assessment of semantic equivalence. More details are available in
the original task description.

In table 7, we present results on 3 language pairs: Chinese, German, and Estonian to English.
Generally, higher correlation indicates a closer match with human judgement on which translations
are closest in meaning to a reference translation. Metrics not significantly outperformed are bolded.
We only include to-English translations as the language models used for REFLECTIVE DECODING
are English.

To apply equation 6, we generate contexts for the reference, and test how well each generated
translation fits the reference-contexts. Specifically, we follow equation 6, taking the reference
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Metric cs−→en de−→en et−→en

Reflective Score 0.357 0.490 0.364
chrF+ 0.288 0.479 0.332
sentBLEU 0.233 0.415 0.285
CharacTER 0.256 0.450 0.286
BEER 0.295 0.481 0.341
ITER 0.198 0.396 0.235
RUSE 0.347 0.498 0.368
chrF 0.288 0.479 0.328
meteor++ 0.270 0.457 0.329
YiSi-1 0.319 0.488 0.351
YiSi-0 0.301 0.474 0.330
BLEND 0.322 0.492 0.354
YiSi-1srl 0.317 0.483 0.345
UHHTSKM 0.274 0.436 0.300

Table 7: Correlation with human judgement on the WMT18 metric task, for 3 language pairs (Chinese,
German, and Estonian to English). Correlations of metrics not significantly outperformed by any
other for that language pair are highlighted in bold. We note that Reflective Score is among only 2
methods bolded over all language-pairs tested.

sentence as ssrc and measure the contextual similarity with each translation (taking translation to be
ŝ in each case).

The high performance of our Reflective Scoring function (one of only 2 scoring functions bolded for
all 3 pairs) indicates high agreement with human judges semantic equivalence between translations
and reference. We are not aiming for state-of-the-art here, but rather to validate that generated
contexts can represent full sentences well. This claim seems to be supported.

C.5 ABLATIONS

We include ablation studies for both the number of contexts generated nc (table 8) and whether
weights w are learned or set to be uniform (table 9). In both cases, besides ablated aspects the
experiment is conducted as in §3.

For our ablation of generated contexts nc we investigate all 3 levels of novelty across 4 values of
nc: 6, 20, 40, 80, in table 8. We observe a broad trend of improving metrics with larger values of
nc, with the setting used in practice (nc = 80) being a clear winner. An interesting aspect of this
is that lower nc seems to force higher novelty. For nc = 20, the lowest novelty achieved was 37.4,
while this was 56.3 for nc = 6. One potential cause for this is that the method cannot sufficiently
capture the content of the source sentence with low nc. With nc = 80, REFLECTIVE DECODING can
effectively rewrite the input if it’s allowed to, but this doesn’t seem to be true for lower nc.

In ablating weight learning, we consider 2 possible values of nc: 6 and 10. This is because, without
weight learning we must set kc = nc as we cannot do weight pruning if weights are uniform. For
kc much higher than this, the ensemble of equation ?? becomes prohibitively expensive to calculate.
For both values of nc we found RD with weight learning outperforms uniform weights on the SARI
metric. Interestingly, we found uniform weights resulted in a higher novelty at nc = 6 but a lower
novelty at nc = 10, with a gap of almost 50. With weight learning, this gap is only about 8, indicating
less variability in behavior when weight learning is used.

D FURTHER GENERATIONS

See tables 11 - 15 for outputs of REFLECTIVE DECODING and a range of baselines on multiple
example. We also include many generations of REFLECTIVE DECODING on the paraphrasing task in
table 10
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Method nc SARI↑ BLEU↑ METEOR↑ TERP ↓ Novelty ↑
RDTop 80 29.0 49.9 33.9 52.0 20.8

40 31.3 46.6 31.8 56.0 28.4
20 34.1 43.0 29.8 61.0 37.4
6 33.3 33.2 23.8 71.0 56.3

RD30 80 40.0 46.8 32.2 57.0 30.0
40 39.4 44.2 30.6 59.0 35.6
20 34.1 43.0 29.8 61.0 37.4
6 33.3 33.2 23.8 71.0 56.3

RD45 80 38.6 39.9 28.9 65.0 45.0
40 38.3 39.3 28.0 65.0 46.1
20 38.5 39.6 28.0 65.0 45.8
6 33.3 33.2 23.8 71.0 56.3

Table 8: Ablation of number of contexts generated nc, holding weight pruning parameter constant at
kc = 6. For some nc (e.g. nc = 6), the Top setting achieves high enough novelty for both cutoffs (30
and 45). In these cases, RDTop is repeated for RD30 and RD45

Method SARI↑ BLEU↑ METEOR↑ TERP ↓ Novelty ↑
RDTop (nc = 6 ) 33.3 33.2 23.8 71.0 56.3
- weight learning 29.6 20.1 16.8 89.0 76.7

RDTop (nc = 10 ) 34.2 37.3 26.4 65.0 48.2
- weight learning 31.3 46.6 31.8 56.0 28.4

Table 9: Ablation of whether weights are learned or taken to be uniform. For learned weights, we set
kc = nc indicating no weight pruning, so that the final number of contexts used is the same with and
without learning.
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Input what are the best books to expand imagination ?

RDTop what are the best books to expand imagination ?
RD30 what are the best books to expand our imagination ?
RD45 what books should you read to expand your imagination ?

Input how safe are ready to eat products ?

RDTop how safe are ready to eat foods and products ?
RD30 how safe are ready to eat foods and products ?
RD45 how safe are foods that are ready to eat ?

Input what can be the future of kashmir ?

RDTop what is the future of kashmir ?
RD30 what is the future of kashmir ?
RD45 what will be the fate of kashmir ?

Input does eating eggs also cause bird flu ?

RDTop is it true that eating eggs can cause bird flu ?
RD30 is it true that eating eggs can cause bird flu ?
RD45 is it true that eating eggs can cause bird flu ?

Input how do you open odt files on word ?

RDTop how do you open odt files on word ?
RD30 how do you open odt files on microsoft word ?
RD45 how do you open an odt file on word ?

Input if someone rejects your facebook friend request can you send it again ?

RDTop if someone rejects your facebook friend request can you send it again ?
RD30 if someone rejects your facebook friend request can you message them again ?
RD45 what if someone accepts your facebook friend request ?

Input when will science prove that god exists ?

RDTop when will science prove that god exists ?
RD30 when will science prove the existence of god ?
RD45 when will science prove the existence of god ?

Input is it good to use hair dryers ?

RDTop is it good to use hair dryers ?
RD30 is it good to use a hair dryer ?
RD45 do you know that it ’s good to use hair dryers ?

Input is demonetizing notes of 500 and 1000 a permanent solution to curb black money ?

RDTop is it a permanent solution to curb black money ?
RD30 is it a permanent solution to curb black money ?
RD45 do you think that demonetizing rs 500 and rs 1000 notes is going to solve the problem of black money ?

Input what ’s the best way to ask out a girl at my school ?

RDTop what ’s the best way to ask out a girl in my school ?
RD30 what ’s the best way to ask out a girl in my school ?
RD45 how do i ask a girl out at school ?

Input what was meant by the final scene in 2001 : a space odyssey ?

RDTop what was meant by the final scene in 2001 : a space odyssey ?
RD30 what did he mean by the final scene in 2001 : a space odyssey ?
RD45 what did stanley kubrick mean by the final scene in 2001 ?

Input how can i help my dog get rid of hiccups ?

RDTop how can i help my dog get rid of hiccups ?
RD30 how can i help my dog get rid of the hiccups ?
RD45 can i help my dog with hiccups ?

Table 10: Generations from the 3 REFLECTIVE DECODING variants on the examples from the Quora
test split. Places where a novel phrasing is introduced are bolded and mistakes are underlined.
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Sam didn’t sleep well last night. Sam felt embarrassed and was planning on going to bed early that day.

Human Sam treated people poorly due to lack of sleep.

Unsupervised

REFLECTIVE DECODING He was so tired that he couldn’t even get out of bed.

GPT2-fixed he was really tired from finishing his book

Supervised

COMeT-Emb+GPT2 Sam was still tired when she woke up.

COMeT-Txt+GPT2 Sam was too tired to finish his homework.

O1-O2-Only Sam was very tired after dinner.

Table 11: Further generations for αNLG from all tested systems

Cindy got out of bed. She also ordered an iPhone.

Human She ordered a new iPad.

Unsupervised

REFLECTIVE DECODING On her way out, she ordered an iPad, one that was small enough to fit in her apartment.

GPT2-fixed I’m sure, given all the likely possibilities of electrical shocks and heart attacks it’s a good thing

Supervised

COMeT-Emb+GPT2 Cindy went on Facebook.

COMeT-Txt+GPT2 Cindy liked the new slim iPhone.

O1-O2-Only Cindy saw she didn’t have enough money for clothes.

Table 12: Further generations for αNLG from all tested systems

I once knew a girl named Sammy. She got help and everything was alright.

Human She suffered from depression.

Unsupervised

REFLECTIVE DECODING She had problems and she needed help.

GPT2-fixed I didn’t think to her, this was a normal situation

Supervised

COMeT-Emb+GPT2 Sammy was in a car accident.

COMeT-Txt+GPT2 Sammy got into a bad accident and her car broke down.

O1-O2-Only Sammy got hit by a drunk driver.

Table 13: Further generations for αNLG from all tested systems
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Can you trust the information on Quora?

Human Do you trust Quora?

Unsupervised

RefDec-Top (Us) Can you trust the information on Quora?

RefDec-70 (Us) Can I trust the information on Quora?

RefDec-55 (Us) When can I trust information on Quora ?

R-VQVAE Can you trust the information on Quora?

CGMH-Top Can you answer the information on Quora?

CGMH-70 Can you answer the information on Quora?

CGMH-55 Can you answer more topics on Quora?

Supervised

PG-IL Can you trust the information on Quora?

DiPS Can we trust our questions in Quora?

BART Can you trust everything you read on Quora?

Bilingual

MT Can you trust the information on Quora?

Table 14: Further generations for paraphrasing from all tested systems

What is your creative process?

Human What’s your creative process?

Unsupervised

RefDec-Top (Us) What is your creative process?

RefDec-70 (Us) What’s your creative process?

RefDec-55 (Us) What’s your creative process like?

R-VQVAE What is your creative process?

CGMH-Top What is your dream key?

CGMH-70 What is your dream key?

CGMH-55 What is your dream key?

Supervised

PG-IL What is your creative process?

DiPS What is your creative strategy?

BART What is your creative process?

Bilingual

MT What is your creative process?

Table 15: Further generations for paraphrasing from all tested systems
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Figure 3: The template used for human evaluation of αNLG
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Figure 4: The template used for human evaluation of paraphrasing (part 1 of 2)
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Figure 5: The template used for human evaluation of paraphrasing (part 2 of 2)
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