

000 001 FAIRGRPO: FAIR REINFORCEMENT LEARNING FOR 002 EQUITABLE CLINICAL REASONING 003 004

005 **Anonymous authors**

006 Paper under double-blind review

007 008 ABSTRACT 009

011 Medical artificial intelligence systems have achieved remarkable diagnostic capa-
012 bilities, yet they consistently exhibit performance disparities across demographic
013 groups, causing real-world harm to underrepresented populations. While re-
014 cent multimodal reasoning foundation models have advanced clinical diagnosis
015 through integrated analysis of diverse medical data, reasoning trainings via rein-
016 forcement learning inherit and often amplify biases present in training datasets
017 dominated by majority populations. We introduce **Fairness-aware Group Rel-**
018 **ative Policy Optimization (FairGRPO)**, a hierarchical reinforcement learning
019 approach that promotes equitable learning across heterogeneous clinical popula-
020 tions. FairGRPO employs adaptive importance weighting of advantages based on
021 representation, task difficulty, and data source. To address the common issue of
022 missing demographic labels in the clinical domain, we further employ unsuper-
023 vised clustering, which automatically discovers latent demographic groups when
024 labels are unavailable. Through comprehensive experiments across 7 clinical diag-
025 nstic datasets spanning 5 clinical modalities across X-ray, CT scan, dermoscopy,
026 mammography and ultrasound, we demonstrate that FairGRPO reduces predictive
027 parity by 27.2% against all vanilla and bias mitigated RL baselines, while impro-
028 ving F1 score by 12.49%. Furthermore, training dynamics analysis reveals that
029 FairGRPO progressively improves fairness throughout optimization, while base-
030 line RL methods exhibit deteriorating fairness as training progresses. Based on
031 FairGRPO, we release **FairMedGemma-4B**, a fairness-aware clinical VLLM that
032 achieves state-of-the-art performance while demonstrating significantly reduced
033 disparities across demographic groups. Our code, models, and fairness evaluation
034 framework are publicly available at this anonymous link.

035 1 INTRODUCTION 036

037 Medical artificial intelligence (AI) has demonstrated strong capabilities in processing vast amounts
038 of clinical data with both accuracy and efficiency (Rajpurkar et al., 2022; Shuja et al., 2024). These
039 systems have shown particular promise in detecting subtle health indicators that may escape human
040 observation, substantially enhancing diagnostic precision while reducing healthcare costs (Dai et al.,
041 2025a; Sun et al., 2022). Recent advances in vision large language models (VLLMs) have further
042 expanded these capabilities, enabling integrated analysis across diverse clinical modalities including
043 imaging, time series, and textual records (Cui et al., 2024; Dai et al., 2025b; Zhang et al., 2024; Zhu
044 et al., 2024).

045 However, beneath these impressive achievements lies a fundamental challenge that undermines the
046 equitable deployment of AI in healthcare. Medical AI systems can consistently exhibit troubling per-
047 formance disparities across demographic subpopulations. Studies have revealed that clinical datasets
048 are overwhelmingly skewed toward majority groups, whether defined by race, gender, age, or so-
049 cioeconomic status (Larrazabal et al., 2020; Obermeyer et al., 2019; Liang et al., 2021; Thakur et al.,
050 2023). State-of-the-art (SOTA) classifiers demonstrate significant true positive rate (TPR) dispari-
051 ties across all clinical tasks, datasets, and demographic subgroups (Seyyed-Kalantari et al., 2021a;b).
052 Such systematic biases not only perpetuate healthcare inequalities but also erode trust in AI-assisted
053 diagnosis, particularly among underserved communities who stand to benefit most from improved
healthcare access (Sagona et al., 2025).

054 During training, conventional optimization approaches naturally favor well-represented populations,
 055 as they contribute more gradient updates and dominate the loss landscape (Stiglic et al., 2020; Ku-
 056 marakulasinghe et al., 2020). This creates a pernicious feedback loop: models become increasingly
 057 specialized for majority populations while performance on minority groups stagnates or even de-
 058 grades. Furthermore, the heterogeneous nature of clinical data spanning multiple specialties, modal-
 059 ities, and patient demographics, can exacerbate these disparities as different groups may require
 060 fundamentally different diagnostic considerations (Ghanvatkar & Rajan, 2023; Cui et al., 2023).

061 Current approaches to mitigating bias in medical AI typically rely on data augmentation, reweighting
 062 schemes, or post-hoc calibration (Teng et al., 2022; Khan et al., 2023; Mehta et al., 2024). How-
 063 ever, the emergence of reasoning-capable vision LLMs introduces unique challenges that existing
 064 methods cannot adequately address. For instance, fairness-aware optimization techniques like group
 065 distributionally robust optimization (DRO) (Sagawa et al., 2019) were designed for discriminative
 066 models with *fixed* output spaces and cannot be directly applied to the *generative, multi-step reasoning*
 067 processes characteristic of modern LLMs. Furthermore, while reinforcement learning (RL) has
 068 revolutionized LLM alignment for helpfulness and harmlessness (Ouyang et al., 2022; Bai et al.,
 069 2022), its application to fairness in medical reasoning remains unexplored. Fairness in medical
 070 settings can be particularly challenging given how disease diagnosis typically relies on the com-
 071 prehensive analysis of and reasoning between multiple symptoms, mismatch in data availability across
 072 different domains (e.g. abundance in X-ray but lacking in ultrasound) and how data collection is
 073 skewed towards those with access to healthcare. The complex interplay between reward modeling,
 074 advantage estimation, and demographic disparities in the context of clinical reasoning presents a
 075 novel optimization challenge that requires fundamentally new approaches.

076 To close this gap, we introduce **Fairness-aware Group Relative Policy Optimization (Fair-
 077 GRPO)**: a hierarchical RL approach that promotes equitable learning across heterogeneous clinical
 078 populations. Our work makes two primary contributions:

- 079 1. We propose one of the first fair RL algorithm, **FairGRPO**, that employs *adaptive importance*
 080 *weighting* based on demographic representation and task difficulty, ensuring that minority groups
 081 equitable learning signals. Our empirical evaluation demonstrates that FairGRPO consistently
 082 improves both overall performance and fairness metrics. Specifically, FairGRPO reduces pre-
 083 dictive parity by 27.2% against all vanilla and bias mitigated RL baselines, while improving F1
 084 score by 12.49%. Furthermore, training dynamics analysis reveals that FairGRPO improves fair-
 085 ness of the model during the training process, while other RL algorithms exhibit a deterioration
 086 of fairness as the training progresses.
- 087 2. Based on FairGRPO, we train and release **FairMedGemma-4B**, a fairness-aware vision clinical
 088 model based on MedGemma that excel across 7 clinical datasets spanning 5 clinical modalities.
 089 FairMedGemma not only achieves SOTA performance on standard benchmarks but also demon-
 090 strates significantly reduced disparities across demographic groups, advancing the development
 091 of equitable AI-assisted diagnosis. To the best of our knowledge, FairMedGemma represents
 092 the first publicly available clinical VLLM explicitly optimized for demographic fairness through
 093 reinforcement learning.

093 Finally, we publicly release our models, training pipeline, and comprehensive fairness evaluation
 094 metrics to facilitate reproducible research in equitable medical AI. By addressing fairness as a funda-
 095 mental optimization objective rather than a post-hoc consideration, our work establishes a new
 096 paradigm for developing clinical AI systems that serve all populations equitably.

098 2 RELATED WORK

100 **Fairness in Unimodal and Multimodal Clinical Diagnosis.** While unimodal clinical diagnosis
 101 leverages single data sources (e.g., images (Khan et al., 2023; Mehta et al., 2024) or tabular data
 102 (Dehghani et al., 2024; Röösli et al., 2022)), multimodal methods fuse multiple modalities to learn
 103 richer representations, consistently outperforming unimodal approaches (Liang et al., 2024; Dai
 104 et al., 2025c; AlSaad et al., 2024) across radiology (Yildirim et al., 2024), psychiatry (Lee et al.,
 105 2024; Cheong et al., 2025a), and ophthalmology (Luo et al., 2024). The increasing adoption of
 106 foundation models in healthcare (Dai et al., 2025c; Jin et al., 2024; Luo et al., 2024) amplifies
 107 fairness challenges, as integrating multiple knowledge sources can exacerbate biases across fused
 108 modalities. Fairness in ML, broadly categorized into group or individual fairness (Mehrabi et al.,

108 2021; Hort et al., 2024; Waller et al., 2025), has been primarily studied in unimodal settings such
 109 as chest radiographs (Khan et al., 2023; Mehta et al., 2024), EEG data (Kurbatskaya et al., 2023;
 110 Kwok et al., 2025), or EHR data (Dehghani et al., 2024; Röösli et al., 2022). Recent work has
 111 begun investigating multimodal fairness in healthcare (Cheong et al., 2024; Luo et al., 2024; Wang
 112 et al., 2024; Cheong et al., 2025b), but existing studies typically focus on single clinical tasks, such
 113 as depression detection (Cheong et al., 2024), kidney tumor segmentation (Afzal et al., 2023), or
 114 glaucoma detection (Luo et al., 2024). Our work presents the first attempt to evaluate fairness on a
 115 model trained across multiple clinical tasks and domains simultaneously.

116 **Fairness in Reinforcement Learning.** Reinforcement learning (RL) methods which typically at-
 117 tempt to maximize the reward of an agent as defined by a specific objective may neglect fairness
 118 considerations (Jabbari et al., 2017; Smith et al., 2023). Recent advances in critic-free RL algorithms
 119 for LLMs, such as GRPO (Shao et al., 2024), RLOO (Ahmadian et al., 2024), and REINFORCE++
 120 (Hu, 2025), have demonstrated remarkable success in aligning language models without requiring
 121 value function estimation. However, these methods lack mechanisms to address fairness across het-
 122 erogeneous populations. Traditional fairness in RL can be categorized into single- or multi-agent
 123 settings (Reuel & Ma, 2024; Yang et al., 2023; Sahoo et al., 2024), with resampling Puyol-Antón
 124 et al. (2021) and Group DRO Sagawa et al. (2019) being two popular fairness mitigation methods.
 125 To the best of our knowledge, however, none of the current works address the fairness challenge in
 126 critic-free RL optimization of VLLMs, where the computational requirements and multi-step rea-
 127 soning processes present unique challenges distinct from traditional RL settings. Our work bridges
 128 this gap by extending GRPO with fairness-aware mechanisms specifically designed for the require-
 129 ments of medical VLLMs.

130 **Fairness in ML and Large Language Models.** Recent multimodal LLMs such as Qwen-2.5-
 131 VL (Bai et al., 2025) and domain-specific models like MedGemma (Sellergren et al., 2025) have
 132 demonstrated impressive clinical reasoning capabilities, yet their fairness properties remain largely
 133 unexplored. While models like DeepSeek-R1 (Guo et al., 2025) have advanced reasoning through
 134 reinforcement learning, they lack mechanisms to ensure equitable performance across demographic
 135 groups. Existing fairness works in healthcare FMs (Khan et al., 2023; Jin et al., 2024; Luo et al.,
 136 2024) have focused on predictive bias in unimodal models. Khan et al. (2023) revealed consist-
 137 ent under-performance for female patients, while Luo et al. (2024) proposed optimal-transport ap-
 138 proaches for performance-fairness tradeoffs. However, these methods cannot address the unique
 139 challenges of reasoning-capable VLLMs, where multi-step reasoning and reinforcement learning
 140 create new pathways for bias amplification. Our work is the first to tackle fairness in critic-free RL
 141 training for multimodal clinical reasoning models.

3 METHOD

144 Medical AI systems often exhibit performance disparities across demographic subpopulations, re-
 145 flecting biases inherent in training data distributions (Luo et al., 2024; Khan et al., 2023). While
 146 Group Relative Policy Optimization (GRPO) has demonstrated success in language model align-
 147 ment through within-group reward normalization, it lacks mechanisms to address systematic sub-
 148 group imbalances across heterogeneous populations. We introduce FairGRPO, a hierarchical scaling
 149 approach that promotes equitable learning by adaptively weighting contributions from different do-
 150 mains and demographic groups based on their demographic information and difficulty measured via
 151 model performance.

152 **Background: Group Relative Policy Optimization (GRPO).** GRPO operates by normalizing re-
 153 wards within groups of responses to identical prompts, eliminating the need for value function esti-
 154 mation. For a prompt q generating response group $G_{(q,t)}$ at iteration t , each response $o_{(q,i,t)}$ receives
 155 reward $r_{(q,i,t)}$. The advantage is computed as $\hat{A}_{(q,i,t)}^{\text{GRPO}} = \frac{r_{(q,i,t)} - \hat{\mu}_{G_{(q,t)}}}{\hat{\sigma}_{G_{(q,t)}} + \varepsilon}$, ensuring zero mean and unit
 156 variance within each response group. This normalization enables fair comparison among responses
 157 to the same prompt but treats all prompts equally, regardless of their source domain or demographic
 158 representation.

159 **The Fairness Challenge.** Consider a training dataset where prompts originate from different do-
 160 mains $g \in \mathcal{G}$ and are associated with demographic groups $d \in \mathcal{D}_{\text{demo}}$. Each prompt q at iteration t
 161 belongs to exactly one domain $g_{(q,t)}$ and one demographic group $d_{(q,t)}$.

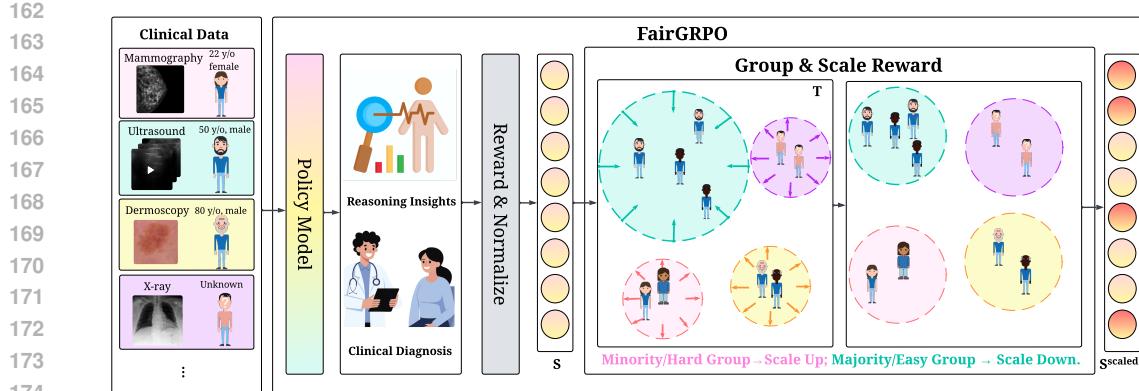


Figure 1: **FairGRPO Training Pipeline.** Our method addresses fairness disparities by adaptively scaling rewards based on demographic representation and task difficulty. Starting with medical data containing both labeled demographic information and unlabeled samples, the policy model generates multiple responses for each prompt, producing both reasoning insights and clinical diagnoses. These responses are evaluated and assigned rewards. FairGRPO then groups the rewards by explicit demographic groups where available. For samples with unavailable demographic information, we employ K-means clustering to discover implicit groups. Then, **minority or challenging groups** receive amplified learning signals through inverse temperature scaling, while **majority or well-represented groups** are scaled down. This ensures that the model learns equitably from all subpopulations, preventing the typical bias toward majority groups that occurs in standard training.

Standard GRPO optimization naturally favors well-represented domain-demographic pairs, as they contribute more gradient updates. This creates a feedback loop where the model becomes increasingly specialized for majority populations while performance on minority groups stagnates. FairGRPO breaks this cycle through adaptive importance weighting that inversely correlates with group representation and performance.

Hierarchical Scaling Framework. FairGRPO implements a three-stage process that transforms GRPO’s uniform treatment into demographically-aware optimization:

(i) *Normalization*: We first apply standard GRPO normalization to obtain $s_{(q,i,t)} = \frac{r_{(q,i,t)} - \hat{\mu}_{G_{(q,t)}}}{\hat{\sigma}_{G_{(q,t)}} + \epsilon}$.

(ii) *Group Discovery*: In medical datasets, demographic labels may be incomplete or unavailable for certain samples. We define *explicit groups* as those with *labeled* demographic attributes such as age or gender while *implicit groups* are latent subpopulations discovered through unsupervised clustering when such labels are missing. To identify implicit groups, we leverage the model’s performance patterns: within each domain g , we construct feature vectors $\mathbf{v}_q \in \mathbb{R}^{|G_{(q,t)}|}$ for each unlabeled prompt q , where each dimension represents the raw reward from a different rollout. In GRPO, a rollout refers to a single generated response for a given prompt, with multiple rollouts per prompt enabling reward normalization across response variations. For instance, a chest X-ray prompt without demographic labels might generate 5 rollouts with rewards [0.2, 0.8, 0.7, 0.9, 0.3], forming its feature vector.

This reward-based representation offers two key advantages over traditional feature extraction methods. First, it provides exceptional computational efficiency, requiring only a vector of length equal to the number of rollouts rather than high-dimensional CNN or ViT embeddings. Second, and more importantly, it directly captures task-specific difficulty patterns rather than input-level similarities. While visual features might group images by appearance, our approach groups samples by their inherent diagnostic challenge to the model, ensuring that cases with similar learning difficulties receive similar treatment regardless of their visual characteristics. K-means clustering then groups prompts with similar reward distributions, where common, well-represented cases typically form larger clusters with consistently higher rewards, while rare or challenging cases naturally form smaller clusters with lower or more variable rewards. The optimal number of clusters is determined automatically via the elbow method (Thorndike, 1953) in alignment with existing works (Weng et al., 2021; Cai et al., 2025). Crucially, because our scaling mechanism inversely weights the reward by cluster size

216 **Table 1: List of Experimental Datasets.** We use 7 datasets across 5 clinical modalities. The
 217 performance metrics are an unweighted average of datasets across classes, as described in Sec. 4.1.
 218

Dataset	# samples	Clinical domain	Modality	Labels	Demographics
CheXpert	212K	Radiology	Chest X-ray	Atelectasis, Cardiomegaly, Consolidation, Edema, Enlarged Cardiomediastinum, Fracture, Lung Lesion, Lung Opacity, Pleural Effusion, Pneumonia, Pneumothorax, Pleural Other, Support Devices, No Finding	Age, Sex
Hemorrhage	2.5K	Radiology	CT	No Hemorrhage, Has Hemorrhage	Age, Sex
VinDr-Mammo	20K	Radiology, Oncology	Mammography	BI-RAD 1-5	Age
ISIC-2020	33K	Dermatology, Oncology	Dermoscopy	Malignant, Benign	Age, Sex
HAM10000	10K	Dermatology, Oncology	Dermoscopy	Melanoma (MEL), Nevus (NV), Basal Cell Carcinoma (BCC), Actinic Keratosis/Intraepithelial Carcinoma (AKIEC), Other (OTHER)	Age, Sex
PAD-UFES-20	2.3K	Dermatology, Oncology	Dermoscopy	Melanoma (MEL), Nevus (NV), Basal Cell Carcinoma (BCC), Actinic Keratosis/Intraepithelial Carcinoma (AKIEC), Other (OTHER)	Age, Sex
COVID-BLUES	362	Radiology	Ultrasound	Has COVID, No COVID	Age

229 and performance as shown in Equations 1, these smaller clusters representing rarer or more difficult
 230 cases receive amplified learning signals, ensuring that even unlabeled minority subpopulations
 231 benefit from our fairness-aware optimization.
 232

233 *(iii) Demographic Group Based Reward Scaling:* We compute hierarchical temperature factors that
 234 capture both representation and difficulty. At the domain and group level, this is represented by:

$$T_{(g,t)} = \sqrt{N_{(g,t)}} \cdot \bar{r}_{(g,t)}, T_{(\gamma,g,t)} = \sqrt{N_{(\gamma,g,t)}} \cdot \bar{r}_{(\gamma,g,t)}. \quad (1)$$

235 respectively for group γ (explicit or implicit) in domain g . $N_{(g,t)}$ counts samples in domain g and
 236 $\bar{r}_{(g,t)}$ represents the domain's mean raw reward. The normalized rewards undergo inverse temperature
 237 scaling:

$$s_{(q,i,t)}^{\text{scaled}} = \frac{s_{(q,i,t)}}{\max(T_{(g_{(q,t)},t)} \cdot T_{(\gamma_{(q,t)},g_{(q,t)},t)}, \varepsilon)}, \quad (2)$$

238 thus amplifying signals from underrepresented or challenging groups while attenuating those from
 239 dominant populations. Lastly, following (Schulman et al., 2017), we renormalize the advantage to
 240 zero mean and unit variance with $\hat{A}_{(q,i,t)}^{\text{FairGRPO}} = \frac{s_{(q,i,t)}^{\text{scaled}}}{\sigma_{\text{batch}}}$, where σ_{batch} denotes the standard deviation
 241 across all scaled rewards in the current batch.

242 **Training Objective.** FairGRPO retains GRPO's policy gradient formulation with clipped importance
 243 sampling:

$$J_{\text{FairGRPO}}(\theta) = \mathbb{E}_{q,o} \left[\sum_{k=1}^{n_o} \min \left(\varphi_k(\theta) \hat{A}^{\text{FairGRPO}}, \text{clip}(\varphi_k(\theta), 1 \pm \varepsilon) \hat{A}^{\text{FairGRPO}} \right) - \beta D_{\text{KL}}(\pi_{\theta} \| \pi_{\text{ref}}) \right],$$

244 where $\varphi_k(\theta)$ represents the importance ratio at token k , and the advantage now incorporates fairness-aware
 245 scaling.

246 **Reward Design.** FairGRPO works with arbitrary reward designs. In the experiment of this work,
 247 we employ a standard accuracy reward where the model gets a reward of 1 if the final answer is
 248 correct, and a reward of 0 if the answer is incorrect.

249 4 EXPERIMENTS

260 4.1 DATASETS & EXPERIMENTAL SETUP

261 We design experiments to comprehensively evaluate FairGRPO's ability to improve both performance
 262 and fairness across diverse clinical subpopulations. Our experimental framework addresses
 263 the following three key research questions:

264 **RQ1: How does FairGRPO perform compared to other RL methods?** Given the distinct training
 265 procedures across multimodal reasoning LLM methods, we benchmark FairGRPO against RL
 266 baselines including GRPO (Shao et al., 2024), RLOO Ahmadian et al. (2024) and REINFORCE++
 267 (Hu, 2025). These methods represent the current state-of-the-art in critic-free reinforcement learning
 268 for LLMs. To compare our methods against other fairness mitigation algorithms, we re-implement

270
 271 **Table 2: RQ1: Fairness and performance metrics comparison against RL and fairness miti-
 272 gation baselines.** For fairness metrics, lower values are better and are indicated by \downarrow . For per-
 273 formance and combined metrics, higher values are better and are indicated by \uparrow . Bold values indicate
 274 the best result in each column for each model separately. **FairGRPO_{ND}** is the ablation of **Fair-
 275 GRPO** where the model does not have access to the ground truth demographic information, and
 276 the groups are inferred entirely via clustering. We release **MedGemma** trained with **FairGRPO** as
 277 **FairMedGemma**. Detailed per dataset metrics are included in App. Tab. 5-17.

Training Method	Fairness Metrics								Perf. Metrics		Combined	
	PP \downarrow	EOD \downarrow	FPR _{diff} \downarrow	$\sigma_{F1} \downarrow$	$\Delta F1 \downarrow$	$\sigma_{Acc} \downarrow$	$\Delta Acc \downarrow$	Acc \uparrow	F1 \uparrow	Acces \uparrow	F1 _{ES} \uparrow	
Qwen-2.5-VL-7B												
Re++ (Hu, 2025)	15.18	7.788	6.233	.0322	.0650	4.706	9.613	.75.32	.2612	71.93	.2531	
RLOO (Ahmadian et al., 2024)	21.73	6.577	5.115	.0326	.0705	5.098	10.56	.79.67	.2479	75.80	.2400	
GRPO (Shao et al., 2024)	11.39	9.091	4.607	.0463	.0973	4.676	9.433	80.45	.2550	76.85	.2437	
GRPO+RS (Puyol-Antón et al., 2021)	21.56	8.091	4.961	.0316	.0636	3.967	8.113	73.99	.2657	70.57	.2576	
GRPO+DRO (Sagawa et al., 2019)	14.51	7.413	7.417	.0326	.0654	5.621	11.50	75.10	.2586	71.10	.2504	
FairGRPO	16.80	5.546	4.391	.0229	.0452	4.410	8.934	.80.75	.2647	77.34	.2588	
MedGemma-4B												
Re++ (Hu, 2025)	20.99	8.749	5.616	.0518	.1033	4.317	8.821	.78.60	.2978	75.35	.2831	
RLOO (Ahmadian et al., 2024)	23.68	10.37	5.513	.0600	.1170	4.336	8.837	80.62	.3047	77.27	.2875	
GRPO (Shao et al., 2024)	22.42	6.476	4.820	.0418	.0795	4.171	8.546	80.02	.3123	76.82	.2998	
GRPO+RS (Puyol-Antón et al., 2021)	23.76	6.664	3.481	.0433	.0835	4.051	8.386	80.76	.2843	77.62	.2725	
GRPO+DRO (Sagawa et al., 2019)	16.04	7.367	4.985	.0447	.0871	4.362	8.960	81.19	.3271	77.80	.3009	
FairGRPO_{ND}	25.15	11.56	5.692	.0547	.1067	3.613	7.214	79.23	.3513	76.47	.3331	
FairGRPO (FairMedGemma)	11.67	6.663	5.330	.0383	.0721	4.081	8.455	.81.83	.3218	78.62	.3100	

292 popular bias mitigation method, namely Group DRO (Sagawa et al., 2019) and Resampling Puyol-
 293 Antón et al. (2021), on top of GRPO. We employ a suite of fairness metrics, including Equal Oppor-
 294 tunity Difference, Equalized Odds, and Predictive Parity, alongside standard performance metrics
 295 (F1, accuracy) as detailed in Appendix A.1, which ensures we capture both the utility and equity
 296 dimensions of model performance.

297 **RQ2: How do fairness metrics evolve during training?** Understanding the dynamics of fair-
 298 ness during optimization is crucial for guiding the future training strategies of VLLMs. We track
 299 the progression of fairness by measuring the maximum F1 score difference across the different
 300 demographic subgroups at 5-step intervals throughout training. In this experiment, we aim to mon-
 301 itor whether FairGRPO’s hierarchical scaling mechanism consistently reduces disparities or merely
 302 achieves fairness at convergence. By comparing these trajectories against standard GRPO, we can
 303 assess whether our adaptive weighting strategy changes the optimization landscape.

304 **RQ3: How does performance vary across individual demographic groups?** Beyond aggregated
 305 fairness metrics, we analyze group-specific outcomes by examining average F1 scores for each de-
 306 mographic subpopulation. This analysis reveals whether improvements are uniformly distributed or
 307 concentrated in specific subgroups, and crucially, whether minority group gains come at the expense
 308 of majority group performance.

309 To demonstrate generalizability across architectures and ensure robust evaluation, we implement
 310 FairGRPO on two widely used VLLMs: Qwen-2.5-VL-7B (Bai et al., 2025) and MedGemma-4B
 311 (Sellergren et al., 2025). Following the standard multitask instruction tuning paradigm in both
 312 works, we initialize from pretrained weights and perform unified finetuning across all 7 clinical
 313 datasets simultaneously in a single training run, mirroring real-world deployment where models
 314 must handle diverse clinical tasks without dataset-specific adaptation. All experiments utilize 4
 315 NVIDIA H200 GPUs. Hyperparameters and training configurations are detailed in Appendix A.

316 **Datasets.** To ensure our methods work across different clinical datasets, we evaluate the models via
 317 7 public datasets, including CheXpert (Irvin et al., 2019), COVID-BLUES (Wiedemann et al., 2021),
 318 VinDr-Mammo (Nguyen et al., 2021), ISIC-2020 (Rotemberg et al., 2021), HAM10000 (Tschandl
 319 et al., 2018b), PAD-UFES-20 (Pacheco et al., 2020) and Hemorrhage (Hssayeni et al., 2020), with a
 320 total of 280.2K samples, as summarized in Tab. 1 and detailed in Appendix B.

321 **Demographic Groups.** We define demographic groups consistently across all datasets to ensure
 322 fair comparison. For gender, we use the patient gender as recorded in each dataset. For age, we
 323 create four groups using 25-year bins: a1 for ages 18-25, a2 for ages 26-50, a3 for ages 51-75, and
 a4 for ages 76 and above. This standardized binning strategy allows us to analyze fairness patterns

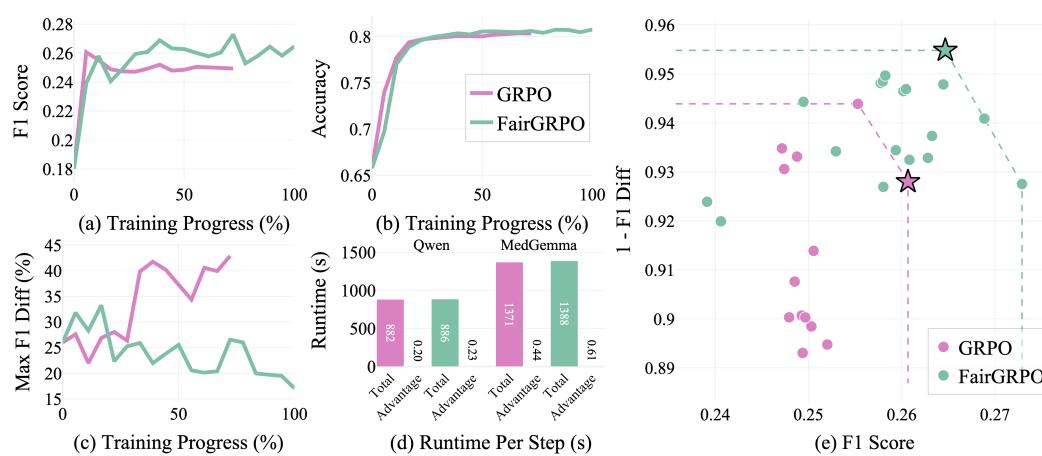


Figure 2: Training dynamics comparison between GRPO and FairGRPO on clinical classification tasks. **(a) F1 Score:** FairGRPO achieves higher F1 scores throughout training, reaching 0.265 compared to GRPO’s plateau at 0.250. **(b) Accuracy:** Both methods converge to similar accuracy levels, with FairGRPO demonstrating slightly higher final accuracy. **(c) F1 Diff:** FairGRPO substantially reduces demographic performance disparities, achieving around 57% reduction in F1 difference by explicitly optimizing for fairness during training. **(e) Per Step Runtime of the Models:** We run the model using the setup described in Sec. 4.1. The reward calculation for all methods are less than 0.1% of the total runtime, showing it adds negligible overhead to the training process. **(e) Performance-Fairness Tradeoff:** We compare the validation F1 score and reversed F1 difference ($1-F1$ Diff) of different steps throughout a single training run. Pareto frontier is plotted to illustrate the points where the model achieves the best tradeoff performance between F1 score and fairness. The starred point is the final model reported in Tab. 18. FairGRPO achieves superior Pareto optimality, simultaneously improving both performance and fairness compared to GRPO’s best checkpoint.

across datasets with varying age distributions while maintaining sufficient sample sizes within each demographic group for meaningful statistical analysis.

Evaluation Metrics. For performance assessment, we use hierarchical averaging of F1 scores across classes, demographic groups, and datasets to prevent any single component from dominating the evaluation. For fairness evaluation, following (Hort et al., 2024), we measure popular fairness metrics including Equal Opportunity Difference (EOD), Predictive Parity (PP), and performance variance metrics (σ_{F1} , $\Delta F1$) to capture equity across demographic groups. To balance the fairness-utility tradeoff, following (Jin et al., 2024), we adopt Equity Scaling metrics ($F1_{ES}$, Acc_{ES}) that penalize models achieving high average performance at the cost of large demographic disparities. Full mathematical definitions and detailed descriptions of all metrics are provided in Appendix A.1.

4.2 RQ1: HOW DOES FAIRGRPO PERFORM COMPARED TO OTHER RL METHODS?

We trained multimodal LLMs with FairGRPO and compare it against baseline RL algorithms, and recorded results in Tab. 18. Overall, FairGRPO outperforms the baseline in both fairness metrics and performance metrics on both multimodal LLMs. In particular, FairGRPO outperforms classical bias mitigation methods in both fairness and diagnosis performance, thanks to its dynamic integration with the RL training method. On MedGemma, it reaches a 27.2% better predictive parity than the best fairness mitigation method Group DRO, reimplemented on top of GRPO. Compared to the best RL training method, EOD improves by 23.8% on MedGemma, and by 15.7% on Qwen-2.5-VL. Compared with all baselines, the maximum F1 gap decreases by 28.9% on Qwen-2.5-VL and by 8.37% on MedGemma. This shows FairGRPO’s superiority in the field of improving fairness.

Furthermore, the FairGRPO_{ND} performance demonstrates that FairGRPO improves fairness and performance even when no demographic information is passed during training, thanks to the latent group discovery algorithm via clustering. Compared with all baselines, FairGRPO_{ND} achieves a 10.81% improvement in the Maximum Accuracy Gap, a 13.38% improvement in the standard

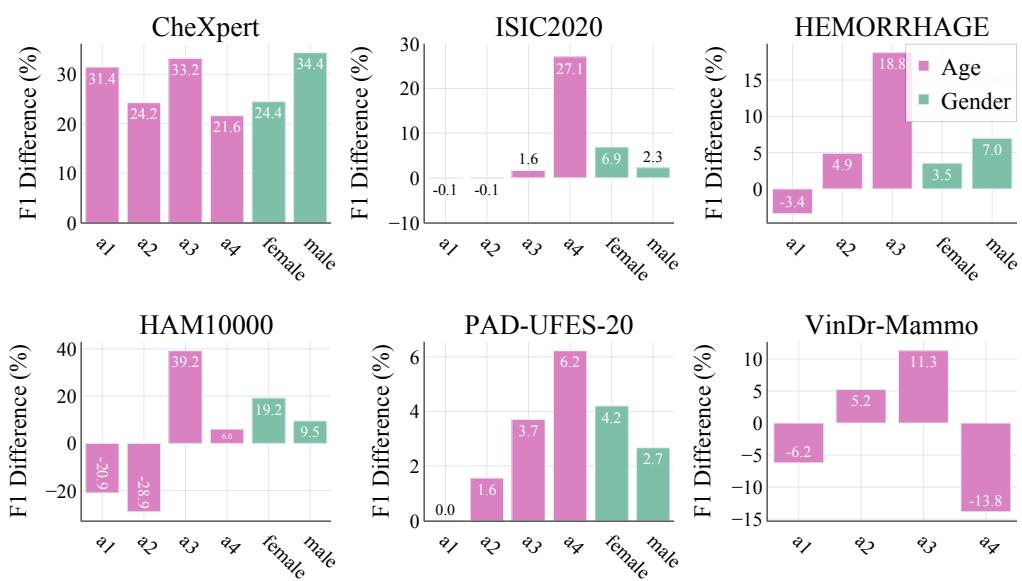


Figure 3: **F1 score differences between FairGRPO and GRPO across demographic groups on MedGemma.** Each bar represents the F1 score difference from the population mean for specific demographic subgroups, where a positive value means FairGRPO performs better for the given demographic group. The four age groups are binned as described in Sec. 4.1. In general, FairGRPO consistently demonstrates better performance for 25 out of the 33 demographic groups across datasets, which includes both majority and minority groups. Raw performance results are included in App. Tab. 4.

deviation of accuracy. FairGRPO_{ND} shows particularly strong performance in F1, possibly due to the fact that its latent clustering aligns better with downstream tasks, as evidenced by its 12.49% improvement on F1, and 11.11% improvement in F1_{ES} on MedGemma.

4.3 RQ2: HOW DO FAIRNESS METRICS EVOLVE DURING TRAINING?

We recorded how the performance and fairness of FairGRPO and GRPO progress throughout a standard training run. As shown in Fig 2(c), although both methods improve the model’s performance, the F1 difference for FairGRPO is lower than that of GRPO, and the gap between the two methods constantly increase as the runtime increases. In addition, Fig 2(a) and Fig 2(b) show that the F1 score in FairGRPO is higher than that of GRPO, and the accuracy for both methods is almost the same. Fig 2(e) demonstrates that FairGRPO expands the empirical Pareto frontier relative to GRPO. Throughout the training process, the model provides multiple optimal checkpoints at various fairness-performance tradeoffs, all at better and more balanced Pareto points than GRPO.

Runtime Efficiency. Fig 2(d) shows that FairGRPO and GRPO’s runtime per step is close on both Qwen2.5-VL and MedGemma, with In particular, for all critic free RL methods, the time for advantage calculation is less than 0.1% of the total training time. This reveals that the extra calculation in FairGRPO adds negligible runtime overhead.

4.4 RQ3: HOW DOES PERFORMANCE VARY ACROSS INDIVIDUAL DEMOGRAPHIC GROUPS?

As shown in Fig. 3 and App. Tab. 4, FairGRPO demonstrates improved performance for both underrepresented and non-underrepresented groups. For example, in CheXpert, FairGRPO’s F1 score is 24.4% higher for females and 34.4% higher for males compared to GRPO. Moreover, in PAD-UFES-20, FairGRPO improves performance by 6.33% on 75+ patients and 3.68% on patients aged 51-75 compared to GRPO. In addition, in the Hemorrhage dataset, FairGRPO improves performance by 18.70% on 51-75 group compared to GRPO. In CheXpert, our method also shows superiority for younger individuals (a1, a2), with an improvement of 31.45% on a1 and 24.32% on a2. These re-

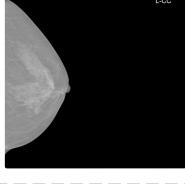

432	<p>(a) Demographics: age: 84, gender: FEMALE</p>		
433		<p>Above is a dermoscopy image of a patient. What is the diagnosis of the patient in the dermoscopy image? Answer with one word from the following: Melanoma Nevus Basal Cell Carcinoma (Ground Truth) AKIEC Other</p>	<p>FairGRPO Model's Output: <think> The image shows a lesion with irregular borders, a central area of necrosis, and some pigment...This presentation is suggestive of a basal cell carcinoma. </think> \boxed{Basal Cell Carcinoma} <input checked="" type="checkbox"/></p> <p>GRPO Model's Output: The image shows a skin lesion with irregular borders, uneven coloration, and a possible central dot. These features are suggestive of a mole (nevus) or a seborrheic keratosis (AKIEC). \boxed{AKIEC} <input checked="" type="checkbox"/></p>
434	<p>(b) Demographics: age: 84, gender: FEMALE</p>		
435		<p>Above is a mammography X-ray image of a patient. What is the BIRAD classification of the patient in the X-ray image? Answer with one number. Answer with one phrase from the following: BIRAD 1 BIRAD 2 (Ground Truth) BIRAD 3 BIRAD 4 BIRAD 5</p>	<p>FairGRPO Model's Output: <think> The image shows a dense opacity in the right breast. This could be a calcification, a cyst, or a mass...Based on the appearance, it's likely a benign finding. The BIRAD classification would be 2. </think> \boxed{BIRAD 2} <input checked="" type="checkbox"/></p> <p>GRPO Model's Output: <think> The opacity is dense and round. There are no other obvious findings. It's difficult to determine the exact BIRAD without more information. However, it's likely a benign process. </think> \boxed{BIRAD 1} <input checked="" type="checkbox"/></p>
436			
437			
438			
439			
440			
441			
442			
443			
444			
445			
446			
447			

Figure 4: **Qualitative Examples of Model’s Reasoning Traces.** We see the greatest performance boosts from underrepresented groups, including samples from older population and females. In particular, we observe the models trained with FairGRPO exhibit an accuracy improvement of 73.08% on 75+ populations in PAD-UFES-20 dataset, and a 36.53% on samples aged 51-75 in VinDr-Mammo. This figure shows examples of model’s internal thinking process from the two groups.

sults demonstrate that our method provides consistent enhancements for elderly individuals across most datasets while showing minimal, if any, performance degradation for younger individuals, and in some cases even improvements. This indicates that the fairness improvements were not achieved at the expense of the majority group’s performance.

4.5 QUALITATIVE ANALYSIS

Our qualitative analysis reveals that FairGRPO demonstrates superior diagnostic reasoning capabilities, particularly for underrepresented populations where GRPO exhibits increased hallucinations or unevidenced explanations. For example, in Fig. 4(a), examining an 84-year-old female’s dermoscopy image, FairGRPO accurately identifies critical diagnostic features, including irregular borders, central necrosis, and distinctive pigmentation patterns, which leads to a correct Basal Cell Carcinoma diagnosis. Conversely, GRPO hallucinates non-existent features (a *central dot*), resulting in misdiagnosis of AKIEC. Similarly, Fig. 4(b) showcases FairGRPO’s enhanced interpretive capability on another elderly female patient’s mammography. FairMedGemma first identifies several possible diagnosis, including *a calcification, a cyst, or a mass*. It then correctly recognizes and contextualizes a dense opacity with rating BIRAD 2. GRPO trained model, on the other hand, underestimate the severity of the symptom, which results in a misclassification of BIRAD 1. These examples illustrate how FairGRPO’s fairness-aware training not only improves quantitative metrics but also enhances the model’s clinical reasoning quality, particularly benefiting historically under-served demographic groups.

5 CONCLUSION

In this work, we introduced FairGRPO, a novel reinforcement learning approach that addresses the challenge of demographic disparities in clinical AI systems. By implementing adaptive weighting based on demographics and task difficulty, FairGRPO ensures that minority and underrepresented groups receive equitable learning signals during training. Our evaluation across 7 clinical datasets demonstrates that FairGRPO not only reduces the disparities F1 scores across demographic groups by up to 28.9% but also improves overall model performance by 3.8% compared to vanilla GRPO. Through the release of FairMedGemma-4B, we provide the first publicly available clinical VLLM explicitly optimized for demographic fairness. Future works could explore extending FairGRPO to other medical modalities beyond vision-language tasks, and developing theoretical frameworks to better understand the convergence properties of fairness-aware RL. By establishing fairness as a fundamental optimization objective, we hope this work will inspire further research toward developing AI-assisted diagnostic systems that serve all patient populations equitably.

486 6 ETHICS STATEMENT
487488 This work focuses on developing fairness-aware reinforcement learning methods for clinical diag-
489 nosis using vision-language models. We acknowledge the critical ethical considerations inherent in
490 applying AI to healthcare and have taken careful steps to ensure our research adheres to the ethical
491 standards.492 All experiments in this study were conducted exclusively on publicly available, anonymized clin-
493 ical datasets obtained in compliance with their respective licenses. Specifically, we used CheX-
494 pert, COVID-BLUES, VinDr-Mammo, ISIC-2020, HAM10000, PAD-UFES-20, and Hemorrhage
495 datasets, each of which has been previously released for research purposes with appropriate de-
496 identification procedures. No human subjects were directly involved in this research, and no new
497 clinical data was collected. We do not redistribute these datasets; researchers interested in replicat-
498 ing our work should obtain them from the original sources in accordance with their respective terms
499 of use.500 Our work explicitly addresses demographic disparities in AI-assisted clinical diagnosis, recognizing
501 that biased AI systems can perpetuate and amplify existing healthcare inequalities. By developing
502 FairGRPO, we aim to reduce performance disparities across age and gender groups, thereby pro-
503 moting more equitable healthcare AI. We acknowledge that fairness in healthcare is multifaceted
504 and our demographic categorizations may not capture all relevant dimensions of patient diversity.
505 Future work should consider additional protected attributes and intersectional identities.506 While our methods demonstrate improved fairness metrics, we emphasize that these models are
507 research prototypes and should not be used for actual clinical decision-making without proper reg-
508 ulatory approval and clinical validation. The deployment of AI in healthcare requires careful con-
509 sideration of local regulations, clinical workflows, and continuous monitoring for unintended con-
510 sequences.512 7 REPRODUCIBILITY STATEMENT
513514 To ensure reproducibility of the work, all experiments were conducted using publicly available
515 datasets, which can be obtained from their respective original sources as detailed in Appendix B.
516 Our complete training code, data preprocessing pipelines, and evaluation scripts are available at this
517 anonymous link, while the trained model weights (FairMedGemma-4B) will be made available upon
518 publication due to size constraints on the anonymous submission platform. All hyperparameters
519 used in our experiments are comprehensively documented in Appendix A, including learning rates,
520 batch sizes, rollout configurations, and training settings for both Qwen-2.5-VL and MedGemma
521 models. We used the VERL framework for reinforcement learning implementation, with specific
522 versions and dependencies listed in the repository’s requirements file. Our fairness evaluation met-
523 rics are implemented with mathematical definitions provided in Appendix A.1.525 REFERENCES
526527 Muhammad Muneeb Afzal, Muhammad Osama Khan, and Shujaat Mirza. Towards equitable kidney
528 tumor segmentation: bias evaluation and mitigation. In *Machine Learning for Health (ML4H)*,
529 pp. 13–26. PMLR, 2023.530 Arash Ahmadian, Chris Cremer, Matthias Gallé, Marzieh Fadaee, Julia Kreutzer, Olivier Pietquin,
531 Ahmet Üstün, and Sara Hooker. Back to basics: Revisiting reinforce-style optimization for learn-
532 ing from human feedback in llms. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.),
533 *Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Vol-
534 ume 1: Long Papers), ACL 2024, Bangkok, Thailand, August 11-16, 2024*, pp. 12248–12267. As-
535 sociation for Computational Linguistics, 2024. doi: 10.18653/V1/2024.ACL-LONG.662. URL
536 <https://doi.org/10.18653/v1/2024.acl-long.662>.537 Rawan AlSaad, Alaa Abd-Alrazaq, Sabri Boughorbel, Arfan Ahmed, Max-Antoine Renault, Rafat
538 Damseh, and Javaid Sheikh. Multimodal large language models in health care: applications,
539 challenges, and future outlook. *Journal of medical Internet research*, 26:e59505, 2024.

540 Shuai Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wenbin Ge, Sibo Song, Kai Dang, Peng Wang,
 541 Shijie Wang, Jun Tang, et al. Qwen2. 5-vl technical report. *arXiv preprint arXiv:2502.13923*,
 542 2025.

543 Yuntao Bai, Andy Jones, Kamal Ndousse, Amanda Askell, Anna Chen, Nova DasSarma, Dawn
 544 Drain, Stanislav Fort, Deep Ganguli, Tom Henighan, et al. Training a helpful and harmless
 545 assistant with reinforcement learning from human feedback. *arXiv preprint arXiv:2204.05862*,
 546 2022.

547 Danwei Cai, Zexin Cai, Ze Li, and Ming Li. Self-supervised reflective learning through self-
 548 distillation and online clustering for speaker representation learning. *IEEE Transactions on Audio,
 549 Speech and Language Processing*, 2025.

550 Jiae Cheong, Sinan Kalkan, and Hatice Gunes. Fairrefuse: Referee-guided fusion for multi-modal
 551 causal fairness in depression detection. In Kate Larson (ed.), *Proceedings of the Thirty-Third
 552 International Joint Conference on Artificial Intelligence, IJCAI-24*, pp. 7224–7232. International
 553 Joint Conferences on Artificial Intelligence Organization, 8 2024. AI for Good.

554 Jiae Cheong, Aditya Bangar, Sinan Kalkan, and Hatice Gunes. U-fair: Uncertainty-based multi-
 555 modal multitask learning for fairer depression detection. In *Machine Learning for Health (ML4H)*,
 556 pp. 203–218. PMLR, 2025a.

557 Jiae Cheong, Abtin Mogharabin, Paul Liang, Hatice Gunes, and Sinan Kalkan. Fairwell: Fair
 558 multimodal self-supervised learning for wellbeing prediction. *arXiv preprint arXiv:2508.16748*,
 559 2025b.

560 Can Cui, Haichun Yang, Yaohong Wang, Shilin Zhao, Zuhayr Asad, Lori A Coburn, Keith T Wilson,
 561 Bennett A Landman, and Yuankai Huo. Deep multimodal fusion of image and non-image data
 562 in disease diagnosis and prognosis: a review. *Progress in Biomedical Engineering*, 5(2):022001,
 563 2023.

564 Hejie Cui, Lingjun Mao, Xin Liang, Jieyu Zhang, Hui Ren, Quanzheng Li, Xiang Li, and Carl
 565 Yang. Biomedical visual instruction tuning with clinician preference alignment. *arXiv preprint
 566 arXiv:2406.13173*, 2024.

567 Wei Dai, Ehsan Adeli, Zelun Luo, Dev Dash, Shrinidhi Lakshmikanth, Zane Durante, Paul Tang,
 568 Amit Kaushal, Arnold Milstein, Li Fei-Fei, et al. Developing icu clinical behavioral atlas using
 569 ambient intelligence and computer vision. *NEJM AI*, pp. A10a2400590, 2025a.

570 Wei Dai, Peilin Chen, Chanakya Ekbote, and Paul Pu Liang. Qoq-med: Building multimodal clinical
 571 foundation models with domain-aware grp training. *arXiv preprint arXiv:2506.00711*, 2025b.

572 Wei Dai, Peilin Chen, Malinda Lu, Daniel A Li, Haowen Wei, Hejie Cui, and Paul Pu Liang. Climb:
 573 Data foundations for large scale multimodal clinical foundation models. In *Forty-second Interna-
 574 tional Conference on Machine Learning*, 2025c.

575 Farzaneh Dehghani, Nikita Malik, Joanna Lin, Sayeh Bayat, and Mariana Bento. Fairness in health-
 576 care: Assessing data bias and algorithmic fairness. In *2024 20th International Symposium on
 577 Medical Information Processing and Analysis (SIPAIM)*, pp. 1–6. IEEE, 2024.

578 Suparna Ghanvatkar and Vaibhav Rajan. Graph-based patient representation for multimodal clinical
 579 data: Addressing data heterogeneity. *medRxiv*, pp. 2023–12, 2023.

580 Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
 581 Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
 582 via reinforcement learning. *arXiv preprint arXiv:2501.12948*, 2025.

583 Max Hort, Zhenpeng Chen, Jie M Zhang, Mark Harman, and Federica Sarro. Bias mitigation for
 584 machine learning classifiers: A comprehensive survey. *ACM Journal on Responsible Computing*,
 585 1(2):1–52, 2024.

586 Murtadha Hssayeni, M Croock, A Salman, H Al-khafaji, Z Yahya, and B Ghoraani. Computed
 587 tomography images for intracranial hemorrhage detection and segmentation. *Intracranial hemor-
 588 rhage segmentation using a deep convolutional model. Data*, 5(1):14, 2020.

594 Jian Hu. Reinforce++: A simple and efficient approach for aligning large language models. *arXiv*
 595 *preprint arXiv:2501.03262*, 2025.
 596

597 Jeremy Irvin, Pranav Rajpurkar, Michael Ko, Yifan Yu, Silviana Ciurea-Ilcus, Christopher Chute,
 598 Henrik Marklund, Behzad Haghighi, Robyn L. Ball, Katie S. Shpanskaya, Jayne Seekins,
 599 David A. Mong, Safwan S. Halabi, Jesse K. Sandberg, Ricky Jones, David B. Larson, Cur-
 600 tis P. Langlotz, Bhavik N. Patel, Matthew P. Lungren, and Andrew Y. Ng. Chexpert: A large
 601 chest radiograph dataset with uncertainty labels and expert comparison. In *The Thirty-Third*
 602 *AAAI Conference on Artificial Intelligence, AAAI 2019, The Thirty-First Innovative Applications*
 603 *of Artificial Intelligence Conference, IAAI 2019, The Ninth AAAI Symposium on Educational*
 604 *Advances in Artificial Intelligence, EAAI 2019, Honolulu, Hawaii, USA, January 27 - Febru-*
 605 *ary 1, 2019*, pp. 590–597. AAAI Press, 2019. doi: 10.1609/AAAI.V33I01.3301590. URL
 606 <https://doi.org/10.1609/aaai.v33i01.3301590>.

607 Shahin Jabbari, Matthew Joseph, Michael Kearns, Jamie Morgenstern, and Aaron Roth. Fairness in
 608 reinforcement learning. In *International conference on machine learning*, pp. 1617–1626. PMLR,
 609 2017.

610 Ruinan Jin, Zikang Xu, Yuan Zhong, Qingsong Yao, DOU QI, S Kevin Zhou, and Xiaoxiao Li.
 611 Fairmedfm: fairness benchmarking for medical imaging foundation models. *Advances in Neural*
 612 *Information Processing Systems*, 37:111318–111357, 2024.

613 Muhammad Osama Khan, Muhammad Muneeb Afzal, Shujaat Mirza, and Yi Fang. How fair are
 614 medical imaging foundation models? In *Machine Learning for Health (ML4H)*, pp. 217–231.
 615 PMLR, 2023.

616 Nesaretnam Barr Kumarakulasringhe, Tobias Blomberg, Jintai Liu, Alexandra Saraiva Leao, and
 617 Panagiotis Papapetrou. Evaluating local interpretable model-agnostic explanations on clinical ma-
 618 chine learning classification models. In *2020 IEEE 33rd international symposium on computer-
 619 based medical systems (CBMS)*, pp. 7–12. IEEE, 2020.

620 Anna Kurbatskaya, Alberto Jaramillo-Jimenez, John Fredy Ochoa-Gomez, Kolbjørn Brønnick, and
 621 Alvaro Fernandez-Quilez. Assessing gender fairness in eeg-based machine learning detection of
 622 parkinson’s disease: A multi-center study. In *2023 31st European Signal Processing Conference*
 623 (*EUSIPCO*), pp. 1020–1024. IEEE, 2023.

624 Angus Man Ho Kwok, Jiae Cheong, Sinan Kalkan, and Hatice Gunes. Machine learning fair-
 625 ness for depression detection using eeg data. In *2025 IEEE 22nd International Symposium on*
 626 *Biomedical Imaging (ISBI)*, pp. 1–5. IEEE, 2025.

627 Agostina J. Larrazabal, Nicolás Nieto, Victoria Peterson, Diego H. Milone, and Enzo Ferrante.
 628 Gender imbalance in medical imaging datasets produces biased classifiers for computer-aided
 629 diagnosis. *Proceedings of the National Academy of Sciences of the United States of America*, 117
 630 (23):12592–12594, 2020. doi: 10.1073/pnas.1919012117.

631 Seungeun Lee, Yongwon Cho, Yuyoung Ji, Minhyek Jeon, Aram Kim, Byung-Joo Ham, and Yoon-
 632 jung Yoonie Joo. Multimodal integration of neuroimaging and genetic data for the diagnosis of
 633 mood disorders based on computer vision models. *Journal of psychiatric research*, 172:144–155,
 634 2024.

635 Paul Pu Liang, Chiyu Wu, Louis-Philippe Morency, and Ruslan Salakhutdinov. Towards under-
 636 standing and mitigating social biases in language models. In *International conference on machine*
 637 *learning*, pp. 6565–6576. PMLR, 2021.

638 Paul Pu Liang, Amir Zadeh, and Louis-Philippe Morency. Foundations & trends in multimodal
 639 machine learning: Principles, challenges, and open questions. *ACM Computing Surveys*, 56(10):
 640 1–42, 2024.

641 Yan Luo, Min Shi, Muhammad Osama Khan, Muhammad Muneeb Afzal, Hao Huang, Shuaihang
 642 Yuan, Yu Tian, Luo Song, Ava Kouhana, Tobias Elze, et al. Fairclip: Harnessing fairness in
 643 vision-language learning. In *Proceedings of the IEEE/CVF Conference on Computer Vision and*
 644 *Pattern Recognition*, pp. 12289–12301, 2024.

648 Ninareh Mehrabi, Fred Morstatter, Nripsuta Saxena, Kristina Lerman, and Aram Galstyan. A survey
 649 on bias and fairness in machine learning. *ACM computing surveys (CSUR)*, 54(6):1–35, 2021.
 650

651 Raghav Mehta, Changjian Shui, and Tal Arbel. Evaluating the fairness of deep learning uncertainty
 652 estimates in medical image analysis. In *Medical Imaging with Deep Learning*, pp. 1453–1492.
 653 PMLR, 2024.

654 Ha Quy Nguyen, Hieu Huy Pham, Linh T. Le, Minh Dao, and Khanh Lam. VinDr-CXR: An open
 655 dataset of chest x-rays with radiologist annotations, 2021. URL <https://physionet.org/content/vindr-cxr/1.0.0/>. RRID:SCR_007345.
 656

657 Ziad Obermeyer, Brian Powers, Christine Vogeli, and Sendhil Mullainathan. Dissecting racial bias
 658 in an algorithm used to manage the health of populations. *Science*, 366(6464):447–453, 2019.
 659 doi: 10.1126/science.aax2342.

660 Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
 661 Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to fol-
 662 low instructions with human feedback. *Advances in neural information processing systems*, 35:
 663 27730–27744, 2022.

664 Andre G.C. Pacheco, Gustavo R. Lima, Amanda S. Salomão, Breno Krohling, Igor P. Biral,
 665 Gabriel G. de Angelo, Fábio C.R. Alves Jr, José G.M. Esgario, Alana C. Simora, Pedro B.C. Cas-
 666 tro, Felipe B. Rodrigues, Patricia H.L. Frasson, Renato A. Krohling, Helder Knidel, Maria C.S.
 667 Santos, Rachel B. do Espírito Santo, Telma L.S.G. Macedo, Tania R.P. Canuto, and Luíz F.S.
 668 de Barros. Pad-ufes-20: A skin lesion dataset composed of patient data and clinical images col-
 669 lected from smartphones. *Data in Brief*, 32:106221, 2020. doi: 10.1016/j.dib.2020.106221. URL
 670 <https://doi.org/10.1016/j.dib.2020.106221>.
 671

672 Esther Puyol-Antón, Bram Ruijsink, Stefan K Piechnik, Stefan Neubauer, Steffen E Petersen, Reza
 673 Razavi, and Andrew P King. Fairness in cardiac mr image analysis: an investigation of bias due
 674 to data imbalance in deep learning based segmentation. In *International Conference on Medical
 675 Image Computing and Computer-Assisted Intervention*, pp. 413–423. Springer, 2021.

676 Pranav Rajpurkar, Emma Chen, Oishi Banerjee, and Eric J Topol. Ai in health and medicine. *Nature
 677 medicine*, 28(1):31–38, 2022.

678 Anka Reuel and Devin Ma. Fairness in reinforcement learning: A survey. In *Proceedings of the
 679 AAAI/ACM Conference on AI, Ethics, and Society*, volume 7, pp. 1218–1230, 2024.

680 Eliane Röösli, Selen Bozkurt, and Tina Hernandez-Boussard. Peeking into a black box, the fairness
 681 and generalizability of a mimic-iii benchmarking model. *Scientific Data*, 9(1):24, 2022.

682 Veronica Rotemberg, Nicholas Kurtansky, Brigid Betz-Stablein, Liam Caffery, Emmanouil
 683 Chousakos, Noel Codella, Marc Combalia, Stephen Dusza, Pascale Guitera, David Gutman, Al-
 684 lan Halpern, et al. A patient-centric dataset of images and metadata for identifying melanomas
 685 using clinical context. *Scientific Data*, 8(1):34, 2021. doi: 10.1038/s41597-021-00815-z. URL
 686 <https://www.nature.com/articles/s41597-021-00815-z>.
 687

688 Shiori Sagawa, Pang Wei Koh, Tatsunori B Hashimoto, and Percy Liang. Distributionally robust
 689 neural networks for group shifts: On the importance of regularization for worst-case generaliza-
 690 tion. *arXiv preprint arXiv:1911.08731*, 2019.

691 Madeline Sagona, Tinglong Dai, Mario Macis, and Michael Darden. Trust in ai-assisted health
 692 systems and ai's trust in humans. *npj Health Systems*, 2(1):10, 2025.

693 Pranab Sahoo, Ashutosh Tripathi, Sriparna Saha, and Samrat Mondal. Fedmrl: Data heterogene-
 694 ity aware federated multi-agent deep reinforcement learning for medical imaging. In *Internation-
 695 al Conference on Medical Image Computing and Computer-Assisted Intervention*, pp. 640–
 696 649. Springer, 2024.

697 John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
 698 optimization algorithms. *arXiv preprint arXiv:1707.06347*, 2017.

699

702 Andrew Sellergren, Sahar Kazemzadeh, Tiam Jaroensri, Atilla Kiraly, Madeleine Traverse, Timo
 703 Kohlberger, Shawn Xu, Fayaz Jamil, Cian Hughes, Charles Lau, et al. Medgemma technical
 704 report. *arXiv preprint arXiv:2507.05201*, 2025.

705 Laleh Seyyed-Kalantari, Guanxiong Liu, Matthew B. A. McDermott, Irene Y. Chen, and Marzyeh
 706 Ghassemi. Chexclusion: Fairness gaps in deep chest x-ray classifiers. In *Biocomputing 2021: Proce-
 707 dings of the Pacific Symposium on Biocomputing*, pp. 232–243. World Scientific, 2021a.
 708 doi: 10.1142/9789811232701_0022. URL https://www.worldscientific.com/doi/abs/10.1142/9789811232701_0022.

710 Laleh Seyyed-Kalantari, Haoran Zhang, Matthew B. A. McDermott, Irene Y. Chen, and Marzyeh
 711 Ghassemi. Underdiagnosis bias of artificial intelligence algorithms applied to chest radiographs
 712 in under-served patient populations. *Nature Medicine*, 27(12):2176–2182, 2021b. doi: 10.1038/s41591-021-01595-0.

714 Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
 716 Mingchuan Zhang, YK Li, Y Wu, et al. Deepseekmath: Pushing the limits of mathematical
 717 reasoning in open language models. *arXiv preprint arXiv:2402.03300*, 2024.

718 Muhammad Hamza Shuja, Firzah Shakil, Syed Hasan Shuja, Minal Hasan, Maliha Edhi, Abeera Fa-
 719 rooq Abbasi, Afia Jawaid, and Shajia Shakil. Harnessing artificial intelligence in cardiology: Ad-
 720 vancements in diagnosis, treatment, and patient care. *Heart Views*, 25(4):241–248, 2024. doi:
 721 10.4103/heartviews.heartviews_103_24.

723 Benjamin Smith, Anahita Khojandi, and Rama Vasudevan. Bias in reinforcement learning: A review
 724 in healthcare applications. *ACM Computing Surveys*, 56(2):1–17, 2023.

725 Gregor Stiglic, Primoz Kocbek, Nino Fijacko, Marinka Zitnik, Katrien Verbert, and Leona Cilar. In-
 726 terpretability of machine learning-based prediction models in healthcare. *Wiley Interdisciplinary
 727 Reviews: Data Mining and Knowledge Discovery*, 10(5):e1379, 2020.

729 Hong Sun, Kristof Depraetere, Laurent Meeseman, Patricia Cabanillas Silva, Ralph Szymanowsky,
 730 Janis Fliegenschmidt, Nikolai Hulde, Vera von Dossow, Martijn Vanbiervliet, Jos De Baerde-
 731 maeker, et al. Machine learning-based prediction models for different clinical risks in different
 732 hospitals: evaluation of live performance. *Journal of Medical Internet Research*, 24(6):e34295,
 733 2022.

734 Qiaoying Teng, Zhe Liu, Yuqing Song, Kai Han, and Yang Lu. A survey on the interpretability of
 735 deep learning in medical diagnosis. *Multimedia Systems*, 28(6):2335–2355, 2022.

737 Himanshu Thakur, Atishay Jain, Praneetha Vaddamanu, Paul Pu Liang, and Louis-Philippe
 738 Morency. Language models get a gender makeover: Mitigating gender bias with few-shot data
 739 interventions. *arXiv preprint arXiv:2306.04597*, 2023.

740 Robert L Thorndike. Who belongs in the family? *Psychometrika*, 18(4):267–276, 1953.

742 Philipp Tschandl, Cliff Rosendahl, and Harald Kittler. The HAM10000 dataset, a large collec-
 743 tion of multi-source dermatoscopic images of common pigmented skin lesions. *Scientific Data*,
 744 5(1):180161, 2018a. doi: 10.1038/sdata.2018.161. URL <https://www.nature.com/articles/sdata2018161>.

746 Philipp Tschandl, Cliff Rosendahl, and Harald Kittler. The HAM10000 dataset: A large collection of
 747 multi-source dermatoscopic images of common pigmented skin lesions. *CorR*, abs/1803.10417,
 748 2018b. URL <http://arxiv.org/abs/1803.10417>.

750 Madeleine Waller, Odinaldo Rodrigues, and Oana Cocarascu. Beyond consistency: Nuanced metrics
 751 for individual fairness. In *Proceedings of the 2025 ACM Conference on Fairness, Accountability,
 752 and Transparency*, pp. 2087–2097, 2025.

753 Yuqing Wang, Malvika Pillai, Yun Zhao, Catherine M Curtin, and Tina Hernandez-Boussard.
 754 Fairehr-clp: Towards fairness-aware clinical predictions with contrastive learning in multimodal
 755 electronic health records. In *Machine Learning for Healthcare Conference*. PMLR, 2024.

Zhenzhen Weng, Mehmet Giray O gut, Shai Limonchik, and Serena Yeung. Unsupervised discovery of the long-tail in instance segmentation using hierarchical self-supervision. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pp. 2603–2612, 2021.

Nina Wiedemann et al. COVID-BLUES: Covid blueprint lung ultrasound dataset, 2021. URL <https://github.com/NinaWie/COVID-BLUES>. Recorded Feb–May 2021 at Maastricht University Medical Center (UMC+); CC BY-NC-ND 4.0.

Jenny Yang, Andrew AS Soltan, David W Eyre, and David A Clifton. Algorithmic fairness and bias mitigation for clinical machine learning with deep reinforcement learning. *Nature Machine Intelligence*, 5(8):884–894, 2023.

Nur Yildirim, Hannah Richardson, Maria Teodora Wetscherek, Junaid Bajwa, Joseph Jacob, Mark Ames Pinnock, Stephen Harris, Daniel Coelho De Castro, Shruthi Bannur, Stephanie Hyland, et al. Multimodal healthcare ai: identifying and designing clinically relevant vision-language applications for radiology. In *Proceedings of the 2024 CHI Conference on Human Factors in Computing Systems*, pp. 1–22, 2024.

Kai Zhang, Rong Zhou, Eashan Adhikarla, Zhiling Yan, Yixin Liu, Jun Yu, Zhengliang Liu, Xun Chen, Brian D Davison, Hui Ren, et al. A generalist vision–language foundation model for diverse biomedical tasks. *Nature Medicine*, pp. 1–13, 2024.

Xun Zhu, Ying Hu, Fanbin Mo, Miao Li, and Ji Wu. Uni-med: a unified medical generalist foundation model for multi-task learning via connector-moe. *Advances in Neural Information Processing Systems*, 37:81225–81256, 2024.

APPENDIX

A HYPERPARAMETERS & SETUPS

In this section, we describe our setup and hyperparameters during the training of the model. All models are trained with 4 NVIDIA H200 GPUs.

All experiments were conducted using the VERL (Volcano Engine Reinforcement Learning for LLMs) framework. The model was initialized from the pretrained MedGemma-4B-JT checkpoint and fine-tuned. We employed vLLM for efficient rollout generation with a GPU memory cache of 60% to balance between batch size and memory constraints. The relatively low learning rate of 5×10^{-7} was chosen to ensure stable convergence given the complexity of the multi-task medical reasoning objective.

A.1 EVALUATION METRICS

To comprehensively evaluate both performance and fairness across heterogeneous clinical subpopulations, we employ a hierarchical evaluation framework that prevents any single dataset or demographic subgroup from dominating the assessment.

Notation. Let \mathcal{C}_k denote the set of classes for dataset k , and \mathcal{G} denote the set of demographic groups. For each class $c \in \mathcal{C}_k$ and group $g \in \mathcal{G}$, we define: $TP_{c,g}$ (true positives), $FP_{c,g}$ (false positives), $TN_{c,g}$ (true negatives), and $FN_{c,g}$ (false negatives). Let $n_{c,g}$ denote the number of samples for class c in group g .

Performance Metrics. We extract diagnoses from the model’s free-text reasoning traces and evaluate each class as a binary classification problem. For class c and group g :

$$\text{Acc}_{c,g} = \frac{TP_{c,g} + TN_{c,g}}{n_{c,g}}, \quad \text{Precision}_{c,g} = \frac{TP_{c,g}}{TP_{c,g} + FP_{c,g}} \quad (3)$$

$$\text{Recall}_{c,g} = \frac{TP_{c,g}}{TP_{c,g} + FN_{c,g}}, \quad \text{F1}_{c,g} = 2 \cdot \frac{\text{Precision}_{c,g} \cdot \text{Recall}_{c,g}}{\text{Precision}_{c,g} + \text{Recall}_{c,g}} \quad (4)$$

Table 3: Hyperparameters for All Trainings

Parameter	Value
<i>Data Configuration</i>	
Train batch size	512
Validation batch size	512
Max prompt length	4096
Max response length	4096
<i>Model Configuration</i>	
Base model	MedGemma-4B-IT/Qwen2.5-VL-7B-Instruct
Tensor model parallel size	2
<i>Optimization</i>	
Learning rate	5×10^{-7}
PPO mini-batch size	128
PPO micro-batch size per GPU	4
KL	Disabled
<i>Rollout Configuration</i>	
Number of rollouts (n)	10
GPU memory utilization	0.6
Rollout engine	VLLM
<i>Training Settings</i>	
Total epochs	15
Validation frequency	5 epochs
Model save frequency	20 steps
Number of GPUs per node	4
Number of nodes	1
Critic warmup steps	0

To ensure balanced representation across classes and datasets, we employ two-level averaging. For dataset k :

$$F1_k = \frac{1}{|\mathcal{C}_k|} \sum_{c \in \mathcal{C}_k} F1_c, \quad \text{where} \quad F1_c = \frac{1}{|\mathcal{G}|} \sum_{g \in \mathcal{G}} F1_{c,g} \quad (5)$$

The overall performance is then averaged across all K datasets:

$$F1_{\text{overall}} = \frac{1}{K} \sum_{k=1}^K F1_k \quad (6)$$

This hierarchical averaging ensures that no single class or dataset dominates the final metrics, allowing the final metrics to be a balanced assessment across all 5 clinical domains.

Fairness Metrics. Following the popular approaches outlined in (Hort et al., 2024), we evaluate fairness through multiple complementary perspectives, each capturing different aspects of equitable model behavior across demographic groups. For each metric, we first compute dataset-level performance for each group, then assess disparities across groups.

Equal Opportunity Difference (EOD): We measure the disparity in true positive rates across groups to ensure equal diagnostic sensitivity:

$$EOD = \max_{g \in \mathcal{G}} TPR_g - \min_{g \in \mathcal{G}} TPR_g, \quad \text{where} \quad TPR_g = \frac{1}{K} \sum_{k=1}^K \frac{1}{|\mathcal{C}_k|} \sum_{c \in \mathcal{C}_k} TPR_{c,g} \quad (7)$$

and $TPR_{c,g} = \frac{TP_{c,g}}{TP_{c,g} + FN_{c,g}}$. A lower EOD indicates more equitable identification of positive cases, which is crucial for preventing delayed diagnoses in underserved populations.

864 *Predictive Parity*: We assess the reliability of positive predictions across groups through false discovery rate gaps:
 865
 866

$$867 \quad \text{PP} = \max_{g \in \mathcal{G}} \text{FDR}_g - \min_{g \in \mathcal{G}} \text{FDR}_g, \quad \text{where} \quad \text{FDR}_g = \frac{1}{K} \sum_{k=1}^K \frac{1}{|\mathcal{C}_k|} \sum_{c \in \mathcal{C}_k} \text{FDR}_{c,g} \quad (8)$$

$$868$$

$$869$$

$$870$$

871 and $\text{FDR}_{c,g} = \frac{FP_{c,g}}{FP_{c,g} + TP_{c,g}}$. Lower predictive parity gaps ensure that positive predictions maintain
 872 consistent reliability across all demographic groups, fostering trust in AI-assisted diagnosis.
 873
 874

875 *False Positive Rate Difference*: We measure disparities in false positive rates to ensure equitable
 876 specificity across groups:
 877

$$876 \quad \text{FPR}_{\text{Diff}} = \max_{g \in \mathcal{G}} \text{FPR}_g - \min_{g \in \mathcal{G}} \text{FPR}_g \quad (9)$$

$$877$$

878 where FPR_g follows the same hierarchical averaging structure as other group-level metrics. Lower
 879 FPR differences prevent differential overdiagnosis across demographic groups.
 880
 881

882 *Performance Disparities*: We directly measure accuracy and F1 score gaps to capture overall per-
 883 formance equity:
 884

$$883 \quad \Delta \text{Acc} = \max_{g \in \mathcal{G}} \text{Acc}_g - \min_{g \in \mathcal{G}} \text{Acc}_g, \quad \Delta \text{F1} = \max_{g \in \mathcal{G}} \text{F1}_g - \min_{g \in \mathcal{G}} \text{F1}_g \quad (10)$$

$$884$$

885 where Acc_g and F1_g follow the same hierarchical averaging as TPR_g . Additionally, we compute the
 886 standard deviation of performance across groups to capture variability:
 887

$$888 \quad \sigma_{\text{Acc}} = \sqrt{\frac{1}{|\mathcal{G}|} \sum_{g \in \mathcal{G}} (\text{Acc}_g - \bar{\text{Acc}})^2}, \quad \sigma_{\text{F1}} = \sqrt{\frac{1}{|\mathcal{G}|} \sum_{g \in \mathcal{G}} (\text{F1}_g - \bar{\text{F1}})^2} \quad (11)$$

$$889$$

$$890$$

$$891$$

892 where $\bar{\text{Acc}}$ and $\bar{\text{F1}}$ denote the mean values across all groups.
 893
 894

895 **Fairness-Utility Tradeoff**. To balance fairness and utility, we adopt Equity Scaling metrics follow-
 896 ing (Jin et al., 2024). These metrics combine performance with fairness considerations by penalizing
 897 models that achieve high average performance at the cost of large disparities across groups:
 898

$$896 \quad \text{Acc}_{\text{ES}} = \frac{\bar{\text{Acc}}}{1 + \sigma_{\text{Acc}}}, \quad \text{F1}_{\text{ES}} = \frac{\bar{\text{F1}}}{1 + \sigma_{\text{F1}}} \quad (12)$$

$$897$$

$$898$$

$$899$$

900 These equity-scaled metrics reward models that achieve both high performance and low variance
 901 across demographic groups, providing a single scalar that captures the fairness-utility tradeoff.
 902 Higher values indicate better balance between overall performance and equitable distribution across
 903 all populations.
 904

904 B DATASET DETAILS

$$905$$

906 In this section, we provide a detailed description of datasets used in the experiments.
 907

908 **CheXpert** (Irvin et al., 2019) is a public chest radiology dataset collected at Stanford Hospital,
 909 which contains 224,316 chest radiographs of 65,240 patients. Each record has an uncertain label of
 910 14 diagnostic observations, including Atelectasis, Cardiomegaly, Consolidation, Edema, Enlarged
 911 Cardiomeastinum, Fracture, Lung Lesion, Lung Opacity, Pleural Effusion, Pneumonia, Pneumothorax,
 912 Pleural Other, Support Device and No Finding. We use a training set of 212,243 records, a test
 913 set of 225 records, and a total size of 212,498 records.
 914

915 **COVID-BLUES** (Wiedemann et al., 2021) consists of blaptop-specific lung ultrasound videos
 916 collected at the Maastricht University Medical Center in the Netherlands using the BLUE protocol.
 917 Each of the 63 patients has six recordings. Our evaluation focuses on two labels: the diagnostic
 918 label (“Has COVID”, “No COVID”), and the patient age label. We use a training set of 266 records,
 919 a test set of 96 records, and a total size of 362 records.
 920

918 **VinDr-Mammo** (Nguyen et al., 2021) contains mammography collected from Hospital 108 and
 919 Hanoi Medical University Hospital in Vietnam. The dataset includes local labels for bounding
 920 boxes; however, we evaluate our models based on the 5 global labels for BI-RADS 1-5. We use a
 921 training set of 16,000 records, a test set of 4,000 records, and a total size of 20,000 records.

922 **ISIC-2020** (Rotemberg et al., 2021) comprises dermoscopy of skin lesions from over 2,000 patients,
 923 generated by the International Skin Imaging Collaboration (ISIC). We evaluate the models on the
 924 binary classification (“Malignant” or “Benign”) for each image, where all malignant diagnoses are
 925 histopathology-confirmed, while benign diagnoses are confirmed by expert agreement, longitudinal
 926 follow-up, or histopathology. We use a training set of 26,501 records, a test set of 6,625 records, and
 927 a total size of 33,126 records.

928 **HAM10000** (Tschandl et al., 2018a) is a dermoscopic image dataset released for the ISIC 2018
 929 classification challenge, drawn from the ISIC archive. Our evaluation uses the diagnostic categories:
 930 Melanoma (MEL), Nevus (NV), Basal Cell Carcinoma (BCC), Actinic Keratosis/Intraepithelial Car-
 931 cinoma (AKIEC), Other (OTHER). We use a training set of 8,012 records, a test set of 2,003 records,
 932 and a total size of 10,015 records.

933 **PAD-UFES-20** (Pacheco et al., 2020) comprises dermoscopy images of skin lesions with patient
 934 metadata collected at the Federal University of Espírito Santo by iPhone, which includes 1,641 skin
 935 lesions from 1,373 patients. We evaluate the models on the five skin diagnostics, three of which
 936 are skin disease and three of which are skin cancers: Melanoma (MEL), Nevus (NV), Basal Cell
 937 Carcinoma (BCC), Actinic Keratosis/Intraepithelial Carcinoma (AKIEC), Other (OTHER). All of
 938 the skin cancers are biopsy-proven, and more than half of the skin diseases are biopsy-proven as
 939 well. We use a training set of 1,839 records, a test set of 459 records, and a total size of 2,298
 940 records.

941 **Hemorrhage** (Hssayeni et al., 2020) consists of intracranial hemorrhage CT images for 82 patients
 942 at Al Hilla Teaching Hospital, Iraq, each with brain and bone window images and approximately
 943 30 image slices in total. We evaluate the models as binary diagnoses: “No Hemorrhage” and “Has
 944 Hemorrhage”. We use a training set of 1,986 records, a test set of 515 patient records, and a total
 945 size of 2,501 records.

947 C THE USE OF LARGE LANGUAGE MODELS (LLMs)

949 We used ChatGPT for grammar corrections and debugging assistance, including explaining error
 950 messages and suggesting fixes. The model did not contribute research ideas, methods, experimental
 951 design, data, analyses or results. All changes were reviewed and implemented by the authors, who
 952 take full responsibility for the manuscript.

972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983

984
 985 **Table 4: Relative F1 score improvements (%) for FairGRPO vs GRPO across demographic**
 986 **groups.** Values show the relative improvement ($\Delta\%$), GRPO baseline F1 score, and FairGRPO F1
 987 score for each demographic group.

Group	Dataset					
	CheXpert	ISIC-2020	Hemorrhage	HAM10000	PAD-UFES-20	VinDr-Mammo
a1						
$\Delta\%$	+31.44	-0.14	-3.40	-20.95	0.00	-6.21
GRPO	0.318	0.495	0.721	0.383	0.462	0.243
FairGRPO	0.418	0.494	0.696	0.302	0.462	0.228
a2						
$\Delta\%$	+24.23	-0.09	+4.90	-28.91	+1.56	+5.24
GRPO	0.296	0.496	0.600	0.262	0.385	0.234
FairGRPO	0.368	0.496	0.629	0.186	0.391	0.246
a3						
$\Delta\%$	+33.18	+1.65	+18.77	+39.18	+3.71	+11.29
GRPO	0.283	0.564	0.679	0.222	0.190	0.195
FairGRPO	0.377	0.574	0.806	0.309	0.197	0.217
a4						
$\Delta\%$	+21.60	+27.08	–	+6.03	+6.22	-13.85
GRPO	0.302	0.469	–	0.185	0.221	0.238
FairGRPO	0.368	0.595	–	0.196	0.234	0.205
Female						
$\Delta\%$	+24.45	+6.90	+3.54	+19.21	+4.20	–
GRPO	0.320	0.517	0.773	0.262	0.247	–
FairGRPO	0.398	0.553	0.800	0.313	0.258	–
Male						
$\Delta\%$	+34.35	+2.26	+6.97	+9.52	+2.67	–
GRPO	0.253	0.546	0.628	0.240	0.214	–
FairGRPO	0.340	0.558	0.672	0.263	0.220	–
Average $\Delta\%$	+28.21	+6.28	+6.16	+4.01	+3.06	-0.88

1015
 1016
 1017
 1018
 1019
 1020
 1021
 1022
 1023
 1024
 1025

1026
1027
1028
1029
1030
1031

1032 **Table 5: Detailed fairness and performance metrics per dataset and demographic group for**
 1033 **Reinforce++ on Qwen-2.5-VL.** Results shown for both age groups (a1-a4) and gender groups across
 1034 all evaluation datasets. Higher values are better for accuracy, TPR, and F1; lower values are better
 1035 for FPR and FDR.

1037 Dataset	1038 Group	1039 Performance Metrics				1040 Fairness Metrics				1041 Disparity Metrics			
		1042 Acc	1043 F1	1044 TPR	1045 FPR	1046 FDR	1047 σ_{Acc}	1048 σ_{F1}	1049 σ_{TPR}	1050 ΔAcc	1051 ΔF1	1052 ΔTPR	1053 ΔFPR
Age Groups													
1040 ChexPert	a1	.833	.130	.138	.064	.158							
	a2	.748	.102	.118	.068	.139							
	a3	.770	.120	.114	.070	.202	.076	.012	.018	.184	.028	.038	.009
	a4	.649	.125	.151	.074	.223							
1044 HAM10000	a1	.824	.347	.426	.252	.317							
	a2	.876	.200	.231	.197	.759							
	a3	.783	.239	.262	.185	.669	.077	.094	.099	.183	.225	.218	.068
	a4	.693	.122	.208	.197	.660							
1048 ISIC2020	a1	.979	.595	.595	.405	.405							
	a2	.957	.512	.535	.463	.490							
	a3	.946	.556	.569	.430	.452	.071	.045	.043	.157	.100	.099	.099
	a4	.822	.494	.496	.504	.506							
1052 PAD-UFES	a1	.813	.417	.357	.000	.000							
	a2	.763	.395	.412	.149	.518							
	a3	.774	.256	.389	.160	.682	.033	.076	.062	.081	.161	.145	.195
	a4	.732	.304	.503	.195	.324							
1056 Hemorrhage	a1	.728	.444	.445	.555	.557							
	a2	.756	.483	.482	.518	.515	.048	.059	.062	.093	.116	.120	.120
	a3	.663	.560	.566	.434	.401							
1059 VinDr	a1	.700	.106	.201	.192	.388							
	a2	.709	.132	.204	.196	.573							
	a3	.724	.162	.225	.189	.563	.106	.024	.063	.224	.057	.132	.100
	a4	.500	.121	.333	.289	.593							
Gender Groups													
1064 ChexPert	Female	.716	.123	.129	.072	.129							
	Male	.781	.115	.112	.063	.183	.046	.006	.011	.065	.009	.016	.009
1067 HAM10000	Female	.842	.230	.249	.187	.709							
	Male	.812	.231	.246	.190	.689	.021	.001	.002	.030	.001	.003	.003
1069 ISIC2020	Female	.953	.533	.551	.448	.474							
	Male	.950	.538	.557	.443	.470	.002	.004	.004	.003	.005	.006	.004
1071 PAD-UFES	Female	.794	.303	.428	.174	.697							
	Male	.837	.294	.393	.157	.666	.030	.006	.025	.043	.008	.035	.018
1073 Hemorrhage	Female	.778	.608	.613	.387	.396							
	Male	.719	.465	.467	.533	.537	.042	.101	.103	.059	.143	.146	.146

1075
1076
1077
1078
1079

1080
1081
1082
1083
1084
10851086 Table 6: **Detailed fairness and performance metrics per dataset and demographic group for**
1087 **RLOO on Qwen-2.5-VL.** Results shown for both age groups (a1-a4) and gender groups across all
1088 evaluation datasets. Higher values are better for accuracy, TPR, and F1; lower values are better for
1089 FPR and FDR.

1091 Dataset	1092 Group	1093 Performance Metrics				1094 Fairness Metrics				1095 Disparity Metrics			
		1096 Acc	1097 F1	1098 TPR	1099 FPR	1100 FDR	1101 σ_{Acc}	1102 σ_{F1}	1103 σ_{TPR}	1104 ΔAcc	1105 ΔF1	1106 ΔTPR	1107 ΔFPR
Age Groups													
1098 ChexPert	a1	.833	.285	.338	.096	.221							
	a2	.746	.136	.152	.125	.201							
	a3	.767	.154	.175	.142	.449	.066	.067	.083	.161	.149	.186	.080
	a4	.673	.179	.200	.176	.114							
1099 HAM10000	a1	.924	.314	.327	.309	.364							
	a2	.943	.242	.239	.197	.328							
	a3	.796	.167	.219	.195	.701	.114	.087	.051	.243	.199	.107	.116
	a4	.700	.115	.222	.194	.403							
1102 ISIC2020	a1	.986	.496	.499	.500	.007							
	a2	.990	.497	.500	.500	.005							
	a3	.974	.493	.499	.500	.013	.049	.014	.002	.105	.029	.004	.000
	a4	.886	.468	.495	.500	.056							
1106 PAD-UFES	a1	.938	.500	.500	.000	.000							
	a2	.760	.371	.410	.172	.544							
	a3	.764	.233	.309	.155	.623	.094	.143	.115	.206	.318	.263	.179
	a4	.732	.182	.237	.179	.716							
1110 Hemorrhage	a1	.808	.447	.473	.527	.576							
	a2	.869	.465	.494	.506	.561	.106	.034	.014	.206	.066	.027	.027
	a3	.663	.399	.500	.500	.169							
1113 VinDr	a1	.807	.137	.200	.200	.096							
	a2	.878	.173	.203	.198	.386							
	a3	.851	.158	.200	.199	.234	.094	.036	.066	.211	.086	.133	.136
	a4	.667	.222	.333	.333	.167							
Gender Groups													
1118 ChexPert	Female	.721	.172	.187	.149	.202							
	Male	.780	.161	.178	.127	.379	.041	.008	.006	.058	.012	.008	.021
1121 HAM10000	Female	.883	.200	.218	.195	.408							
	Male	.850	.194	.223	.194	.781	.023	.004	.003	.033	.006	.005	.0003
1123 ISIC2020	Female	.983	.496	.500	.500	.008							
	Male	.980	.495	.499	.500	.009	.002	.001	.0004	.003	.001	.001	.000
1125 PAD-UFES	Female	.788	.265	.387	.172	.653							
	Male	.823	.230	.335	.153	.680	.025	.024	.037	.036	.034	.052	.019
1127 Hemorrhage	Female	.821	.451	.490	.510	.583							
	Male	.814	.449	.488	.512	.585	.005	.001	.001	.006	.002	.002	.002

1129
1130
1131
1132
1133

1134
1135
1136
1137
1138
11391140 Table 7: **Detailed fairness and performance metrics per dataset and demographic group for**
1141 **GRPO on Qwen-2.5-VL**. Results shown for both age groups (a1-a4) and gender groups across all
1142 evaluation datasets. Higher values are better for accuracy, TPR, and F1; lower values are better for
1143 FPR and FDR.

1144

Dataset	Group	Performance Metrics				Fairness Metrics				Disparity Metrics			
		Acc	F1	TPR	FPR	FDR	σ_{Acc}	σ_{F1}	σ_{TPR}	ΔAcc	ΔF1	ΔTPR	ΔFPR
Age Groups													
ChexPert	a1	.807	.235	.338	.133	.188							
	a2	.766	.192	.228	.136	.160	.049	.041	.062	.112	.091	.141	.051
	a3	.785	.163	.196	.141	.160							
	a4	.695	.254	.282	.184	.096							
HAM10000	a1	.936	.317	.333	.303	.031							
	a2	.943	.185	.199	.194	.427							
	a3	.796	.170	.223	.192	.411	.116	.076	.059	.239	.168	.134	.112
	a4	.703	.149	.242	.191	.266							
ISIC2020	a1	.987	.497	.500	.500	.007							
	a2	.991	.498	.500	.500	.005							
	a3	.975	.494	.500	.500	.013	.048	.013	.000	.101	.027	.000	.000
	a4	.890	.471	.500	.500	.055							
PAD-UFES	a1	.875	.917	.857	.000	.000							
	a2	.782	.425	.450	.156	.556							
	a3	.771	.201	.260	.167	.563	.048	.320	.270	.104	.716	.597	.167
	a4	.786	.283	.317	.153	.373							
Hemorrhage	a1	.854	.461	.500	.500	.073							
	a2	.880	.468	.500	.500	.060	.119	.038	.000	.217	.069	.000	.000
	a3	.663	.399	.500	.500	.169							
VinDr	a1	.807	.137	.200	.200	.096							
	a2	.879	.164	.200	.200	.061							
	a3	.852	.155	.200	.200	.074	.094	.037	.067	.212	.086	.133	.133
	a4	.667	.222	.333	.333	.167							
Gender Groups													
ChexPert	Female	.742	.220	.250	.160	.154	.036	.036	.037	.051	.051	.053	.031
	Male	.793	.169	.198	.129	.125							
HAM10000	Female	.882	.194	.216	.191	.589	.021	.010	.012	.029	.015	.018	.001
	Male	.852	.208	.234	.190	.537							
ISIC2020	Female	.984	.496	.500	.500	.008	.002	.0004	.000	.003	.001	.000	.000
	Male	.981	.495	.500	.500	.009							
PAD-UFES	Female	.800	.308	.374	.174	.451	.026	.038	.044	.037	.054	.063	.016
	Male	.837	.255	.311	.158	.539							
Hemorrhage	Female	.838	.456	.500	.500	.081	.002	.001	.000	.003	.001	.000	.000
	Male	.834	.455	.500	.500	.083							

1183

1184

1185

1186

1187

1188
 1189
 1190
 1191
 1192
 1193
 1194
Table 8: Detailed fairness and performance metrics per dataset and demographic group for
GRPO with Resampling on Qwen-2.5-VL. Results shown for both age groups (a1-a4) and gender
 1195 groups across all evaluation datasets. Higher values are better for accuracy, TPR, and F1; lower
 1196 values are better for FPR and FDR.
 1197
 1198

Dataset	Group	Performance Metrics				Fairness Metrics				Disparity Metrics			
		Acc	F1	TPR	FPR	FDR	σ_{Acc}	σ_{F1}	σ_{TPR}	ΔAcc	ΔF1	ΔTPR	ΔFPR
Age Groups													
ChexPert	a1	.847	.142	.150	.056	.153							
	a2	.762	.125	.153	.056	.079							
	a3	.754	.098	.094	.078	.279	.083	.018	.029	.203	.044	.059	.022
	a4	.644	.124	.153	.076	.321							
HAM10000	a1	.785	.307	.354	.302	.341							
	a2	.835	.167	.194	.213	.820							
	a3	.767	.213	.244	.191	.754	.057	.071	.070	.138	.158	.160	.111
	a4	.697	.149	.221	.195	.658							
ISIC2020	a1	.937	.555	.672	.328	.461							
	a2	.894	.490	.557	.443	.494							
	a3	.885	.522	.585	.415	.477	.059	.042	.049	.140	.098	.115	.115
	a4	.797	.588	.616	.384	.422							
PAD-UFES	a1	.875	.462	.429	.000	.000							
	a2	.769	.408	.406	.148	.557							
	a3	.771	.275	.390	.162	.673	.058	.079	.057	.129	.187	.128	.186
	a4	.746	.372	.518	.186	.535							
Hemorrhage	a1	.728	.444	.445	.555	.557							
	a2	.785	.471	.472	.528	.530	.050	.070	.073	.100	.133	.137	.137
	a3	.685	.577	.582	.418	.361							
VinDr	a1	.696	.168	.283	.192	.531							
	a2	.686	.106	.187	.200	.608							
	a3	.699	.140	.223	.193	.572	.056	.029	.065	.116	.062	.146	.010
	a4	.583	.167	.333	.189	.556							
Gender Groups													
ChexPert	Female	.716	.132	.140	.071	.214	.038	.021	.026	.054	.029	.036	.004
	Male	.771	.102	.104	.067	.388							
HAM10000	Female	.818	.203	.225	.199	.704	.024	.005	.002	.034	.007	.003	.001
	Male	.784	.196	.228	.200	.797							
ISIC2020	Female	.901	.512	.581	.419	.484	.013	.00004	.010	.018	.0001	.014	.014
	Male	.882	.512	.595	.405	.482							
PAD-UFES	Female	.800	.338	.493	.168	.706	.014	.014	.076	.020	.019	.107	.003
	Male	.820	.318	.386	.165	.678							
Hemorrhage	Female	.803	.572	.564	.436	.405	.048	.064	.057	.067	.091	.081	.081
	Male	.736	.481	.484	.516	.519							

1237
 1238
 1239
 1240
 1241

1242
1243
1244
1245
1246
12471248 Table 9: **Detailed fairness and performance metrics per dataset and demographic group for**
1249 **GRPO with Group DRO on Qwen-2.5-VL.** Results shown for both age groups (a1-a4) and gender
1250 groups across all evaluation datasets. Higher values are better for accuracy, TPR, and F1; lower
1251 values are better for FPR and FDR.

Dataset	Group	Performance Metrics				Fairness Metrics				Disparity Metrics			
		Acc	F1	TPR	FPR	FDR	σ_{Acc}	σ_{F1}	σ_{TPR}	ΔAcc	ΔF1	ΔTPR	ΔFPR
Age Groups													
ChexPert	a1	.847	.142	.150	.056	.153							
	a2	.754	.105	.132	.063	.127							
	a3	.767	.115	.117	.070	.124	.092	.021	.014	.221	.049	.033	.031
	a4	.625	.092	.132	.087	.245							
HAM10000	a1	.821	.327	.374	.283	.333							
	a2	.841	.169	.193	.218	.821	.059	.070	.076	.131	.158	.180	.097
	a3	.769	.239	.257	.191	.629							
	a4	.710	.190	.249	.186	.498							
ISIC2020	a1	.953	.579	.680	.320	.445							
	a2	.923	.501	.554	.446	.492							
	a3	.911	.530	.570	.430	.475	.072	.044	.084	.164	.101	.203	.203
	a4	.788	.477	.477	.523	.522							
PAD-UFES	a1	.875	.462	.429	.000	.000							
	a2	.760	.399	.397	.155	.545							
	a3	.771	.273	.385	.159	.667	.062	.082	.056	.139	.188	.125	.195
	a4	.736	.327	.510	.195	.565							
Hemorrhage	a1	.748	.452	.457	.543	.551							
	a2	.840	.478	.490	.510	.523	.089	.041	.047	.177	.080	.092	.092
	a3	.663	.533	.549	.451	.406							
VinDr	a1	.696	.142	.233	.193	.532							
	a2	.701	.119	.191	.200	.602							
	a3	.716	.141	.210	.192	.577	.144	.041	.028	.299	.086	.067	.164
	a4	.417	.056	.167	.356	.633							
Gender Groups													
ChexPert	Female	.715	.118	.136	.071	.130	.040	.010	.019	.057	.014	.026	.003
	Male	.772	.105	.110	.067	.195							
HAM10000	Female	.825	.258	.258	.196	.613	.026	.030	.013	.037	.042	.019	.002
	Male	.788	.216	.239	.198	.725							
ISIC2020	Female	.924	.513	.548	.452	.487	.009	.005	.018	.013	.007	.025	.025
	Male	.911	.520	.573	.427	.481							
PAD-UFES	Female	.788	.318	.481	.170	.722	.023	.024	.103	.032	.034	.145	.007
	Male	.820	.284	.335	.163	.676							
Hemorrhage	Female	.812	.554	.548	.452	.407	.027	.048	.038	.038	.068	.054	.054
	Male	.774	.485	.494	.506	.510							

1291
1292
1293
1294
1295

1296
1297
1298
1299
1300
1301

1302 **Table 10: Detailed fairness and performance metrics per dataset and demographic group for**
 1303 **FairGRPO on Qwen-2.5-VL.** Results shown for both age groups (a1-a4) and gender groups across
 1304 all evaluation datasets. Higher values are better for accuracy, TPR, and F1; lower values are better
 1305 for FPR and FDR.

Dataset	Group	Performance Metrics				Fairness Metrics			Disparity Metrics				
		Acc	F1	TPR	FPR	FDR	σ_{Acc}	σ_{F1}	σ_{TPR}	ΔAcc	ΔF1	ΔTPR	ΔFPR
Age Groups													
ChexPert	a1	.813	.161	.225	.109	.140							
	a2	.771	.149	.166	.096	.104							
	a3	.792	.132	.160	.118	.105	.063	.015	.030		.142	.031	.065
	a4	.671	.130	.177	.164	.076							.068
HAM10000	a1	.915	.304	.300	.212	.024							
	a2	.920	.209	.464	.148	.606							
	a3	.809	.279	.379	.143	.508	.089	.045	.075		.183	.096	.164
	a4	.736	.224	.311	.154	.546							.069
ISIC2020	a1	.987	.497	.500	.500	.007							
	a2	.989	.497	.499	.500	.005							
	a3	.972	.492	.497	.500	.013	.049	.014	.002		.104	.028	.005
	a4	.886	.468	.495	.500	.056							.000
PAD-UFES	a1	.750	.364	.286	.000	.000							
	a2	.788	.435	.445	.128	.241							
	a3	.817	.292	.294	.139	.301	.028	.068	.074		.067	.143	.159
	a4	.779	.291	.317	.180	.205							.180
Hemorrhage	a1	.854	.461	.500	.500	.073							
	a2	.876	.467	.498	.502	.560	.117	.038	.001		.213	.068	.002
	a3	.663	.399	.500	.500	.169							.002
VinDr	a1	.807	.137	.200	.200	.096							
	a2	.879	.164	.200	.200	.061							
	a3	.852	.156	.201	.199	.074	.094	.037	.067		.212	.086	.133
	a4	.667	.222	.333	.333	.167							.134
Gender Groups													
ChexPert	Female	.741	.161	.189	.123	.116							
	Male	.794	.126	.151	.109	.085	.038	.025	.027		.053	.035	.038
HAM10000	Female	.880	.270	.354	.131	.473							
	Male	.846	.272	.369	.137	.539	.024	.001	.011		.034	.002	.015
ISIC2020	Female	.982	.495	.498	.500	.008							
	Male	.979	.494	.498	.500	.009	.002	.0004	.0001		.002	.001	.0001
PAD-UFES	Female	.818	.336	.338	.153	.259							
	Male	.840	.280	.277	.146	.314	.015	.039	.043		.022	.055	.060
Hemorrhage	Female	.838	.456	.500	.500	.081							
	Male	.832	.454	.498	.502	.583	.004	.001	.001		.006	.002	.002

1345
1346
1347
1348
1349

1350
1351
1352
1353
1354
13551356 Table 11: **Detailed fairness and performance metrics per dataset and demographic group for**
1357 **Reinforce++ on MedGemma.** Results shown for both age groups (a1-a4) and gender groups across
1358 all evaluation datasets. Higher values are better for accuracy, TPR, and F1; lower values are better
1359 for FPR and FDR.

Dataset	Group	Performance Metrics				Fairness Metrics				Disparity Metrics			
		Acc	F1	TPR	FPR	FDR	σ_{Acc}	σ_{F1}	σ_{TPR}	ΔAcc	ΔF1	ΔTPR	ΔFPR
Age Groups													
ChexPert	a1	.793	.288	.338	.173	.643							
	a2	.745	.260	.299	.161	.659							
	a3	.761	.269	.298	.161	.647	.038	.025	.031	.092	.056	.063	.039
	a4	.702	.316	.361	.134	.483							
HAM10000	a1	.927	.312	.323	.303	.031							
	a2	.938	.233	.233	.165	.474							
	a3	.801	.183	.223	.178	.586	.107	.083	.054	.223	.197	.124	.138
	a4	.716	.115	.199	.167	.402							
ISIC2020	a1	.987	.497	.500	.500	.007							
	a2	.991	.498	.500	.500	.005							
	a3	.975	.513	.510	.490	.012	.048	.017	.005	.101	.042	.010	.010
	a4	.890	.471	.500	.500	.055							
PAD-UFES	a1	.875	.462	.429	.000	.000							
	a2	.772	.387	.395	.158	.610							
	a3	.763	.209	.262	.159	.565	.056	.122	.095	.118	.253	.192	.159
	a4	.757	.233	.237	.153	.479							
Hemorrhage	a1	.871	.731	.643	.208	.087							
	a2	.851	.589	.546	.265	.340	.066	.118	.066	.124	.234	.126	.057
	a3	.747	.498	.516	.250	.104							
VinDr	a1	.806	.141	.196	.190	.290							
	a2	.867	.186	.204	.196	.592							
	a3	.836	.177	.200	.199	.620	.102	.093	.122	.229	.208	.248	.119
	a4	.639	.349	.444	.308	.708							
Gender Groups													
ChexPert	Female	.757	.332	.358	.134	.561	.004	.068	.067	.006	.097	.094	.032
	Male	.751	.235	.264	.166	.687							
HAM10000	Female	.879	.202	.216	.180	.555							
	Male	.856	.210	.224	.168	.538	.016	.005	.006	.023	.008	.008	.012
ISIC2020	Female	.984	.496	.500	.500	.008							
	Male	.981	.514	.509	.491	.009	.002	.012	.007	.002	.018	.009	.009
PAD-UFES	Female	.820	.283	.335	.131	.513							
	Male	.783	.201	.250	.174	.601	.026	.058	.060	.037	.082	.085	.043
Hemorrhage	Female	.880	.568	.537	.211	.039							
	Male	.827	.612	.555	.260	.264	.038	.031	.012	.054	.044	.018	.050

1399
1400
1401
1402
1403

1404
 1405
 1406
 1407
 1408
 1409
 1410 **Table 12: Detailed fairness and performance metrics per dataset and demographic group for**
 1411 **RLOO on MedGemma.** Results shown for both age groups (a1-a4) and gender groups across all
 1412 evaluation datasets. Higher values are better for accuracy, TPR, and F1; lower values are better for
 1413 FPR and FDR.

1415 Dataset	1416 Group	1417 Performance Metrics				1418 Fairness Metrics			1419 Disparity Metrics					
		1420 Acc	1421 F1	1422 TPR	1423 FPR	1424 FDR	1425 σ_{Acc}	1426 σ_{F1}	1427 σ_{TPR}	1428 σ_{FDR}	1429 ΔAcc	1430 ΔF1	1431 ΔTPR	1432 ΔFPR
Age Groups														
1419 ChexPert	a1	.900	.533	.600	.082	.185								
	a2	.817	.363	.429	.110	.241	.077	.091	.090	.189	.193	.196	.100	
	a3	.810	.351	.404	.122	.307								
	a4	.711	.339	.432	.183	.378								
1423 HAM10000	a1	.933	.316	.333	.333	.033								
	a2	.938	.183	.195	.195	.628								
	a3	.800	.199	.235	.187	.440	.110	.065	.058	.228	.139	.138	.147	
	a4	.710	.176	.257	.187	.367								
1427 ISIC2020	a1	.987	.497	.500	.500	.007								
	a2	.989	.497	.498	.500	.005								
	a3	.974	.493	.499	.500	.013	.047	.012	.001	.099	.026	.002	.000	
	a4	.890	.471	.500	.500	.055								
1431 PAD-UFES	a1	.875	.462	.429	.000	.000								
	a2	.763	.353	.395	.176	.637								
	a3	.752	.203	.316	.174	.582	.059	.118	.078	.123	.259	.172	.176	
	a4	.757	.234	.257	.162	.453								
1435 Hemorrhage	a1	.881	.741	.723	.277	.236								
	a2	.856	.615	.603	.382	.366	.081	.078	.068	.150	.142	.120	.115	
	a3	.730	.598	.608	.392	.204								
1438 VinDr	a1	.807	.138	.200	.197	.294								
	a2	.878	.167	.200	.198	.587								
	a3	.847	.155	.197	.200	.657	.067	.152	.151	.155	.319	.303	.081	
	a4	.722	.458	.500	.278	.152								
Gender Groups														
1442 ChexPert	Female	.786	.416	.497	.133	.330								
	Male	.816	.308	.352	.111	.284	.022	.076	.102	.031	.108	.145	.022	
1445 HAM10000	Female	.880	.225	.232	.186	.483								
	Male	.853	.226	.238	.189	.397	.019	.001	.004	.027	.001	.006	.003	
1447 ISIC2020	Female	.982	.495	.498	.500	.008								
	Male	.980	.495	.499	.500	.009	.002	.0004	.0001	.002	.001	.0001	.000	
1449 PAD-UFES	Female	.800	.259	.335	.163	.337								
	Male	.783	.198	.302	.183	.600	.012	.043	.023	.017	.061	.032	.021	
1451 Hemorrhage	Female	.889	.709	.658	.342	.059								
	Male	.828	.639	.623	.369	.329	.043	.049	.025	.061	.069	.035	.027	

1453
 1454
 1455
 1456
 1457

Dataset	Group	Performance Metrics				Fairness Metrics			Disparity Metrics				
		Acc	F1	TPR	FPR	FDR	σ_{Acc}	σ_{F1}	σ_{TPR}	ΔAcc	ΔF1	ΔTPR	ΔFPR
Age Groups													
ChexPert	a1	.893	.318	.342	.038	.092							
	a2	.814	.296	.279	.059	.174							
	a3	.824	.283	.248	.052	.159	.084	.015	.040	.202	.035	.093	.050
	a4	.691	.302	.306	.088	.211							
HAM10000	a1	.918	.383	.369	.279	.252							
	a2	.943	.262	.248	.177	.425							
	a3	.802	.222	.249	.187	.553	.108	.086	.057	.233	.198	.120	.103
	a4	.710	.185	.271	.185	.498							
ISIC2020	a1	.983	.495	.496	.500	.007							
	a2	.988	.496	.497	.500	.505							
	a3	.974	.564	.536	.462	.012	.048	.041	.020	.102	.096	.040	.039
	a4	.886	.468	.495	.500	.056							
PAD-UFES	a1	.875	.462	.429	.000	.000							
	a2	.779	.385	.421	.163	.600							
	a3	.751	.190	.287	.179	.598	.059	.130	.092	.125	.272	.179	.179
	a4	.750	.220	.249	.171	.230							
Hemorrhage	a1	.858	.721	.692	.236	.247							
	a2	.836	.600	.579	.340	.376	.036	.062	.057	.071	.121	.113	.105
	a3	.787	.679	.650	.259	.150							
VinDr	a1	.804	.243	.288	.177	.553							
	a2	.841	.234	.267	.189	.764							
	a3	.808	.195	.219	.188	.796	.064	.022	.031	.146	.048	.069	.023
	a4	.694	.238	.278	.200	.458							
Gender Groups													
ChexPert	Female	.779	.320	.290	.071	.281							
	Male	.824	.253	.231	.051	.234	.032	.047	.042	.045	.067	.059	.020
HAM10000	Female	.885	.262	.261	.178	.386							
	Male	.854	.240	.249	.186	.593	.022	.015	.008	.032	.022	.012	.008
ISIC2020	Female	.982	.517	.509	.489	.008							
	Male	.979	.546	.525	.472	.134	.002	.020	.011	.003	.029	.016	.016
PAD-UFES	Female	.797	.247	.325	.163	.533							
	Male	.793	.214	.316	.184	.392	.003	.023	.006	.004	.033	.009	.020
Hemorrhage	Female	.902	.773	.722	.221	.130							
	Male	.814	.628	.596	.310	.327	.062	.102	.089	.088	.144	.126	.090

1512
1513
1514
1515
1516
15171518 **Table 14: Detailed fairness and performance metrics per dataset and demographic group for**
1519 **GRPO with Resampling on MedGemma.** Results shown for both age groups (a1-a4) and gender
1520 groups across all evaluation datasets. Higher values are better for accuracy, TPR, and F1; lower
1521 values are better for FPR and FDR.

1523 Dataset	1524 Group	1525 Performance Metrics				1526 Fairness Metrics				1527 Disparity Metrics			
		1528 Acc	1529 F1	1530 TPR	1531 FPR	1532 FDR	1533 σ_{Acc}	1534 σ_{F1}	1535 σ_{TPR}	1536 ΔAcc	1537 ΔF1	1538 ΔTPR	1539 ΔFPR
Age Groups													
1528 ChexPert	a1	.913	.466	.500	.045	.061							
	a2	.832	.349	.389	.072	.202	.072	.066	.066	.175	.147	.157	.061
	a3	.828	.319	.343	.074	.284							
	a4	.738	.343	.400	.106	.272							
1532 HAM10000	a1	.942	.320	.333	.242	.025							
	a2	.922	.187	.387	.181	.222							
	a3	.794	.200	.303	.173	.248	.111	.074	.037	.236	.170	.084	.070
	a4	.707	.151	.312	.181	.500							
1536 ISIC2020	a1	.987	.497	.500	.500	.007							
	a2	.991	.498	.500	.500	.005							
	a3	.975	.494	.500	.500	.013	.048	.013	.000	.101	.027	.000	.000
	a4	.890	.471	.500	.500	.055							
1540 PAD-UFES	a1	.813	.417	.357	.000	.000							
	a2	.821	.397	.449	.137	.163							
	a3	.771	.180	.261	.179	.355	.024	.115	.085	.050	.237	.187	.184
	a4	.783	.250	.281	.184	.364							
1544 Hemorrhage	a1	.828	.453	.484	.516	.575							
	a2	.873	.576	.561	.439	.345	.110	.091	.041	.210	.178	.077	.077
	a3	.663	.399	.500	.500	.169							
1548 VinDr	a1	.807	.172	.221	.193	.443							
	a2	.871	.184	.241	.197	.622							
	a3	.840	.195	.234	.195	.626	.064	.035	.051	.149	.078	.112	.030
	a4	.722	.250	.333	.222	.133							
Gender Groups													
1551 ChexPert	Female	.810	.410	.435	.068	.198	.015	.086	.085	.021	.121	.121	.007
	Male	.831	.288	.315	.075	.203							
1553 HAM10000	Female	.869	.199	.288	.164	.430	.017	.015	.020	.025	.021	.028	.006
	Male	.845	.220	.316	.170	.223							
1555 ISIC2020	Female	.984	.496	.500	.500	.008	.002	.0004	.000	.003	.001	.000	.000
	Male	.981	.495	.500	.500	.009							
1557 PAD-UFES	Female	.775	.238	.336	.178	.277	.027	.040	.025	.039	.057	.035	.002
	Male	.737	.181	.301	.180	.544							
1559 Hemorrhage	Female	.838	.456	.500	.500	.081	.013	.039	.015	.018	.055	.021	.021
	Male	.819	.511	.521	.479	.424							

1561
1562
1563
1564
1565

1566
1567
1568
1569
1570
1571
1572

1573 **Table 15: Detailed fairness and performance metrics per dataset and demographic group for**
1574 GRPO with Group DRO on MedGemma. Results shown for both age groups (a1-a4) and gender
1575 groups across all evaluation datasets. Higher values are better for accuracy, TPR, and F1; lower
1576 values are better for FPR and FDR.

1577
1578
1579

Dataset	Group	Performance Metrics				Fairness Metrics				Disparity Metrics			
		Acc	F1	TPR	FPR	FDR	σ_{Acc}	σ_{F1}	σ_{TPR}	ΔAcc	ΔF1	ΔTPR	ΔFPR
Age Groups													
ChexPert	a1	.913	.380	.400	.030	.136							
	a2	.848	.390	.402	.049	.168							
	a3	.836	.330	.341	.065	.228	.064	.029	.032	.157	.060	.070	.062
	a4	.756	.390	.411	.093	.225							
HAM10000	a1	.945	.509	.467	.273	.028							
	a2	.930	.239	.241	.194	.559							
	a3	.801	.215	.245	.184	.512	.116	.162	.116	.245	.373	.246	.088
	a4	.700	.136	.221	.194	.374							
ISIC2020	a1	.987	.497	.500	.500	.007							
	a2	.990	.497	.500	.500	.005							
	a3	.975	.494	.500	.500	.013	.048	.013	.0002	.100	.027	.0003	.000
	a4	.890	.471	.500	.500	.055							
PAD-UFES	a1	.875	.462	.429	.000	.000							
	a2	.782	.354	.454	.149	.704							
	a3	.764	.176	.309	.175	.434	.065	.149	.104	.154	.315	.223	.196
	a4	.721	.147	.231	.196	.142							
Hemorrhage	a1	.861	.735	.749	.251	.276							
	a2	.862	.681	.686	.314	.323	.030	.035	.032	.053	.066	.063	.063
	a3	.809	.747	.725	.275	.141							
VinDr	a1	.811	.175	.225	.192	.227							
	a2	.876	.173	.218	.198	.255							
	a3	.847	.186	.233	.196	.246	.080	.029	.054	.182	.063	.115	.085
	a4	.694	.235	.333	.278	.152							
Gender Groups													
ChexPert	Female	.815	.397	.411	.064	.226	.021	.059	.058	.030	.083	.082	.008
	Male	.845	.315	.328	.055	.180							
HAM10000	Female	.878	.245	.245	.181	.500	.020	.015	.006	.028	.021	.008	.004
	Male	.850	.224	.237	.186	.502							
ISIC2020	Female	.983	.496	.500	.500	.008	.002	.0003	.0003	.002	.0004	.0004	.000
	Male	.981	.495	.500	.500	.009							
PAD-UFES	Female	.800	.208	.321	.178	.443	.021	.005	.007	.030	.007	.010	.007
	Male	.830	.201	.331	.171	.238							
Hemorrhage	Female	.923	.833	.784	.216	.080	.065	.101	.069	.091	.143	.098	.098
	Male	.832	.690	.687	.313	.306							

1615
1616
1617
1618
1619

1620
1621
1622
1623
1624
16251626 **Table 16: Detailed fairness and performance metrics per dataset and demographic group for**
1627 **FairGRPO_{ND} on MedGemma.** Results shown for both age groups (a1-a4) and gender groups
1628 across all evaluation datasets. Higher values are better for accuracy, TPR, and F1; lower values are
1629 better for FPR and FDR.

Dataset	Group	Performance Metrics				Fairness Metrics				Disparity Metrics			
		Acc	F1	TPR	FPR	FDR	σ_{Acc}	σ_{F1}	σ_{TPR}	ΔAcc	ΔF1	ΔTPR	ΔFPR
Age Groups													
ChexPert	a1	.860	.342	.475	.096	.207							
	a2	.800	.366	.387	.146	.523	.057	.037	.044	.138	.087	.088	.101
	a3	.799	.379	.390	.162	.544							
	a4	.722	.430	.449	.198	.393							
HAM10000	a1	.897	.301	.296	.255	.694							
	a2	.905	.260	.225	.151	.597							
	a3	.814	.270	.264	.134	.528	.077	.035	.029	.163	.084	.071	.121
	a4	.741	.216	.255	.144	.635							
ISIC2020	a1	.980	.493	.493	.500	.007							
	a2	.988	.496	.497	.500	.505							
	a3	.973	.559	.535	.463	.262	.048	.039	.020	.102	.091	.042	.038
	a4	.886	.468	.495	.500	.056							
PAD-UFES	a1	.938	.500	.500	.000	.000							
	a2	.795	.408	.424	.142	.580							
	a3	.764	.221	.265	.152	.747	.078	.117	.103	.174	.279	.235	.152
	a4	.797	.352	.333	.137	.612							
Hemorrhage	a1	.821	.694	.722	.270	.321							
	a2	.835	.655	.665	.324	.352	.016	.046	.033	.031	.092	.059	.066
	a3	.803	.747	.725	.259	.183							
VinDr	a1	.794	.191	.219	.181	.429							
	a2	.820	.198	.199	.191	.794							
	a3	.800	.196	.201	.187	.606	.043	.133	.202	.098	.270	.412	.052
	a4	.722	.460	.611	.233	.292							
Gender Groups													
ChexPert	Female	.767	.397	.413	.180	.513				.046	.037	.053	.042
	Male	.813	.360	.360	.138	.541	.032	.026	.037				
HAM10000	Female	.871	.279	.278	.132	.509				.027	.024	.034	.004
	Male	.845	.255	.244	.136	.588	.019	.017	.024				
ISIC2020	Female	.980	.515	.508	.489	.408				.001	.030	.017	.017
	Male	.979	.545	.525	.473	.209	.0005	.021	.012				
PAD-UFES	Female	.823	.306	.377	.122	.685				.028	.076	.062	.038
	Male	.795	.231	.315	.159	.569	.020	.054	.044				
Hemorrhage	Female	.906	.815	.795	.205	.160				.104	.154	.133	.115
	Male	.802	.662	.663	.319	.338	.074	.109	.094				

1669
1670
1671
1672
1673

1674
1675
1676
1677
1678
16791680 **Table 17: Detailed fairness and performance metrics per dataset and demographic group for**
1681 **FairGRPO on MedGemma.** Results shown for both age groups (a1-a4) and gender groups across
1682 all evaluation datasets. Higher values are better for accuracy, TPR, and F1; lower values are better
1683 for FPR and FDR.

1685 Dataset	1686 Group	1687 Performance Metrics				1688 Fairness Metrics				1689 Disparity Metrics			
		1690 Acc	1691 F1	1692 TPR	1693 FPR	1694 FDR	1695 σ_{Acc}	1696 σ_{F1}	1697 σ_{TPR}	1698 ΔAcc	1699 ΔF1	1700 ΔTPR	1701 ΔFPR
Age Groups													
1698 ChexPert	a1	.900	.359	.388	.045	.063							
	a2	.828	.354	.351	.063	.224	.062	.019	.035	.151	.047	.076	.056
	a3	.833	.328	.330	.065	.239							
	a4	.749	.375	.406	.101	.332							
1698 HAM10000	a1	.933	.315	.327	.273	.028							
	a2	.941	.251	.238	.191	.227	.114	.074	.043	.238	.171	.088	.083
	a3	.799	.196	.241	.191	.236							
	a4	.703	.144	.242	.190	.312							
1698 ISIC2020	a1	.987	.497	.500	.500	.007							
	a2	.991	.498	.500	.500	.005	.048	.013	.000	.101	.027	.000	.000
	a3	.975	.494	.500	.500	.013							
	a4	.890	.471	.500	.500	.055							
1700 PAD-UFES	a1	.875	.462	.429	.000	.000							
	a2	.846	.507	.515	.118	.214	.034	.111	.092	.082	.218	.211	.164
	a3	.825	.289	.351	.128	.311							
	a4	.793	.299	.304	.164	.203							
1704 Hemorrhage	a1	.854	.728	.745	.255	.286							
	a2	.840	.631	.634	.366	.372	.023	.062	.059	.045	.116	.111	.111
	a3	.809	.747	.725	.275	.141							
1707 VinDr	a1	.807	.137	.200	.200	.096							
	a2	.879	.164	.200	.200	.061	.094	.037	.067	.212	.086	.133	.133
	a3	.852	.155	.200	.200	.074							
	a4	.667	.222	.333	.333	.167							
Gender Groups													
1712 ChexPert	Female	.810	.399	.406	.070	.297	.018	.075	.080	.026	.106	.113	.010
	Male	.835	.293	.292	.060	.214							
1715 HAM10000	Female	.883	.240	.254	.187	.223	.022	.021	.013	.032	.030	.018	.004
	Male	.851	.211	.236	.192	.229							
1717 ISIC2020	Female	.984	.496	.500	.500	.008	.002	.0004	.000	.003	.001	.000	.000
	Male	.981	.495	.500	.500	.009							
1719 PAD-UFES	Female	.831	.328	.384	.138	.286	.014	.030	.002	.019	.042	.003	.006
	Male	.812	.286	.387	.144	.325							
1721 Hemorrhage	Female	.889	.758	.722	.278	.173	.046	.057	.032	.065	.080	.045	.046
	Male	.824	.678	.676	.324	.320							

1723
1724
1725
1726
1727

1728
1729
1730
1731 **Table 18: RQ1: Fairness and performance metrics comparison against RL and fairness miti-**
1732 **gation baselines.** For fairness metrics, lower values are better and are indicated by \downarrow . For perfor-
1733 **mance and combined metrics, higher values are better and are indicated by \uparrow . Bold values indicate**
1734 **the best result in each column for each model separately. **FairGRPO**_{ND} is the ablation of **Fair-****
1735 **GRPO** where the model does not have access to the ground truth demographic information, and
1736 **the groups are inferred entirely via clustering. We release **MedGemma** trained with **FairGRPO** as**
1737 ****FairMedGemma**. Results show mean \pm std over 4 training runs. Detailed per dataset metrics are**
1738 **included in App. Tab. 5-17.**

Training Method	Fairness Metrics						
	PP \downarrow	EOD \downarrow	FPR _{Diff} \downarrow	$\sigma_{F1} \downarrow$	$\Delta F1 \downarrow$	$\sigma_{Acc} \downarrow$	$\Delta Acc \downarrow$
Qwen-2.5-VL-7B							
Re++ (Hu, 2025)	16.66 \pm 2.11	6.66 \pm 1.59	6.37 \pm 0.20	.0322 \pm .0000	.0647 \pm .0004	5.06 \pm 0.49	10.33 \pm 1.01
RLOO (Ahmadian et al., 2024)	22.34 \pm 0.86	6.67 \pm 0.13	5.68 \pm 0.80	.0330 \pm .0006	.0693 \pm .0017	4.86 \pm 0.33	10.00 \pm 0.79
GRPO (Shao et al., 2024)	17.90 \pm 9.21	7.93 \pm 1.64	4.85 \pm 0.34	.0387 \pm .0017	.0821 \pm .0215	4.85 \pm 0.24	9.92 \pm 0.69
GRPO+RS (Puyol-Antón et al., 2021)	19.62 \pm 7.22	6.85 \pm 0.80	6.44 \pm 1.39	.0319 \pm .0009	.0628 \pm .0037	5.50 \pm 0.17	11.26 \pm 0.34
FairGRPO	15.42 \pm 1.95	5.62 \pm 0.10	5.00 \pm 0.87	.0254 \pm .0035	.0522 \pm .0099	4.42 \pm 0.01	8.95 \pm 0.03
MedGemma-4B							
Re++ (Hu, 2025)	20.30 \pm 0.97	7.78 \pm 1.37	5.69 \pm 0.10	.0469 \pm .0069	.0898 \pm .0191	4.44 \pm 0.17	8.99 \pm 0.25
RLOO (Ahmadian et al., 2024)	20.45 \pm 4.57	10.35 \pm 0.03	5.51 \pm 0.01	.0592 \pm .0011	.1173 \pm .0004	4.29 \pm 0.07	8.79 \pm 0.06
GRPO (Shao et al., 2024)	20.89 \pm 2.16	6.30 \pm 0.25	5.26 \pm 0.62	.0387 \pm .0045	.0753 \pm .0059	4.19 \pm 0.03	8.57 \pm 0.03
GRPO+RS (Puyol-Antón et al., 2021)	24.55 \pm 1.12	6.97 \pm 0.44	4.78 \pm 1.84	.0422 \pm .0017	.0834 \pm .0003	4.20 \pm 0.21	8.77 \pm 0.54
GRPO+DRO (Sagawa et al., 2019)	18.20 \pm 3.06	7.52 \pm 0.22	5.68 \pm 0.98	.0456 \pm .0013	.0895 \pm .0034	4.55 \pm 0.26	9.39 \pm 0.61
FairGRPO _{ND}	24.87 \pm 0.40	9.09 \pm 3.49	6.35 \pm 0.93	.0484 \pm .0088	.0919 \pm .0210	4.18 \pm 0.80	8.36 \pm 1.62
FairGRPO (FairMedGemma)	12.95 \pm 1.82	6.84 \pm 0.24	5.53 \pm 0.29	.0379 \pm .0005	.0724 \pm .0004	4.11 \pm 0.04	8.53 \pm 0.11
Training Method	Perf. Metrics		Combined				
	Acc \uparrow	F1 \uparrow	Acces \uparrow	F1 _{ES} \uparrow			
Qwen-2.5-VL-7B							
Re++ (Hu, 2025)	75.31 \pm 1.82	.2599 \pm .0065	71.69 \pm 1.39	.2518 \pm .0063			
RLOO (Ahmadian et al., 2024)	78.22 \pm 0.06	.2523 \pm .0013	74.59 \pm 0.18	.2443 \pm .0014			
GRPO (Shao et al., 2024)	78.40 \pm 0.69	.2601 \pm .0131	76.21 \pm 0.91	.2425 \pm .0017			
GRPO+RS (Puyol-Antón et al., 2021)	75.61 \pm 2.96	.2580 \pm .0021	71.67 \pm 2.92	.2500 \pm .0018			
FairGRPO	78.52 \pm 0.31	.2657 \pm .0036	77.14 \pm 0.29	.2602 \pm .0020			
MedGemma-4B							
Re++ (Hu, 2025)	78.76 \pm 0.22	.3105 \pm .0179	75.41 \pm 0.09	.2966 \pm .0191			
RLOO (Ahmadian et al., 2024)	79.76 \pm 0.16	.3237 \pm .0019	76.48 \pm 0.20	.3056 \pm .0021			
GRPO (Shao et al., 2024)	79.38 \pm 0.15	.3134 \pm .0118	76.19 \pm 0.12	.3017 \pm .0101			
GRPO+RS (Puyol-Antón et al., 2021)	79.02 \pm 0.15	.2825 \pm .0052	75.84 \pm 0.30	.2711 \pm .0046			
GRPO+DRO (Sagawa et al., 2019)	80.17 \pm 0.31	.3146 \pm .0177	76.69 \pm 0.48	.3009 \pm .0173			
FairGRPO _{ND}	78.82 \pm 0.58	.3484 \pm .0041	75.67 \pm 1.14	.3323 \pm .0011			
FairGRPO (FairMedGemma)	80.40 \pm 0.03	.3275 \pm .0007	77.23 \pm 0.01	.3155 \pm .0006			

1763
1764
1765
1766
1767 **Table 19: RQ1: Fairness and performance metrics for CheXpert dataset.** For fairness metrics,

1768 lower values are better and are indicated by \downarrow . For performance and combined metrics, higher values

1769 are better and are indicated by \uparrow . Bold values indicate the best result in each column.

Training Method	Fairness Metrics						Perf. Metrics		Combined		
	PP \downarrow	EOD \downarrow	FPR _{Diff} \downarrow	$\sigma_{F1} \downarrow$	$\Delta F1 \downarrow$	$\sigma_{Acc} \downarrow$	$\Delta Acc \downarrow$	Acc \uparrow	F1 \uparrow	Acces \uparrow	F1 _{ES} \uparrow
Qwen-2.5-VL-7B											
Re++	5.13 \pm 2.55	3.74 \pm 1.47	1.18 \pm 0.35	.0148 \pm .0082	.0282 \pm .0142	5.86 \pm 0.36	11.94 \pm 0.72	77.30 \pm 0.39	.1149 \pm .0071	75.18 \pm 0.35	.1257 \pm .0095
RLOO	20.32 \pm 7.47	6.25 \pm 4.87	4.09 \pm 1.37	.0259 \pm .0164	.0529 \pm .0388	5.42 \pm 0.07	10.90 \pm 0.07	77.74 \pm 0.73	.1467 \pm .0100	75.67 \pm 0.57	.1621 \pm .0215
GRPO	12.99 \pm 1.45	4.49 \pm 0.08	4.97 \pm 0.03	.0194 \pm .0042	.0386 \pm .0028	5.23 \pm 1.11	10.25 \pm 2.60	77.79 \pm 0.65	.1443 \pm .0093	75.56 \pm 0.87	.1572 \pm .0074
GRPO+DRO	11.31 \pm 2.86	3.91 \pm 1.31	1.80 \pm 0.09	.0177 \pm .0034	.0339 \pm .0034	6.38 \pm 0.31	13.45 \pm 0.67	76.91 \pm 0.41	.1052 \pm .0042	74.95 \pm 0.50	.1168 \pm .0061
FairGRPO	6.10 \pm 1.94	7.80 \pm 3.79	3.96 \pm 0.19	.0234 \pm .0051	.0439 \pm .0152	4.99 \pm 0.07	9.60 \pm 0.28	78.62 \pm 0.27	.1372 \pm .0093	76.27 \pm 0.29	.1510 \pm .0110
MedGemma-4B											
Re++	23.93 \pm 12.50	9.09 \pm 1.74	4.61 \pm 1.52	.0480 \pm .0020	.0801 \pm .0051	3.86 \pm 2.46	8.37 \pm 4.93	78.53 \pm 2.18	.2640 \pm .0083	77.10 \pm 2.66	.2880 \pm .0069
RLOO	9.54 \pm 3.39	17.62 \pm 0.81	5.51 \pm 0.85	.0817 \pm .0029	.1465 \pm .0060	4.79 \pm 0.25	10.44 \pm 0.78	81.85 \pm 0.15	.3354 \pm .0046	80.57 \pm 0.06	.3827 \pm .0051
GRPO	5.61 \pm 3.84	8.32 \pm 0.99	3.12 \pm 0.51	.0359 \pm .0071	.0613 \pm .0147	5.22 \pm 0.82	11.18 \pm 1.67	82.22 \pm 0.53	.2669 \pm .0088	80.73 \pm 0.55	.2988 \pm .0081
GRPO+RS	13.48 \pm 2.94	12.39 \pm 2.10	3.76 \pm 0.49	.0633 \pm .0175	.1141 \pm .0283	4.43 \pm 0.15	9.81 \pm 0.01	83.64 \pm 0.31	.3191 \pm .0019	82.55 \pm 0.21	.3607 \pm .0022
GRPO+DRO	8.41 \pm 2.20	9.56 \pm 2.72	3.32 \pm 0.31	.0587 \pm .0212	.1030 \pm .0444	4.62 \pm 0.47	10.06 \pm 1.00	83.85 \pm 0.80	.3230 \pm .0032	82.90 \pm 0.72	.3664 \pm .0032
FairGRPO _{ND}	20.42 \pm 3.13	7.88 \pm 1.17	6.89 \pm 0.37	.0321 \pm .0008	.0583 \pm .0055	4.70 \pm 0.35	9.89 \pm 0.98	81.30 \pm 0.02	.3445 \pm .0093	79.94 \pm 1.00	.3772 \pm .0022
FairGRPO	17.69 \pm 0.01	9.75 \pm 0.38	3.71 \pm 0.55	.0501 \pm .0041	.0836 \pm .0101	4.04 \pm 0.07	8.90 \pm 0.11	83.85 \pm 0.22	.3220 \pm .0090	82.64 \pm 0.22	.3605 \pm .0151

Table 20: **RQ1: Fairness and performance metrics for HAM10000 dataset.** For fairness metrics, lower values are better and are indicated by \downarrow . For performance and combined metrics, higher values are better and are indicated by \uparrow . Bold values indicate the best result in each column.

Training Method	Fairness Metrics						Perf. Metrics		Combined		
	PP \downarrow	EOD \downarrow	FPR _{diff} \downarrow	$\sigma_{F1} \downarrow$	$\Delta F1 \downarrow$	$\sigma_{Acc} \downarrow$	$\Delta Acc \downarrow$	Acc \uparrow	F1 \uparrow	Acces \uparrow	F1 _{ES} \uparrow
Qwen-2.5-VL-7B											
Re++	22.90 \pm 0.28	8.56 \pm 3.49	4.72 \pm 1.63	0.0505 \pm 0.0048	1.135 \pm 0.009	5.97 \pm 1.49	12.28 \pm 2.31	84.59 \pm 2.76	.2167 \pm .0216	83.21 \pm 3.06	.2178 \pm .0150
RLOO	44.69 \pm 10.42	5.64 \pm 0.08	5.81 \pm 0.01	0.0469 \pm 0.0020	10.54 \pm 0.045	6.96 \pm 0.13	13.77 \pm 0.01	86.57 \pm 0.04	.1974 \pm .0000	85.43 \pm 0.07	.2022 \pm .0012
GRPO	35.69 \pm 1.72	7.25 \pm 0.13	7.08 \pm 0.09	0.0514 \pm 0.0002	1.149 \pm 0.013	6.87 \pm 0.06	13.75 \pm 0.12	86.55 \pm 0.10	.1860 \pm .0137	85.36 \pm 0.12	.1862 \pm .0094
GRPO+DRO	36.69 \pm 9.50	8.37 \pm 2.25	6.11 \pm 1.63	0.0471 \pm 0.0041	0.9995 \pm 0.0002	5.58 \pm 1.90	11.03 \pm 3.71	83.54 \pm 4.18	.2140 \pm .0253	82.49 \pm 4.08	.2159 \pm .0256
FairGRPO	26.56 \pm 8.25	8.21 \pm 1.08	5.98 \pm 3.16	0.0325 \pm 0.0132	0.0639 \pm 0.0216	5.92 \pm 0.42	11.64 \pm 1.12	86.67 \pm 0.64	.2738 \pm .0006	85.71 \pm 0.44	.2581 \pm .0061
MedGemma-4B											
Re++	24.42 \pm 5.85	6.33 \pm 0.39	6.22 \pm 1.82	0.0417 \pm 0.0037	0.0958 \pm 0.0094	4.66 \pm 2.10	9.46 \pm 3.98	85.50 \pm 1.66	.2172 \pm .0138	84.55 \pm 1.52	.2220 \pm .0194
RLOO	30.65 \pm 4.83	6.08 \pm 1.59	6.79 \pm 0.96	0.0318 \pm 0.0019	0.0708 \pm 0.008	6.51 \pm 0.04	12.81 \pm 0.09	86.72 \pm 0.11	.2319 \pm .0065	85.68 \pm 0.10	.2288 \pm .0094
GRPO	33.41 \pm 11.32	6.10 \pm 0.71	6.97 \pm 2.05	0.0455 \pm 0.0073	0.0992 \pm 0.0151	6.49 \pm 0.03	12.93 \pm 0.41	86.86 \pm 0.02	.2492 \pm .0020	85.73 \pm 0.14	.2491 \pm .0111
GRPO+RS	29.83 \pm 6.08	6.19 \pm 0.89	5.24 \pm 2.06	0.0501 \pm 0.0083	1.1115 \pm 0.0228	6.81 \pm 0.53	13.65 \pm 0.91	86.07 \pm 0.57	.1856 \pm .0373	85.09 \pm 0.25	.1898 \pm .0313
GRPO+DRO	22.42 \pm 5.99	8.89 \pm 1.87	5.98 \pm 1.88	0.0655 \pm 0.0326	1.4557 \pm 0.0727	6.72 \pm 0.09	13.36 \pm 0.43	86.45 \pm 0.19	.2285 \pm .0080	85.46 \pm 0.10	.2394 \pm .0215
FairGRPO_{ND}	13.95 \pm 2.36	7.23 \pm 2.80	5.57 \pm 0.94	0.0383 \pm 0.0174	0.0702 \pm 0.0225	5.05 \pm 0.39	9.96 \pm 0.65	85.55 \pm 0.27	.2743 \pm .0136	84.60 \pm 0.38	.2662 \pm .0027
FairGRPO	23.80 \pm 13.18	6.03 \pm 0.97	5.76 \pm 1.99	0.0445 \pm 0.0038	0.0978 \pm 0.0036	6.86 \pm 0.04	13.55 \pm 0.14	86.68 \pm 0.03	.2170 \pm .0099	85.56 \pm 0.01	.2166 \pm .0134

Table 21: **RQ1: Fairness and performance metrics for ISIC2020 dataset.** For fairness metrics, lower values are better and are indicated by \downarrow . For performance and combined metrics, higher values are better and are indicated by \uparrow . Bold values indicate the best result in each column.

Training Method	Fairness Metrics						Perf. Metrics		Combined		
	PP \downarrow	EOD \downarrow	FPR _{diff} \downarrow	$\sigma_{F1} \downarrow$	$\Delta F1 \downarrow$	$\sigma_{Acc} \downarrow$	$\Delta Acc \downarrow$	Acc \uparrow	F1 \uparrow	Acces \uparrow	F1 _{ES} \uparrow
Qwen-2.5-VL-7B											
Re++	21.51 \pm 23.07	3.10 \pm 3.06	3.06 \pm 3.00	0.0196 \pm 0.0068	0.0412 \pm 0.0165	3.04 \pm 0.84	6.56 \pm 2.03	96.70 \pm 2.16	.5205 \pm .0212	95.51 \pm 2.30	.5183 \pm .0267
RLOO	2.59 \pm 0.02	0.58 \pm 0.47	0.47 \pm 0.67	0.0110 \pm 0.0054	0.0222 \pm 0.0103	2.51 \pm 0.08	5.26 \pm 0.17	98.20 \pm 0.03	.5004 \pm .0073	97.08 \pm 0.07	.4957 \pm .0052
GRPO	26.52 \pm 33.86	0.01 \pm 0.02	0.01 \pm 0.02	0.0066 \pm 0.0000	0.137 \pm 0.0000	2.47 \pm 0.01	5.17 \pm 0.01	98.23 \pm 0.00	.4955 \pm .0000	97.14 \pm 0.00	.4926 \pm .0000
GRPO+DRO	14.75 \pm 15.01	5.84 \pm 7.91	5.83 \pm 7.92	0.0153 \pm 0.0126	0.0340 \pm 0.0288	3.29 \pm 1.13	7.00 \pm 2.67	94.78 \pm 4.26	.5056 \pm .0159	93.69 \pm 4.42	.5053 \pm .0192
FairGRPO	2.59 \pm 0.02	0.12 \pm 0.17	0.00 \pm 0.00	0.0068 \pm 0.0003	0.1411 \pm 0.0000	2.50 \pm 0.05	5.23 \pm 0.10	98.14 \pm 0.14	.4950 \pm .0007	97.04 \pm 0.15	.4921 \pm .0008
MedGemma-4B											
Re++	2.58 \pm 0.01	0.49 \pm 0.64	0.47 \pm 0.67	0.0107 \pm 0.0060	0.0216 \pm 0.0114	2.46 \pm 0.00	5.14 \pm 0.01	98.24 \pm 0.03	.5006 \pm .0072	97.15 \pm 0.02	.4961 \pm .0050
RLOO	2.58 \pm 0.00	0.14 \pm 0.05	0.00 \pm 0.00	0.0063 \pm 0.0002	0.0132 \pm 0.0000	2.41 \pm 0.04	5.05 \pm 0.01	98.10 \pm 0.01	.4948 \pm .0000	97.02 \pm 0.02	.4920 \pm .0001
GRPO	16.79 \pm 20.39	1.53 \pm 1.82	2.80 \pm 0.07	0.0181 \pm 0.0177	0.0369 \pm 0.0358	2.38 \pm 0.17	4.97 \pm 0.36	97.95 \pm 0.08	.5134 \pm .0278	96.90 \pm 0.02	.5050 \pm .0192
GRPO+RS	2.58 \pm 0.00	0.00 \pm 0.00	0.00 \pm 0.00	0.0066 \pm 0.0000	0.0137 \pm 0.0000	2.47 \pm 0.00	5.16 \pm 0.00	98.24 \pm 0.00	.4956 \pm .0000	97.14 \pm 0.00	.4926 \pm .0000
GRPO+DRO	2.58 \pm 0.00	0.02 \pm 0.00	0.00 \pm 0.00	0.0065 \pm 0.0001	0.0136 \pm 0.0000	2.46 \pm 0.01	5.15 \pm 0.03	98.23 \pm 0.01	.4955 \pm .0000	97.14 \pm 0.01	.4926 \pm .0000
FairGRPO_{ND}	30.75 \pm 5.81	3.38 \pm 0.61	3.26 \pm 0.74	0.0291 \pm 0.0013	0.0570 \pm 0.0051	2.31 \pm 0.13	4.91 \pm 0.31	97.89 \pm 0.07	.5433 \pm .0172	96.81 \pm 0.03	.5322 \pm .0215
FairGRPO	2.58 \pm 0.00	0.00 \pm 0.00	0.00 \pm 0.00	0.0066 \pm 0.0000	0.0137 \pm 0.0000	2.47 \pm 0.00	5.16 \pm 0.00	98.24 \pm 0.00	.4956 \pm .0000	97.14 \pm 0.00	.4926 \pm .0000

Table 22: **RQ1: Fairness and performance metrics for PAD-UFES-20 dataset.** For fairness metrics, lower values are better and are indicated by \downarrow . For performance and combined metrics, higher values are better and are indicated by \uparrow . Bold values indicate the best result in each column.

Training Method	Fairness Metrics						Perf. Metrics		Combined		
	PP \downarrow	EOD \downarrow	FPR _{diff} \downarrow	$\sigma_{F1} \downarrow$	$\Delta F1 \downarrow$	$\sigma_{Acc} \downarrow$	$\Delta Acc \downarrow$	Acc \uparrow	F1 \uparrow	Acces \uparrow	F1 _{ES} \uparrow
Qwen-2.5-VL-7B											
Re++	34.76 \pm 1.25	13.01 \pm 5.64	10.14 \pm 0.71	0.0589 \pm 0.0255	0.1231 \pm 0.0543	3.73 \pm 0.78	7.58 \pm 1.99	77.96 \pm 0.07	.3129 \pm .0035	79.42 \pm 0.20	.3121 \pm .0122
RLOO	36.69 \pm 0.65	16.74 \pm 1.42	10.12 \pm 0.27	0.0851 \pm 0.0199	0.1788 \pm 0.0034	6.15 \pm 0.27	12.13 \pm 0.09	77.12 \pm 0.37	.2672 \pm .0078	79.97 \pm 0.31	.2788 \pm .0081
GRPO	37.46 \pm 6.33	16.50 \pm 4.29	13.89 \pm 6.40	0.0826 \pm 0.0120	0.1686 \pm 0.0258	4.90 \pm 1.22	10.18 \pm 2.89	76.70 \pm 0.67	.2614 \pm .0309	78.72 \pm 0.96	.2684 \pm .0241
GRPO+DRO	37.38 \pm 2.46	15.56 \pm 2.88	9.36 \pm 1.06	0.0680 \pm 0.0209	0.1346 \pm 0.0330	4.20 \pm 0.03	8.74 \pm 0.22	78.22 \pm 0.30	.3271 \pm .0088	79.94 \pm 0.69	.3229 \pm .0142
FairGRPO_{ND}	45.17 \pm 8.82	12.95 \pm 2.63	8.81 \pm 0.93	0.0808 \pm 0.0062	0.1643 \pm 0.0185	3.89 \pm 1.39	8.12 \pm 2.78	78.77 \pm 0.70	.3295 \pm .0347	78.70 \pm 2.74	.2923 \pm .0486
FairGRPO	18.00 \pm .77	11.41 \pm 1.04	8.61 \pm 0.16	0.0734 \pm 0.0040	0.1349 \pm 0.0070	2.44 \pm 0.06	5.02 \pm 0.02	83.51 \pm 0.00	.3620 \pm .0013	82.74 \pm 0.09	.3448 \pm .0044
MedGemma-4B											
Re++	39.59 \pm 6.57	15.75 \pm 2.68	10.58 \pm 0.65	0.1040 \pm 0.0202	0.1891 \pm 0.0306	4.38 \pm 0.41	8.26 \pm 0.77	79.16 \pm 1.55	.3089 \pm .0392	80.53 \pm 1.21	.3153 \pm .0466
RLOO	38.93 \pm .56	9.86 \pm 0.49	9.92 \pm 0.11	0.0778 \pm 0.0041	0.1538 \pm 0.0086	3.34 \pm 0.27	6.88 \pm 0.12	77.43 \pm 0.52	.2688 \pm .0088	79.45 \pm 0.74	.2794 \pm .0121
GRPO	36.94 \pm 0.17	9.57 \pm 0.24	9.50 \pm 0.66	0.0774 \pm 0.0006							

1836
 1837
 1838
 1839
 1840
 1841
 1842
 1843
 1844
 1845
 1846
 1847
 1848
 1849
 1850
 1851
 1852
 1853
 1854
 1855
 1856

1857 **Table 24: RQ1: Fairness and performance metrics for VinDr dataset.** For fairness metrics, lower
 1858 values are better and are indicated by \downarrow . For performance and combined metrics, higher values are
 1859 better and are indicated by \uparrow . Bold values indicate the best result in each column.

Training Method	Fairness Metrics							Perf. Metrics		Combined	
	PP \downarrow	EOD \downarrow	FPR _{diff} \downarrow	$\sigma_{\text{FI}} \downarrow$	$\Delta\text{FI} \downarrow$	$\sigma_{\text{Acc}} \downarrow$	$\Delta\text{Acc} \downarrow$	Acc \uparrow	F1 \uparrow	Acces \uparrow	F1 _{ES} \uparrow
Qwen-2.5-VL-7B											
Re++	17.41 \pm 4.38	8.87 \pm 6.14	16.16 \pm 8.70	.0261 \pm .0030	.0581 \pm .0018	12.58 \pm 2.80	26.64 \pm 5.98	75.51 \pm 6.11	.1676 \pm .0447	68.59 \pm 3.89	.1530 \pm .0321
RLOO	29.55 \pm 0.84	10.91 \pm 3.42	15.38 \pm 2.59	.0314 \pm .0072	.0742 \pm .0162	10.68 \pm 1.82	23.76 \pm 3.75	86.62 \pm 0.16	.1704 \pm .0051	79.25 \pm 1.16	.1705 \pm .0026
GRPO	31.91 \pm 2.14	13.33 \pm 0.00	12.50 \pm 1.63	.0389 \pm .0040	.0918 \pm .0087	9.33 \pm 0.09	20.89 \pm 0.19	86.58 \pm 0.21	.1689 \pm .0030	80.01 \pm 0.10	.1745 \pm .0030
GRPO+DRO	20.81 \pm 15.05	8.29 \pm 2.30	16.00 \pm 0.52	.0349 \pm .0087	.0730 \pm .0189	12.43 \pm 2.80	26.47 \pm 4.88	76.77 \pm 8.94	.1629 \pm .0524	69.69 \pm 9.11	.1527 \pm .0542
FairGRPO	14.19 \pm 5.07	13.35 \pm 0.00	13.36 \pm 0.04	.0369 \pm .0002	.0856 \pm .0000	9.44 \pm 0.01	21.20 \pm 0.01	86.82 \pm 0.02	.1608 \pm .0004	80.12 \pm 0.02	.1696 \pm .0003
MedGemma-4B											
Re++	30.24 \pm 16.40	16.44 \pm 11.83	11.94 \pm 0.11	.0620 \pm .0433	.1353 \pm .1031	10.61 \pm 0.60	23.46 \pm 0.86	85.02 \pm 0.87	.1918 \pm .0129	78.05 \pm 0.92	.2096 \pm .0052
RLOO	40.63 \pm 14.04	30.16 \pm 0.22	8.03 \pm 0.06	.1524 \pm .0001	.3201 \pm .0012	6.79 \pm 0.08	15.58 \pm 0.06	86.73 \pm 0.15	.1649 \pm .0023	81.44 \pm 0.10	.2297 \pm .0003
GRPO	36.08 \pm 2.85	8.90 \pm 2.78	4.23 \pm 2.71	.0250 \pm .0044	.0542 \pm .0088	6.77 \pm 0.56	15.42 \pm 1.09	83.80 \pm 1.26	.2190 \pm .0065	79.26 \pm 0.81	.2323 \pm .0065
GRPO+RS	59.80 \pm 14.91	11.43 \pm 0.35	2.97 \pm 0.01	.0357 \pm .0017	.0784 \pm .0001	6.44 \pm 0.03	14.93 \pm 0.06	86.06 \pm 0.08	.1850 \pm .0055	81.10 \pm 0.11	.2041 \pm .0056
GRPO+DRO	11.43 \pm 1.59	11.37 \pm 0.25	5.84 \pm 3.81	.0332 \pm .0056	.0725 \pm .0137	7.29 \pm 0.95	16.72 \pm 2.03	86.48 \pm 0.06	.1863 \pm .0024	80.98 \pm 0.38	.1940 \pm .0024
FairGRPO_{ND}	46.67 \pm 12.41	22.13 \pm 26.94	10.69 \pm 7.72	.0751 \pm .0815	.1555 \pm .1614	8.60 \pm 6.11	18.59 \pm 12.38	81.84 \pm 0.44	.2128 \pm .0262	76.69 \pm 2.52	.2428 \pm .0262
FairGRPO	10.61 \pm 0.00	13.33 \pm 0.00	13.33 \pm 0.00	.0370 \pm .0000	.0856 \pm .0000	9.44 \pm 0.00	21.21 \pm 0.00	86.82 \pm 0.00	.1606 \pm .0000	80.12 \pm 0.00	.1694 \pm .0000

1871
 1872
 1873
 1874
 1875
 1876
 1877
 1878
 1879
 1880
 1881
 1882
 1883
 1884
 1885
 1886
 1887
 1888
 1889