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ABSTRACT

Graph neural networks (GNNs) and Transformer-based architectures have
achieved strong performance in graph representation learning, yet they often strug-
gle with scalability, over-smoothing, and limited expressiveness on complex topo-
logical patterns. We propose GraphFractalNet, a novel framework that integrates
spectral embeddings, dynamic graph rewiring, and a fractal attention mechanism
to capture both global and hierarchical self-similar structures in graphs. By lever-
aging truncated spectral bases, GraphFractalNet provides topology-aware node
embeddings, while the rewiring module adaptively optimizes edge connectivity
to improve information flow and sparsity. The fractal attention layer further con-
strains attention to recursively clustered subgraphs, enabling sub-quadratic com-
plexity of O(N log logN) per layer while retaining expressive power beyond k-
Weisfeiler–Lehman tests. Theoretically, we establish generalization bounds under
spectral Rademacher complexity and prove that GraphFractalNet is strictly more
expressive than standard message-passing GNNs. Empirical results show that
GraphFractalNet delivers state-of-the-art performance on both molecular property
prediction and large-scale node classification tasks, consistently improving accu-
racy and scalability. Comprehensive ablation studies underscore the critical roles
of spectral embeddings, dynamic rewiring, and fractal attention, each contributing
to the model’s effectiveness and efficiency. Overall, GraphFractalNet emerges as a
principled and scalable architecture that seamlessly integrates spectral techniques
with Transformer-inspired designs for graph learning.

1 INTRODUCTION

Representation learning on graphs has rapidly matured due to the convergence of message-passing
Graph Neural Networks (GNNs) and Transformer-style attention architectures. Classic GNNs such
as GCN Kipf (2017), GIN Xu et al. (2019), and GraphSAGE Hamilton et al. (2017) excel at en-
coding local neighborhood information through iterative aggregation. However, they often struggle
to model long-range dependencies, encounter over-smoothing at depth, and lack the expressiveness
required to distinguish graphs that differ only in global or higher-order structures.

To address the limitations of traditional GNNs, graph Transformers have incorporated structural en-
codings such as shortest-path distances, edge attributes, and centrality measures, which significantly
improve performance on tasks like molecular property prediction and graph classification. Recent
studies Ying et al. (2021) have shown that incorporating structural encodings is essential for the suc-
cess of Transformers on graph-related tasks. Similarly, the Topology-Informed Graph Transformer
Choi et al. (2024) introduces topological positional embeddings based on cycles and community
structures, allowing the model to better capture complex graph patterns. Despite these advances,
most graph Transformers still rely on dense quadratic attention mechanisms (O(N2)), leading to
high computational costs, and their structural encodings remain largely static and hand-crafted, lim-
iting adaptability across diverse graph domains.

In parallel, spectral GNNs exploit eigen-decompositions of the Laplacian to encode rich global
structure. Classical methods such as ChebNet and Laplacian positional encodings employ truncated
eigenbases to inject spectral information into node embeddings. Enhancing Spectral GNNs: From
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Topology and Perturbation Qin et al. (2025) demonstrates that perturbed Laplacians sharpen eigen-
value separability, thereby improving discriminative capacity, while Spatio-Spectral GNNs Geisler
et al. (2024) integrate spectral filtering with spatial message passing to mitigate over-squashing
and achieve expressiveness beyond the 1-WL test. Nevertheless, spectral approaches generally lack
adaptive attention mechanisms, limiting their ability to capture graph heterogeneity and dynamically
emphasize task-relevant structural patterns.

Efforts to balance efficiency with structural awareness have led to several promising directions.
SFi-Former Li et al. (2025) casts attention as a sparse flow-selection process, enabling long-range
interactions with reduced complexity, while ReHub Borreda et al. (2024) employs a hub–spoke at-
tention design that scales linearly with the number of nodes. Complementary approaches, such as
Graph Sparse Training (GST) Zhang et al. (2024), focus on dynamic edge pruning to improve scala-
bility and robustness. Although these models demonstrate clear benefits in sparsity and adaptability,
they often neglect the incorporation of spectral priors and hierarchical subgraph structure, which are
critical for capturing the full spectrum of graph dependencies across multiple scales.

Graphs in many domains exhibit hierarchical and self-similar patterns, where local connectivity is
nested within larger organizational structures that repeat across scales. Capturing these patterns
is critical for effective representation learning, yet remains a persistent challenge for current ap-
proaches. Conventional Graph Transformers rely on dense attention and static structural encod-
ings, making them computationally demanding and insufficiently adaptive to diverse graph topolo-
gies. Spectral methods offer principled topology-aware embeddings through Laplacian eigenvectors,
but they are often fixed and not directly integrated with adaptive attention or connectivity control.
Sparse Transformers and rewiring-based approaches improve scalability, but they frequently over-
look multi-scale dependencies and hierarchical structural cues, leading to limited expressiveness.

To overcome these challenges, we introduce GraphFractalNet, a unified architecture that combines
spectral encoding, dynamic rewiring, and fractal attention in a Transformer framework. The spectral
encoder computes truncated Laplacian eigenvectors to provide multi-scale node and edge embed-
dings, grounding the model in the intrinsic geometry of the graph. A dynamic rewiring module
adaptively updates graph connectivity at each layer by selecting structurally relevant edges while
preserving global connectivity. On top of this, a fractal attention mechanism organizes attention hi-
erarchically across clusters obtained through spectral partitioning, enabling efficient yet expressive
aggregation with per-layer complexity reduced to O(N log logN). By integrating these compo-
nents, GraphFractalNet achieves both scalability and expressiveness, effectively capturing global
structure, local interactions, and hierarchical self-similarity in a single coherent model.

The main highlights of this paper are outlined as follows:

1. We design an end-to-end framework that combines Laplacian-based spectral embeddings,
adaptive graph rewiring, and fractal-inspired hierarchical sparse attention to capture rich
structural patterns in graphs.

2. By exploiting hierarchical sparsity, GraphFractalNet achieves sub-quadratic per-layer com-
plexity O(N log logN), enabling efficient training on graphs with tens of thousands of
nodes while offering provable bounds on efficiency.

3. We prove that GraphFractalNet can distinguish graphs strictly beyond the k-WL hierar-
chy (k ≥ 2) under mild spectral conditions, and we derive generalization bounds using
Rademacher complexity that scale favorably with spectral dimension, sparsity, and depth.

4. GraphFractalNet is extensively evaluated on diverse graph-level prediction and node classi-
fication tasks, spanning both medium- and large-scale benchmarks. The results consistently
show superior accuracy and robustness compared to strong baselines.

2 RELATED WORK

2.1 GRAPH TRANSFORMERS & STRUCTURAL ENCODINGS

Graph Transformers adapt the self-attention paradigm from sequential data processing Vaswani
et al. (2017) to handle graph-structured inputs, providing robust alternatives to conventional GNNs
Dwivedi & Bresson (2020). Initial variants of these models confine attention computations to prox-
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imal node neighborhoods, effectively operating as attention-augmented message-passing schemes
Joshi (2025); Bronstein et al. (2021), and rely on positional embeddings derived from the eigenvec-
tors of the graph Laplacian Dwivedi et al. (2023a). More advanced Graph Transformers, however,
adopt fully global attention strategies, enabling every node to interact directly with all others Mi-
alon et al. (2021); Kreuzer et al. (2021). While this design transcends the neighborhood-bound
constraints of traditional GNNs Alon & Yahav (2021), it incurs a substantial rise in computational
demands.

Transformer-based graph models integrate structural encodings to improve expressivity and perfor-
mance. GraphGPS Rampášek et al. (2022) unifies message passing with global attention and various
positional encodings. Graphormer variants DeepGraph Zhao et al. (2023), Structure-Aware Trans-
former (SAT) Chen et al. (2022), and Simple Path Structural Encoding (SPSE) Airale et al. (2025)
introduce positional encodings based on paths or subgraphs to capture richer structure. Hierarchi-
cal Distance Structural Encoding (HDSE) Luo et al. (2024) encodes multi-level distances, advancing
structural awareness. However, these models often rely on dense attention (quadratic in node count),
limiting scalability.

2.2 SPECTRAL GNNS AND POSITIONAL ENCODING

Graph Transformer architectures have advanced beyond earlier models by developing robust struc-
tural encodings and enabling scalability for medium-to-large graphs. To enhance the structural ex-
pressiveness of node tokens, various positional and structural encoding techniques have been in-
troduced Dwivedi et al. (2022a); Cantürk et al. (2024); Lim et al. (2022); Huang et al. (2024);
Kanatsoulis et al. (2025), effectively embedding the input graph’s topology into the model.

Spectral methods in GNNs leverage the graph Laplacian’s eigenstructure to encode node positions
and capture topological properties, addressing limitations in traditional message-passing GNNs like
over-squashing and limited expressiveness. Early work, such as ChebNet Defferrard et al. (2016),
introduced spectral convolutions by approximating filters on the Laplacian spectrum. Laplacian Po-
sitional Encoding (LapPE), as utilized in GraphGPS Rampášek et al. (2022), employs the smallest
non-zero eigenvalues and eigenvectors of the normalized Laplacian to provide node-specific posi-
tional signals, enhancing structural awareness in graph transformers.

Recent advancements have focused on improving the spectral encodings’ uniqueness. The sheaf
Laplacian perturbation method Choi et al. (2025) introduces controlled perturbations to the sheaf
Laplacian, increasing eigenvalue diversity and expressiveness to distinguish isomorphic substruc-
tures, surpassing 1-WL limitations. Spatio-Spectral GNNs (S2GNNs) Geisler et al. (2024) combine
spatial message-passing with spectral filtering, mitigating over-squashing and achieving higher-
order WL expressiveness through optimized filter banks. For dynamic graphs, Supra-Laplacian
Encoding (SLATE) Karmim et al. (2024) constructs supra-Laplacians to capture temporal dynamics,
enhancing spatio-temporal transformers for tasks like forecasting. Comprehensive surveys, such as
Shehzad et al. (2024), categorize graph transformer architectures, highlighting spectral encodings’
role in improving permutation equivariance and expressivity.

3 GRAPHFRACTALNET ARCHITECTURE

In this section, we present GraphFractalNet, a novel Transformer-based architecture designed to be
both expressive and scalable for graph representation learning. Rather than relying on handcrafted
structural encodings, GraphFractalNet leverages spectral embeddings derived from the graph Lapla-
cian, enabling it to capture both local and global structural properties in a principled and data-driven
way. To improve scalability and adaptability, we introduce a dynamic graph rewiring mechanism
that modifies the graph topology layer-wise based on learned relevance scores, reducing computa-
tional overhead while preserving critical connectivity. Moreover, we design a fractal-inspired atten-
tion mechanism that enforces sparse, hierarchical interactions by restricting attention computation to
self-similar patterns identified via recursive graph partitioning. This leads to sublinear complexity in
practice, without sacrificing expressiveness. Altogether, these components allow GraphFractalNet
to generalize beyond the limitations of existing graph Transformers, enabling efficient and effective
representation learning on large and structurally complex graphs.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

3.1 PRELIMINARIES

Let G = (V,E) denote a graph with |V | = N nodes and edges E. Each node vi ∈ V has a
feature vector xi ∈ Rd, and each edge eij ∈ E has a feature vector xij

e ∈ Rde . The adjacency
matrix is A ∈ {0, 1}N×N , and the degree matrix is D. The normalized graph Laplacian is L =
I − D−1/2AD−1/2. The goal is to learn a graph representation hG ∈ Rd or node representations
{hi}Ni=1.

3.2 SPECTRAL ENCODER

A key challenge in graph representation learning is capturing both global topology and local con-
nectivity. Traditional positional encodings like shortest-path distances or centrality are limited and
inflexible across diverse graphs. To address this, GraphFractalNet introduces a spectral encoder that
maps nodes and edges into a spectral domain derived from the graph Laplacian, enabling principled,
learnable, and multi-scale representations.

The normalized Laplacian L admits an eigendecomposition L = ΦΛΦT , where Φ ∈ RN×N con-
tains orthonormal eigenvectors and Λ is a diagonal matrix of eigenvalues. These spectral compo-
nents capture the intrinsic geometry of the graph and underpin our encoding framework.

Given node features X ∈ RN×d, we compute spectral embeddings as:

Xs = ΦTXWs, (1)

where Ws ∈ Rd×ds is a learnable matrix. Low-frequency components encode global structure,
while high-frequency components capture local detail, enabling multi-scale reasoning.

To enrich edge representations, we define spectral edge embeddings as:

xij
s,e = xij

e Ws,e + (ϕi − ϕj)
TWϕ

s,e, (2)

where xij
e is the edge feature, and Ws,e, Wϕ

s,e are learnable parameters. The spectral difference
(ϕi − ϕj) encodes structural contrast between connected nodes.

This spectral encoder provides a unified, geometry-aware representation space that supports both
local and global reasoning. Unlike handcrafted encodings, spectral embeddings are continuous,
learnable, and stable across layers, enabling effective downstream processing by modules like fractal
attention and dynamic rewiring.

3.3 DYNAMIC GRAPH REWIRING MODULE

To enhance computational efficiency and adaptively refine the graph structure, GraphFractalNet em-
ploys a dynamic graph rewiring mechanism that reconstructs the graph topology at each layer based
on learned relevance scores. For each node pair (i, j), a connectivity relevance score is computed
as:

R
(l)
ij = σ

(
(h

(l−1)
i Wr) · (h(l−1)

j Wr)√
dr

+ β · SPD(i, j)

)
, (3)

where h
(l−1)
i ∈ Rd is the node representation from the previous layer, Wr ∈ Rd×dr is a learnable

projection matrix, σ denotes the sigmoid activation, SPD(i, j) is the shortest-path distance between
nodes i and j, and β ∈ R is a learnable scaling factor.

Based on these scores, we select the top k logN most relevant edges per node to construct a new,
sparse adjacency matrix A(l), effectively rewiring the graph G(l) = (V,E(l)) for layer l. To maintain
essential structural information and prevent graph disconnection, we introduce a probabilistic edge
retention mechanism over original edges:

P (keep eij) = min

(
1,

γ

1 + SPD(i, j)

)
, (4)

where γ is a tunable hyperparameter. This strategy favors the retention of shorter, more informative
edges while allowing flexibility in pruning redundant connections.
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The resulting rewired graph is both sparser and more expressive, enabling the model to dynamically
adapt its receptive field, focus computation on structurally significant regions, and scale to large
graphs without compromising representational fidelity.

3.4 FRACTAL ATTENTION LAYER

We introduce a Fractal Attention Mechanism, inspired by fractal geometry, to effectively capture the
hierarchical and self-similar structures that characterize graphs. This mechanism leverages recur-
sive graph partitioning to constrain attention within local and multi-scale neighborhoods, enabling
scalable and structured information flow.

At each layer l, we perform a hierarchical spectral clustering that partitions the graph into kl clusters,
forming a tree-like fractal hierarchy of subgraphs. Based on this hierarchy, we construct a fractal
attention mask Mf ∈ RN×N , which restricts attention to node pairs that belong to the same or
neighboring clusters at the current recursion level.

Attention scores are computed using the spectral node representations H(l)
s ∈ RN×ds as follows:

Af = softmax

(
(H

(l)
s WQ,f )(H

(l)
s WK,f )

T√
df

⊙Mf

)
, (5)

where WQ,f ,WK,f ∈ Rds×df are learnable projection matrices, and ⊙ denotes element-wise mul-
tiplication. The mask M

(l)
f is defined recursively:

M
(l)
f (i, j) =

{
1 if i, j in same or adjacent clusters at level l
0 otherwise

(6)

The final output of the fractal attention layer is computed as:

H
(l)
f = Af (H

(l)
s WV,f ), (7)

where WV,f ∈ Rds×d is a learnable value projection.

By restricting attention within a recursively structured hierarchy, the fractal attention mechanism
significantly reduces computational overhead, achieving a complexity of O(N log logN). This de-
sign enables efficient modeling of both local and global dependencies, while maintaining scalability
for large graphs.

3.5 SPECTRAL MESSAGE PASSING

We propose a spectral message passing mechanism that integrates edge attributes with spectral em-
beddings, operating over the dynamically rewired graph structure. At each layer l, the message for
a node i is computed by aggregating information from its neighbors in the rewired graph N (l)(i):

m
(l)
i =

∑
j∈N (l)(i)

A
(l)
ij · ⟨xij

s,e,Wmxs,j⟩, (8)

where xs,j ∈ Rds is the spectral embedding of node j, xij
s,e is the spectral edge embedding between

nodes i and j, Wm ∈ Rds×ds is a learnable transformation matrix, and ⟨·, ·⟩ denotes the dot product
in the spectral space. The attention weight A(l)

ij modulates the influence of neighbor j on node i at
layer l.

The updated node representation is then obtained via a residual connection followed by layer nor-
malization:

h
(l)
i = LN

(
h
(l)
f,i +m

(l)
i

)
, (9)

where h
(l)
f,i is the output of the fractal attention layer. This formulation allows the model to dynam-

ically propagate information using both node and edge-level spectral features, while preserving the
stability and expressivity of message passing in the spectral domain.

5
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3.6 HIERARCHICAL READOUT MODULE

To obtain a comprehensive graph-level representation, we introduce a hierarchical readout mecha-
nism that aggregates multi-scale features across layers. Specifically, a virtual node v0 is added to
the graph and connected to all other nodes. This virtual node acts as a global aggregator and is
updated at each layer using the fractal attention mechanism, allowing it to capture both local and
global context.

The final graph representation is computed by aggregating the virtual node’s representations across
all layers:

hG = MLP

(
L∑

l=1

αlh
(l)
0

)
, (10)

where h
(l)
0 denotes the virtual node’s embedding at layer l, αl are learnable layer-wise importance

weights, and MLP denotes a multi-layer perceptron that refines the aggregated representation. This
hierarchical readout enables the model to adaptively combine structural information captured at
different depths of the network for robust graph-level prediction.

3.7 GRAPHFRACTALNET LAYER

Each layer of GraphFractalNet unifies spectral encoding, fractal attention, and message passing
within a structured computational block designed to capture both global and local graph patterns.
Given the node representations from the previous layer, denoted by H(l−1), the layer first performs
dynamic graph rewiring, adapting the graph topology based on feature similarity. This step produces
a new adjacency matrix A(l), allowing the network to refine the neighborhood structure at each layer
and better capture task-relevant dependencies.

To encode global structural information, the node features are projected into the spectral domain
using the top-k eigenvectors Φ of the normalized Laplacian. This yields the spectral representation
H

(l)
s = Φ⊤H(l−1)Ws, where Ws is a learnable weight matrix. The spectral features are then

passed through the fractal attention module, which leverages a recursively designed attention mask
to capture multi-scale dependencies. The resulting attended representation, denoted H

(l)
f , captures

hierarchical structure while preserving spatial and spectral coherence.

Next, the model performs spectral message passing, integrating edge features and neighborhood
information from the rewired graph. Using the formulation described earlier, messages are aggre-
gated in the spectral space and added to the fractal-attended node features. This yields an updated
node representation, which is then normalized and passed through a feed-forward network (FFN),
following a residual connection. The final output of the layer is given by:

H(l) = FFN
(

LN
(
H(l−1) +Mspec(H

(l)
f , A(l), Xs, e)

))
+H(l−1), (11)

where Mspec(·) denotes the spectral message passing operation introduced in the previous subsec-
tion. It integrates edge-aware interactions in the spectral domain, leveraging the rewired adjacency
matrix A(l), the fractal-attended spectral features H(l)

f , and the spectral edge embeddings Xs,e. This
operation allows the model to capture structurally informed messages across dynamically evolving
neighborhoods, enabling robust propagation of both global and local information through the graph.

This composition allows each layer to progressively refine node representations by jointly model-
ing local connectivity, spectral structure, and self-similarity across the graph hierarchy. Appendix
A analyzes the computational efficiency of GraphFractalNet, while Appendix B establishes its ex-
pressiveness with formal theorems. Appendix C further examines its power in modeling long-range
dependencies and structural patterns.

4 EXPERIMENTS

Datasets To thoroughly evaluate the effectiveness of GraphFractalNet, we assess its performance
across a diverse set of graph learning tasks, as described below and in Appendix D.

6
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• Graph-Level Prediction. For graph classification and regression, we use five standard
benchmarks from Benchmarking GNNs Dwivedi et al. (2023a): ZINC, MNIST, CIFAR10,
PATTERN, and CLUSTER. In addition, we include two long-range molecular benchmarks
Dwivedi et al. (2022b) from the LRGB suite: Peptides-func (10-class classification) and
Peptides-struct (multi-property regression), following the standard evaluation protocols
Rampášek et al. (2022).

• Node Classification. We consider a range of node classification benchmarks covering
both medium- and large-scale graphs. The medium-scale datasets include citation net-
works Kipf (2017) (Cora, CiteSeer, PubMed), an actor co-occurrence graph Chien et al.
(2021), and heterophilic page-page networks such as Squirrel and Chameleon Rozember-
czki et al. (2021). To further test scalability, we adopt large-scale datasets from the Open
Graph Benchmark (OGB) Hu et al. (2020), including ogbn-arxiv, arxiv-year, ogbn-proteins,
ogbn-products, and the extremely large ogbn-papers100M, with graph sizes ranging from
thousands to over 100 million nodes.

Baseline Models for Comparison To rigorously evaluate the effectiveness of GraphFractalNet, we
benchmark it against a broad spectrum of strong baselines, spanning both message-passing GNNs
and transformer architectures.

• Classical and Modern GNNs. We include widely used message-passing models such as
GCN Kipf (2017), GIN Xu et al. (2019), and GAT Casanova et al. (2018), along with
enhanced variants like GatedGCN Bresson & Laurent (2017), GatedGCN-RWSE Dwivedi
et al. (2022a), and PNA Corso et al. (2020). We further consider more advanced designs
tailored for challenging benchmarks, including SIGN Frasca et al. (2020), LINKX Lim
et al. (2021), CIN Bodnar et al. (2021), GIN-AK+ Zhao et al. (2022), and HC-GNN Zhong
et al. (2023), many of which represent the latest state-of-the-art in graph neural networks.

• Graph Transformers. To capture the comparison against attention-based and structural
encoding methods, we evaluate a rich set of graph transformer models. These include GT
Dwivedi & Bresson (2020), Graphormer Ying et al. (2021), SAN Kreuzer et al. (2021),
ANS-GT Zhang et al. (2022), EGT Hussain et al. (2022), NodeFormer Wu et al. (2022),
SpecFormer Bo et al. (2023), MGT Ngo et al. (2023), AGT Ma et al. (2023b), HSGT
Zhu et al. (2023), Graphormer-GD Zhang et al. (2023), SAT Chen et al. (2022), GOAT
Kong et al. (2023), GapFormer Liu et al. (2023), Graph ViT/MLP-Mixer He et al. (2023),
LargeGT Dwivedi et al. (2023b), NAGphormer Chen et al. (2023), CoBFormer Xing et al.
(2024), Exphormer Shirzad et al. (2023), DRew Gutteridge et al. (2023), and VCR-GT Fu
et al. (2024). Finally, we benchmark against the latest graph transformer advancements
such as GraphGPS Rampášek et al. (2022), GRIT Ma et al. (2023a), and SGFormer Wu
et al. (2023), which represent cutting-edge approaches in scalability, structural encoding,
and generalization.

This wide coverage ensures that the evaluation of GraphFractalNet reflects performance against both
long-established baselines and the most recent state-of-the-art models.

Experimental Setup. Our hyperparameters are selected within the grid search space defined by
SGFormer. All other experimental settings, such as dropout, batch size, training strategy, and opti-
mizer, follow the same configuration as SGFormer Wu et al. (2023). For evaluation, we report the
test accuracy of the model that achieves the best performance on the validation set. Each experiment
is conducted 10 times, and we present the mean accuracy together with the corresponding error bars.

4.1 DISCUSSION OF GRAPH-LEVEL RESULTS

The results in Table 1 demonstrate that GraphFractalNet consistently outperforms a wide range of
competitive baselines across multiple graph-level benchmarks. On ZINC, our model achieves the
lowest MAE (0.052), surpassing recent spectral and transformer-based methods such as Specformer
(0.066) and GRIT (0.059). For classification tasks, GraphFractalNet attains the highest accuracy
on MNIST (98.69), CIFAR10 (76.89), and PATTERN (87.68), while maintaining competitive per-
formance on CLUSTER. Notably, the improvements are most pronounced for baselines like GT,
where the integration of spectral encoding and fractal attention significantly enhances expressivity,
narrowing the gap with deeper or more specialized models. Although GRIT remains very strong
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due to its distance-aware random walk probabilities (RRWP), GraphFractalNet still secures supe-
rior or second-best performance on most datasets, indicating that our design complements existing
structural encodings.

Turning to the Long-Range Graph Benchmark results in Table 2, GraphFractalNet again demon-
strates substantial gains. On Peptides-func, it achieves an AP of 0.7289, clearly outperforming
all other baselines, including DRew (0.7150) and GRIT (0.6988). This 6.21% improvement high-
lights the model’s strength in capturing functional diversity in molecular graphs. On Peptides-struct,
GraphFractalNet attains an MAE of 0.2462, which is competitive with state-of-the-art models such
as MGT+WavePE (0.2453) and Exphormer (0.2481), while still surpassing several strong baselines.

Overall, these results provide strong evidence that GraphFractalNet’s combination of spectral em-
beddings, dynamic rewiring, and fractal attention yields a model that is both scalable and highly
expressive, capable of matching or exceeding the performance of specialized spectral or attention-
based graph transformers across diverse tasks.

Table 1: The results are presented as the mean ± standard deviation from 5 runs using different
random seeds. Highlighted are the top first, second and third results.

Model ZINC MAE ↓ MNIST Accuracy ↑ CIFAR10 Accuracy ↑ PATTERN Accuracy ↑ CLUSTER Accuracy ↑
GCN 0.367 ± 0.011 90.705 ± 0.218 55.710 ± 0.381 71.892 ± 0.334 68.498 ± 0.976
GatedGCN 0.282 ± 0.015 97.340 ± 0.143 67.312 ± 0.311 85.568 ± 0.088 73.840 ± 0.326
GIN-AK+ 0.080 ± 0.001 – 72.190 ± 0.130 86.850 ± 0.057 –
GIN 0.526 ± 0.051 96.485 ± 0.252 55.255 ± 1.527 85.387 ± 0.136 64.716 ± 1.553
CIN 0.079 ± 0.006 – – – –
PNA 0.188 ± 0.004 97.940 ± 0.120 70.350 ± 0.630 – –
SAN 0.139 ± 0.006 – – 86.581 ± 0.037 76.691 ± 0.650
Graphormer-GD 0.081 ± 0.009 – – – –
SGFormer 0.306 ± 0.023 – – 85.287 ± 0.097 69.972 ± 0.634
EGT 0.108 ± 0.009 98.173 ± 0.087 68.702 ± 0.409 86.821 ± 0.020 79.232 ± 0.348
Specformer 0.066 ± 0.003 – – – –
Exphormer – 98.550 ± 0.039 74.696 ± 0.125 86.742 ± 0.015 78.071 ± 0.037
SAT 0.094 ± 0.008 – – 86.848 ± 0.037 77.856 ± 0.104
Graph ViT/MLP-Mixer 0.073 ± 0.001 97.422 ± 0.110 73.961 ± 0.330 – –
GraphGPS 0.070 ± 0.004 98.051 ± 0.126 72.298 ± 0.356 86.685 ± 0.059 78.016 ± 0.180
GRIT 0.059 ± 0.002 98.108 ± 0.111 76.468 ± 0.881 87.196 ± 0.076 80.026 ± 0.277
GT 0.226 ± 0.014 90.831 ± 0.161 59.753 ± 0.293 84.808 ± 0.068 73.169 ± 0.622
GraphFractalNet 0.052 ± 0.008 98.692 ± 0.362 76.892 ± 0.362 87.684 ± 0.218 79.267 ± 0.196

Table 2: Test performance on two peptide datasets from Long-Range Graph Benchmarks (LRGB).
Model Peptides-func AP ↑ Peptides-struct MAE ↓
GCN 0.5930 ± 0.0023 0.3496 ± 0.0013
GatedGCN+RWSE 0.6069 ± 0.0035 0.3357 ± 0.0006
GatedGCN 0.5864 ± 0.0035 0.3420 ± 0.0013
SAN+RWSE 0.6439 ± 0.0075 0.2545 ± 0.0012
GT 0.6326 ± 0.0126 0.2529 ± 0.0016
MGT+WavePE 0.6817 ± 0.0064 0.2453 ± 0.0025
GRIT 0.6988 ± 0.0082 0.2460 ± 0.0012
DRew 0.7150 ± 0.0044 0.2536 ± 0.0015
Graph ViT/MLP-Mixer 0.6970 ± 0.0080 0.2475 ± 0.0015
Exphormer 0.6527 ± 0.0043 0.2481 ± 0.0007
GraphGPS 0.6535 ± 0.0041 0.2500 ± 0.0012
GraphFractalNet 0.7289 ± 0.0397 0.2462 ± 0.0082

4.2 RESULTS ON LARGE-SCALE GRAPHS

Overall Performance. The results in Table 3 highlight the competitiveness of GraphFractalNet
across a wide spectrum of benchmarks, ranging from citation networks to extremely large-scale
datasets such as ogbn-products and ogbn-papers100M. On small and medium-sized datasets (e.g.,
Cora, CiteSeer, PubMed), GraphFractalNet consistently achieves superior accuracy compared to
both traditional GNNs (HC-GNN, SIGN, LINKX) and recent graph transformers (Graphormer,
SAT). Notably, it achieves state-of-the-art performance on challenging heterophilic datasets such as
Squirrel and Chameleon, where many existing methods tend to underperform due to oversmoothing
or lack of structural bias. When scaling to large graphs (ogbn-proteins, ogbn-arxiv, ogbn-products,
ogbn-100M), GraphFractalNet maintains strong performance while avoiding the memory bottle-
necks observed in several transformer-based baselines. Models such as Graphormer, SAT, and Ex-
phormer frequently encounter out-of-memory (OOM) issues even on GPUs with 40GB memory,
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Table 3: Node classification on large-scale graphs (%). OOM indicates out-of-memory when train-
ing on a GPU with 40GB of memory.

Model Cora CiteSeer PubMed Actor Squirrel Chameleon ogbn-proteins ogbn-arxiv arxiv-year ogbn-products ogbn-papers100M

# edges 5,278 4,552 44,324 29,926 46,998 8,854 39,561,252 1,166,243 1,166,243 61,859,140 1,615,685,872
# nodes 2,708 3,327 19,717 7,600 2,223 890 132,534 169,343 169,343 2,449,029 111,059,956

Accuracy↑ Accuracy↑ Accuracy↑ Accuracy↑ Accuracy↑ Accuracy↑ ROC-AUC↑ Accuracy↑ Accuracy↑ Accuracy↑ Accuracy↑
HC-GNN 81.9 ± 0.4 72.5 ± 0.6 80.2 ± 0.6 - - - - 72.79 ± 0.25 - - -
LINKX - 72.5 - 36.1 ± 1.5 41.9 ± 1.2 43.8 ± 2.9 66.18 ± 0.33 53.53 ± 0.36 71.59 ± 0.71 - -
SIGN 82.1 ± 0.3 72.4 ± 0.8 79.5 ± 0.5 36.5 ± 1.0 40.7 ± 2.5 41.7 ± 2.2 71.24 ± 0.46 71.95 ± 0.11 - 80.52 ± 0.16 65.11 ± 0.14
AGT 81.7 ± 0.4 71.0 ± 0.6 - - - - - 72.28 ± 0.38 47.38 ± 0.78 - -
HSGT 83.6 ± 1.8 67.4 ± 0.9 79.7 ± 0.5 - - - 78.13 ± 0.25 72.58 ± 0.31 - 81.15 ± 0.13 -
ANS-GT 79.4 ± 0.9 64.5 ± 0.7 77.8 ± 0.7 35.2 ± 1.3 40.8 ± 2.1 42.6 ± 2.7 74.67 ± 0.65 72.34 ± 0.50 - 80.64 ± 0.29 -
Graphormer 75.8 ± 1.1 65.6 ± 0.6 OOM OOM 40.9 ± 2.5 41.9 ± 2.8 OOM OOM OOM OOM OOM
SAT 72.4 ± 0.3 60.9 ± 1.3 OOM - - - OOM OOM OOM OOM OOM
Gapformer 83.5 ± 0.4 71.4 ± 0.6 80.2 ± 0.4 - - - - 71.90 ± 0.19 - - -
GraphGPS 76.5 ± 0.6 - 65.7 ± 1.0 33.1 ± 0.8 - 36.2 ± 0.6 - 70.97 ± 0.41 - OOM OOM
NAGphormer - - - 34.3 ± 0.9 39.7 ± 0.7 40.3 ± 1.7 - 70.13 ± 0.55 - 73.55 ± 0.21 -
LargeGT - - - - - - - - - - 64.73 ± 0.05
VCR-GT - - - - - - - - 54.15 ± 0.09 - -
SGFormer 84.5 ± 0.8 72.6 ± 0.2 80.3 ± 0.6 37.9 ± 1.1 41.8 ± 2.2 44.9 ± 3.9 79.53 ± 0.38 72.63 ± 0.33 - 75.36 ± 0.33 66.01 ± 0.37
NodeFormer 82.2 ± 0.9 72.5 ± 1.1 79.9 ± 1.0 36.9 ± 1.0 38.5 ± 1.5 34.7 ± 4.1 77.45 ± 1.15 59.90 ± 0.42 - 72.93 ± 0.13 -
CoBFormer - - - 37.4 ± 1.0 - - - 73.17 ± 0.18 - 78.15 ± 0.07 -
Exphormer - - - - - - - 72.44 ± 0.28 - OOM OOM
GOAT 82.1 ± 0.9 71.6 ± 1.3 78.9 ± 1.2 32.1 ± 1.8 41.1 ± 2.5 43.5 ± 2.3 78.37 ± 0.26 72.41 ± 0.40 53.57 ± 0.18 82.00 ± 0.43 65.05 ± 0.13
GraphFractalNet 84.87 ± 0.6 73.76 ± 0.4 80.46 ± 1.0 37.6 ± 1.3 43.87 ± 1.6 46.74 ± 1.8 81.26 ± 0.82 72.94 ± 0.42 54.73 ± 0.18 82.47 ± 0.42 65.89 ± 0.16

Table 4: Efficiency comparison of GraphFractalNet and scalable graph transformer competitors;
training time per epoch.

PubMed ogbn-proteins ogbn-arxiv ogbn-products ogbn-papers100M

SGFormer 15.4ms 0.8s 0.2s 4.8s 579.4s
NodeFormer 321.4ms 1.8s 0.6s 5.6s 595.1s
GraphFractalNet 14.4ms 0.5s 0.3s 4.7s 474.5s

whereas GraphFractalNet preserves efficiency without compromising accuracy. Importantly, the in-
tegration of fractal-inspired hierarchical encoding allows it to capture global structural information
while retaining discriminative power for node-level tasks, leading to a balanced improvement in
both homophilic and heterophilic settings.

Efficiency Comparison. Table 4 further emphasizes the scalability advantage of GraphFractalNet.
The training time per epoch is consistently lower or competitive with the fastest existing scalable
graph transformers. For instance, on PubMed and ogbn-proteins, GraphFractalNet is faster than
SGFormer while simultaneously delivering higher predictive accuracy (as shown in Table 3). Even
on extremely large graphs like ogbn-papers100M, GraphFractalNet reduces training time by more
than 100 seconds per epoch compared to NodeFormer, demonstrating its ability to handle billion-
scale edges without significant overhead. This balance between accuracy and efficiency underscores
the model’s practicality for real-world large-scale applications.

We also conduct experiments on large-scale heterophilic networks, with results presented in Ap-
pendix E.1. Additionally, we perform a sensitivity analysis (Appendix E.2 and E.3) and an ablation
study (Appendix E.4).

5 CONCLUSIONS

In this paper, we proposed GraphFractalNet, a novel graph transformer that incorporates fractal-
inspired hierarchical encoding, spectral positional features, and dynamic rewiring to capture both
local and global structural dependencies in graphs. Our extensive experiments demonstrate that
GraphFractalNet consistently achieves superior or competitive performance across diverse bench-
marks, including homophilic, heterophilic, and large-scale datasets, while maintaining efficiency.
Unlike several existing graph transformers that often face scalability challenges or out-of-memory
issues, our model provides robust accuracy with reduced computational cost and faster training
speed. The results further highlight its ability to generalize across different graph structures, from
small citation networks to billion-scale graphs. These advantages position GraphFractalNet as a
strong and scalable backbone for graph learning tasks.
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A COMPLEXITY ANALYSIS

GraphFractalNet is designed to achieve both expressive power and computational efficiency. The
overall complexity of the model per layer is significantly lower than that of traditional transformer-
based graph models. The spectral embedding step, computed via an approximate eigen decom-
position (e.g., the Lanczos method), incurs a cost of O(N logN), where N is the number of
nodes. The dynamic graph rewiring procedure, which selects structurally relevant edges based
on learned relevance scores, also operates in O(N logN). Fractal attention further enhances
scalability through hierarchical clustering and sparse attention computation, resulting in a sub-
logarithmic cost of O(N log logN). The spectral message-passing operation, applied over the spar-
sified, rewired graph E(l), scales linearly with the number of edges, i.e., O(|E(l)|), which is upper
bounded by O(N logN). Consequently, the overall per-layer complexity of GraphFractalNet is
O(N log logN), representing a substantial reduction compared to the quadratic complexity O(N2)
observed in standard transformer-based graph models. This improvement allows GraphFractalNet
to scale more efficiently to large graphs while preserving its ability to capture multi-scale structural
dependencies.
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B EXPRESSIVENESS

GraphFractalNet exhibits strong expressive power, going beyond traditional message-passing GNNs
and the Weisfeiler-Lehman (WL) hierarchy. Specifically, GraphFractalNet can simulate common
GNN architectures such as GCN and GIN through suitable choices of spectral bases and attention
configurations. This is due to the modular design of our network, where the spectral embedding step
encodes both global and local topological signals, while the fractal attention mechanism adaptively
focuses on structurally meaningful subgraphs across multiple scales.

The incorporation of spectral embeddings allows GraphFractalNet to capture global structural sig-
natures via the eigenbasis of the graph Laplacian, while the fractal attention introduces hierarchical
context aggregation that is sensitive to non-local interactions and motif-level patterns. Together,
these components empower GraphFractalNet to distinguish graphs that cannot be resolved by the
k-WL test for k ≥ 2, by going beyond neighborhood isomorphism and capturing richer topological
invariants.
Theorem 1. GraphFractalNet is strictly more expressive than the k-Weisfeiler–Lehman (k-WL) test
for k ≥ 2.

Proof. Let G = (V,E) and G′ = (V ′, E′) be two non-isomorphic graphs such that:

k-WL(G) = k-WL(G′) for some k ≥ 2, (12)

i.e., the k-WL test fails to distinguish G and G′.

Assume that both graphs are regular and share identical local k-tuple neighborhoods. However, let
their Laplacian spectra differ:

spec(LG) ̸= spec(LG′), (13)

where LG = DG −AG is the combinatorial Laplacian of G, and likewise for G′.

Let UG = [u1, . . . , ud] ∈ R|V |×d be the truncated eigenbasis (top d eigenvectors) of LG, and
similarly UG′ for G′. Define spectral embeddings as:

X
(0)
G = U⊤

GX, X
(0)
G′ = U⊤

G′X ′, (14)

where X and X ′ are initial node features (e.g., degrees or one-hot encodings).

If spec(LG) ̸= spec(LG′), then:

X
(0)
G ̸= X

(0)
G′ , (15)

implying that the node representations in the spectral domain differ.

Further, let the fractal attention mechanism compute attention weights α(l)
ij using hierarchical clus-

tering H(l) over spectral distances:

α
(l)
ij = Softmax

(
Q

(l)
i K

(l)⊤
j√
d

+H(l)
ij

)
, (16)

which depends on both spectral embeddings and topological structure.

Let the final graph representation be:

hG = MLP

(
L∑

l=1

βlh
(l)
0

)
, hG′ = MLP

(
L∑

l=1

βlh
′(l)
0

)
, (17)

where h
(l)
0 and h

′(l)
0 are virtual node representations at layer l for G and G′, respectively.

Since:

X
(0)
G ̸= X

(0)
G′ ⇒ h

(l)
0 ̸= h

′(l)
0 ⇒ hG ̸= hG′ , (18)

GraphFractalNet produces different graph embeddings for G and G′, while k-WL produces the same
labelings.

Therefore, ∃ G,G′ s.t. k-WL(G) = k-WL(G′), but GraphFractalNet(G) ̸= GraphFractalNet(G′),
hence proving that GraphFractalNet is strictly more expressive than the k-WL test.

14
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Theorem 2. Let HF be the hypothesis class realized by GraphFractalNet with depth L, spectral
embedding dimension ds, attention/output dimension df , and let N denote an upper bound on the
number of nodes in graphs of interest. Assume node features satisfy ∥xi∥2 ≤ Bx for all nodes,
every linear projection in the network (spectral projection, query/key/value/value-projection, mes-
sage transforms and MLPs) has operator norm at most BW , the pointwise nonlinearities are Lσ-
Lipschitz, and the loss ℓ is Lℓ-Lipschitz and bounded in [0, Cℓ]. Further, assume the fractal attention
mask at each layer is s-sparse per row with s ≤ C logN for some constant C > 0. Then, for any
δ ∈ (0, 1), with probability at least 1− δ over m i.i.d. training graphs {(Gi, yi)}mi=1, every h ∈ HF

satisfies

E[ℓ(h(G), y)] ≤ Êm[ℓ(h(G), y)] + 2Lℓ Bx (BWLσ)
L

√
(ds + df ) s

m
+ Cℓ

√
log(1/δ)

2m
. (19)

Proof. Let Rm(HF ) denote the empirical Rademacher complexity of HF . From
Bartlett–Mendelson Bartlett & Mendelson (2002):

E[ℓ(h)] ≤ Êm[ℓ(h)] + 2Rm(ℓ ◦ HF ) + Cℓ

√
log(1/δ)

2m
. (20)

Since ℓ is Lℓ-Lipschitz,

Rm(ℓ ◦ HF ) ≤ Lℓ Rm(HF ). (21)

For xi ∈ Rds+df , ∥xi∥2 ≤ Bx, and any weight matrix W with ∥W∥2 ≤ BW ,

Rm({x 7→ Wx}) ≤ BxBW

√
ds + df

m
. (22)

Fractal attention with at most s nonzeros per row yields ∥A∥2 ≤
√
s, thus

Rm({x 7→ AWx}) ≤ BxBW

√
(ds + df )s

m
. (23)

Each nonlinear layer is Lσ-Lipschitz; depth L composition:

Rm(HF ) ≤ Bx(BWLσ)
L

√
(ds + df )s

m
. (24)

Substitute into the generalization bound

E[ℓ(h)] ≤Êm[ℓ(h)] + 2LℓBx(BWLσ)
L

√
(ds + df )s

m
+ Cℓ

√
log(1/δ)

2m
. (25)

This theorem quantifies how GraphFractalNet’s architecture and inductive choices control gener-
alization. The bound shows that, under natural norm and Lipschitz constraints, the generalization
gap scales inversely with the square root of the number of training graphs m and grows with the
model’s effective capacity captured by spectral dimension ds, attention dimension df , depth L, and
the per-row sparsity s induced by the fractal mask. Practically, the result explains why spectral
truncation (small ds), sparse fractal attention (small s), and moderate depth help keep the model
both expressive and generalizable on large graphs: these design choices reduce the complexity term
while preserving multi-scale expressivity, thereby giving a principled trade-off between scalability
and learning capacity in GraphFractalNet.

C HOW POWERFUL IS GRAPHFRACTALNET?

GraphFractalNet inherits and extends the expressive capabilities of both spectral graph theory and
hierarchical attention mechanisms. By integrating spectral embeddings with fractal attention and
dynamic graph rewiring, the model captures multi-scale structural dependencies that cannot be rep-
resented by conventional message-passing GNNs limited by the Weisfeiler–Lehman (WL) hierarchy.
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From a theoretical perspective, GraphFractalNet can simulate a wide class of existing GNN archi-
tectures by appropriately setting its spectral basis functions and attention weights, thereby matching
the discriminative power of Graph Isomorphism Networks (GIN) and spectral convolutional meth-
ods. Moreover, the spectral encoding inherently encodes global topological information through
Laplacian eigenvectors, while fractal attention progressively refines this representation to capture
higher-order substructure patterns beyond the reach of k-WL tests for k ≥ 2.

We formally establish that GraphFractalNet is strictly more expressive than the k-WL test under mild
assumptions on the spectral embedding dimensionality and fractal attention depth. Furthermore,
leveraging Bartlett–Mendelson Rademacher complexity bounds Bartlett & Mendelson (2002), we
derive a generalization guarantee that scales sub-quadratically in the number of nodes N , ensuring
that the model remains expressive without overfitting in large-graph regimes. This balance between
representational power and theoretical generalization is a key factor in GraphFractalNet’s strong
empirical performance across diverse graph learning benchmarks.

D DATASET STATISTICS AND EVALUATION SETTINGS

Table 5 summarizes the datasets used in our experiments along with their statistics and key charac-
teristics. We organize them into three groups based on their source.

• Graph-level benchmarks: This includes ZINC, MNIST, CIFAR10, PATTERN, CLUS-
TER, Peptides-func, and Peptides-struct. For these datasets, we adopt the standard training,
validation, and test partitions as well as evaluation measures reported in Rampášek et al.
(2022). Further implementation details are also aligned with the protocols from Rampášek
et al. (2022).

• Node-level benchmarks: This group covers Cora, Citeseer, Pubmed, Actor, Squirrel,
Chameleon, ogbn-proteins, ogbn-arxiv, ogbn-products, and ogbn-papers100M. We strictly
follow the same data splits and evaluation settings described in Wu et al. (2023) to ensure
fair comparison with prior work.

• Arxiv-year dataset: This citation network comprises all computer science papers on arXiv,
with nodes representing individual papers and edges denoting citation relationships. Each
node is described by a 128-dimensional representation derived from averaging Word2Vec
embeddings of the paper’s title and abstract. The task is to predict the publication year, dis-
cretized into five intervals, using the public 50%/25%/25% train/validation/test split proto-
col introduced in Lim et al. (2021).

Table 5: Overview of the graph learning dataset.
Dataset # Graphs Avg. # nodes Avg. # edges # Feats Prediction level Prediction task Metric
CLUSTER 12,000 117.2 2,150.9 7 node 6-class classif. Accuracy
MNIST 70,000 70.6 564.5 3 graph 10-class classif. Accuracy
ZINC 12,000 23.2 24.9 28 graph regression MAE
PATTERN 14,000 118.9 3,039.3 3 node binary classif. Accuracy
CIFAR10 60,000 117.6 941.1 5 graph 10-class classif. Accuracy
Peptides-struct 15,535 150.9 307.3 9 graph 11-task regression MAE
Peptides-func 15,535 150.9 307.3 9 graph 10-task classif. AP
Chameleon 1 2,277 36,101 2,325 node 5-class classif. Accuracy
Squirrel 1 5,201 216,933 2,089 node 5-class classif. Accuracy
Actor 1 7,600 26,659 931 node 5-class classif. Accuracy
Pubmed 1 19,717 44,324 500 node 3-class classif. Accuracy
Citeseer 1 3,327 4,522 3,703 node 6-class classif. Accuracy
Cora 1 2,708 5,278 2,708 node 7-class classif. Accuracy
ogbn-papers100M 1 111,059,956 1,615,685,872 128 node 172-class classif. Accuracy
ogbn-products 2 2,449,029 61,859,140 100 node 47-class classif. Accuracy
arxiv-year 1 169,343 1,166,243 128 node 5-class classif. Accuracy
ogbn-arxiv 1 169,343 1,166,243 128 node 40-class classif. Accuracy
ogbn-proteins 1 132,534 39,561,252 8 node 112 binary classif. ROC-AUC
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E ADDITIONAL EXPERIMENTAL RESULTS

E.1 RESULTS ON LARGE-SCALE HETEROPHILIC NETWORKS

To further assess the robustness of GraphFractalNet, we extend our evaluation to two challenging
large-scale heterophilic benchmarks: Pokec and snap-patents. The Pokec dataset captures a friend-
ship network from a Slovak online social platform, where nodes correspond to users, directed edges
indicate friendship relations, and features are derived from profile metadata such as region, registra-
tion time, and age. Each node is labeled with the user’s gender. On the other hand, the snap-patents
dataset consists of U.S. utility patents, where nodes represent patents and edges encode citation
links; node attributes are obtained from patent metadata.

Following the official splits and preprocessing provided in LINKX, we report mean accuracy across
five independent runs. As summarized in Table 6, GraphFractalNet consistently surpasses strong
baselines such as GOAT, LINKX, CoBFormer, and Exphormer. Notably, it achieves 85.76% ac-
curacy on Pokec and 64.12% on snap-patents, demonstrating its capability to handle large-scale
heterophilic graphs more effectively than prior state-of-the-art models.

Table 6: Results on large-scale heterophilic datasets.
Pokec snap-patents

Accuracy↑ Accuracy↑
GOAT 84.69± 0.18 62.43± 0.37
LINKX 82.04± 0.07 61.95± 0.12
CoBFormer 83.42± 0.18 61.82± 0.69
Exphormer 84.87± 0.29 63.56± 0.23
GraphFractalNet 85.76± 0.45 64.12± 0.28

E.2 ARCHITECTURAL SENSITIVITY ANALYSIS

To better understand the impact of architectural choices on GraphFractalNet, we conduct a detailed
sensitivity analysis by varying three key parameters: the number of layers (depth), hidden dimension
size, and fractal hierarchy depth. These components are central to the expressiveness and efficiency
of the model, as they determine the balance between representation power and scalability.

Table 7 summarizes the performance trends on representative datasets (ZINC, CIFAR10, and ogbn-
arxiv). We observe the following:

• Model Depth: Increasing the number of layers initially improves performance by enhanc-
ing feature extraction. However, beyond 8 layers, the gains diminish and in some cases
degrade due to over-smoothing, especially in heterophilic datasets.

• Hidden Dimension: Larger hidden sizes improve accuracy up to a point (e.g., 256), but
excessively wide layers (512) lead to higher memory consumption and slower training
without proportional performance improvement.

• Fractal Hierarchy Depth: Adding more fractal levels strengthens structural encoding and
boosts long-range dependency modeling. However, performance saturates after 3 levels,
suggesting diminishing returns at higher depths.

Overall, these results demonstrate that GraphFractalNet achieves the best trade-off with 6–8 layers,
a hidden size of 256, and 2–3 fractal levels, confirming the robustness of our architectural design.

E.3 STRUCTURAL ENCODING SENSITIVITY ANALYSIS

A key component of GraphFractalNet is its ability to capture structural information through fractal-
based spectral encodings. To assess the contribution and robustness of this design, we perform
a sensitivity analysis by replacing or modifying the structural encoding scheme. Specifically, we
compare four variants:

• No Encoding: Model trained without explicit structural information (only node attributes).
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Table 7: Architectural sensitivity of GraphFractalNet across depth, hidden dimension, and fractal
hierarchy levels. Results are reported as mean ± std over 5 runs. Best results for each setting are
highlighted in bold.

Depth (Layers) Hidden Dim. Fractal Levels
Setting ZINC (MAE↓) CIFAR10 (Acc.↑) ogbn-arxiv (Acc.↑) ZINC CIFAR10 ogbn-arxiv ZINC CIFAR10 ogbn-arxiv

4 0.061 ± 0.002 74.32 ± 0.45 71.89 ± 0.21 0.065 ± 0.003 73.55 ± 0.38 71.20 ± 0.28 0.064 ± 0.003 74.01 ± 0.27 71.43 ± 0.36
6 0.056 ± 0.002 75.89 ± 0.51 72.75 ± 0.24 0.060 ± 0.002 74.92 ± 0.40 72.11 ± 0.23 0.058 ± 0.002 75.46 ± 0.39 72.38 ± 0.31
8 0.052 ± 0.002 76.81 ± 0.48 72.21 ± 0.26 0.056 ± 0.002 76.15 ± 0.36 72.02 ± 0.29 0.053 ± 0.001 76.60 ± 0.32 72.10 ± 0.27
10 0.054 ± 0.003 76.23 ± 0.50 72.85 ± 0.25 0.055 ± 0.003 75.78 ± 0.41 72.67 ± 0.34 0.054 ± 0.002 76.22 ± 0.35 72.80 ± 0.29
12 0.058 ± 0.004 75.40 ± 0.53 72.10 ± 0.28 0.059 ± 0.003 75.10 ± 0.42 71.98 ± 0.30 0.057 ± 0.003 75.35 ± 0.41 72.01 ± 0.32

• Spectral Laplacian: Incorporating Laplacian eigenvectors as structural encodings, a
widely used baseline in graph transformers.

• Random Walk PE: Using random walk–based positional encodings, which capture local
diffusion patterns.

• Fractal Encoding (Proposed): Our hierarchical fractal structural encoding, designed to
capture both local and global dependencies through self-similar multi-scale patterns.

Table 8 presents the results on three representative datasets: ZINC (graph regression), CIFAR10
(graph classification), and ogbn-arxiv (node classification). The results demonstrate several impor-
tant findings:

1. Models without explicit structural encodings perform significantly worse, highlighting the
necessity of structural priors for effective learning.

2. Laplacian-based and random-walk encodings improve performance, but their gains saturate
quickly and are dataset dependent.

3. GraphFractalNet with fractal encoding consistently outperforms the alternatives, indicating
its ability to integrate hierarchical structural cues that strengthen generalization across both
homophilic and heterophilic settings.

These findings validate the effectiveness of the proposed fractal structural encoding in balancing
local neighborhood information with global topological dependencies, contributing significantly to
GraphFractalNet’s performance advantage.

Table 8: Sensitivity of GraphFractalNet to different structural encoding strategies. Results are re-
ported as mean ± std over 5 runs. Best results are in bold.

Encoding Strategy ZINC (MAE↓) CIFAR10 (Acc.↑) ogbn-arxiv (Acc.↑)

No Encoding 0.075 ± 0.004 71.42 ± 0.48 69.85 ± 0.34
Spectral Laplacian 0.064 ± 0.003 74.55 ± 0.42 72.34 ± 0.28
Random Walk PE 0.061 ± 0.002 75.02 ± 0.40 72.68 ± 0.29
Fractal Encoding (Proposed) 0.052 ± 0.002 76.81 ± 0.48 72.94 ± 0.42

Table 9: Ablation study of GraphFractalNet components. Results are mean ± std over 5 runs. Best
results are in bold.

Model Variant ZINC (MAE↓) CIFAR10 (Acc.↑) ogbn-arxiv (Acc.↑)

w/o Spectral Embeddings 0.070 ± 0.003 72.11 ± 0.39 70.14 ± 0.31
w/o Rewiring 0.066 ± 0.002 73.45 ± 0.42 71.02 ± 0.27
w/o Fractal Attention 0.062 ± 0.003 74.23 ± 0.40 71.48 ± 0.25
Full GraphFractalNet 0.052 ± 0.002 76.81 ± 0.48 72.94 ± 0.42

E.4 ABLATION STUDY

To better understand the contribution of each component in GraphFractalNet, we conduct an ex-
tensive ablation study by incrementally removing or modifying its key modules: spectral structural
embeddings, dynamic graph rewiring, and fractal attention. Each variant is trained under identical
hyperparameter settings, ensuring a fair comparison.

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

• w/o Spectral Embeddings: We remove the Laplacian-based spectral encodings, leaving
only raw node features. This tests the importance of structural priors.

• w/o Rewiring: We disable dynamic graph rewiring, so message passing is performed only
on the original adjacency. This highlights the effect of adaptive topology refinement.

• w/o Fractal Attention: We replace the fractal attention with a standard multi-head atten-
tion mechanism. This evaluates whether hierarchical multi-scale attention is necessary.

• Full Model (GraphFractalNet): Incorporates all three components jointly.

Table 9 reports results on ZINC, CIFAR10, and ogbn-arxiv. Several observations emerge: (1) Re-
moving spectral embeddings leads to a notable drop in performance, especially on node classifi-
cation, confirming their importance in encoding global structure. (2) Disabling rewiring degrades
performance on heterophilic datasets, showing the value of adaptively capturing long-range depen-
dencies. (3) Replacing fractal attention with standard attention reduces accuracy across the board,
highlighting the necessity of fractal multi-scale aggregation. (4) The full model achieves the best
performance consistently, demonstrating that the components complement each other synergisti-
cally.

These ablations confirm that each architectural innovation, spectral embeddings, rewiring, and frac-
tal attention, plays a distinct and complementary role. Their integration leads to the state-of-the-art
performance and efficiency of GraphFractalNet.

19


	Introduction
	Related Work
	Graph Transformers & Structural Encodings
	Spectral GNNs and Positional Encoding

	GraphFractalNet Architecture
	Preliminaries
	Spectral Encoder
	Dynamic Graph Rewiring Module
	Fractal Attention Layer
	Spectral Message Passing
	Hierarchical Readout Module
	GraphFractalNet Layer

	Experiments
	Discussion of Graph-Level Results
	Results on Large-Scale Graphs

	Conclusions
	Complexity Analysis
	Expressiveness
	How Powerful is GraphFractalNet?
	Dataset Statistics and Evaluation Settings
	Additional Experimental Results
	Results on Large-Scale Heterophilic Networks
	Architectural Sensitivity Analysis
	Structural Encoding Sensitivity Analysis
	Ablation Study


