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Abstract

Causal inference aims to quantify the causal effect of one variable on
another while accounting for confounders. Existing LLM-powered ap-
proaches to causal effect estimation have two main limitations: they re-
quire users to specify the methods and variables, and they support only
a limited set of causal effect measures. To address these limitations, we
present Causal AI Scientist (CAIS), an LLM-augmented causal tool with
self-correction capabilities. CAIS interprets natural language queries and
selects methods using a decision-tree-based reasoning framework. It then
executes the selected method and uses a validation feedback loop to self-
correct before answering the input question. By combining causal inference
principles with the analytical capabilities of LLMs, CAIS provides inter-
pretable, causality-driven answers to user queries. In experiments with
queries drawn from causal inference textbooks, real-world empirical stud-
ies, and synthetic datasets, CAIS outperforms baselines in method selection
and causal effect estimation.1

1 Introduction

Understanding cause-and-effect relationships is central to evidence-based decision-making
and empirical research across disciplines such as social science (Imbens, 2024), public health
(Glass et al., 2013), and biomedicine (Kleinberg & Hripcsak, 2011). Real-world causal effect
estimation is challenging because we do not observe outcomes under both treatment and
control for the same unit (Holland, 1986). Therefore, causal inference relies on assumptions
that justify comparisons between treated and control groups.

Identifying suitable methods and justifying their applicability typically requires domain
expertise. Researchers rely on their understanding of theory, identification strategies, and
the data-generating process to select estimation techniques and assess result credibility. This
reliance on expert knowledge can limit access to causal analysis for users who may benefit
from it but lack methodological training. For example, a policy analyst with employment
and wage data may wish to evaluate the impact of minimum wage laws but may not be
able to draw reliable conclusions without the appropriate tools.

Recent advances in Large Language Models (LLMs) offer a promising pathway to automate
the causal inference process (Kiciman et al., 2024). Existing works use LLMs to generate
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1Code, datasets, and a demo are available at:

• https://github.com/causalNLP/causal-agent (code and datasets)
• https://huggingface.co/spaces/CausalNLP/causal-agent (online demo)
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code for user-specified estimation tasks (Liu et al., 2024; Chen et al., 2025). However, users
must choose the method and variables, and doing so requires familiarity with a wide range
of techniques.

One approach to enabling end-to-end causal analysis is to fine-tune models specifically
for causal inference, such as LLM4Causal (Jiang et al., 2024a). However, LLM4Causal
supports only a limited set of effect measures, excluding many methods used in applied
research. Another direction involves general-purpose data science agents powered by
language models. Currently, these agents are mostly targeted toward and tested on machine
learning and statistical analysis tasks (Hong et al., 2024; Guo et al., 2024). While there are
LLM-powered causal agents, they primarily focus on causal discovery tasks rather than
causal effect estimation (Wang et al., 2025; Han et al., 2024).

To address these limitations, we present Causal AI Scientist (CAIS), an end-to-end LLM-
powered pipeline for generating causality-driven answers to natural language queries.
Given a dataset, its description, and a query, CAIS frames a causal estimation problem,
selects an appropriate method, estimates the effect, and interprets the result in the context
of the original user query. Inspired by the Tree-of-Thoughts prompting approach (Yao et al.,
2023a; Long, 2023), CAIS uses a structured decision tree to break down the method selection
process into smaller, focused steps. Each node in the tree prompts the model to evaluate
a specific feature of the dataset or query, such as identifying the treatment, outcome, or
instrument. This step-by-step approach simplifies the reasoning process and makes it easier
to follow. Additionally, CAIS performs diagnostic checks and incorporates a feedback loop
to correct potential errors before producing a final answer.

We also create a dataset of natural language causal queries to test our tool. Existing bench-
marks for causal inference tasks focus on implementing specified estimation procedures
(Liu et al., 2024). Meanwhile, our dataset enables evaluation across the entire causal es-
timation workflow, including the formulation of the causal estimation problem with the
correct treatment and outcome variables, method and model-specific variable selection, and
effect estimation. Moreover, our dataset consists of queries drawn from textbook examples,
real-world cases, and synthetic datasets with known causal effects, allowing us to cover a
wide range of estimation methods and scenarios.

Our experiments on three dataset collections, real-world studies, textbook examples, and
synthetic datasets, show that CAIS outperforms baseline methods in selecting the appro-
priate causal inference method. CAIS also surpasses most baseline methods in accurately
estimating causal effect values.

CAIS

User

Input

+
LLM

Query: Does
participating in the
NSW program
boost earnings?

Description

The National Supported Work
(NSW) Demonstration was a
training program .........

Variables
 treat: whether or not the
participant received the
training
..........
 re78: earnings in 1978

Assets

treat age re78
1 28 9679
0 37 5500

0 25 8000
1 22 6000

treatment: treat
outcome: re78
covariates: age, educ, .......
method: OLS

   
    
   import pandas as pd
   df = pd.read_csv(lalonde.csv)
   model = smf.ols("re78 ~ treat +   
                  age+....", data=df).fit()
  

Output

ATE: 2457.89 (445) 

Interpretation: Based on
the above analysis,
participating in the training
program leads to higher
earnings. 

Figure 1: CAIS workflow. The user provides an input dataset (CSV file), its description, and
an associated causal query. Guided by a decision tree and a backbone LLM, CAIS selects an
appropriate estimation method, executes the code, and returns the estimated causal effect
along with a natural language interpretation.
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2 Problem Statement

We begin with a motivating example based on the seminal Lalonde dataset (LaLonde, 1986).
Suppose a user has a dataset from a job-skill training program containing details such as
employees’ participation status, their earnings after the program, and background variables
like education and work experience. The user may be interested in the question: Does
participating in a training program boost earnings?

Answering this question requires estimating a measure of causal effect, such as the Average
Treatment Effect (ATE).2 ATE is the expected difference in earnings if everyone participated
versus if no one had participated. If the assignment is random, ATE is estimated by directly
comparing earnings between employees who participated and those who did not. However,
in observational settings, we need to adjust for confounding variables (such as education)
that influence both program participation and subsequent earnings.

To formalize this scenario, we consider settings with the following inputs:

• A tabular dataset D, where each row is a unit of analysis (a person or entity) and
each column is a variable associated with the unit.

• Metadata describing the columns and the data collection process.

• A natural language query q associated with the dataset.

The goal is to generate a causal answer to the query q. This involves interpreting the
query and dataset information to identify the treatment and outcome variables, selecting an
appropriate causal effect measure, and computing it using a suitable statistical method.

3 Methodology: CAIS

CAIS consists of four successive methodological stages, each comprising one or more micro-
tools. Each stage combines logic grounded in established causal inference principles with
Large Language Model (LLM) reasoning, which is selectively applied to sub-tasks that
typically require expert-like judgment.

In Stage 1, we analyze the dataset and identify key components, such as treatment and
outcome variables, valid instruments, running variables, etc. In Stage 2, a rule-based
decision tree uses this information to select a valid method for causal effect estimation.
Stage 3 checks the standard assumptions for the chosen method; if any check fails, the
system backtracks through the decision tree to select an alternative method, forming a
validation loop between Stages 2 and 3. In Stage 4, once all checks pass, the selected method
is executed using predefined templates, and the final result is returned with an explanation.

3.1 Stage 1: Dataset Preprocessing and Query Decomposition

CAIS initiates the pipeline with a thorough examination of the dataset, inspecting column
names and data types, and computing descriptive statistics. Beyond basic profiling, it
investigates potential relationships within the data, such as correlations, and attempts to
identify features relevant to causal inference. CAIS then proceeds to conceptualize the user’s
query and actual data by prompting the LLM to determine which columns correspond
to the treatment, outcome, and pre-treatment variables. Additionally, it uses the LLM to
identify the presence of instrumental variables, running variables that govern treatment
assignment, observed confounders, and time-related variables that indicate the timing of
observations.
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Instrumental 
variables

..........

Is temporal information 
about treatment available?

Is this a randomized 
experiment?

........

........ Is there a 
valid instrument?

No

No

Yes

Figure 2: Demonstration of CAIS’s method selection process. At each decision node, CAIS
prompts an LLM to assess dataset characteristics. Following this example path: the LLM
identifies that the data does not come from a randomized trial. It deduces the absence of
temporal treatment information (for Difference-in-Differences) and identifies the presence
of an instrument, resulting in the selection of an instrumental-variables (IV) approach.

3.2 Stage 2: Method Selection

In this stage, CAIS identifies a suitable estimation method through a structured decision
tree (see Appendix Figure 6). Inspired by the Tree-of-Thoughts framework (Yao et al.,
2023a; Long, 2023), this tree decomposes method selection into sequential steps, where
each node evaluates a specific property of the dataset (e.g., timing of treatment, presence
of instruments). Each node is associated with a detailed prompt that specifies the required
characteristics of a valid method or variable. The hierarchical structure of the tree enhances
interpretability and leverages the LLMs’ strengths in performing well on specific, narrowed-
down tasks. If multiple branches are viable, CAIS relies on the LLM to rank them by
inspecting Stage 1 results. Figure 2 provides a visual illustration of the method selection
process.

Compared to machine learning models, causal estimation does not involve hyperparameters
to tune, and only a few methods are appropriate for any given task. However, incorrect
choices can lead to invalid results. Our goal is to ensure interpretability and accuracy, and
the decision tree-based approach supports both objectives. Nonetheless, errors in one step
can propagate to subsequent steps. For instance, the model may incorrectly assume an RCT
setting for observational data and produce incorrect findings. We implement safeguards to
mitigate such cases.

3.3 Stage 3: Validation

After selecting the appropriate method, we first perform statistical checks to assess its
reliability, such as the parallel trends test for Difference-in-Differences or the F-statistic for
IV. Next, we prompt an LLM to reflect on both the test outcome and the numerical value
to evaluate whether the result is sensible. If the LLM perceives the results to be unreliable,
we return to the method and variable selection phase. In the next iteration, we incorporate
information about validation test results from the previous run. Similarly, if more than one
method is identified earlier, we try an alternative one. The feedback mechanism serves as a
safeguard against potential errors that may arise in the selection and dataset analysis phases.
We provide a detailed example of the method validator in Appendix D.

2While we focus here on ATE for illustration, other causal quantities, such as the effect on treated
individuals (ATT) or compliers (LATE), may be more appropriate depending on the setting. Estimating
these requires different assumptions and techniques. We refer readers to standard causal inference
texts for a broader treatment (Imbens & Rubin, 2015; Hernan & Robins, 2025; Cunningham, 2021).
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3.4 Stage 4: Method Execution and Interpretation

If all checks corresponding to the selected method pass, we move to the method execution
phase. For most selected methods, we rely on predefined code templates with placeholders
for key variables determined in Stage 1. This approach differs from previous work that uses
LLMs to generate code from scratch (Liu et al., 2024). While LLM-powered code generation
can be flexible, implementation errors are common (Chen et al., 2025). One workaround is
to use a loop with try/except blocks to refine the code repeatedly until successful execution.
However, this requires multiple API calls, making it both time-consuming and expensive. In
contrast, using predefined templates with variable placeholders minimizes implementation
errors, as the only requirement is to identify and substitute the relevant variables correctly.

Finally, we prompt an LLM to interpret the results of the estimation step in the context of
the original query. For example, the model may assess whether the estimated causal effect is
strong, weak, or statistically significant. Alongside this interpretation, we include important
caveats, such as validation results and notes on assumptions or limitations that could affect
the reliability of the estimate.

4 Experimental Setup

4.1 Dataset

Collection Origin # Queries # CSV Files
Median

Observations
Median

Columns

QRData Textbook examples 39 35 1209 19

Real-world studies Research papers 29 14 1720 17.5

Synthetic Simulated scenarios 45 45 428 7

Table 1: Summary of the dataset collections we use to evaluate CAIS

To comprehensively evaluate CAIS, we use three types of datasets: textbook data from
QRData (Liu et al., 2024), real-world studies, and synthetic data.

QRData is a benchmark designed to evaluate the statistical and causal reasoning capabilities
of LLMs. The estimation tasks are adapted from causal inference textbooks. Since the
datasets are constructed for teaching purposes, they are preprocessed, and the inference
process is relatively streamlined.

Real-world studies involve more complex designs, a broader range of variables, and less
structured datasets. To evaluate CAIS in these settings, we curate examples directly from
published empirical research papers.

Both QRData and real-world examples primarily rely on linear regression, limiting coverage
of other estimation methods. Moreover, the true causal effects in real-world settings are
not known; only reference values computed by experts are available. To enable evaluation
across a wider range of methods with known ground truth values, we construct synthetic
datasets.

We provide details on the dataset creation procedure in Appendix A.

4.2 Baseline Approaches

Given the lack of LLM-based tools specifically designed for fully automated causal inference,
we compare our method against three baseline prompting strategies.

ReAct Prompting Following Liu et al. (Liu et al., 2024), our ReAct-based approach (Yao
et al., 2023b) uses iterative reasoning–action cycles. The LLM alternates between causal
analysis and program execution. In this process, the LLM examines the dataset and causal
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question, then identifies variables, explores data characteristics, selects appropriate methods,
and computes causal effects through multiple thought–action–observation steps before
providing the final results.

Liu et al. (2024) benchmark several prompting strategies for causal inference and find that
ReAct achieves the best overall performance.

Program of Thought Prompting Unlike ReAct prompting, which alternates between tool
calls and reasoning, Program-of-Thought (PoT)-based approach (Chen et al., 2022) prompts
the LLM to generate a complete Python program to perform the causal analysis. The LLM
examines the dataset characteristics and the causal question, and outputs code to run the
appropriate causal inference method, statistical tests, and result interpretation before storing
the relevant outputs. A sample prompt is provided in Appendix Figure 7.

Veridical Data Science Prompting Typical prompting strategies for data science are
relatively straightforward and involve limited self-reflection. To address this limitation, we
design a prompting structure based on the Veridical Data Science framework (Yu, 2020).
After each decision, the LLM is prompted to reflect on its response and reconsider its
output, with the goal of improving stability in the reasoning process. A sample veridical
science-based prompt is provided in Appendix Figure 9.

4.3 Implementation Details

All models are implemented in Python. For estimating causal effects, we use the DoWhy
(Sharma & Kiciman, 2020; Blöbaum et al., 2024) and statsmodels (Seabold & Perktold,
2010) libraries. The backbone LLMs include GPT-4o, GPT-4o-mini, and o3-mini (OpenAI
et al., 2024), llama-3.3-70B-instruct (Grattafiori et al., 2024), and Gemini 2.5 Pro (Team,
2024). All models are accessed through API calls. The temperature parameter is set to 0 for
reproducibility.

4.4 Evaluation Metrics

We evaluate our pipeline using the following metrics.

• Method Selection Accuracy (MSA): Percentage of queries where the selected
method m̂i matches the reference method (mi)

MSA =
1
N

N

∑
i=1

1[m̂i = mi]× 100 (1)

• Mean Relative Error (MRE): Average relative error between predicted causal effects
(τ̂i) and reference values (τi):

MRE =
1
N

N

∑
i=1

min
(
|τ̂i − τi|
|τi|

, 1
)
× 100% (2)

To reduce sensitivity to outliers, relative error is capped at 100% per query.

N denotes the total number of queries in the evaluation set.

5 Preliminary Results

In this section, we present and analyze the performance of CAIS across all evaluation
datasets. We compare it against baseline prompting strategies in terms of method selection
accuracy (MSA) and mean relative error (MRE). Finally, we provide both qualitative and
quantitative error analysis of CAIS.
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MSA (↑) MRE (↓)

LLM ReACT PoT Veridical CAIS ReACT PoT Veridical CAIS

Textbook Data
GPT-4o 55 41 60.5 74.4 43.2 32.6 40.7 31.6
GPT-4o-mini 55.2 54.3 41 74.3 33.9 33.6 42.2 55.9
o3-mini 21.8 30.7 61.5 94.1 44.7 30.7 27.6 43.1
Gemini 2.5 Pro 62.2 50 59 81.2 43.2 35.8 37.8 41.2
Llama 3.3 70B 34.4 53.8 46.1 81.8 43.9 31.5 55.4 54.19

Synthetic Data
GPT-4o 51.2 53.3 79 76.9 27.9 19.9 27.7 17.4
GPT-4o-mini 41.86 37.7 43.4 75.9 21.2 37.7 25.7 16.2
o3-mini 46.7 42.2 66.6 73.3 21 42.2 20.2 20
Gemini 2.5 Pro 48.2 53.2 58.5 75.6 20.2 24 26.5 18.5
Llama 3.3 70B 55.8 47.6 50 79.5 21.3 21.1 33.3 50

Real Data
GPT-4o 69.5 57.7 48 69.2 43.1 54.7 53.6 47.5
GPT-4o-mini 51.8 54.6 28 65.2 52.3 55.6 54.4 54.55
o3-mini 57.1 33.3 59.2 76.9 43.2 46.3 41.2 39.7
Gemini 2.5 Pro 55 42.2 53.2 78.3 38.1 42 39 32
Llama 3.3 70B 44.4 53.8 24 73 52.6 53.8 52.8 37.4

Table 2: Performance of CAIS and baseline prompting strategies across all datasets and LLMs.
Results are reported for both Method Selection Accuracy (MSA, higher is better) and Mean
Relative Error (MRE, lower is better). Dataset blocks correspond to Textbook, Synthetic,
and Real-world settings. Bold entries indicate the best value in each row, underlined entries
indicate the second best.

5.1 Overall Performance

Table 2 presents a unified view of method selection accuracy (MSA) and mean relative error
(MRE) for all models across the three dataset collections. The results demonstrate that CAIS
achieves consistently strong method selection performance while maintaining competitive
estimation accuracy.

CAIS shows superior method selection capabilities. Across all three datasets and models,
CAIS consistently outperforms the baselines in Method Selection Accuracy (MSA), with
significant margins in almost all cases. For example, on the textbook dataset, o3-mini
achieves an MSA of 94.1%, which is 32.6% higher than the second-best baseline. On average,
CAIS improves MSA over the best-performing baseline per LLM by 22.18 points on the
Textbook dataset, 15.58 points on the Synthetic dataset, and 14.10 points on the Real dataset.
These results demonstrate the effectiveness of our decision-tree-based method selection.

CAIS achieves competitive estimation accuracy. Performance trends in Mean Relative
Error (MRE) are more nuanced, with no consistent pattern across models or baselines. For
the Synthetic and Real datasets, CAIS performs as well as or better than the baselines,
achieving the lowest or second-lowest MRE for most backbone LLMs. An exception is
the textbook-based dataset, where CAIS consistently underperforms. One characteristic of
CAIS is its reliance on pre-existing code templates, which means it does not include a retry
mechanism for code execution. If execution fails, this can result in a substantial increase in
MRE. In contrast, the baselines allow multiple retries, ensuring that they return some causal
effect estimate, even if the selected method is incorrect.
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Figure 3: Confusion matrix showing method selection performance of CAIS (GPT-4o).

5.2 Error Analysis

We conduct a systematic qualitative analysis of the errors made by CAIS. The goal is to
uncover error patterns, understand their root causes, and identify which stages of the
pipeline are most susceptible to failure.

• Incorrect Variable Selection: LLMs frequently misinterpret temporal covariates,
such as birth year or quarter indicators, as observation time points. This misinterpre-
tation can lead to the selection of Difference-in-Differences as the causal inference
method. Additionally, LLMs often misidentify treatment and outcome variables,
particularly when column names lack clear descriptive labels or contain ambiguous
terminology.

• Wrong Method Selection: As demonstrated in Figure 3, LLMs misclassify ran-
domized controlled trials as encouragement designs leading to the selection of
Instrumental Variables instead of linear regression. Similarly, for synthetic datasets,
the model fails to identify instrumental variables as the optimal method in three
instances. This pattern underscores the inherent challenge of selecting valid instru-
ments based solely on data descriptions.

• Incorrect Data Formats: Implementation errors also stem from inconsistent data
formatting. Specifically, certain variables are encoded as strings when causal infer-
ence packages like DoWhy require numerical inputs, creating compatibility issues
that compromise execution.

6 Conclusion

In this work, we introduce a pipeline for end-to-end causal inference, CAIS, and evaluate
its effectiveness across three diverse dataset collections. CAIS consistently outperforms
baseline prompting strategies on method selection while achieving high performance in
causal effect estimation. These strong results underscore the value of CAIS ’s structured
decision-tree-based approach, which decomposes complex reasoning into interpretable
steps. This approach not only improves estimation accuracy but also enhances robustness
and transparency, which are important for disciplines like public health and policy design.
The framework’s high performance on well-structured datasets, such as the synthetic dataset,
suggests that real-world results can be further improved with better data preprocessing.

As ongoing work, we are improving data preprocessing functionalities. Similarly, we are
considering additional metrics for a more comprehensive evaluation, such as how accurately
the model selects treatment, outcome, and control covariates, or the choice of model-specific
variables, such as instruments. On the dataset end, we are compiling more real-world
studies while also scaling up the size of the synthetic dataset.
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A Dataset Generation

In Figure 5 we provide detailed steps for how we preprocess all three datasets. We also
provide the distribution of the corresponding estimation methods across the three datasets
in Figure 4.
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Figure 4: Distribution of estimation methods across the three dataset collections

A.1 Textbook Examples

The causal effect estimation tasks in QRData specify the inference method or estimand.
Since our focus is on end-to-end causal inference, including automatic method and variable
selection, we modify the queries by removing explicit references to estimation techniques or
causal effect measures. For example, the original question, “What is the Average Treatment
Effect (ATE) of the dataset?” is rephrased as “What is the effect of home visits by doctors on
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Figure 5: Dataset creation process for QRData, Real-world Studies, and Synthetic Data
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cognitive scores of infants?”. We retain the original dataset descriptions and the associated
numerical estimates of the causal effects. Additionally, we restrict our evaluation to queries
with numerical answers.

A.2 Real-World Studies

We compile research papers from a range of disciplines, including economics, health policy,
and political science. Many of these studies use datasets available in the R package causal-
data. For each study, we create a summary that captures key information about the dataset,
including variable descriptions, data sources, and collection procedures. We then formulate
causal queries by examining the empirical results, the associated statistical models, and how
they are interpreted in the original papers.

A.3 Synthetic Data

We randomly select the true causal effect τ in the range (1, 10). Continuous covariates are
drawn from a normal distribution, while binary covariates and treatment assignments (for
binary treatment settings) are generated from a binomial distribution. The outcome Y is
determined by the model specification. For example, for a randomized trial:

Y = α + Xθ⃗ + τT + ϵ, (3)

where ϵ ∼ N (0, 1) is the error term, θ⃗ ∼ N (u, kI), and α is the intercept. Here, X denotes
the covariates and T is the treatment variable.

We also use LLMs, specifically GPT-4o, to generate hypothetical contexts for each synthetic
dataset. Specifically, we prompt the model to create plausible scenarios explaining how and
why the data might have been collected. As part of the process, the LLM also produces
dataset metadata, including headings and descriptions for covariates, treatment variables,
and outcomes. This approach adds context to synthetic datasets and allows us to test CAIS’s
ability to handle real-world-like scenarios.

B Related Work

LLMs and causal inference The ability of LLMs to perform causal effect estimation in
tabular datasets has been explored in Liu et al. (2024) and Chen et al. (2025). However, both
approaches require users to specify the estimation method/variables, unlike CAIS where
method and variable selection is automated. Jiang et al. (2024b) introduces a fine-tuned
foundation model for both causal discovery and effect estimation. For the latter, the model
does not support methods such as Instrumental Variables and Difference-in-Differences,
which are widely used in the social sciences. Causal Co-pilot (Wang et al., 2025) expands
the range of supported methods using general foundation models as the backbone, but has
been evaluated primarily on causal discovery tasks. Another approach to causal inference
involves building causal graphs from variable information using an LLM and applying
techniques such as frontdoor and backdoor estimation to obtain the causal effects (Kiciman
et al., 2024; Han et al., 2024). However, this approach limits us to graph-based methods only.

Beyond tabular data, LLMs have been applied to causal estimation with text data (Dhawan
et al., 2024; Lin et al., 2023; Imai & Nakamura, 2024; Veljanovski & Wood-Doughty, 2024).

LLMs-powered data analysis Several works have studied the code generation capabilities
of LLMs for data science tasks, including machine learning, statistical analysis, data ma-
nipulation, and visualization (Huang et al., 2022; Lai et al., 2023; Cheng et al., 2023; Nejjar
et al., 2024; Jansen et al., 2023). However, these approaches require users to provide specific
instructions. Wu et al. (2024) extends this line of work by enabling LLM-powered tools to
perform statistical reasoning and generate solutions to natural language questions. How-
ever, these don’t involve causal methods. A promising direction for end-to-end analysis is
the development of LLM-powered agents. Most of these tools are geared towards machine
learning tasks (Zhang et al., 2023; 2024; Huang et al., 2024) or data science tasks involving
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both machine learning and statistical methods (Guo et al., 2024; Hong et al., 2024). The
capabilities of these tools have been enhanced through case-based reasoning (Guo et al.,
2024), hierarchical decomposition (Hong et al., 2024), and interactive tools (Wu et al., 2023).
However, these agents do not focus on causality-based analysis, which requires different
methodological considerations.

Benchmark Datasets Earlier benchmarks focused on LLMs’ ability to generate data science
code. These include DS-1000 (Lai et al., 2023) and ARCADE (Yin et al., 2022). StatQA (Zhu
et al., 2024), DACO (Wu et al., 2024), and (Hu et al., 2024) evaluated LLMs’ ability to frame
and implement quantitative methods to answer natural language queries related to input
datasets. However, these benchmarks primarily focus on tasks that involve non-causal
statistical methods. (Liu et al., 2024) is a benchmark dataset meant to test causal capabilities
of LLMs. However, this focuses on implementing and interpreting specified methods.
Our benchmark dataset is closely related to Blade (Gu et al., 2024) and DiscoveryBench
(Majumder et al., 2024) in spirit. These two benchmarks, curated from real-world studies,
seek to evaluate the ability of LLMs to perform data-driven scientific analysis to answer
questions of interest. However, these datasets are more open-ended in terms of analysis
tools while our dataset is geared specifically for causality-based analysis.

C Decision Tree for Model Selection

Figure 6 presents the sequence of diagnostic questions that CAIS asks the language model
to link any dataset–query pair to the most suitable causal estimator. The root node checks
whether the study is a randomized controlled trial; if it is, the tree first looks for an encour-
agement design, where assignment is random but compliance is imperfect, and directs such
cases to instrumental-variable (IV) estimation. Fully compliant RCTs are divided by the
presence of valid pre-treatment covariates, choosing covariate-adjusted OLS when those
covariates are available and a simple difference-in-means when they are not. If the data
are not randomized, the tree distinguishes between binary and non-binary treatments. For
binary treatments, temporal structure leads to Difference-in-Differences, and a running
variable triggers Regression Discontinuity Design. In the absence of both, the model checks
for a valid backdoor adjustment set, frontdoor variables, or an instrument. When a valid
backdoor adjustment set is found, the pipeline evaluates covariate overlap. Adequate
overlap selects IPW, whereas limited overlap calls for matching. In general, the preference
order is IV > frontdoor regression > backdoor adjustment. For non-binary treatments, the
algorithm first seeks a valid instrument and applies IV if one exists. Without an instrument,
it evaluates the frontdoor criterion. As a last resort, it falls back on backdoor adjustment
with a regression model. This hierarchy yields a transparent mapping from contextual cues
to estimator choice while also providing clear stopping rules when assumptions are unmet
(Figure 6).

D Detailed Study: Method Validation Loop
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Figure 6: Decision-tree that guides method selection in CAIS. We prompt an LLM to generate
responses to queries corresponding to the decision nodes, and traverse the tree accordingly
before reaching a leaf node, which corresponds to a method

Worked Example: Method Validation

Query: Does having access to electricity increase kerosene expenditures?

Dataset: electrification data.csv

Database: All Data Collection (Rural Electrification Survey)

Description: This household survey covers 686 households in 120 habitations across
Uttar Pradesh, India. Using a geographic eligibility rule (households within 20–35 m
vs. 45–60 m of a power pole), it records monthly expenditures on food, education,
kerosene, total expenditure, appliance ownership, lighting usage, and satisfaction
measures to assess the impact of electrification.

Method Validation: During validation, the pipeline fits local regressions on kerosene
expenditure immediately below and above the 40 m cutoff to test for a sharp discon-
tinuity. When using the lightweight gpt-4o-mini model, the agent misidentified the
“distance” variable effectively widening the window around 40 m and consequently
observed no statistically significant jump in outcomes at the threshold (p > 0.05).
Because a pronounced, localized shift at the cutoff is the cornerstone of RDD, this
absence of any detectable discontinuity constituted a direct violation of the RDD
assumptions and led to its rejection. The system then automatically backtracked
down the decision tree, removed RDD from consideration, and evaluated the next
class of methods. Given the observational nature of the data and the rich set of
covariates, it advanced to propensity-score-matching as the alternative method to
create balanced treatment and control groups before estimating the effect.
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E Baseline Prompts
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Program of thought based Prompt

Prompt: You are a data analyst with strong quantitative reasoning skills. Your task
is to answer a data-driven causal question using the provided dataset. The dataset
description and query are given below.
You should analyze the first 10 rows of the dataset and then write Python code to
generalize the analysis to the full table. You may use any Python libraries.

The returned value of the program should be the final answer. Please follow this
format:

def solution():
# import libraries if needed
# load data from {self.dataset_path}
# write code to get the answer
# return answer

print(solution())

Dataset Description: {self.dataset description} Dataset Path:
{self.dataset path}
First 10 rows of data: {df.head(10)}
Question: {self.query}
Example Methods (choose one if applicable):

• propensity score weighting: output the ATE
• propensity score matching treatment to control: output the ATT
• linear regression: output coefficient of variable of interest
• instrumental variable: output coefficient
• matching: output the ATE
• difference in differences: output coefficient
• regression discontinuity design: output coefficient
• linear regression / difference in means: output coefficient / DiM

Response: The final answer should include a structured summary with the following
fields (use "NA" where not applicable):

• Method
• Causal Effect
• Standard Deviation
• Treatment Variable
• Outcome Variable
• Covariates
• Instrument / Running Variable / Temporal Variable
• Results of Statistical Test
• Explanation for Model Choice
• Regression Equation

Figure 7: Quantitative reasoning prompt for baseline evaluation.
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ReACT Prompt Example

Prompt: You are working with a pandas DataFrame in Python. The name of the
DataFrame is df.
You should use the tools below to answer the question posed to you:
python repl ast: A Python shell. Use this to execute Python commands. Input
should be a valid Python command. When using this tool, sometimes output is
abbreviated—make sure it does not look abbreviated before using it in your answer.
Use the following format:

• Question: the input question you must answer
• Thought: what you should do next
• Action: the action to take (e.g., python repl ast)
• Action Input: the input to the action (code to execute)
• Observation: the result of the action

(This Thought/Action/Action Input/Observation can repeat N times.)
Final Answer: The final answer to the original input question. Please provide a
structured response including the following:

• Method
• Causal Effect
• Standard Deviation
• Treatment Variable
• Outcome Variable
• Covariates
• Instrument / Running Variable / Temporal Variable
• Results of Statistical Test
• Explanation for Model Choice
• Regression Equation

Instructions:
• Import libraries as needed.
• Do not create any plots.
• Use the print() function for all code outputs.
• If you output an Action step, stop after generating the Action Input and

await execution.
• If you output the Final Answer, do not include an Action step.

Example Usage of python repl ast:
Action: python repl ast

Figure 8: Example of a ReACT-style prompt used in baseline prompting.
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Veridical Prompt

You are an expert in statistics and causal reasoning. You will use a rigorous scientific
framework to answer a causal question using a structured, step-by-step process with
checklists.
Problem Statement: self.query
Step 1: Domain Understanding - What is the real-world question? Why is it impor-
tant? - Could alternate formulations impact the final result?
Step 2: Dataset Overview - Dataset Path: dataset path - Description:
dataset description - Dataset Summary, Types, Missing Values, Preview Rows
Checklist: - How was data collected? Design principles? - What are the variables,
types, and units? - Are there errors or pre-processing artifacts?
Step 3: Exploratory Analysis - Identify confounders, mediators, biases - Suspect
endogeneity? What instruments might be relevant? - Are strong correlations present?
Step 4: Modeling Strategy - Choose 3 candidate methods (e.g., matching, regression,
IV) - State assumptions and reasons for each method - Discuss software libraries to
be used and potential pitfalls - Outline key outputs and steps in analysis
Step 5: Post Hoc Analysis - Are relationships or outcomes unexpected? - Assess
result stability and robustness
Step 6: Interpretation and Reporting Final Answer: Report the following fields:
- Method, Causal Effect, Standard Deviation - Treatment and Outcome Variables
- Covariates, Instruments or Temporal Elements - Results of any statistical tests -
Justification of model choice - Equation or summary used

Figure 9: Veridical Style Prompting.
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