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ABSTRACT

Medical artificial intelligence systems have achieved remarkable diagnostic capa-
bilities, yet they consistently exhibit performance disparities across demographic
groups, causing real-world harm to underrepresented populations. While re-
cent multimodal reasoning foundation models have advanced clinical diagnosis
through integrated analysis of diverse medical data, reasoning trainings via rein-
forcement learning inherit and often amplify biases present in training datasets
dominated by majority populations. We introduce Fairness-aware Group Rel-
ative Policy Optimization (FairGRPO), a hierarchical reinforcement learning
approach that promotes equitable learning across heterogeneous clinical popula-
tions. FairGRPO employs adaptive importance weighting of advantages based on
representation, task difficulty, and data source. To address the common issue of
missing demographic labels in the clinical domain, we further employ unsuper-
vised clustering, which automatically discovers latent demographic groups when
labels are unavailable. Through comprehensive experiments across 7 clinical diag-
nostic datasets spanning 5 clinical modalities across X-ray, CT scan, dermoscropy,
mammography and ultrasound, we demonstrate that FairGRPO reduces predictive
parity by 27.2% against all vanilla and bias mitigated RL baselines, while improv-
ing F1 score by 12.49%. Furthermore, training dynamics analysis reveals that
FairGRPO progressively improves fairness throughout optimization, while base-
line RL methods exhibit deteriorating fairness as training progresses. Based on
FairGRPO, we release FairMedGemma-4B, a fairness-aware clinical VLLM that
achieves state-of-the-art performance while demonstrating significantly reduced
disparities across demographic groups. Our code, models, and fairness evaluation
framework are publicly available at this anonymous link.

1 INTRODUCTION

Medical artificial intelligence (Al) has demonstrated strong capabilities in processing vast amounts
of clinical data with both accuracy and efficiency (Rajpurkar et al.| 2022} |Shuja et al.,[2024). These
systems have shown particular promise in detecting subtle health indicators that may escape human
observation, substantially enhancing diagnostic precision while reducing healthcare costs (Dai et al.}
2025aj; |Sun et al., 2022). Recent advances in vision large language models (VLLMs) have further
expanded these capabilities, enabling integrated analysis across diverse clinical modalities including
imaging, time series, and textual records (Cui et al., |2024} |Dai et al.| |2025bj [Zhang et al.,|2024; |Zhu
et al.l [2024).

However, beneath these impressive achievements lies a fundamental challenge that undermines the
equitable deployment of Al in healthcare. Medical Al systems can consistently exhibit troubling per-
formance disparities across demographic subpopulations. Studies have revealed that clinical datasets
are overwhelmingly skewed toward majority groups, whether defined by race, gender, age, or so-
cioeconomic status (Larrazabal et al., 2020} |(Obermeyer et al.|[2019; |Liang et al., 20215 |Thakur et al.,
2023)). State-of-the-art (SOTA) classifiers demonstrate significant true positive rate (TPR) dispari-
ties across all clinical tasks, datasets, and demographic subgroups (Seyyed-Kalantari et al., 202 1azb)).
Such systematic biases not only perpetuate healthcare inequalities but also erode trust in Al-assisted
diagnosis, particularly among underserved communities who stand to benefit most from improved
healthcare access (Sagona et al., 2025)).
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During training, conventional optimization approaches naturally favor well-represented populations,
as they contribute more gradient updates and dominate the loss landscape (Stiglic et al., [2020; Ku-
marakulasinghe et al., 2020). This creates a pernicious feedback loop: models become increasingly
specialized for majority populations while performance on minority groups stagnates or even de-
grades. Furthermore, the heterogeneous nature of clinical data spanning multiple specialties, modal-
ities, and patient demographics, can exacerbate these disparities as different groups may require
fundamentally different diagnostic considerations (Ghanvatkar & Rajan| 2023} |Cui et al., 2023)).

Current approaches to mitigating bias in medical Al typically rely on data augmentation, reweighting
schemes, or post-hoc calibration (Teng et al.| [2022; [Khan et al.| 2023} [Mehta et al.| [2024). How-
ever, the emergence of reasoning-capable vision LLMs introduces unique challenges that existing
methods cannot adequately address. For instance, fairness-aware optimization techniques like group
distributionally robust optimization (DRO) (Sagawa et al.| 2019) were designed for discriminative
models with fixed output spaces and cannot be directly applied to the generative, multi-step reason-
ing processes characteristic of modern LLMs. Furthermore, while reinforcement learning (RL) has
revolutionized LLM alignment for helpfulness and harmlessness (Ouyang et al., 2022} [Bai et al.|
2022), its application to fairness in medical reasoning remains unexplored. Fairness in medical
settings can be particularly challenging given how disease diagnosis typically relies on the compre-
hensive analysis of and reasoning between multiple symptoms, mismatch in data availability across
different domains (e.g. abundance in X-ray but lacking in ultrasound) and how data collection is
skewed towards those with access to healthcare. The complex interplay between reward modeling,
advantage estimation, and demographic disparities in the context of clinical reasoning presents a
novel optimization challenge that requires fundamentally new approaches.

To close this gap, we introduce Fairness-aware Group Relative Policy Optimization (Fair-
GRPO): a hierarchical RL approach that promotes equitable learning across heterogeneous clinical
populations. Our work makes two primary contributions:

1. We propose one of the first fair RL algorithm, FairGRPO, that employs adaptive importance
weighting based on demographic representation and task difficulty, ensuring that minority groups
equitable learning signals. Our empirical evaluation demonstrates that FairGRPO consistently
improves both overall performance and fairness metrics. Specifically, FairGRPO reduces pre-
dictive parity by 27.2% against all vanilla and bias mitigated RL baselines, while improving F1
score by 12.49%. Furthermore, training dynamics analysis reveals that FairGRPO improves fair-
ness of the model during the training process, while other RL algorithms exhibit a deterioration
of fairness as the training progresses.

2. Based on FairGRPO, we train and release FairMedGemma-4B, a fairness-aware vision clinical
model based on MedGemma that excel across 7 clinical datasets spanning 5 clinical modalities.
FairMedGemma not only achieves SOTA performance on standard benchmarks but also demon-
strates significantly reduced disparities across demographic groups, advancing the development
of equitable Al-assisted diagnosis. To the best of our knowledge, FairMedGemma represents
the first publicly available clinical VLLM explicitly optimized for demographic fairness through
reinforcement learning.

Finally, we publicly release our models, training pipeline, and comprehensive fairness evaluation
metrics to facilitate reproducible research in equitable medical Al. By addressing fairness as a fun-
damental optimization objective rather than a post-hoc consideration, our work establishes a new
paradigm for developing clinical Al systems that serve all populations equitably.

2 RELATED WORK

Fairness in Unimodal and Multimodal Clinical Diagnosis. While unimodal clinical diagnosis
leverages single data sources (e.g., images (Khan et al., 2023 [Mehta et al) 2024)) or tabular data
(Dehghani et al., 2024} R606sli et al., [2022)), multimodal methods fuse multiple modalities to learn
richer representations, consistently outperforming unimodal approaches (Liang et all [2024; [Dai
et al.| [2025¢c; |AlSaad et al., [2024) across radiology (Yildirim et al., [2024), psychiatry (Lee et al.,
2024} |Cheong et al., [2025a), and ophthalmology (Luo et al., 2024). The increasing adoption of
foundation models in healthcare (Dai et al.l |2025c; Jin et al.l [2024; [Luo et al.l [2024) amplifies
fairness challenges, as integrating multiple knowledge sources can exacerbate biases across fused
modalities. Fairness in ML, broadly categorized into group or individual fairness (Mehrabi et al.,
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2021; Hort et al.| |2024; [Waller et al., 2025)), has been primarily studied in unimodal settings such
as chest radiographs (Khan et al.l [2023; Mehta et al.l 2024), EEG data (Kurbatskaya et al.l 2023}
Kwok et al., |2025), or EHR data (Dehghani et al.| 2024; R60sl1 et al., 2022). Recent work has
begun investigating multimodal fairness in healthcare (Cheong et al., [2024; [Luo et al., [2024; Wang
et al., [2024; |Cheong et al., [2025b), but existing studies typically focus on single clinical tasks, such
as depression detection (Cheong et al.l 2024), kidney tumor segmentation (Afzal et al., [2023)), or
glaucoma detection (Luo et al.| 2024). Our work presents the first attempt to evaluate fairness on a
model trained across multiple clinical tasks and domains simultaneously.

Fairness in Reinforcement Learning. Reinforcement learning (RL) methods which typically at-
tempt to maximize the reward of an agent as defined by a specific objective may neglect fairness
considerations (Jabbari et al.,|2017;|Smith et al.,[2023)). Recent advances in critic-free RL algorithms
for LLMs, such as GRPO (Shao et al.,[2024), RLOO (Ahmadian et al., 2024), and REINFORCE++
(Huj, 2025)), have demonstrated remarkable success in aligning language models without requiring
value function estimation. However, these methods lack mechanisms to address fairness across het-
erogeneous populations. Traditional fairness in RL can be categorized into single- or multi-agent
settings (Reuel & Ma, 2024} Yang et al., [2023; |Sahoo et al., 2024)), with resampling |Puyol-Anton
et al.| (2021) and Group DRO [Sagawa et al.| (2019) being two popular fairness mitigation methods.
To the best of our knowledge, however, none of the current works address the fairness challenge in
critic-free RL optimization of VLLMs, where the computational requirements and multi-step rea-
soning processes present unique challenges distinct from traditional RL settings. Our work bridges
this gap by extending GRPO with fairness-aware mechanisms specifically designed for the require-
ments of medical VLLMs.

Fairness in ML and Large Language Models. Recent multimodal LLMs such as Qwen-2.5-
VL (Bai et al} 2025) and domain-specific models like MedGemma (Sellergren et al.l 2025) have
demonstrated impressive clinical reasoning capabilities, yet their fairness properties remain largely
unexplored. While models like DeepSeek-R1 (Guo et al.| [2025)) have advanced reasoning through
reinforcement learning, they lack mechanisms to ensure equitable performance across demographic
groups. Existing fairness works in healthcare FMs (Khan et al.l 2023} Jin et al., 2024} [Luo et al.,
2024)) have focused on predictive bias in unimodal models. [Khan et al. (2023) revealed consis-
tent under-performance for female patients, while [Luo et al.| (2024)) proposed optimal-transport ap-
proaches for performance-fairness tradeoffs. However, these methods cannot address the unique
challenges of reasoning-capable VLLMs, where multi-step reasoning and reinforcement learning
create new pathways for bias amplification. Our work is the first to tackle fairness in critic-free RL
training for multimodal clinical reasoning models.

3 METHOD

Medical Al systems often exhibit performance disparities across demographic subpopulations, re-
flecting biases inherent in training data distributions (Luo et al.l 2024} Khan et al., [2023)). While
Group Relative Policy Optimization (GRPO) has demonstrated success in language model align-
ment through within-group reward normalization, it lacks mechanisms to address systematic sub-
group imbalances across heterogeneous populations. We introduce FairGRPO, a hierarchical scaling
approach that promotes equitable learning by adaptively weighting contributions from different do-
mains and demographic groups based on their demographic information and difficulty measured via
model performance.

Background: Group Relative Policy Optimization (GRPO). GRPO operates by normalizing re-
wards within groups of responses to identical prompts, eliminating the need for value function esti-
mation. For a prompt ¢ generating response group G4 1) at iteration ¢, each response o, ; 1) receives
GRPO _ "(a:it) “AG(qs)
(q,,t) — &G(q,t)+€
variance within each response group. This normalization enables fair comparison among responses
to the same prompt but treats all prompts equally, regardless of their source domain or demographic
representation.

reward r . The advantage is computed as A , ensuring zero mean and unit

q,i5t)

The Fairness Challenge. Consider a training dataset where prompts originate from different do-
mains g € G and are associated with demographic groups d € Dgemo. Each prompt ¢ at iteration ¢
belongs to exactly one domain g(, ;) and one demographic group d, 1)
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Figure 1: FairGRPO Training Pipeline. Our method addresses fairness disparities by adaptively
scaling rewards based on demographic representation and task difficulty. Starting with medical data
containing both labeled demographic information and unlabeled samples, the policy model generates
multiple responses for each prompt, producing both reasoning insights and clinical diagnoses. These
responses are evaluated and assigned rewards. FairGRPO then groups the rewards by explicit demo-
graphic groups where available. For samples with unavailable demographic information, we employ
K-means clustering to discover implicit groups. Then, receive ampli-
fied learning signals through inverse temperature scaling, while majority or well-represented groups
are scaled down. This ensures that the model learns equitably from all subpopulations, preventing
the typical bias toward majority groups that occurs in standard training.

Standard GRPO optimization naturally favors well-represented domain-demographic pairs, as they
contribute more gradient updates. This creates a feedback loop where the model becomes increas-
ingly specialized for majority populations while performance on minority groups stagnates. Fair-
GRPO breaks this cycle through adaptive importance weighting that inversely correlates with group
representation and performance.

Hierarchical Scaling Framework. FairGRPO implements a three-stage process that transforms
GRPO’s uniform treatment into demographically-aware optimization:

T(q,i,t) "RG (g 4

(i) Normalization: We first apply standard GRPO normalization to obtain s, ; 1) = Fom—
(a,t)

(ii) Group Discovery: In medical datasets, demographic labels may be incomplete or unavailable for
certain samples. We define explicit groups as those with labeled demographic attributes such as age
or gender while implicit groups are latent subpopulations discovered through unsupervised cluster-
ing when such labels are missing. To identify implicit groups, we leverage the model’s performance
patterns: within each domain g, we construct feature vectors v, € RIGw@n! for each unlabeled
prompt g, where each dimension represents the raw reward from a different rollout. In GRPO, a
rollout refers to a single generated response for a given prompt, with multiple rollouts per prompt
enabling reward normalization across response variations. For instance, a chest X-ray prompt with-
out demographic labels might generate 5 rollouts with rewards [0.2, 0.8, 0.7, 0.9, 0.3], forming its
feature vector.

This reward-based representation offers two key advantages over traditional feature extraction meth-
ods. First, it provides exceptional computational efficiency, requiring only a vector of length equal
to the number of rollouts rather than high-dimensional CNN or ViT embeddings. Second, and more
importantly, it directly captures task-specific difficulty patterns rather than input-level similarities.
While visual features might group images by appearance, our approach groups samples by their in-
herent diagnostic challenge to the model, ensuring that cases with similar learning difficulties receive
similar treatment regardless of their visual characteristics. K-means clustering then groups prompts
with similar reward distributions, where common, well-represented cases typically form larger clus-
ters with consistently higher rewards, while rare or challenging cases naturally form smaller clusters
with lower or more variable rewards. The optimal number of clusters is determined automatically
via the elbow method (Thorndike} |1953) in alignment with existing works (Weng et al.| 2021} |Cai
et al., [20235)). Crucially, because our scaling mechanism inversely weights the reward by cluster size
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Table 1: List of Experimental Datasets. We use 7 datasets across 5 clinical modalities. The
performance metrics are an unweighted average of datasets across classes, as described in Sec. [Zf;f}

Dataset # samples Clinical domain Modality Labels Demographics

CheXpert 212K Radiology Chest X-ray Atelectasis, Cardiomegaly, Consolidation, Edema, En- Age, Sex
larged Cardiomediastinum, Fracture, Lung Lesion,
Lung Opacity, Pleural Effusion, Pneumonia, Pneumoth-
orax, Pleural Other, Support Devices, No Finding

Hemorrhage 2.5K Radiology CT No Hemorrhage, Has Hemorrhage Age, Sex
VinDr-Mammo 20K Radiology, Oncology Mammography BI-RAD 1-5 Age

ISIC-2020 33K Dermatology, Oncology Dermoscopy  Malignant, Benign Age, Sex
HAM10000 10K Dermatology, Oncology Dermoscopy  Melanoma (MEL), Nevus (NV), Basal Cell Carci- Age, Sex

noma (BCC), Actinic Keratosis/Intraepithelial Carci-
noma (AKIEC), Other (OTHER)
PAD-UFES-20 23K Dermatology, Oncology Dermoscopy  Melanoma (MEL), Nevus (NV), Basal Cell Carci- Age, Sex
noma (BCC), Actinic Keratosis/Intraepithelial Carci-
noma (AKIEC), Other (OTHER)
COVID-BLUES 362 Radiology Ultrasound Has COVID, No COVID Age

and performance as shown in Equations [I] these smaller clusters representing rarer or more diffi-
cult cases receive amplified learning signals, ensuring that even unlabeled minority subpopulations
benefit from our fairness-aware optimization.

(iii) Demographic Group Based Reward Scaling: We compute hierarchical temperature factors that
capture both representation and difficulty. At the domain and group level, this is represented by:

g = \/mi(gyt)vT(%g,t) Y, Niy,g.t)  T(y,9.t)- (1

respectively for group  (explicit or implicit) in domain g. N ;) counts samples in domain g and
T(g,t) represents the domain’s mean raw reward. The normalized rewards undergo inverse tempera-
ture scaling:

scaled __ S(g4,t) )

S(qit) = ’
(a:,8) maX(T(g(q,t),t) 'T("Y(q,t):g(q,t)’t)’g)

thus amplifying signals from underrepresented or challenging groups while attenuating those from
dominant populations. Lastly, following (Schulman et al.| [2017), we renormalize the advantage to

. o seled .
zero mean and unit variance with Af;‘ﬁgpo = ﬁ, where opycn denotes the standard deviation

across all scaled rewards in the current batch.

Training Objective. FairGRPO retains GRPO’s policy gradient formulation with clipped impor-
tance sampling:

Jrircrpo(60) = Eg o | S min ((p1(0) AP0, clip(y (0), 1+ £) AFORPO) — 5Dy (g ) |
k=1

where @, (6) represents the importance ratio at token k, and the advantage now incorporates fairness-
aware scaling.

Reward Design. FairGRPO works with arbitrary reward designs. In the experiment of this work,
we employ a standard accuracy reward where the model gets a reward of 1 if the final answer is
correct, and a reward of O if the answer is incorrect.

4 EXPERIMENTS

4.1 DATASETS & EXPERIMENTAL SETUP

We design experiments to comprehensively evaluate FairGRPO’s ability to improve both perfor-
mance and fairness across diverse clinical subpopulations. Our experimental framework addresses
the following three key research questions:

RQ1: How does FairGRPO perform compared to other RL methods? Given the distinct train-
ing procedures across multimodal reasoning LLM methods, we benchmark FairGRPO against RL
baselines including GRPO (Shao et al., [2024), RLOO |Ahmadian et al.|(2024) and REINFORCE++
(Hul [2025)). These methods represent the current state-of-the-art in critic-free reinforcement learning
for LLMs. To compare our methods against other fairness mitigation algorithms, we re-implement



Under review as a conference paper at ICLR 2026

Table 2: RQ1: Fairness and performance metrics comparison against RL and fairness miti-
gation baselines. For fairness metrics, lower values are better and are indicated by |. For perfor-
mance and combined metrics, higher values are better and are indicated by 1. Bold values indicate
the best result in each column for each model separately. FairGRPOy p is the ablation of Fair-
GRPO where the model does not have access to the ground truth demographic information, and
the groups are inferred entirely via clustering. We release MedGemma trained with FairGRPO as
FairMedGemma. Detailed per dataset metrics are included in App. Tab.

- | Fairness Metrics | Perf. Metrics | Combined
Training Method
‘ PP| EOD | FPRpir] om |l AF1| oacel AAccl ‘ AcctT F11 ‘ Accgs T Flgs T
Qwen-2.5-VL-7B
Re++ (Hu{2025) 15.18 7.788 6.233  .0322 .0650 4.706 9.613 |75.32 2612 | 7193 .2531
RLOO (Ahmadian et al./2024) 21.73 6.577 5.115  .0326 .0705 5.098 10.56 |79.67 .2479 | 75.80 .2400
GRPO (Shao et al.[[2024) 11.39 9.091 4.607 .0463 .0973 4.676 9.433 |80.45 .2550 | 76.85 .2437

GRPO+RS (Puyol-Anton et al.;[2021) | 21.56 8.091 4961 0316 .0636 3.967 8.113 |73.99 .2657 | 70.57 2576
GRPO+DRO (Sagawa et al.{[2019) 1451 7.413 7417 .0326 .0654 5.621 11.50 |75.10 .2586 | 71.10 .2504

FairGRPO |16.80 5.546  4.391 .0229 .0452 4.410 8.934 |80.75 2647 | 77.34 .2588
MedGemma-4B

Re++ (Hu,[2025) 20.99 8.749 5.616 .0518 .1033 4.317 8.821 |78.60 .2978 | 75.35 .2831

RLOO (Ahmadian et al./[2024) 23.68 10.37 5513 .0600 .1170 4.336 8.837 |80.62 .3047 | 77.27 .2875

GRPO (Shao et al..|[2024) 2242 6476  4.820 .0418 .0795 4.171 8.546 |80.02 .3123 | 76.82 .2998

GRPO+RS (Puyol-Anton et al.;[2021) | 23.76  6.664 3481 .0433 .0835 4.051 8386 |80.76 .2843 | 77.62 2725
GRPO+DRO (Sagawa et al.{2019) 16.04 7.367 4.985 .0447 .0871 4.362 8960 |81.19 .3271 | 77.80 .3009

FairGRPOyNp 25.15 11.56  5.692 .0547 .1067 3.613 7.214 |79.23 .3513 | 7647 .3331
FairGRPO (FairMedGemma) 11.67 6.663 5330 .0383 .0721 4.081 8455 |81.83 .3218 | 78.62 .3100

popular bias mitigation method, namely Group DRO (Sagawa et al., 2019) and Resampling [Puyol-
Anton et al.| (2021)), on top of GRPO. We employ a suite of fairness metrics, including Equal Oppor-
tunity Difference, Equalized Odds, and Predictive Parity, alongside standard performance metrics
(F1, accuracy) as detailed in Appendix which ensures we capture both the utility and equity
dimensions of model performance.

RQ2: How do fairness metrics evolve during training? Understanding the dynamics of fair-
ness during optimization is crucial for guiding the future training strategies of VLLMs. We track
the progression of fairness by measuring the maximum F1 score difference across the different
demographic subgroups at 5-step intervals throughout training. In this experiment, we aim to mon-
itor whether FairGRPO’s hierarchical scaling mechanism consistently reduces disparities or merely
achieves fairness at convergence. By comparing these trajectories against standard GRPO, we can
assess whether our adaptive weighting strategy changes the optimization landscape.

RQ3: How does performance vary across individual demographic groups? Beyond aggregated
fairness metrics, we analyze group-specific outcomes by examining average F1 scores for each de-
mographic subpopulation. This analysis reveals whether improvements are uniformly distributed or
concentrated in specific subgroups, and crucially, whether minority group gains come at the expense
of majority group performance.

To demonstrate generalizability across architectures and ensure robust evaluation, we implement
FairGRPO on two widely used VLLMs: Qwen-2.5-VL-7B (Bai et al.| [2025) and MedGemma-4B
(Sellergren et al., 2025)). Following the standard multitask instruction tuning paradigm in both
works, we initialize from pretrained weights and perform unified finetuning across all 7 clinical
datasets simultaneously in a single training run, mirroring real-world deployment where models
must handle diverse clinical tasks without dataset-specific adaptation. All experiments utilize 4
NVIDIA H200 GPUs. Hyperparameters and training configurations are detailed in Appendix

Datasets. To ensure our methods work across different clinical datasets, we evaluate the models via
7 public datasets, including CheXpert (Irvin et al.,2019), COVID-BLUES (Wiedemann et al.,|2021),
VinDr-Mammo (Nguyen et al., 2021), ISIC-2020 (Rotemberg et al., [2021})), HAM10000 (Tschandl
et al., 2018b), PAD-UFES-20 (Pacheco et al.,2020) and Hemorrhage (Hssayeni et al., 2020), with a
total of 280.2K samples, as summarized in Tab. [I|and detailed in Appendix [B}

Demographic Groups. We define demographic groups consistently across all datasets to ensure
fair comparison. For gender, we use the patient gender as recorded in each dataset. For age, we
create four groups using 25-year bins: al for ages 18-25, a2 for ages 26-50, a3 for ages 51-75, and
a4 for ages 76 and above. This standardized binning strategy allows us to analyze fairness patterns
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Figure 2: Training dynamics comparison between GRPO and FairGRPO on clinical classification
tasks. (a) F1 Score: FairGRPO achieves higher F1 scores throughout training, reaching 0.265 com-
pared to GRPO’s plateau at 0.250. (b) Accuracy: Both methods converge to similar accuracy levels,
with FairGRPO demonstrating slightly higher final accuracy. (¢) F1 Diff: FairGRPO substantially
reduces demographic performance disparities, achieving around 57% reduction in F1 difference by
explicitly optimizing for fairness during training. (e) Per Step Runtime of the Models: We run
the model using the setup described in Sec. The reward calculation for all methods are less
than 0.1% of the total runtime, showing it adds negligible overhead to the training process. (e)
Performance-Fairness Tradeoff: We compare the validation F1 score and reversed F1 difference
(1-F1 Diff) of different steps throughout a single training run. Pareto frontier is plotted to illustrate
the points where the mdoel achieves the best tradeoff performance between F1 score and fairness.
The starred point is the final model reported in Tab. FairGRPO achieves superior Pareto optimal-
ity, simultaneously improving both performance and fairness compared to GRPO’s best checkpoint.

across datasets with varying age distributions while maintaining sufficient sample sizes within each
demographic group for meaningful statistical analysis.

Evaluation Metrics. For performance assessment, we use hierarchical averaging of F1 scores across
classes, demographic groups, and datasets to prevent any single component from dominating the
evaluation. For fairness evaluation, following (Hort et al., [2024), we measure popular fairness
metrics including Equal Opportunity Difference (EOD), Predictive Parity (PP), and performance
variance metrics (o, AF1) to capture equity across demographic groups. To balance the fairness-
utility tradeoff, following (Jin et al., 2024), we adopt Equity Scaling metrics (Flgs, Accgs) that
penalize models achieving high average performance at the cost of large demographic disparities.
Full mathematical definitions and detailed descriptions of all metrics are provided in Appendix [A.T]

4.2 RQ1: How DOES FAIRGRPO PERFORM COMPARED TO OTHER RL METHODS?

We trained multimodal LLMs with FairGRPO and compare it against baseline RL algorithms, and
recorded results in Tab. [I8] Overall, FairGRPO outperforms the baseline in both fairness metrics and
performance metrics on both multimodal LLMs. In particular, FairGRPO outperforms classical bias
mitigation methods in both fairness and diagnosis performance, thanks to its dynamic integration
with the RL training method. On MedGemma, it reaches a 27.2% better predictive parity than the
best fairness mitigation method Group DRO, reimplemented on top of GRPO. Compared to the best
RL training method, EOD improves by 23.8% on MedGemma, and by 15.7% on Qwen-2.5-VL.
Compared with all baselines, the maximum F1 gap decreases by 28.9% on Qwen-2.5-VL and by
8.37% on MedGemma. This shows FairGRPO’s superiority in the field of improving fairness.

Furthermore, the FairGRPOyp performance demonstrates that FairGRPO improves fairness and
performance even when no demographic information is passed during training, thanks to the latent
group discovery algorithm via clustering. Compared with all baselines, FairGRPOyp achieves
a 10.81% improvement in the Maximum Accuracy Gap, a 13.38% improvement in the standard
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Figure 3: F1 score differences between FairGRPO and GRPO across demographic groups on
MedGemma. Each bar represents the F1 score difference from the population mean for specific
demographic subgroups, where a positive value means FairGRPO performs better for the given
demographic group. The four age groups are binned as described in Sec. [.I] In general, Fair-
GRPO consistently demonstrates better performance for 25 out of the 33 demographic groups across
datasets, which includes both majority and minority groups. Raw performance results are included
in App. Tab. {4}

deviation of accuracy. FairGRPOy p shows particularly strong performance in F1, possibly due to
the fact that its latent clustering aligns better with downstream tasks, as evidenced by its 12.49%
improvement on F1, and 11.11% improvement in F1gg on MedGemma.

4.3 RQ2: HOW DO FAIRNESS METRICS EVOLVE DURING TRAINING?

We recorded how the performance and fairness of FairGRPO and GRPO progress throughout a stan-
dard training run. As shown in Fig[2|c), although both methods improve the model’s performance,
the F1 difference for FairGRPO is lower than that of GRPO, and the gap between the two meth-
ods constantly increase as the runtime increases. In addition, Fig [2(a) and Fig2[b) show that the
F1 score in FairGRPO is higher than that of GRPO, and the accuracy for both methods is almost
the same. Fig[2[e) demonstrates that FairGRPO expands the empirical Pareto frontier relative to
GRPO. Throughout the training process, the model provides multiple optimal checkpoints at vari-
ous fairness-performance tradeoffs, all at better and more balanced Pareto points than GRPO.

Runtime Efficiency. Fig [2{d) shows that FairGRPO and GRPO’s runtime per step is close on
both Qwen2.5-VL and MedGemma, with In particular, for all critic free RL methods, the time
for advantage calculation is less than 0.1% of the total training time. This reveals that the extra
calculation in FairGRPO adds negligible runtime overhead.

4.4 RQ3: HOW DOES PERFORMANCE VARY ACROSS INDIVIDUAL DEMOGRAPHIC GROUPS?

As shown in Fig. [3|and App. Tab. 4} FairGRPO demonstrates improved performance for both un-
derrepresented and non-underrepresented groups. For example, in CheXpert, FairGRPO’s F1 score
is 24.4% higher for females and 34.4% higher for males compared to GRPO. Moreover, in PAD-
UFES-20, FairGRPO improves performance by 6.33% on 75+ patients and 3.68% on patients aged
51-75 compared to GRPO. In addition, in the Hemorrhage dataset, FairGRPO improves performance
by 18.70% on 51-75 group compared to GRPO. In CheXpert, our method also shows superiority for
younger individuals (al, a2), with an improvement of 31.45% on al and 24.32% on a2. These re-
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(a) Demographics: age: 84, gender: FEMALE

Above is a dermoscopy image of a patient. Model's Output: Model's Output:

What is the diagnosis of the patientin the  <think> The image shows a skin lesion with
dermoscopy image? Answer with one word The image shows a lesion with irregular irregular borders, uneven coloration, and
from the following: borders, a central area of necrosis, and ~a possible central dot. These features are
Melanoma some pigment...This presentation is suggestive of a mole (nevus) or a

Nevus suggestive of a basal cell carcinoma. seborrheic keratosis (AKIEC).

Basal Cell Carcinoma (Ground Truth) </think> Yboxed{AKIEC} X

AKIEC \boxed{Basal Cell Carcinoma}

Other

(b) Demographics: age: 84, gender: FEMALE

C Above is a mammography X-ray image ofa  <hink>
patient. What is the BIRAD classification of e image shows a dense opacity in the
the patient in the X-ray image? Answer with right breast. This could be a

Model's Output: Model's Output:

<think>

The opacity is dense and round. There
are no other obvious findings. It's

one number. Answer with one phrase from  cajcification, a cyst, or a mass...Based on difficult to determine the exact BIRAD

the following: the appearance, it's likely a benign without more information. However, it's
BIRAD 1 finding. The BIRAD classification would likely a benign process.

BIRAD 2 (Ground Truth) be 2. </think>

BIRAD 3 </think> boxed{BIRAD 1} X

BIRAD 4 Yboxed{BIRAD 2}

BIRAD 5

Figure 4: Qualitative Examples of Model’s Reasoning Traces. We see the greatest performance
boosts from underrepresented groups, including samples from older population and females. In par-
ticular, we observe the models trained with FairGRPO exhibit an accuracy improvement of 73.08%
on 75+ populations in PAD-UFES-20 dataset, and a 36.53% on samples aged 51-75 in VinDr-
Mammo. This figure shows examples of model’s internal thinking process from the two groups.

sults demonstrate that our method provides consistent enhancements for elderly individuals across
most datasets while showing minimal, if any, performance degradation for younger individuals, and
in some cases even improvements. This indicates that the fairness improvements were not achieved
at the expense of the majority group’s performance.

4.5 QUALITATIVE ANALYSIS

Our qualitative analysis reveals that FairGRPO demonstrates superior diagnostic reasoning capa-
bilities, particularly for underrepresented populations where GRPO exhibits increased hallucina-
tions or unevidenced explanations. For example, in Fig. [f[a), examining an 84-year-old female’s
dermoscopy image, FairGRPO accurately identifies critical diagnostic features, including irregular
borders, central necrosis, and distinctive pigmentation patterns, which leads to a correct Basal Cell
Carcinoma diagnosis. Conversely, GRPO hallucinates non-existent features (a central dot), result-
ing in misdiagnosis of AKIEC. Similarly, Fig. @(b) showcases FairGRPO’s enhanced interpretive
capability on another elderly female patient’s mammography. FairMedGemma first identifies sev-
eral possible diagnosis, including a calcification, a cyst, or a mass. It then correctly recognizes
and contextualizes a dense opacity with rating BIRAD 2. GRPO trained model, on the other hand,
underestimate the severity of the symptom, which results in a misclassification of BIRAD 1. These
examples illustrate how FairGRPO’s fairness-aware training not only improves quantitative metrics
but also enhances the model’s clinical reasoning quality, particularly benefiting historically under-
served demographic groups.

5 CONCLUSION

In this work, we introduced FairGRPO, a novel reinforcement learning approach that addresses the
challenge of demographic disparities in clinical Al systems. By implementing adaptive weighting
based on demographics and task difficulty, FairGRPO ensures that minority and underrepresented
groups receive equitable learning signals during training. Our evaluation across 7 clinical datasets
demonstrates that FairGRPO not only reduces the disparities F1 scores across demographic groups
by up to 28.9% but also improves overall model performance by 3.8% compared to vanilla GRPO.
Through the release of FairMedGemma-4B, we provide the first publicly available clinical VLLM
explicitly optimized for demographic fairness. Future works could explore extending FairGRPO to
other medical modalities beyond vision-language tasks, and developing theoretical frameworks to
better understand the convergence properties of fairness-aware RL. By establishing fairness as a fun-
damental optimization objective, we hope this work will inspire further research toward developing
Al-assisted diagnostic systems that serve all patient populations equitably.
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6 ETHICS STATEMENT

This work focuses on developing fairness-aware reinforcement learning methods for clinical diag-
nosis using vision-language models. We acknowledge the critical ethical considerations inherent in
applying Al to healthcare and have taken careful steps to ensure our research adheres to the ethical
standards.

All experiments in this study were conducted exclusively on publicly available, anonymized clin-
ical datasets obtained in compliance with their respective licenses. Specifically, we used CheX-
pert, COVID-BLUES, VinDr-Mammo, ISIC-2020, HAM 10000, PAD-UFES-20, and Hemorrhage
datasets, each of which has been previously released for research purposes with appropriate de-
identification procedures. No human subjects were directly involved in this research, and no new
clinical data was collected. We do not redistribute these datasets; researchers interested in replicat-
ing our work should obtain them from the original sources in accordance with their respective terms
of use.

Our work explicitly addresses demographic disparities in Al-assisted clinical diagnosis, recognizing
that biased Al systems can perpetuate and amplify existing healthcare inequalities. By developing
FairGRPO, we aim to reduce performance disparities across age and gender groups, thereby pro-
moting more equitable healthcare AI. We acknowledge that fairness in healthcare is multifaceted
and our demographic categorizations may not capture all relevant dimensions of patient diversity.
Future work should consider additional protected attributes and intersectional identities.

While our methods demonstrate improved fairness metrics, we emphasize that these models are
research prototypes and should not be used for actual clinical decision-making without proper reg-
ulatory approval and clinical validation. The deployment of Al in healthcare requires careful con-
sideration of local regulations, clinical workflows, and continuous monitoring for unintended con-
sequences.

7 REPRODUCIBILITY STATEMENT

To ensure reproducibility of the work, all experiments were conducted using publicly available
datasets, which can be obtained from their respective original sources as detailed in Appendix
Our complete training code, data preprocessing pipelines, and evaluation scripts are available at this
anonymous link, while the trained model weights (FairMedGemma-4B) will be made available upon
publication due to size constraints on the anonymous submission platform. All hyperparameters
used in our experiments are comprehensively documented in Appendix [A] including learning rates,
batch sizes, rollout configurations, and training settings for both Qwen-2.5-VL and MedGemma
models. We used the VERL framework for reinforcement learning implementation, with specific
versions and dependencies listed in the repository’s requirements file. Our fairness evaluation met-
rics are implemented with mathematical definitions provided in Appendix
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APPENDIX

A  HYPERPARAMETERS & SETUPS

In this section, we describe our setup and hyperparameters during the training of the model. All
models are trained with 4 NVIDIA H200 GPUs.

All experiments were conducted using the VERL (Volcano Engine Reinforcement Learning for
LLMs) framework. The model was initialized from the pretrained MedGemma-4B-IT checkpoint
and fine-tuned. We employed vLLM for efficient rollout generation with a GPU memory cache of
60% to balance between batch size and memory constraints. The relatively low learning rate of
5 x 10~7 was chosen to ensure stable convergence given the complexity of the multi-task medical
reasoning objective.

A.1 EVALUATION METRICS

To comprehensively evaluate both performance and fairness across heterogeneous clinical subpop-
ulations, we employ a hierarchical evaluation framework that prevents any single dataset or demo-
graphic subgroup from dominating the assessment.

Notation. Let C, denote the set of classes for dataset k, and G denote the set of demographic groups.
For each class ¢ € Cj, and group g € G, we define: TP, 4 (true positives), F'P, 4 (false positives),
TN, 4 (true negatives), and F' N, , (false negatives). Let n. 4 denote the number of samples for class
¢ in group g.

Performance Metrics. We extract diagnoses from the model’s free-text reasoning traces and evalu-
ate each class as a binary classification problem. For class ¢ and group g:

TP.,+TN TP,
Acc, , = o= Neg Precision, , = ———— &9 ___ 3
CcC N Neg ) reC1S10n .9 TPcyg n chyg ( )
Recall,, — TP, , Fl,, =2 Precision, 4 - Recall. 4 @

TP.,+FN,.,’ ' Precision, , + Recall. 4
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Table 3: Hyperparameters for All Trainings

Parameter Value
Data Configuration

Train batch size 512
Validation batch size 512
Max prompt length 4096
Max response length 4096
Model Configuration

Base model MedGemma-4B-IT/Qwen2.5-VL-7B-Instruct
Tensor model parallel size 2
Optimization

Learning rate 5x 1077
PPO mini-batch size 128
PPO micro-batch size per GPU 4

KL Disabled
Rollout Configuration

Number of rollouts (n) 10

GPU memory utilization 0.6
Rollout engine VLLM
Training Settings

Total epochs 15
Validation frequency 5 epochs
Model save frequency 20 steps
Number of GPUs per node 4
Number of nodes 1

Critic warmup steps 0

To ensure balanced representation across classes and datasets, we employ two-level averaging. For
dataset k:

1 1
Fly = —— Y Fl., where Flo=—Y Fl, )
|C]€| c€Cy |g| geg

The overall performance is then averaged across all K datasets:
1K
Floverall = ? ;Flk (6)

This hierarchical averaging ensures that no single class or dataset dominates the final metrics, al-
lowing the final metrics to be a balanced assessment across all 5 clinical domains.

Fairness Metrics. Following the popular approaches outlined in (Hort et al., 2024), we evaluate
fairness through multiple complementary perspectives, each capturing different aspects of equitable
model behavior across demographic groups. For each metric, we first compute dataset-level perfor-
mance for each group, then assess disparities across groups.

Equal Opportunity Difference (EOD): We measure the disparity in true positive rates across groups
to ensure equal diagnostic sensitivity:

K
1 1
EOD = TPR, — min TPR,, here TPR, = — — TPR 7
heg TPRe — Tug TPRg, W 1=kl TR O
k=1 ceCy,
TP. 4

and TPR. g = 75— 5 —- A lower EOD indicates more equitable identification of positive cases,
<9 c9
which is crucial for preventing delayed diagnoses in underserved populations.
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Predictive Parity: We assess the reliability of positive predictions across groups through false dis-
covery rate gaps:

K
1 1
PP = FDR, — min FDR, h FDR, = — E — FDR, 8
geg 9 gegt e WAEE 17K 20 2 FDRc, ©
k=1 ceCy,
and FDR. , = %. Lower predictive parity gaps ensure that positive predictions maintain

consistent reliability across all demographic groups, fostering trust in Al-assisted diagnosis.

False Positive Rate Difference: We measure disparities in false positive rates to ensure equitable
specificity across groups:

FPRp; = FPR, — min FPR 9
Diff r;leagx g rgnelél g &)

where FPR follows the same hierarchical averaging structure as other group-level metrics. Lower
FPR differences prevent differential overdiagnosis across demographic groups.

Performance Disparities: We directly measure accuracy and F1 score gaps to capture overall per-
formance equity:

AAcc = max Accy, — min Accg, AF1 = maxFl, — minFl, (10)
9€g 9€g 9€g 9€g

where Acc, and F1, follow the same hierarchical averaging as TPR,. Additionally, we compute the
standard deviation of performance across groups to capture variability:

OAcc = i Z(ACCQ — R)Q, Ol = i Z(Flg _ ﬁ)? (11)
91 2= 9 =

where Acc and F1 denote the mean values across all groups.

Fairness-Utility Tradeoff. To balance fairness and utility, we adopt Equity Scaling metrics follow-

ing (Jin et al.,[2024). These metrics combine performance with fairness considerations by penalizing

models that achieve high average performance at the cost of large disparities across groups:
Acc F1

_ace Flgg =

1+o Acc 1+ OF1

ACCES = ( 1 2)

These equity-scaled metrics reward models that achieve both high performance and low variance
across demographic groups, providing a single scalar that captures the fairness-utility tradeoff.
Higher values indicate better balance between overall performance and equitable distribution across
all populations.

B DATASET DETAILS

In this section, we provide a detailed description of datasets used in the experiments.

CheXpert (Irvin et al., 2019) is a public chest radiology dataset collected at Stanford Hospital,
which contains 224,316 chest radiographs of 65,240 patients. Each record has an uncertain label of
14 diagnostic observations, including Atelectasis, Cardiomegaly, Consolidation, Edema, Enlarged
Cardiomediastinum, Fracture, Lung Lesion, Lung Opacity, Pleural Effusion, Pneumonia, Pneumoth-
orax, Pleural Other, Support Device and No Finding. We use a training set of 212,243 records, a test
set of 225 records, and a total size of 212,498 records.

COVID-BLUES (Wiedemann et al.l 2021)) consists of bluepoint-specific lung ultrasound videos
collected at the Maastricht University Medical Center in the Netherlands using the BLUE protocol.
Each of the 63 patients has six recordings. Our evaluation focuses on two labels: the diagnostic
label (“Has COVID”, “No COVID”), and the patient age label. We use a training set of 266 records,
a test set of 96 records, and a total size of 362 records.
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VinDr-Mammo (Nguyen et al., 2021) contains mammography collected from Hospital 108 and
Hanoi Medical University Hospital in Vietnam. The dataset includes local labels for bounding
boxes; however, we evaluate our models based on the 5 global labels for BI-RADS 1-5. We use a
training set of 16,000 records, a test set of 4,000 records, and a total size of 20,000 records.

ISIC-2020 (Rotemberg et al.,2021)) comprises dermoscopy of skin lesions from over 2,000 patients,
generated by the International Skin Imaging Collaboration (ISIC). We evaluate the models on the
binary classification (“Malignant” or “Benign”) for each image, where all malignant diagnoses are
histopathology—confirmed, while benign diagnoses are confirmed by expert agreement, longitudinal
follow—up, or histopathology.We use a training set of 26,501 records, a test set of 6,625 records, and
a total size of 33,126 records.

HAM10000 (Tschandl et al., 2018a) is a dermoscopic image dataset released for the ISIC 2018
classification challenge, drawn from the ISIC archive. Our evaluation uses the diagnostic categories:
Melanoma (MEL), Nevus (NV), Basal Cell Carcinoma (BCC), Actinic Keratosis/Intraepithelial Car-
cinoma (AKIEC), Other (OTHER).We use a training set of 8,012 records, a test set of 2,003 records,
and a total size of 10,015 records.

PAD-UFES-20 (Pacheco et al.l 2020) comprises dermoscopy images of skin lesions with patient
metadata collected at the Federal University of Espirito Santo by iPhone, which includes 1,641 skin
lesions from 1,373 patients. We evaluate the models on the five skin diagnostics, three of which
are skin disease and three of which are skin cancers: Melanoma (MEL), Nevus (NV), Basal Cell
Carcinoma (BCC), Actinic Keratosis/Intraepithelial Carcinoma (AKIEC), Other (OTHER). All of
the skin cancers are biopsy-proven, and more than half of the skin diseases are biopsy-proven as
well. We use a training set of 1,839 records, a test set of 459 records, and a total size of 2,298
records.

Hemorrhage (Hssayeni et al.|[2020) consists of intracranial hemorrhage CT images for 82 patients
at Al Hilla Teaching Hospital, Iraq, each with brain and bone window images and approximately
30 image slices in total. We evaluate the models as binary diagnoses: “No Hemorrhage” and “Has
Hemorrhage”. We use a training set of 1,986 records, a test set of 515 patient records, and a total
size of 2,501 records.

C THE USE OF LARGE LANGUAGE MODELS (LLMS)

We used ChatGPT for grammar corrections and debugging assistance, including explaining error
messages and suggesting fixes. The model did not contribute research ideas, methods, experimental
design, data, analyses or results. All changes were reviewed and implemented by the authors, who
take full responsibility for the manuscript.
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Table 4: Relative F1 score improvements (%) for FairGRPO vs GRPO across demographic
groups. Values show the relative improvement (A%), GRPO baseline F1 score, and FairGRPO F1
score for each demographic group.

Group Dataset

CheXpert ISIC-2020 Hemorrhage HAM10000 PAD-UFES-20 VinDr-Mammo
al
A% +31.44 -0.14 -3.40 -20.95 0.00 -6.21
GRPO 0.318 0.495 0.721 0.383 0.462 0.243
FairGRPO 0.418 0.494 0.696 0.302 0.462 0.228
a2
A% +24.23 -0.09 +4.90 -28.91 +1.56 +5.24
GRPO 0.296 0.496 0.600 0.262 0.385 0.234
FairGRPO 0.368 0.496 0.629 0.186 0.391 0.246
a3
A% +33.18 +1.65 +18.77 +39.18 +3.71 +11.29
GRPO 0.283 0.564 0.679 0.222 0.190 0.195
FairGRPO 0.377 0.574 0.806 0.309 0.197 0.217
a4
A% +21.60 +27.08 - +6.03 +6.22 -13.85
GRPO 0.302 0.469 - 0.185 0.221 0.238
FairGRPO 0.368 0.595 - 0.196 0.234 0.205
Female
A% +24.45 +6.90 +3.54 +19.21 +4.20 -
GRPO 0.320 0.517 0.773 0.262 0.247 -
FairGRPO 0.398 0.553 0.800 0.313 0.258 -
Male
A% +34.35 +2.26 +6.97 +9.52 +2.67 -
GRPO 0.253 0.546 0.628 0.240 0.214 -
FairGRPO 0.340 0.558 0.672 0.263 0.220 -
Average A% +28.21 +6.28 +6.16 +4.01 +3.06 -0.88
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Table 5: Detailed fairness and performance metrics per dataset and demographic group for
Reinforce++ on Qwen-2.5-VL. Results shown for both age groups (al-a4) and gender groups across
all evaluation datasets. Higher values are better for accuracy, TPR, and F1; lower values are better
for FPR and FDR.

| Performance Metrics |  Fairness Metrics | Disparity Metrics
Dataset Group
|Acc F1 TPR FPR|FDR oacc om orer |AAce AF1 ATPR AFPR
Age Groups
al .833 .130 .138 .064 | .158
a2 748 102 .118 .068 | .139
ChexPert a3 770 120 114 070 | 202 .076 .012 .018 | .184 .028 .038 .009
a4 .649 125 .151 .074| .223
al .824 347 426 .252| .317
a2 .876 .200 .231 .197|.759
HAM10000 a3 783 239 262 185 | 669 077 .094 .099 | .183 .225 218 .068
a4 .693 122 .208 .197 | .660
al 979 595 .595 .405] .405
a2 957 512 .535 .463 | .490
ISIC2020 a3 046 556 569 430 | 452 .071 .045 .043| .157 .100 .099 .099
a4 .822 494 496 .504 | .506
al 813 417 .357 .000 | .000
a2 763 395 412 .149| 518
PAD-UFES a3 774 256 389 160 | 682 .033 .076 .062| .081 .161 .145 195
a4 732 304 503 .195 | .324
al 728 444 445 555 .557
Hemorrhage a2 756 483 482 .518|.515 .048 .059 .062| .093 .116 .120 120
a3 .663 .560 .566 .434 | .401
al 700 .106 .201 .192 | .388
. a2 709 132 .204 .196 | .573
VinDr a3 724 162 225 189 | 563 106 .024 .063 | 224 .057 .132 .100
a4 500 121 .333 .289 | .593
Gender Groups
Female |.716 .123 .129 .072|.129
ChexPert Male | 781 115 112 063 | 183 .046 .006 .011| .065 .009 .016 .009
Female | .842 .230 .249 .187|.709
HAM10000 Male |812 231 246 190 | 689 .021 .001 .002 | .030 .001 .003 .003
Female | .953 .533 .551 .448| 474
ISIC2020 Male |.950 538 557 443 | 470 .002 .004 .004 | .003 .005 .006 .004
Female |.794 .303 .428 .174| .697
PAD-UFES Male |.837 294 393 157 | 666 .030 .006 .025| .043 .008 .035 .018
Female |.778 .608 .613 .387 | .396
Hemorrhage Male |719 465 467 533|537 .042 .101 .103 | .059 .143 .146 .146
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Table 6: Detailed fairness and performance metrics per dataset and demographic group for
RLOO on Qwen-2.5-VL. Results shown for both age groups (al-a4) and gender groups across all
evaluation datasets. Higher values are better for accuracy, TPR, and F1; lower values are better for
FPR and FDR.

| Performance Metrics |  Fairness Metrics | Disparity Metrics
Dataset Group
‘Acc F1 TPR FPR‘FDR OAcc OF1 OTPR ‘AACC AF1 ATPR AFPR
Age Groups
al .833 285 .338 .096 | .221
a2 746 136 152 125 .201
ChexPert a3 767 154 175 142 | 449 .066 .067 .083 | .161 .149 .186  .080
a4 673 179 200 .176| .114
al 924 314 .327 .309 | .364
a2 943 242 239 .197| .328
HAM10000 a3 796 167 219 195 701 114 .087 .051 | 243 .199 .107 116
a4 700 115 .222 .194 | .403
al 986 .496 .499 .500 | .007
a2 990 .497 .500 .500 | .005
ISIC2020 a3 974 493 499 500 | 013 .049 .014 .002 | .105 .029 .004 .000
a4 .886 .468 .495 .500 | .056
al 938 .500 .500 .000 | .000
a2 760 371 410 .172 | .544
PAD-UFES a3 764 233 309 155 | 623 .094 143 115 | .206 .318 .263 179
a4 732 182 237 179 | .716
al .808 .447 473 .527|.576
Hemorrhage a2 869 465 494 506 | .561 .106 .034 .014 | .206 .066 .027 .027
a3 .663 .399 500 .500 | .169
al .807 .137 .200 .200 | .096
. a2 878 173 .203 .198 | .386
VinDr a3 851 158 200 199 | 234 .094 .036 .066 | .211 .086 .133 136
a4 667 222 .333 .333|.167
Gender Groups
Female |.721 .172 .187 .149| .202
ChexPert Male |.780 161 178 127! 379 .041 .008 .006 | .058 .012 .008 .021
Female | .883 .200 .218 .195| .408
HAM10000 Male |.850 194 223 194 | 781 .023 .004 .003 | .033 .006 .005 .0003
Female |.983 .496 .500 .500 | .008
ISIC2020 Male | 980 495 499 500! 009 .002 .001 .0004| .003 .001 .001 .000
Female | .788 .265 .387 .172 | .653
PAD-UFES Male | 823 230 335 153! 630 .025 .024 .037 | .036 .034 .052 .019
Female | .821 .451 490 .510] .583
Hemorrhage Male | 814 449 488 512 | 585 .005 .001 .001 | .006 .002 .002 .002
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Table 7: Detailed fairness and performance metrics per dataset and demographic group for
GRPO on Qwen-2.5-VL. Results shown for both age groups (al-a4) and gender groups across all
evaluation datasets. Higher values are better for accuracy, TPR, and F1; lower values are better for
FPR and FDR.

D | Performance Metrics|  Fairness Metrics | Disparity Metrics
ataset Group
| Acc F1 TPR FPR|FDR o0acc o  orer |AAce AF1 ATPR AFPR
Age Groups

al .807 .235 .338 .133].188
a2 766 192 228 .136 | .160

ChexPert 23 785 163 196 141 | 160 049 041 .062| .112 .091 .141  .051
a4 .695 254 282 .184|.096
al 936 .317 .333 .303|.031
a2 943 185 .199 .194 | 427

HAM10000 a3 796 170 223 192 | 411 116 .076 .059 | 239 .168 .134 112
a4 703 149 242 191 | .266
al 987 497 .500 .500 | .007
a2 991 498 .500 .500 | .005

ISIC2020 23 975 494 500 500 | 013 .048 .013 .000| .101 .027 .000  .000
a4 .890 .471 .500 .500 | .055
al .875 917 .857 .000 | .000
a2 782 425 450 .156 | .556

PAD-UFES a3 771 201 260 167 | 563 .048 .320 270 | .104 .716 .597 167
a4 786 283 317 .153 | .373
al .854 461 .500 .500 | .073

Hemorrhage a2 .880 .468 .500 .500|.060 .119 .038 .000 | .217 .069 .000  .000
a3 .663 399 .500 .500 | .169
al .807 .137 .200 .200 | .096

. a2 .879 .164 200 .200 | .061

VinDr a3 852 155 200 200 | 074 .094 .037 .067| .212 .086 .133 133
a4 .667 222 .333 333 .167

Gender Groups

Female|.742 .220 .250 .160 | .154

ChexPert Male |793 169 198 129 125 036 .036 .037| .051 .051 .053 .031
Female |.882 .194 216 .191 | .589

HAM10000 Male | 852 208 234 .190| 537 .021 .010 .012| .029 .015 .018 .001
Female |.984 .496 .500 .500|.008

ISIC2020 Male | 981 495 500 500! 009 .002 .0004 .000 | .003 .001 .000 .000
Female | .800 .308 .374 .174| .451

PAD-UFES Male | 837 255 311 158 539 .026 .038 .044 | .037 .054 .063 .016
Female | .838 .456 .500 .500 | .081

Hemorrhage Male | 834 455 500 500 083 .002 .001 .000| .003 .001 .000 .000
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Table 8: Detailed fairness and performance metrics per dataset and demographic group for
GRPO with Resampling on Qwen-2.5-VL. Results shown for both age groups (al-a4) and gender
groups across all evaluation datasets. Higher values are better for accuracy, TPR, and F1; lower
values are better for FPR and FDR.

| Performance Metrics|  Fairness Metrics | Disparity Metrics
Dataset Group
| Acc F1 TPR FPR|FDR oscc or  orer|AAcc AF1 ATPR AFPR
Age Groups
al .847 .142 .150 .056| .153
a2 762 125 .153 .056 | .079
ChexPert 23 754 098 094 078 | 279 .083 .018 .029| 203 .044 .059 .022
a4 .644 124 153 .076| .321
al 785 307 .354 .302 | .341
a2 .835 .167 .194 213 .820
HAM10000 23 767 213 244 191 | 754 .057 .071 .070| .138 .158 .160  .111
ad 697 .149 221 .195].658
al 937 .555 .672 .328| .461
a2 .894 490 .557 .443 | .494
ISIC2020 23 '885 522 585 415 | 477 059 .042 .049| .140 .098 .115 .115
ad 797 588 .616 .384 | .422
al .875 462 .429 .000 | .000
a2 769 408 406 .148 | .557
PAD-UFES 23 771 275 390 162 | 673 .058 .079 .057| .129 .187 .128  .186
ad 746 372 518 186 .535
al 728 444 445 5551 .557
Hemorrhage a2 785 471 472 .528|.530 .050 .070 .073| .100 .133 .137  .137
a3 .685 .577 .582 .418 | .361
al .696 .168 .283 .192] .531
. a2 .686 .106 .187 .200 | .608
VinDr 23 699 140 223 193 | 572 056 .029 .065| .116 .062 .146 .010
ad 583 .167 .333 .189| .556
Gender Groups
Female | .716 .132 .140 .071| .214
ChexPert Male | 771 102 104 067 | 388 .038 .021 .026| .054 .029 .036 .004
Female | .818 .203 .225 .199 | .704
HAM10000 Male | 784 196 228 200|797 .024 .005 .002| .034 .007 .003 .001
Female | .901 .512 .581 .419|.484
ISIC2020 Male | 882 512 595 405 | 482 .013 .00004 .010 | .018 .0001 .014 .014
Female | .800 .338 .493 .168 | .706
PAD-UFES Male |820 318 386 165 | 678 .014 .014 .076| .020 .019 .107  .003
Female | .803 .572 .564 .436 | .405
Hemorrhage Male | 736 481 484 516! 519 .048 064 .057| .067 .091 .081 .081
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Table 9: Detailed fairness and performance metrics per dataset and demographic group for
GRPO with Group DRO on Qwen-2.5-VL. Results shown for both age groups (al-a4) and gender
groups across all evaluation datasets. Higher values are better for accuracy, TPR, and F1; lower
values are better for FPR and FDR.

| Performance Metrics |  Fairness Metrics | Disparity Metrics
Dataset Group
‘Acc F1 TPR FPR‘FDR OAce OF1 O‘TPR‘AACC AF1 ATPR AFPR
Age Groups
al .847 142 .150 .056 | .153
a2 754 105 .132 .063 | .127
ChexPert a3 767 115 117 070 | 124 .092 .021 .014 | 221 .049 .033 .031
a4 .625 .092 .132 .087 | .245
al 821 327 .374 .283 | .333
a2 .841 .169 .193 218 .821
HAM10000 a3 769 239 257 191 | 629 .059 .070 .076 | .131 .158 .180 .097
a4 710 .190 .249 .186 | .498
al 953 579 .680 .320 | .445
a2 923 501 .554 .446 | .492
ISIC2020 a3 911 530 570 430 475 .072 .044 .084| .164 .101 .203 203
a4 788 477 477 .523|.522
al 875 462 .429 .000 | .000
a2 760 .399 .397 .155|.545
PAD-UFES a3 771 273 385 159 | 667 .062 .082 .056| .139 .188 .125 195
a4 736 .327 510 .195| .565
al 748 452 457 .543| .551
Hemorrhage a2 .840 478 .490 .510.523 .089 .041 .047 | .177 .080 .092 .092
a3 .663 .533 .549 .451 | .406
al .696 .142 233 .193 | .532
. a2 701 119 .191 .200 | .602
VinDr a3 716 141 210 192 | 577 144 041 .028| 299 .086 .067 .164
a4 417 .056 .167 .356 | .633
Gender Groups
Female |.715 .118 .136 .071] .130
ChexPert Male |.772 105 110 067 | .195 .040 .010 .019| .057 .014 .026 .003
Female | .825 258 .258 .196 | .613
HAM10000 Male | 788 216 239 198 | 725 .026 .030 .013 | .037 .042 .019 .002
Female | .924 .513 .548 .452| .487
ISIC2020 Male |911 520 573 427 | 481 .009 .005 .018 | .013 .007 .025 .025
Female |.788 .318 .481 .170].722
PAD-UFES Male |.820 284 335 163 676 .023 .024 .103 | .032 .034 .145 .007
Female | .812 .554 .548 .452| .407
Hemorrhage Male | 774 485 494 506 | 510 .027 .048 .038 | .038 .068 .054 .054
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Table 10: Detailed fairness and performance metrics per dataset and demographic group for
FairGRPO on Qwen-2.5-VL. Results shown for both age groups (al-a4) and gender groups across
all evaluation datasets. Higher values are better for accuracy, TPR, and F1; lower values are better
for FPR and FDR.

D | Performance Metrics |  Fairness Metrics | Disparity Metrics
ataset Group
‘Acc F1 TPR FPR‘FDR OAcc OF1 OTPR ‘AACC AF1 ATPR AFPR
Age Groups
al 813 .161 .225 .109 | .140
a2 71 149 166 .096 | .104
ChexPert a3 792 132 160 118 .105 .063 .015 .030 | .142 .031 .065 .068
a4 .671 130 .177 .164 | .076
al 915 304 .300 .212|.024
a2 920 .209 .464 .148 | .606
HAM10000 a3 809 279 379 .143| 508 089 .045 .075 | .183 .096 .164 .069
a4 736 224 311 .154| .546
al 987 .497 .500 .500 | .007
a2 989 497 .499 .500 | .005
ISIC2020 a3 972 492 497 500 013 .049 .014 .002 | .104 .028 .005  .000
a4 .886 .468 .495 .500 | .056
al 750 364 .286 .000 | .000
a2 788 435 445 128 .241
PAD-UFES a3 817 292 294 139 | 301 .028 .068 .074 | .067 .143 159 .180
a4 779 291 317 .180 | .205
al .854 461 .500 .500|.073
Hemorrhage a2 876 467 .498 .502|.560 .117 .038 .001 | .213 .068 .002  .002
a3 .663 .399 .500 .500|.169
al .807 .137 .200 .200 | .096
. a2 879 .164 .200 .200 | .061
VinDr a3 852 156 201 199 | 074 .094 .037 .067 | 212 .086 .133  .134
a4 .667 222 .333 .333]|.167
Gender Groups
Female |.741 .161 .189 .123|.116
ChexPert Male |794 126 151 109 | 085 .038 .025 .027 | .053 .035 .038 .014
Female | .880 .270 .354 .131 | .473
HAM10000 Male | 846 272 369 137 539 .024 .001 .011 | .034 .002 .015 .006
Female | .982 .495 .498 .500 | .008
ISIC2020 Male | 979 494 498 500 | .009 .002 .0004 .0001| .002 .001 .0001 .000
Female | .818 .336 .338 .153|.259
PAD-UFES Male | 840 280 277 146 | 314 .015 .039 .043 | .022 .055 .060 .007
Female | .838 .456 .500 .500 | .081
Hemorrhage Male |.832 454 498 502 | 583 .004 .001 .001 | .006 .002 .002 .002
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Table 11: Detailed fairness and performance metrics per dataset and demographic group for
Reinforce++ on MedGemma. Results shown for both age groups (al-a4) and gender groups across
all evaluation datasets. Higher values are better for accuracy, TPR, and F1; lower values are better
for FPR and FDR.

| Performance Metrics |  Fairness Metrics | Disparity Metrics
Dataset Group
‘Acc F1 TPR FPR‘FDR OAce OF1 O‘TPR‘AACC AF1 ATPR AFPR
Age Groups
al 793 288 .338 .173|.643
a2 745 260 .299 .161 | .659
ChexPert a3 761 269 298 161 | 647 .038 .025 .031| .092 .056 .063 .039
a4 702 316 .361 .134| .483
al 2927 312 .323 .303|.031
a2 938 .233 .233 .165| 474
HAM10000 a3 801 183 223 178 | 586 .107 .083 .054 | 223 197 .124 138
a4 716 115 .199 .167 | .402
al 987 .497 .500 .500 | .007
a2 991 498 .500 .500 | .005
ISIC2020 a3 975 513 510 490 | 012 .048 .017 .005| .101 .042 .010 .010
a4 .890 471 .500 .500 | .055
al 875 462 .429 .000 | .000
a2 772 387 395 158 .610
PAD-UFES a3 763 209 262 159 | 565 056 .122 .095| .118 .253 .192 159
a4 757 233 237 153 | 479
al 871 731 .643 .208 | .087
Hemorrhage a2 .851 589 .546 .265|.340 .066 .118 .066 | .124 234 .126 .057
a3 747 498 516 .250 | .104
al 806 .141 .196 .190 | .290
. a2 .867 .186 .204 .196 | .592
VinDr a3 836 177 200 199 | 620 102 .093 122 229 208 .248 .119
a4 .639 .349 .444 308 |.708
Gender Groups
Female | .757 .332 .358 .134 ] .561
ChexPert Male | 751 235 264 166 | 687 .004 .068 .067 | .006 .097 .094 .032
Female | .879 202 .216 .180 | .555
HAM10000 Male |.856 210 224 168 | 538 .016 .005 .006 | .023 .008 .008 .012
Female | .984 .496 .500 .500 | .008
ISIC2020 Male | 981 514 509 491 | 009 .002 .012 .007 | .002 .018 .009 .009
Female |.820 .283 .335 .131|.513
PAD-UFES Male |783 201 250 174 601 .026 .058 .060 | .037 .082 .085 .043
Female | .880 .568 .537 .211].039
Hemorrhage Male |.827 612 555 260 | 264 .038 .031 .012| .054 .044 .018 .050
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Table 12: Detailed fairness and performance metrics per dataset and demographic group for
RLOO on MedGemma. Results shown for both age groups (al-a4) and gender groups across all
evaluation datasets. Higher values are better for accuracy, TPR, and F1; lower values are better for
FPR and FDR.

| Performance Metrics |  Fairness Metrics | Disparity Metrics
Dataset Group
‘Acc F1 TPR FPR‘FDR OAcc OF1 OTPR ‘AACC AF1 ATPR AFPR
Age Groups
al 900 .533 .600 .082|.185
a2 817 363 429 .110] .241
ChexPert a3 810 351 404 1221 307 .077 .091 .090 | .189 .193 .196  .100
a4 J11 339 432 183 | .378
al 933 316 .333 .333|.033
a2 938 .183 .195 .195] .628
HAM10000 a3 800 199 235 187 | 440 110 .065 .058 | .228 .139 .138 147
a4 710 176 .257 .187 | .367
al 987 .497 .500 .500 | .007
a2 989 497 .498 .500 | .005
ISIC2020 a3 974 493 499 500 013 .047 .012 .001 | .099 .026 .002 .000
a4 .890 471 .500 .500 | .055
al 875 462 .429 .000 | .000
a2 763 353 .395 .176| .637
PAD-UFES a3 750 203 316 174 | 582 059 118 .078 | .123 259 172 .176
a4 157 234 257 .162 | 453
al 881 .741 723 277 .236
Hemorrhage a2 .856 .615 .603 .382|.366 .081 .078 .068 | .150 .142 .120 .115
a3 730 .598 .608 .392 | .204
al .807 .138 .200 .197 | .294
. a2 878 .167 .200 .198 | .587
VinDr a3 847 155 197 200 657 067 .152 151 | .155 .319 .303  .081
a4 722 458 .500 .278 | .152
Gender Groups
Female |.786 .416 .497 .133|.330
ChexPert Male | 816 308 352 111 | 284 .022 .076 .102 | .031 .108 .145 .022
Female | .880 .225 .232 .186 | .483
HAM10000 Male |.853 226 238 189 | 397 .019 .001 .004 | .027 .001 .006  .003
Female | .982 .495 .498 .500 | .008
ISIC2020 Male | 980 495 499 500 | 009 .002 .0004 .0001| .002 .001 .0001 .000
Female | .800 .259 .335 .163|.337
PAD-UFES Male |783 198 302 .183 | .600 012 .043 .023 | .017 .061 .032 .021
Female | .889 .709 .658 .342|.059
Hemorrhage Male |.828 639 623 369 | 329 043 .049 .025 | .061 .069 .035 .027
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Table 13: Detailed fairness and performance metrics per dataset and demographic group for
GRPO on MedGemma. Results shown for both age groups (al-a4) and gender groups across all
evaluation datasets. Higher values are better for accuracy, TPR, and F1; lower values are better for
FPR and FDR.

| Performance Metrics |  Fairness Metrics | Disparity Metrics
Dataset Group
‘Acc F1 TPR FPR‘FDR OAce OF1 O‘TPR‘AACC AF1 ATPR AFPR
Age Groups
al .893 318 .342 .038|.092
a2 814 296 .279 .059 | .174
ChexPert a3 824 283 248 052 | 159 .084 .015 .040 | .202 .035 .093 .050
a4 .691 .302 .306 .088 | .211
al 918 .383 .369 .279 | .252
a2 943 262 .248 .177 | .425
HAM10000 a3 802 222 249 187 | 553 .108 .086 .057 | .233 .198 .120 .103
a4 710 .185 271 185 .498
al 983 495 .496 .500 | .007
a2 988 .496 .497 .500 | .505
ISIC2020 a3 974 564 536 462 | 012 .048 .041 .020| .102 .096 .040 .039
a4 .886 .468 .495 .500 | .056
al 875 462 .429 .000 | .000
a2 779 385 421 .163 | .600
PAD-UFES a3 751 190 287 179 | 598 .059 .130 .092 | .125 272 .179 .179
a4 750 .220 .249 171 | .230
al .858 721 .692 .236| .247
Hemorrhage a2 .836 .600 .579 .340|.376 .036 .062 .057 | .071 .121 .113 105
a3 787 .679 .650 .259 | .150
al .804 243 288 .177|.553
. a2 .841 234 267 .189|.764
VinDr a3 808 195 219 .188 | 796 .064 .022 .031| .146 .048 .069 .023
a4 .694 238 .278 .200 | .458
Gender Groups
Female |.779 .320 .290 .071] .281
ChexPert Male | 824 253 231 051 | 234 .032 .047 .042| .045 .067 .059 .020
Female | .885 .262 .261 .178|.386
HAM10000 Male | 854 240 249 186! 593 .022 .015 .008 | .032 .022 .012 .008
Female | .982 .517 .509 .489 | .008
ISIC2020 Male |.979 546 525 472 134 .002 .020 .011| .003 .029 .016 .016
Female |.797 .247 .325 .163|.533
PAD-UFES Male |793 214 316 184 | 392 .003 .023 .006 | .004 .033 .009 .020
Female | .902 .773 .722 .221].130
Hemorrhage Male |814 628 596 310|327 .062 .102 .089 | .088 .144 .126 .090
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Table 14: Detailed fairness and performance metrics per dataset and demographic group for
GRPO with Resampling on MedGemma. Results shown for both age groups (al-a4) and gender
groups across all evaluation datasets. Higher values are better for accuracy, TPR, and F1; lower
values are better for FPR and FDR.

| Performance Metrics|  Fairness Metrics | Disparity Metrics
Dataset Group
‘Acc F1 TPR FPR‘FDR OAcc  OF1 O'TPR‘AACC AF1 ATPR AFPR
Age Groups
al 913 466 .500 .045|.061
a2 .832 .349 389 .072|.202
ChexPert a3 828 319 343 074 | 284 .072 .066 .066| .175 .147 .157  .061
a4 738 .343 400 .106 | .272
al 942 320 .333 .242|.025
a2 922 187 .387 .181|.222
HAM10000 a3 794 200 303 173 | 248 A11 .074 .037 | 236 170 .084 .070
a4 707 151 312 181 | .500
al 987 .497 .500 .500 | .007
a2 991 498 .500 .500 | .005
IS1IC2020 a3 975 494 500 500 | 013 .048 .013 .000| .101 .027 .000 .000
a4 .890 471 .500 .500 | .055
al 813 417 .357 .000 | .000
a2 .821 397 449 .137|.163
PAD-UFES a3 771 180 261 1791 355 .024 115 .085| .050 .237 .187 .184
a4 783 250 281 .184 | .364
al .828 453 484 .516 | .575
Hemorrhage a2 873 .576 561 .439|.345 .110 .091 .041| .210 .178 .077 .077
a3 .663 .399 .500 .500 | .169
al 807 172 221 .193| .443
. a2 871 .184 241 .197| .622
VinDr a3 840 195 234 195! 626 .064 .035 .051| .149 .078 .112 .030
a4 722250 333 222 .133
Gender Groups
Female|.810 .410 .435 .068|.198
ChexPert Male |.831 288 315 075! 203 .015 .086 .085| .021 .121 .121 .007
Female | .869 .199 .288 .164 | .430
HAM10000 Male |.845 220 316 .170| 223 .017 .015 .020| .025 .021 .028 .006
Female | .984 .496 .500 .500 | .008
ISIC2020 Male | 981 495 500 500 | .009 .002 .0004 .000 | .003 .001 .000 .000
Female |.775 .238 .336 .178 | .277
PAD-UFES Male | 737 181 301 .180 | 544 .027 .040 .025| .039 .057 .035 .002
Female | .838 .456 .500 .500 | .081
Hemorrhage Male | 819 511 521 479 | 424 .013 .039 .015| .018 .055 .021 .021
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Table 15: Detailed fairness and performance metrics per dataset and demographic group for
GRPO with Group DRO on MedGemma. Results shown for both age groups (al-a4) and gender
groups across all evaluation datasets. Higher values are better for accuracy, TPR, and F1; lower
values are better for FPR and FDR.

| Performance Metrics | Fairness Metrics | Disparity Metrics
Dataset Group
|Acc F1 TPR FPR|FDR oacc o ok |AAcc AF1 ATPR AFPR
Age Groups
al 913 .380 .400 .030|.136
a2 .848 .390 402 .049 | .168
ChexPert a3 836 330 341 065! 228 .064 .029 .032 | .157 .060 .070 .062
a4 756 .390 411 .093 | .225
al 945 509 467 273 .028
a2 930 .239 241 .194 | .559
HAM10000 a3 801 215 245 184 512 A16 162 (116 | .245 373 246 .088
a4 700 136 .221 .194 | .374
al 987 .497 .500 .500 | .007
a2 990 .497 .500 .500 | .005
ISIC2020 a3 975 494 500 500 | 013 .048 .013 .0002| .100 .027 .0003 .000
a4 .890 471 .500 .500].055
al 875 .462 .429 .000 | .000
a2 782 354 454 .149 | .704
PAD-UFES a3 764 176 309 175 | 434 065 .149 .104 | .154 315 .223 .196
a4 721 147 231 .196 | .142
al .861 735 .749 .251| .276
Hemorrhage a2 862 .681 .686 .314].323 .030 .035 .032 | .053 .066 .063 .063
a3 809 747 725 275 .141
al 811 175 225 .192 | .227
. a2 876 .173 218 .198| .255
VinDr a3 847 186 233 196 | 246 .080 .029 .054 | .182 .063 .115 .085
a4 .694 235 333 .278|.152
Gender Groups
Female | .815 .397 411 .064 | .226
ChexPert Male |.845 315 328 055! .180 .021 .059 .058 | .030 .083 .082 .008
Female | .878 .245 .245 .181|.500
HAM10000 Male |.850 224 237 .186| 502 .020 .015 .006 | .028 .021 .008 .004
Female | 983 496 .500 .500 | .008
ISIC2020 Male | 981 495 500 500! 009 .002 .0003 .0003| .002 .0004 .0004 .000
Female | .800 .208 .321 .178| .443
PAD-UFES Male | 830 201 331 171 238 .021 .005 .007 | .030 .007 .010 .007
Female | .923 .833 .784 .216 | .080
Hemorrhage Male |.832 690 687 313! 306 .065 .101 .069 | .091 .143 .098 .098

30



Under review as a conference paper at ICLR 2026

Table 16: Detailed fairness and performance metrics per dataset and demographic group for
FairGRPOyp on MedGemma. Results shown for both age groups (al-a4) and gender groups
across all evaluation datasets. Higher values are better for accuracy, TPR, and F1; lower values are
better for FPR and FDR.

| Performance Metrics|  Fairness Metrics | Disparity Metrics
Dataset Group
| Acc F1 TPR FPR|FDR o0scc o orer |AAce AF1 ATPR AFPR
Age Groups

al .860 .342 475 .096 | .207
a2 .800 .366 .387 .146|.523

ChexPert 23 709 379 390 162 | 544 057 .037 .044| .138 .087 .088 .101
a4 722 430 449 .198 | .393
al .897 301 296 .255|.694
a2 2905 .260 .225 .151|.597

HAM10000 a3 814 270 264 134| 528 .077 035 .029| .163 .084 .071 121
a4 741 216 255 144 .635
al 980 .493 493 .500 | .007
a2 988 .496 .497 .500| .505

ISIC2020 23 '973 559 535 463 | 262 048 .039 .020| .102 .091 .042 .038
a4 .886 .468 .495 .500 | .056
al .938 .500 .500 .000 | .000
a2 795 408 424 142 .580

PAD-UFES a3 764 221 265 152 | 747 078 117 103 | .174 279 235 152
a4 797 352 333 137 .612
al 821 .694 722 270 .321

Hemorrhage a2 .835 .655 .665 .324|.352 .016 .046 .033| .031 .092 .059 .066
a3 803 747 725 259 | .183
al 794 191 219 181 .429

. a2 .820 .198 .199 .191|.794

VinDr a3 800 196 201 187 | 606 .043 133 202 | .098 .270 412 .052
a4 722 460 .611 .233|.292

Gender Groups

Female|.767 .397 .413 .180] .513

ChexPert Male | 813 360 360 138 541 032 .026 .037| .046 .037 .053 .042
Female | .871 279 .278 .132].509

HAM10000 Male | 845 255 244 136 588 .019 .017 .024 | .027 .024 .034 .004
Female | .980 .515 .508 .489 | .408

ISIC2020 Male |.979 545 525 473 | 209 .0005 .021 .012| .001 .030 .017  .017
Female | .823 .306 .377 .122] .685

PAD-UFES Male | 795 231 315 159 | 569 .020 .054 .044 | .028 .076 .062 .038
Female | .906 .815 .795 .205|.160

Hemorrhage Male | 802 662 663 319 338 074 .109 .094 | .104 .154 133 115
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Table 17: Detailed fairness and performance metrics per dataset and demographic group for
FairGRPO on MedGemma. Results shown for both age groups (al-a4) and gender groups across
all evaluation datasets. Higher values are better for accuracy, TPR, and F1; lower values are better
for FPR and FDR.

| Performance Metrics|  Fairness Metrics | Disparity Metrics
Dataset Group
‘Acc F1 TPR FPR‘FDR OAcc  OF1 O'TPR‘AACC AF1 ATPR AFPR
Age Groups
al 900 .359 .388 .045].063
a2 828 .354 351 .063|.224
ChexPert a3 833 328 330 065 | 239 .062 .019 .035| .151 .047 .076 .056
a4 749 375 406 .101 | .332
al 933 315 .327 .273|.028
a2 941 251 .238 .191 | .227
HAM10000 a3 799 196 241 191 | 236 114 .074 .043 | 238 .171 .088 .083
a4 703 144 242 190 | .312
al 987 .497 .500 .500 | .007
a2 991 498 .500 .500 | .005
IS1IC2020 a3 975 494 500 500 | 013 .048 .013 .000| .101 .027 .000 .000
a4 .890 471 .500 .500 | .055
al 875 462 .429 .000 | .000
a2 846 .507 515 118 .214
PAD-UFES a3 825 289 351 128 311 .034 111 .092 | .082 218 .211 .164
a4 793 299 304 .164 | .203
al 854 728 745 255 .286
Hemorrhage a2 .840 .631 .634 .366|.372 .023 .062 .059| .045 .116 .111 11
a3 809 747 725 275 .141
al .807 .137 .200 .200 | .096
. a2 879 .164 .200 .200 | .061
VinDr a3 852 155 200 200 | 074 .094 .037 .067| .212 .086 .133 133
a4 .667 .222 333 333 .167
Gender Groups
Female|.810 .399 .406 .070|.297
ChexPert Male | 835 293 292 060 | 214 .018 .075 .080| .026 .106 .113  .010
Female | .883 .240 .254 .187|.223
HAM10000 Male |.851 211 236 .192| 229 .022 .021 .013| .032 .030 .018 .004
Female | .984 .496 .500 .500 | .008
ISIC2020 Male | 981 495 500 500 | .009 .002 .0004 .000 | .003 .001 .000 .000
Female | .831 .328 .384 .138 | .286
PAD-UFES Male | 812 286 387 .144| 325 .014 .030 .002 | .019 .042 .003 .006
Female | .889 .758 .722 .278 | .173
Hemorrhage Male |84 678 676 324 320 .046 .057 .032| .065 .080 .045 .046
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Table 18: RQ1: Fairness and performance metrics comparison against RL and fairness miti-
gation baselines. For fairness metrics, lower values are better and are indicated by |. For perfor-
mance and combined metrics, higher values are better and are indicated by 1. Bold values indicate
the best result in each column for each model separately. FairGRPOy p is the ablation of Fair-
GRPO where the model does not have access to the ground truth demographic information, and
the groups are inferred entirely via clustering. We release MedGemma trained with FairGRPO as
FairMedGemma. Results show mean =+ std over 4 training runs. Detailed per dataset metrics are

included in App. Tab.

Fairness Metrics

Training Method
| PPJ EOD | FPRpirr | or | AF1 ] Oace | AAcc |
Qwen-2.5-VL-7B
Re++ (Hu{2025) 16.66 £ 2.11 6.66 £1.59 637 +£0.20 .0322 £.0000 .0647 +.0004 5.06 +0.49 10.33 £+ 1.01
RLOO (Ahmadian et al..|2024) 2234 £0.86 6.67+0.13 5.68£0.80 .0330£.0006 .0693 +.0017 4.86 £ 0.33 10.00 £ 0.79
GRPO (Shao et al..[2024) 1790 £9.21 793 £1.64 4.85+0.34 .0387 +.0107 .0821 £.0215 4.85+0.24 9.92 +0.69
GRPO+RS (Puyol-Anton et al.{2021) | 19.62 £7.22 6.85+0.80 6.44 £ 1.39 .0319 £.0009 .0628 +.0037 5.50£0.17 11.26 £0.34
FairGRPO [1542£1.95 5.62+0.10 5.00+0.87 .0254+.0035 .0522+.0099 4.42+0.01 8.95+0.03
MedGemma-4B
Re++ (Hu{2025) 20.30 £0.97 778 £1.37 5.69 £0.10 .0469 +.0069 .0898 +.0191 4.44 £0.17 8.99 +0.25
RLOO (Ahmadian et al./[2024) 2045 +4.57 10.35+0.03 551 +£0.01 .0592+.0011 .1173 £.0004 4.29 +0.07 8.79 £ 0.06
GRPO (Shao et al..[2024) 20.89 £2.16 6.30 +0.25 526 £0.62 .0387 £.0045 .0753 £.0059 4.19+£0.03 8.57 +0.03
GRPO+RS (Puyol-Anton et al.{2021) | 24.55 £ 1.12 6.97 £ 0.44 4.78 £1.84 .0422 +.0017 .0834 +.0003 4.20 £0.21 8.77 +0.54
GRPO+DRO (Sagawa et al.{2019) 1820 £3.06 7.524+0.22 5.68 £0.98 .0456 +.0013 .0895 4+ .0034 4.55+0.26 9.39 +0.61
FairGRPOnN p 24.874+040 9.09+349 635+0.93 .0484 £.0088 .0919 +.0210 4.18 £0.80 8.36 £ 1.62
FairGRPO (FairMedGemma) 1295 £ 1.82 6.84+024 5.53+0.29 .0379 +.0005 .0724 +.0004 4.11 +0.04 8.53 +0.11
Training Method | Perf. Metrics | Combined
‘ Acc T F11 ‘ Accgs T Flgs T
Qwen-2.5-VL-7B
Re++ (Hu.[2025) 7531 +£1.82 2599 4 .0065 | 71.69 + 1.39 2518 £+ .0063
RLOO (Ahmadian et al..2024) 7822 £0.06 .2523 £.0013 | 74.59 £0.18 .2443 £ .0014
GRPO (Shao et al.[2024) 78.40 £ 0.69 .2601 4 .0131 | 76.21 £ 0.91 .2425 4+ .0017
GRPO+RS (Puyol-Anton et al.,|2021} | 75.61 +2.96 .2580 4 .0021 | 71.67 +2.92 .2500 £ .0018
FairGRPO | 78.52 + 0.31 .2657 &.0036 | 77.14 + 0.29 .2602 + .0020
MedGemma-4B
Re++ (Hu, 2025} 78.76 £ 0.22 3105 £ .0179 | 75.41 £ 0.09 .2966 + .0191
RLOO (Ahmadian et al..2024) 79.76 £0.16 .3237 £.0019 | 76.48 £ 0.20 .3056 £ .0021
GRPO (Shao et al.[2024) 7938 £ 0.15 3134 4+ .0118 | 76.19 £ 0.12 .3017 £ .0101
GRPO+RS (Puyol-Anton et al.|[2021) | 79.02 + 0.15 .2825 4 .0052 | 75.84 £ 0.30 .2711 % .0046
GRPO+DRO (Sagawa et al./[2019) 80.17 £ 0.31 3146 £ .0177 | 76.69 £ 0.48 .3009 £ .0173
FairGRPOy p 78.82 £0.58 .3484 +£.0041 | 75.67 £ 1.14 .3323 £.0011
FairGRPO (FairMedGemma) 80.40 £+ 0.03 .3275 £ .0007 | 77.23 + 0.01 .3155 + .0006

Table 19: RQ1: Fairness and performance metrics for CheXpert dataset. For fairness metrics,
lower values are better and are indicated by |. For performance and combined metrics, higher values
are better and are indicated by 1. Bold values indicate the best result in each column.

- | Fairness Metrics | Perf. Metrics | Combined
Training Method
PP EOD | FPRpir ! o1 4 AF1] Oace 4 AAcc| | Acct F11 | Accgs T Flgs T
Qwen-2.5-VL-7B
Re++ 5.13+2.55 3.74+1.47 1.1840.35 .0148+.0082 .0282+.0142 5.86+0.36 11.9410.72 | 77.30+0.30 1149+ 0071 | 75.1840.35 1257+ 0095
RLOO 20.3247.47  6.2544.87 4.0911.37 025910164 052940388 5.42+0.07 10.9010.07 | 77.7410.73 146710100 | 75.6710.57 16214 0215
GRPO 12.9941.45 4.49+0.08 4.97T+0.03 019410042 .0386+.0028 5.23+1.11 10.2542.60 | 77.79+0.65 -1443+.0003 | 75.56+0.87 1572+ 0074
GRPO+DRO 11314286 3.91:1.31 1.80+0.00 017740034 -0339+.0034 6.38+0.31 13.4540.67 | 76.9110.41 10524 0042 | 74.95+0.50 1168+ 0061
FairGRPO 6.10+1.04  7.80+379 3.96+0.10 .0234+.0051 .0439+.0152 4.99+0.07 9.60+0.28 | 78.62+0.27 137240003 | 76.2T£0.20 .1510+.0110
MedGemma-4B
Re++ 23.93+12.50 9.09+1.74 4.6141.52 .04804 0020 0801+ 0051 3.86+2.46 8.37+4.03 | 78.5342.18 2640+ 0083 | 77.10+2.66 -2880-+.0069
RLOO 9.5443.39 17.6240.81 5.5140.85 .0817+.0020 .1465+.0060 4.79+0.25 10.4410.78 | 81.85+0.15 3354+ 0046 | 80.57+0.06 -3827+.0051
GRPO 5.61+3.84 8.32+0.90 3.1240.51 .0359+.0071 .0613+.0147 5.2210.82 11.1841.67 | 82.2240.53 .2669+.0038 | 80.73+0.55 29884+ 0081
GRPO+RS 13.4842.94 12.3942.10 3.76+0.49 .0633+.0175 11414 0283 4.4340.15 9.81+0.01 |83.64+0.31 3191+ 0010 | 82.5540.21 3607+ 0022
GRPO+DRO 8.41+220 9.56+2.72 3.32+0.31 .0587+.0212 .1030+.0444 4.6210.47 10.06+1.00 | 83.85+0.80 -3230+.0032 | 82.90+0.72 3664+ 0032
FairGRPOx p 20.4243.13 7.88+1.17 6.8910.37 03214 0008 058340055 4.70+0.35 9.89+0.08 |81.3041.02 34454 0093 | 79.9441.00 3772+ 0022
FairGRPO 17.69+0.00  9.75+0.38 3.7lto.55 .0501+.0041 .0836+.0101 4.0440.07 8.90+0.11 |83.85+0.22 .3220+.0090 | 82.64+0.22 .3605+.0151
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Table 20: RQ1: Fairness and performance metrics for HAM10000 dataset. For fairness metrics,
lower values are better and are indicated by |. For performance and combined metrics, higher values
are better and are indicated by 1. Bold values indicate the best result in each column.

Training Method | Fairness Metrics | Perf. Metrics | Combined
raining
‘ PP | EOD | FPRpigr | or | AF1 ] Oace | AAcce | ‘ Acc T F171 ‘ Accgs T Flgs T
Qwen-2.5-VL-7B
Re++ 22.9040.2s 8.56143.49 4.7211.63 050540045 113540000 5.97+1.49 12.2842.31|84.5942.76 21674 0216 | 83.2143.06 2178+ 0150
RLOO 44.69410.42 5.6440.08 5.8140.01 0469+ 0020 10544 0045 6.96+0.13 13.77+0.01 | 86.57+0.04 19744 0000 | 85.4310.07 2022+ 0012
GRPO 35.65+1.72 7.25+0.13 7.08+0.00 .0514+.0002 -1149+.0013 6.87+0.06 13.75+0.12 | 86.55+0.10 -1860+.0137 | 85.36+0.12 -1862+.0004
GRPO+DRO 36.69+9.50 8.37+225 6.111163 04714 0041 -0999+.0002 5.58+1.00 11.03+3.71 | 83.54+4.18 2140+ 0253 | 82.49+4.08 2159+ 0256
FairGRPO 26.56+8.25 8.2141.08 5.98+3.16 03254 0132 .0639+.0216 5.92+0.42 11.6441.12 | 86.67+0.64 2738+ 0006 | 85.71+0.44 25814 0061
MedGemma-4B
Re++ 244245585 6.33+0.30 6.2241.82 0417+ 0037 .0958+.0004 4.66+2.10 9.46+3.08 |85.50+1.66 217240138 | 84.5541.52 22204 0104
RLOO 30.65+4.83 6.08+1.50 6.79+0.96 .0318+.0019 .0708+.0008 6.51+0.04 12.81+0.00 | 86.7210.11 2319+ 0065 | 85.68+0.10 -2288+.0004
GRPO 334141132 6.1040.71 6.97+2.05 04554 0073 099240151 6.49+0.03 12.9340.41 | 86.86+0.02 2492+ .0020 | 85.73+0.14 24914 0111
GRPO+RS 29.83+6.08 6.194+0.89 5.2442.06 05014 0083 111140223 6.8140.55 13.65+0.01 | 86.07+0.57 .1856+.0373 | 85.09+0.25 18984 0313
GRPO+DRO 22424599 8.89+5.37 5.98+1.88 0655+ 0326 145540727 6.72+0.09 13.36+0.43 | 86.4510.19 22854 0080 | 85.46+0.10 2394+ 0215
FairGRPONp 13.9542.36 7.2312.50 5.57+0.04 .0383+.0174 070240225 5.05+0.36 9.96+0.65 |85.55410.27 2743+ 0136 | 84.6010.38 2662+ 0027
FairGRPO 23.80+13.18 6.0310.97 5.76+£1.99 04454 0038 0978+ 0036 6.86+0.04 13.5510.14 | 86.68+0.03 -2170+.0096 | 85.5610.01 2166+ 0134

Table 21: RQ1: Fairness and performance metrics for ISIC2020 dataset. For fairness metrics,
lower values are better and are indicated by |. For performance and combined metrics, higher values
are better and are indicated by 1. Bold values indicate the best result in each column.

. Fairness Metrics | Perf. Metrics | Combined
Training
| PPl EOD| FPRpw|  owm ) AFL)L  oaecd  AAcel | Acct FL+ | AccgsT  Flggt
Qwen-2.5-VL-7B
Re++ 21.51423.07 3.10+3.06 3.06+3.00 0196+.0068 041210165 3.04+0.84 6.56+2.03|96.70+2.16 .5205+.0212 | 95.51+2.30 5183+ 0267
RLOO 2.59+0.02  0.58+0.47 0.47+0.67 .0110+.0054 .0222+.0103 2.51+0.08 5.26+0.17 | 98.2010.03 .5004+.0073 | 97.08+0.07 -4957+.0052
GRPO 26.52+33.86 0.0110.02 0.011+0.02 .0066+.0000 -0137+.0000 2.47+0.01 5.17+0.01 | 98.23£0.00 -4955+.0000 | 97-1440.00 4926+ 0000
GRPO+DRO 14.75415.01 5.84+7.91 5.83+7.092 0155+ 0126 034010288 3.29+1.13 7.0012.67 |94.78+4.26 5056+ 0159 | 93.69+4.42 5053+ 0102
FairGRPO 2.59+0.02  0.1240.a7 0.00+0.00 -0068+.0003 -0141+.0006 2.50+0.05 5.23+0.10 | 98.14:+0.14 4950+ 0007 | 97.0410.15 4921+ 0008
MedGemma-4B
Re++ 2.58+0.01  0.49+0.64 0.47+0.67 .0107+.0060 -0216+.0114 2.46+0.00 5.14+0.01 [ 98.24£0.03 5006+ 0072 | 97.15+0.02 4961+ 0050
RLOO 2.584+0.00 0.14+0.05 0.00£0.00 -0063+.0002 -0132+.0001 2.4120.04 5.05+0.01 |98.10x0.01 4948+ 0000 | 97.02+0.02 4920+ 0001
GRPO 16.79420.30 1.53+1.82 2.80x0.07 018140177 .0369+.0358 2.38+0.17 4.97+0.36 | 97.9540.0s 513440278 |96.9010.02 -5050+.0192
GRPO+RS 2.584+0.00 0.00+0.00 0.00+0.00 -0066+.0000 -0137+.0000 2.47+0.00 5.16+0.00 | 98.24:0.00 4956+ 0000 | 97-141+0.00 4926+ 0000
GRPO+DRO 2.584+0.00 0.0240.03 0.00+0.00 -0065+.0001 .0136+.0001 2.4610.01 5.154+0.03 | 98.2310.01 4955+ 0001 | 97-1410.01 492640000
FairGRPON D 30.7545.81 3.38+0.61 3.26+0.74 029140013 .0570+.0051 2.31+0.13 4.91:0.31 |97.89+0.07 -5433+.0172 | 96.81+0.03 5322+ 0215
FairGRPO 2.5840.00 0.00+0.00 0.00+0.00 0066+ 0000 -0137+.0000 2.47+0.00 5.16+0.00 | 98.2440.00 4956+ 0000 | 97.14+0.00 4926+ 0000

Table 22: RQ1: Fairness and performance metrics for PAD-UFES-20 dataset. For fairness
metrics, lower values are better and are indicated by |. For performance and combined metrics,
higher values are better and are indicated by 1. Bold values indicate the best result in each column.

- | Fairness Metrics | Perf. Metrics | Combined
Training Method
| PPy EOD | FPRpir | or1 | AF1 | OAce & AAcc| | Acct F11 | Accss® Flgs T
Qwen-2.5-VL-7B
Re++ 34.7641.25 13.0145.60 10.1440.71 .0589+.0255 123140543 3.7310.78 7.58+1.09 | 77.9610.07 -3129+.0035 | 79.4240.20 31214 0122
RLOO 36.69+0.65 16.7441.42 10.1240.27 .0851+.0019 .1788+.0031 6.15+0.27 12.1340.00 | 77.1240.37 .26724.0078 | 79.97+0.31 2788+ 0081
GRPO 37464633 16.50+4.29 13.8946.40 .0826+.0120 .1686+.0258 4.90+1.22 10.1842.89 | 76.70+0.67 .26144.0309 | 78.72+0.96 2684+ 0241
GRPO+DRO 37384246 15.5642.88 9.36+1.06 .0680+.0200 -1346+.0330 4.2010.03 8.74x0.22 | 78.2240.30 .3271+.0088 | 79.9410.69 3229+ 0142
FairGRPO 24.5049.47 8.261+3.84 10.1441.15 .0516+.0031 -1075+.0115 1.92+0.30 4.09+0.46 |80.31+2.52 29954 0547 | 78.7012.74 2923+ 0486
MedGemma-4B
Re++ 39.59+6.57 15.7542.68 10.5810.65 .1040+.0202 1891+ 0306 4.38+0.41 8.26+0.77 | 79.1611.55 3089+ 0302 | 80.53+1.21 3153+ 0466
RLOO 38.934856 9.861040 9.9240.11 .07784.0041 153810086 3.34+0.27 6.88+0.12 |77.4310.52 26884 0088 | 79.4540.74 27944 0121
GRPO 36.9440.17 9.57+024  9.50+0.66 .0774+.0006 -1580+.0078 3.28+0.28 6.80+0.53 |76.78+£0.48 24274 0220 | 78.9940.28 2578+ 0206
GRPO+RS 29.68+2.63 13.93+3.97 16.604+10.32 .0733+.0061 1478+ 0011 3.13+0.81 6.4942.03 |76.9143.92 25304 0316 | 76.2441.07 2498+ 0148
GRPO+DRO 38.00+10.53 11.6240.03 13.914533 .0713+ 0080 148140176 3.65+0.02 7.60+226 |77.4610.26 2408+ 0024 | 79.3440.06 2394+ 0077
FairGRPOnNp 45171288 12.9541269 8.8li0.03 .08081.0062 -1643+.0185 3.89+1.30 8.121278 | 78.77+0.70 2950+ 0340 | 80.90+1.02 2996+ 0281
FairGRPO 18.0040.77 11414104 8.6110.16 07341 0040 134910070 2.4410.06 5.0210.02 |83.5110.00 3620+ 0013 |82.7440.00 3448+ 0044

Table 23: RQ1: Fairness and performance metrics for Hemorrhage dataset. For fairness met-
rics, lower values are better and are indicated by |. For performance and combined metrics, higher
values are better and are indicated by 1. Bold values indicate the best result in each column.

- | Fairness Metrics | Perf. Metrics | Combined
Training Method
| PP EOD|  FPRpi | or1 AF1] Ohce 4 AAce| | Acct F11 | Accgs? Flgs 1
Qwen-2.5-VL-7B
Re++ 14944012 9.354558 9.3545.58 055710345 .0890+.0574 4.201042 7.29+04s |75.8343.71 48224 0246 | 75.2842.04 49264 0332
RLOO 13.23110.27 1.74x041  1.74x0.41 021310049 -0397x.0079 6.51s1.30 12.2242.25|81.2610.41 448340013 | 79.5310.45 44201 0018
GRPO 12.58+7.06 3.T4+144 3.T4xt1.4a .0302+.0260 .0495+.0455 5.48+0.97 9.90+1.27 |80.78+2.75 .4805+.0314 | 79.281+2.79 4811+ 0340
GRPO+DRO 16.3845.61 5.96+1.93 5.9641.03 .0407+.0056 0639+ 0146 6.63+£1.20 12.1241.03|79.7142.06 .4886+.0167 | 78.52+1.091 4923+ 0160
FairGRPO 34.02421.84 1.5942.00 1.59+42.00 .0263+.0006 .0501+.0212 6.1440.00 10.9140.08 | 83.30+0.00 -50114 o660 | 81.8440.30 4970+ 0685
MedGemma-4B
Re++ 21.3843.64 6.354118  6.00+40.94 .06224.0173 .1067+.0a56 5.084+0.20 8.27+0.85 |83.69+0.27 63824 0462 |83.9240.14 64234 0625
RLOO 20.79+1.64 8.61i1.25 8.30+1.60 .0643+.0013 116640152 6.17+0.03 10.80+0.32 | 84.614+0.62 6513+ 0026 | 84.1240.11 65324 0136
GRPO 17424531  9.6613.24 10.2240.71 .0690+ 0182 11724 0220 5.18+0.36 8.65+1.00 |83.7440.48 6370+ 0317 |84.0810.21 65084 0462
GRPO+RS 36.4911.33 11.8310.20 4.8840.04 066110017 118340020 6.1410.05 11.3210.14 | 82.6210.41 50224 0023 | 81.0410.33 4808+ 0017
GRPO+DRO 19.2141.70  7.31+1.03 731103 072110058 .1132+.0126 4.33+050 6.45+1.08 | 84.5610.06 -7238+.0071 | 85.62+0.62 -7460+.0066
FairGRPOy p 17154027 10.06+0.64 9.2040.26 .0837+.0080 1378+ 0211 4.71+0.33 7.0940.44 |81.4141.58 6957+ 0027 | 82.87+1.13 .7208+.0035
FairGRPO 18.0140.12 7.33+068 7.3310.68 .0539+ 0078 0909+ 0103 3.54+0.13 5.8810.53 | 84.08+0.27 6951+ 0008 | 84.61+0.08 7083+ 0025
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Table 24: RQ1: Fairness and performance metrics for VinDr dataset. For fairness metrics, lower
values are better and are indicated by |. For performance and combined metrics, higher values are
better and are indicated by 1. Bold values indicate the best result in each column.

. | Fairness Metrics | Perf. Metrics | Combined
Training Method
| ppy EOD| FPRpir)  omd AF1 | oael  AAccl | Acct F11 | Acces?  Flgs?
Qwen-2.5-VL-7B
Re++ 17414438  8.87+61a 16.161870 .02611.0030 058110016 12.5812.80 26.6415.08 |75.5146.11 1676+ 0447 | 68.59+3.80 1530+ 0321
RLOO 29.5540.8¢ 10914342 15.38+2.50 .03144 0072 0742+ 0162 10.68+1.82 23.7643.75 | 86.62+40.16 1704+ 0051 | 79.25+1.16 .1705+.0026
GRPO 31914214 13.3310.00 12.50+1.63 .0389+.0040 .0918+.0087 9.33+0.00 20.89+0.19 |86.58+0.21 1689+ .0030 | 80.0140.10 -17454+.0030
GRPO+DRO 20.81415.05 8.294230 16.0010.52 03454+ 00s7 .0730+.0180 12.431280 26.471a.88 | 76.77+8.04 1625+ 0524 | 69.6910.11 1527+ 0542
FairGRPO 14.1945.07 13.3540.00 13.36+0.04 .0369+ 0002 .0856+.0000 9.44+0.01 21.20+0.01 |86.82+0.02 1608+ 0004 | 80.1240.02 169640003
MedGemma-4B
Re++ 30.24416.40 16.44411.83 11.9410.11 .0620+.0433 135341031 10.6110.60 23.4610.86 |85.02+40.87 1918+ 0120 | 78.0540.92 2096+ 0052
RLOO 40.63+14.04 30.16+0.22 8.03+0.06 -1524+.0001 .3201+.0012 6.79+0.08 15.58+0.06 |86.73+0.15 1645+ 0023 | 81.44+0.10 2297+ 0003
GRPO 36.08+42.85 8.90+278  4.231271 .0250+.0044 054240088 6.77+0.56 15.4241.00 | 83.80+1.26 -2190+.0065 | 79.261+0.81 -2323+.0065
GRPO+RS 59.80+14.91 11431035 2.97+0.01 .0357+.0017 0784+ 0001 6.44+0.03 14.9310.06 [86.06+0.0s -1850+ 0055 | 81.1040.11 20414+ 0056
GRPO+DRO 11434150 11.371025 5.841381 .03321.0056 -0725+.0137 7.29+0.95 16.7242.03 |86.48+0.06 1863+ 0024 | 80.9810.38 .1940+ 0024
FairGRPOnp | 46.67+12.41 22.13426.04 10.6947.72 075140815 .1555+.1614 8.60+6.11 18.55+12.35 |81.8440.44 2128+ 0262 | 76.6542.52 24284 0262
FairGRPO 10.6110.00 13.3310.00 13.33x0.00 -0370+.0000 -0856+.0000 9-44x0.00 21.2110.00 |86.8240.00 1606+ 0000 | 80.12+0.00 1694+ 0000
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