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ABSTRACT

Medical artificial intelligence systems have achieved remarkable diagnostic capa-
bilities, yet they consistently exhibit performance disparities across demographic
groups, causing real-world harm to underrepresented populations. While re-
cent multimodal reasoning foundation models have advanced clinical diagnosis
through integrated analysis of diverse medical data, reasoning trainings via rein-
forcement learning inherit and often amplify biases present in training datasets
dominated by majority populations. We introduce Fairness-aware Group Rel-
ative Policy Optimization (FairGRPO), a hierarchical reinforcement learning
approach that promotes equitable learning across heterogeneous clinical popula-
tions. FairGRPO employs adaptive importance weighting of advantages based on
representation, task difficulty, and data source. To address the common issue of
missing demographic labels in the clinical domain, we further employ unsuper-
vised clustering, which automatically discovers latent demographic groups when
labels are unavailable. Through comprehensive experiments across 7 clinical diag-
nostic datasets spanning 5 clinical modalities across X-ray, CT scan, dermoscropy,
mammography and ultrasound, we demonstrate that FairGRPO reduces predictive
parity by 27.2% against all vanilla and bias mitigated RL baselines, while improv-
ing F1 score by 12.49%. Furthermore, training dynamics analysis reveals that
FairGRPO progressively improves fairness throughout optimization, while base-
line RL methods exhibit deteriorating fairness as training progresses. Based on
FairGRPO, we release FairMedGemma-4B, a fairness-aware clinical VLLM that
achieves state-of-the-art performance while demonstrating significantly reduced
disparities across demographic groups. Our code, models, and fairness evaluation
framework are publicly available at this anonymous link.

1 INTRODUCTION

Medical artificial intelligence (AI) has demonstrated strong capabilities in processing vast amounts
of clinical data with both accuracy and efficiency (Rajpurkar et al., 2022; Shuja et al., 2024). These
systems have shown particular promise in detecting subtle health indicators that may escape human
observation, substantially enhancing diagnostic precision while reducing healthcare costs (Dai et al.,
2025a; Sun et al., 2022). Recent advances in vision large language models (VLLMs) have further
expanded these capabilities, enabling integrated analysis across diverse clinical modalities including
imaging, time series, and textual records (Cui et al., 2024; Dai et al., 2025b; Zhang et al., 2024; Zhu
et al., 2024).

However, beneath these impressive achievements lies a fundamental challenge that undermines the
equitable deployment of AI in healthcare. Medical AI systems can consistently exhibit troubling per-
formance disparities across demographic subpopulations. Studies have revealed that clinical datasets
are overwhelmingly skewed toward majority groups, whether defined by race, gender, age, or so-
cioeconomic status (Larrazabal et al., 2020; Obermeyer et al., 2019; Liang et al., 2021; Thakur et al.,
2023). State-of-the-art (SOTA) classifiers demonstrate significant true positive rate (TPR) dispari-
ties across all clinical tasks, datasets, and demographic subgroups (Seyyed-Kalantari et al., 2021a;b).
Such systematic biases not only perpetuate healthcare inequalities but also erode trust in AI-assisted
diagnosis, particularly among underserved communities who stand to benefit most from improved
healthcare access (Sagona et al., 2025).
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During training, conventional optimization approaches naturally favor well-represented populations,
as they contribute more gradient updates and dominate the loss landscape (Stiglic et al., 2020; Ku-
marakulasinghe et al., 2020). This creates a pernicious feedback loop: models become increasingly
specialized for majority populations while performance on minority groups stagnates or even de-
grades. Furthermore, the heterogeneous nature of clinical data spanning multiple specialties, modal-
ities, and patient demographics, can exacerbate these disparities as different groups may require
fundamentally different diagnostic considerations (Ghanvatkar & Rajan, 2023; Cui et al., 2023).

Current approaches to mitigating bias in medical AI typically rely on data augmentation, reweighting
schemes, or post-hoc calibration (Teng et al., 2022; Khan et al., 2023; Mehta et al., 2024). How-
ever, the emergence of reasoning-capable vision LLMs introduces unique challenges that existing
methods cannot adequately address. For instance, fairness-aware optimization techniques like group
distributionally robust optimization (DRO) (Sagawa et al., 2019) were designed for discriminative
models with fixed output spaces and cannot be directly applied to the generative, multi-step reason-
ing processes characteristic of modern LLMs. Furthermore, while reinforcement learning (RL) has
revolutionized LLM alignment for helpfulness and harmlessness (Ouyang et al., 2022; Bai et al.,
2022), its application to fairness in medical reasoning remains unexplored. Fairness in medical
settings can be particularly challenging given how disease diagnosis typically relies on the compre-
hensive analysis of and reasoning between multiple symptoms, mismatch in data availability across
different domains (e.g. abundance in X-ray but lacking in ultrasound) and how data collection is
skewed towards those with access to healthcare. The complex interplay between reward modeling,
advantage estimation, and demographic disparities in the context of clinical reasoning presents a
novel optimization challenge that requires fundamentally new approaches.

To close this gap, we introduce Fairness-aware Group Relative Policy Optimization (Fair-
GRPO): a hierarchical RL approach that promotes equitable learning across heterogeneous clinical
populations. Our work makes two primary contributions:

1. We propose one of the first fair RL algorithm, FairGRPO, that employs adaptive importance
weighting based on demographic representation and task difficulty, ensuring that minority groups
equitable learning signals. Our empirical evaluation demonstrates that FairGRPO consistently
improves both overall performance and fairness metrics. Specifically, FairGRPO reduces pre-
dictive parity by 27.2% against all vanilla and bias mitigated RL baselines, while improving F1
score by 12.49%. Furthermore, training dynamics analysis reveals that FairGRPO improves fair-
ness of the model during the training process, while other RL algorithms exhibit a deterioration
of fairness as the training progresses.

2. Based on FairGRPO, we train and release FairMedGemma-4B, a fairness-aware vision clinical
model based on MedGemma that excel across 7 clinical datasets spanning 5 clinical modalities.
FairMedGemma not only achieves SOTA performance on standard benchmarks but also demon-
strates significantly reduced disparities across demographic groups, advancing the development
of equitable AI-assisted diagnosis. To the best of our knowledge, FairMedGemma represents
the first publicly available clinical VLLM explicitly optimized for demographic fairness through
reinforcement learning.

Finally, we publicly release our models, training pipeline, and comprehensive fairness evaluation
metrics to facilitate reproducible research in equitable medical AI. By addressing fairness as a fun-
damental optimization objective rather than a post-hoc consideration, our work establishes a new
paradigm for developing clinical AI systems that serve all populations equitably.

2 RELATED WORK

Fairness in Unimodal and Multimodal Clinical Diagnosis. While unimodal clinical diagnosis
leverages single data sources (e.g., images (Khan et al., 2023; Mehta et al., 2024) or tabular data
(Dehghani et al., 2024; Röösli et al., 2022)), multimodal methods fuse multiple modalities to learn
richer representations, consistently outperforming unimodal approaches (Liang et al., 2024; Dai
et al., 2025c; AlSaad et al., 2024) across radiology (Yildirim et al., 2024), psychiatry (Lee et al.,
2024; Cheong et al., 2025a), and ophthalmology (Luo et al., 2024). The increasing adoption of
foundation models in healthcare (Dai et al., 2025c; Jin et al., 2024; Luo et al., 2024) amplifies
fairness challenges, as integrating multiple knowledge sources can exacerbate biases across fused
modalities. Fairness in ML, broadly categorized into group or individual fairness (Mehrabi et al.,
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2021; Hort et al., 2024; Waller et al., 2025), has been primarily studied in unimodal settings such
as chest radiographs (Khan et al., 2023; Mehta et al., 2024), EEG data (Kurbatskaya et al., 2023;
Kwok et al., 2025), or EHR data (Dehghani et al., 2024; Röösli et al., 2022). Recent work has
begun investigating multimodal fairness in healthcare (Cheong et al., 2024; Luo et al., 2024; Wang
et al., 2024; Cheong et al., 2025b), but existing studies typically focus on single clinical tasks, such
as depression detection (Cheong et al., 2024), kidney tumor segmentation (Afzal et al., 2023), or
glaucoma detection (Luo et al., 2024). Our work presents the first attempt to evaluate fairness on a
model trained across multiple clinical tasks and domains simultaneously.

Fairness in Reinforcement Learning. Reinforcement learning (RL) methods which typically at-
tempt to maximize the reward of an agent as defined by a specific objective may neglect fairness
considerations (Jabbari et al., 2017; Smith et al., 2023). Recent advances in critic-free RL algorithms
for LLMs, such as GRPO (Shao et al., 2024), RLOO (Ahmadian et al., 2024), and REINFORCE++
(Hu, 2025), have demonstrated remarkable success in aligning language models without requiring
value function estimation. However, these methods lack mechanisms to address fairness across het-
erogeneous populations. Traditional fairness in RL can be categorized into single- or multi-agent
settings (Reuel & Ma, 2024; Yang et al., 2023; Sahoo et al., 2024), with resampling Puyol-Antón
et al. (2021) and Group DRO Sagawa et al. (2019) being two popular fairness mitigation methods.
To the best of our knowledge, however, none of the current works address the fairness challenge in
critic-free RL optimization of VLLMs, where the computational requirements and multi-step rea-
soning processes present unique challenges distinct from traditional RL settings. Our work bridges
this gap by extending GRPO with fairness-aware mechanisms specifically designed for the require-
ments of medical VLLMs.

Fairness in ML and Large Language Models. Recent multimodal LLMs such as Qwen-2.5-
VL (Bai et al., 2025) and domain-specific models like MedGemma (Sellergren et al., 2025) have
demonstrated impressive clinical reasoning capabilities, yet their fairness properties remain largely
unexplored. While models like DeepSeek-R1 (Guo et al., 2025) have advanced reasoning through
reinforcement learning, they lack mechanisms to ensure equitable performance across demographic
groups. Existing fairness works in healthcare FMs (Khan et al., 2023; Jin et al., 2024; Luo et al.,
2024) have focused on predictive bias in unimodal models. Khan et al. (2023) revealed consis-
tent under-performance for female patients, while Luo et al. (2024) proposed optimal-transport ap-
proaches for performance-fairness tradeoffs. However, these methods cannot address the unique
challenges of reasoning-capable VLLMs, where multi-step reasoning and reinforcement learning
create new pathways for bias amplification. Our work is the first to tackle fairness in critic-free RL
training for multimodal clinical reasoning models.

3 METHOD

Medical AI systems often exhibit performance disparities across demographic subpopulations, re-
flecting biases inherent in training data distributions (Luo et al., 2024; Khan et al., 2023). While
Group Relative Policy Optimization (GRPO) has demonstrated success in language model align-
ment through within-group reward normalization, it lacks mechanisms to address systematic sub-
group imbalances across heterogeneous populations. We introduce FairGRPO, a hierarchical scaling
approach that promotes equitable learning by adaptively weighting contributions from different do-
mains and demographic groups based on their demographic information and difficulty measured via
model performance.

Background: Group Relative Policy Optimization (GRPO). GRPO operates by normalizing re-
wards within groups of responses to identical prompts, eliminating the need for value function esti-
mation. For a prompt q generating response group G(q,t) at iteration t, each response o(q,i,t) receives

reward r(q,i,t). The advantage is computed as ÂGRPO
(q,i,t) =

r(q,i,t)−µ̂G(q,t)

σ̂G(q,t)
+ε , ensuring zero mean and unit

variance within each response group. This normalization enables fair comparison among responses
to the same prompt but treats all prompts equally, regardless of their source domain or demographic
representation.

The Fairness Challenge. Consider a training dataset where prompts originate from different do-
mains g ∈ G and are associated with demographic groups d ∈ Ddemo. Each prompt q at iteration t
belongs to exactly one domain g(q,t) and one demographic group d(q,t).
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Figure 1: FairGRPO Training Pipeline. Our method addresses fairness disparities by adaptively
scaling rewards based on demographic representation and task difficulty. Starting with medical data
containing both labeled demographic information and unlabeled samples, the policy model generates
multiple responses for each prompt, producing both reasoning insights and clinical diagnoses. These
responses are evaluated and assigned rewards. FairGRPO then groups the rewards by explicit demo-
graphic groups where available. For samples with unavailable demographic information, we employ
K-means clustering to discover implicit groups. Then, minority or challenging groups receive ampli-
fied learning signals through inverse temperature scaling, while majority or well-represented groups
are scaled down. This ensures that the model learns equitably from all subpopulations, preventing
the typical bias toward majority groups that occurs in standard training.

Standard GRPO optimization naturally favors well-represented domain-demographic pairs, as they
contribute more gradient updates. This creates a feedback loop where the model becomes increas-
ingly specialized for majority populations while performance on minority groups stagnates. Fair-
GRPO breaks this cycle through adaptive importance weighting that inversely correlates with group
representation and performance.

Hierarchical Scaling Framework. FairGRPO implements a three-stage process that transforms
GRPO’s uniform treatment into demographically-aware optimization:

(i) Normalization: We first apply standard GRPO normalization to obtain s(q,i,t) =
r(q,i,t)−µ̂G(q,t)

σ̂G(q,t)
+ε .

(ii) Group Discovery: In medical datasets, demographic labels may be incomplete or unavailable for
certain samples. We define explicit groups as those with labeled demographic attributes such as age
or gender while implicit groups are latent subpopulations discovered through unsupervised cluster-
ing when such labels are missing. To identify implicit groups, we leverage the model’s performance
patterns: within each domain g, we construct feature vectors vq ∈ R|G(q,t)| for each unlabeled
prompt q, where each dimension represents the raw reward from a different rollout. In GRPO, a
rollout refers to a single generated response for a given prompt, with multiple rollouts per prompt
enabling reward normalization across response variations. For instance, a chest X-ray prompt with-
out demographic labels might generate 5 rollouts with rewards [0.2, 0.8, 0.7, 0.9, 0.3], forming its
feature vector.

This reward-based representation offers two key advantages over traditional feature extraction meth-
ods. First, it provides exceptional computational efficiency, requiring only a vector of length equal
to the number of rollouts rather than high-dimensional CNN or ViT embeddings. Second, and more
importantly, it directly captures task-specific difficulty patterns rather than input-level similarities.
While visual features might group images by appearance, our approach groups samples by their in-
herent diagnostic challenge to the model, ensuring that cases with similar learning difficulties receive
similar treatment regardless of their visual characteristics. K-means clustering then groups prompts
with similar reward distributions, where common, well-represented cases typically form larger clus-
ters with consistently higher rewards, while rare or challenging cases naturally form smaller clusters
with lower or more variable rewards. The optimal number of clusters is determined automatically
via the elbow method (Thorndike, 1953) in alignment with existing works (Weng et al., 2021; Cai
et al., 2025). Crucially, because our scaling mechanism inversely weights the reward by cluster size

4
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Table 1: List of Experimental Datasets. We use 7 datasets across 5 clinical modalities. The
performance metrics are an unweighted average of datasets across classes, as described in Sec. 4.1.

Dataset # samples Clinical domain Modality Labels Demographics

CheXpert 212K Radiology Chest X-ray Atelectasis, Cardiomegaly, Consolidation, Edema, En-
larged Cardiomediastinum, Fracture, Lung Lesion,
Lung Opacity, Pleural Effusion, Pneumonia, Pneumoth-
orax, Pleural Other, Support Devices, No Finding

Age, Sex

Hemorrhage 2.5K Radiology CT No Hemorrhage, Has Hemorrhage Age, Sex
VinDr-Mammo 20K Radiology, Oncology Mammography BI-RAD 1-5 Age
ISIC-2020 33K Dermatology, Oncology Dermoscopy Malignant, Benign Age, Sex
HAM10000 10K Dermatology, Oncology Dermoscopy Melanoma (MEL), Nevus (NV), Basal Cell Carci-

noma (BCC), Actinic Keratosis/Intraepithelial Carci-
noma (AKIEC), Other (OTHER)

Age, Sex

PAD-UFES-20 2.3K Dermatology, Oncology Dermoscopy Melanoma (MEL), Nevus (NV), Basal Cell Carci-
noma (BCC), Actinic Keratosis/Intraepithelial Carci-
noma (AKIEC), Other (OTHER)

Age, Sex

COVID-BLUES 362 Radiology Ultrasound Has COVID, No COVID Age

and performance as shown in Equations 1, these smaller clusters representing rarer or more diffi-
cult cases receive amplified learning signals, ensuring that even unlabeled minority subpopulations
benefit from our fairness-aware optimization.

(iii) Demographic Group Based Reward Scaling: We compute hierarchical temperature factors that
capture both representation and difficulty. At the domain and group level, this is represented by:

T(g,t) =
√
N(g,t) · r̄(g,t), T(γ,g,t) =

√
N(γ,g,t) · r̄(γ,g,t). (1)

respectively for group γ (explicit or implicit) in domain g. N(g,t) counts samples in domain g and
r̄(g,t) represents the domain’s mean raw reward. The normalized rewards undergo inverse tempera-
ture scaling:

sscaled
(q,i,t) =

s(q,i,t)

max(T(g(q,t),t) · T(γ(q,t),g(q,t),t), ε)
, (2)

thus amplifying signals from underrepresented or challenging groups while attenuating those from
dominant populations. Lastly, following (Schulman et al., 2017), we renormalize the advantage to

zero mean and unit variance with ÂFairGRPO
(q,i,t) =

sscaled
(q,i,t)

σbatch
, where σbatch denotes the standard deviation

across all scaled rewards in the current batch.

Training Objective. FairGRPO retains GRPO’s policy gradient formulation with clipped impor-
tance sampling:

JFairGRPO(θ) = Eq,o

[
no∑
k=1

min
(
φk(θ)Â

FairGRPO, clip(φk(θ), 1± ε)ÂFairGRPO
)
− βDKL(πθ∥πref)

]
,

where φk(θ) represents the importance ratio at token k, and the advantage now incorporates fairness-
aware scaling.

Reward Design. FairGRPO works with arbitrary reward designs. In the experiment of this work,
we employ a standard accuracy reward where the model gets a reward of 1 if the final answer is
correct, and a reward of 0 if the answer is incorrect.

4 EXPERIMENTS

4.1 DATASETS & EXPERIMENTAL SETUP

We design experiments to comprehensively evaluate FairGRPO’s ability to improve both perfor-
mance and fairness across diverse clinical subpopulations. Our experimental framework addresses
the following three key research questions:

RQ1: How does FairGRPO perform compared to other RL methods? Given the distinct train-
ing procedures across multimodal reasoning LLM methods, we benchmark FairGRPO against RL
baselines including GRPO (Shao et al., 2024), RLOO Ahmadian et al. (2024) and REINFORCE++
(Hu, 2025). These methods represent the current state-of-the-art in critic-free reinforcement learning
for LLMs. To compare our methods against other fairness mitigation algorithms, we re-implement

5
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Table 2: RQ1: Fairness and performance metrics comparison against RL and fairness miti-
gation baselines. For fairness metrics, lower values are better and are indicated by ↓. For perfor-
mance and combined metrics, higher values are better and are indicated by ↑. Bold values indicate
the best result in each column for each model separately. FairGRPOND is the ablation of Fair-
GRPO where the model does not have access to the ground truth demographic information, and
the groups are inferred entirely via clustering. We release MedGemma trained with FairGRPO as
FairMedGemma. Detailed per dataset metrics are included in App. Tab. 5-17.

Training Method Fairness Metrics Perf. Metrics Combined

PP ↓ EOD ↓ FPRDiff ↓ σF1 ↓ ∆F1 ↓ σAcc ↓ ∆Acc ↓ Acc ↑ F1 ↑ AccES ↑ F1ES ↑
Qwen-2.5-VL-7B

Re++ (Hu, 2025) 15.18 7.788 6.233 .0322 .0650 4.706 9.613 75.32 .2612 71.93 .2531
RLOO (Ahmadian et al., 2024) 21.73 6.577 5.115 .0326 .0705 5.098 10.56 79.67 .2479 75.80 .2400
GRPO (Shao et al., 2024) 11.39 9.091 4.607 .0463 .0973 4.676 9.433 80.45 .2550 76.85 .2437
GRPO+RS (Puyol-Antón et al., 2021) 21.56 8.091 4.961 .0316 .0636 3.967 8.113 73.99 .2657 70.57 .2576
GRPO+DRO (Sagawa et al., 2019) 14.51 7.413 7.417 .0326 .0654 5.621 11.50 75.10 .2586 71.10 .2504

FairGRPO 16.80 5.546 4.391 .0229 .0452 4.410 8.934 80.75 .2647 77.34 .2588

MedGemma-4B

Re++ (Hu, 2025) 20.99 8.749 5.616 .0518 .1033 4.317 8.821 78.60 .2978 75.35 .2831
RLOO (Ahmadian et al., 2024) 23.68 10.37 5.513 .0600 .1170 4.336 8.837 80.62 .3047 77.27 .2875
GRPO (Shao et al., 2024) 22.42 6.476 4.820 .0418 .0795 4.171 8.546 80.02 .3123 76.82 .2998
GRPO+RS (Puyol-Antón et al., 2021) 23.76 6.664 3.481 .0433 .0835 4.051 8.386 80.76 .2843 77.62 .2725
GRPO+DRO (Sagawa et al., 2019) 16.04 7.367 4.985 .0447 .0871 4.362 8.960 81.19 .3271 77.80 .3009

FairGRPOND 25.15 11.56 5.692 .0547 .1067 3.613 7.214 79.23 .3513 76.47 .3331
FairGRPO (FairMedGemma) 11.67 6.663 5.330 .0383 .0721 4.081 8.455 81.83 .3218 78.62 .3100

popular bias mitigation method, namely Group DRO (Sagawa et al., 2019) and Resampling Puyol-
Antón et al. (2021), on top of GRPO. We employ a suite of fairness metrics, including Equal Oppor-
tunity Difference, Equalized Odds, and Predictive Parity, alongside standard performance metrics
(F1, accuracy) as detailed in Appendix A.1, which ensures we capture both the utility and equity
dimensions of model performance.

RQ2: How do fairness metrics evolve during training? Understanding the dynamics of fair-
ness during optimization is crucial for guiding the future training strategies of VLLMs. We track
the progression of fairness by measuring the maximum F1 score difference across the different
demographic subgroups at 5-step intervals throughout training. In this experiment, we aim to mon-
itor whether FairGRPO’s hierarchical scaling mechanism consistently reduces disparities or merely
achieves fairness at convergence. By comparing these trajectories against standard GRPO, we can
assess whether our adaptive weighting strategy changes the optimization landscape.

RQ3: How does performance vary across individual demographic groups? Beyond aggregated
fairness metrics, we analyze group-specific outcomes by examining average F1 scores for each de-
mographic subpopulation. This analysis reveals whether improvements are uniformly distributed or
concentrated in specific subgroups, and crucially, whether minority group gains come at the expense
of majority group performance.

To demonstrate generalizability across architectures and ensure robust evaluation, we implement
FairGRPO on two widely used VLLMs: Qwen-2.5-VL-7B (Bai et al., 2025) and MedGemma-4B
(Sellergren et al., 2025). Following the standard multitask instruction tuning paradigm in both
works, we initialize from pretrained weights and perform unified finetuning across all 7 clinical
datasets simultaneously in a single training run, mirroring real-world deployment where models
must handle diverse clinical tasks without dataset-specific adaptation. All experiments utilize 4
NVIDIA H200 GPUs. Hyperparameters and training configurations are detailed in Appendix A.

Datasets. To ensure our methods work across different clinical datasets, we evaluate the models via
7 public datasets, including CheXpert (Irvin et al., 2019), COVID-BLUES (Wiedemann et al., 2021),
VinDr-Mammo (Nguyen et al., 2021), ISIC-2020 (Rotemberg et al., 2021), HAM10000 (Tschandl
et al., 2018b), PAD-UFES-20 (Pacheco et al., 2020) and Hemorrhage (Hssayeni et al., 2020), with a
total of 280.2K samples, as summarized in Tab. 1 and detailed in Appendix B.

Demographic Groups. We define demographic groups consistently across all datasets to ensure
fair comparison. For gender, we use the patient gender as recorded in each dataset. For age, we
create four groups using 25-year bins: a1 for ages 18-25, a2 for ages 26-50, a3 for ages 51-75, and
a4 for ages 76 and above. This standardized binning strategy allows us to analyze fairness patterns

6
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Figure 2: Training dynamics comparison between GRPO and FairGRPO on clinical classification
tasks. (a) F1 Score: FairGRPO achieves higher F1 scores throughout training, reaching 0.265 com-
pared to GRPO’s plateau at 0.250. (b) Accuracy: Both methods converge to similar accuracy levels,
with FairGRPO demonstrating slightly higher final accuracy. (c) F1 Diff: FairGRPO substantially
reduces demographic performance disparities, achieving around 57% reduction in F1 difference by
explicitly optimizing for fairness during training. (e) Per Step Runtime of the Models: We run
the model using the setup described in Sec. 4.1. The reward calculation for all methods are less
than 0.1% of the total runtime, showing it adds negligible overhead to the training process. (e)
Performance-Fairness Tradeoff: We compare the validation F1 score and reversed F1 difference
(1-F1 Diff) of different steps throughout a single training run. Pareto frontier is plotted to illustrate
the points where the mdoel achieves the best tradeoff performance between F1 score and fairness.
The starred point is the final model reported in Tab. 18. FairGRPO achieves superior Pareto optimal-
ity, simultaneously improving both performance and fairness compared to GRPO’s best checkpoint.

across datasets with varying age distributions while maintaining sufficient sample sizes within each
demographic group for meaningful statistical analysis.

Evaluation Metrics. For performance assessment, we use hierarchical averaging of F1 scores across
classes, demographic groups, and datasets to prevent any single component from dominating the
evaluation. For fairness evaluation, following (Hort et al., 2024), we measure popular fairness
metrics including Equal Opportunity Difference (EOD), Predictive Parity (PP), and performance
variance metrics (σF1, ∆F1) to capture equity across demographic groups. To balance the fairness-
utility tradeoff, following (Jin et al., 2024), we adopt Equity Scaling metrics (F1ES, AccES) that
penalize models achieving high average performance at the cost of large demographic disparities.
Full mathematical definitions and detailed descriptions of all metrics are provided in Appendix A.1.

4.2 RQ1: HOW DOES FAIRGRPO PERFORM COMPARED TO OTHER RL METHODS?

We trained multimodal LLMs with FairGRPO and compare it against baseline RL algorithms, and
recorded results in Tab. 18. Overall, FairGRPO outperforms the baseline in both fairness metrics and
performance metrics on both multimodal LLMs. In particular, FairGRPO outperforms classical bias
mitigation methods in both fairness and diagnosis performance, thanks to its dynamic integration
with the RL training method. On MedGemma, it reaches a 27.2% better predictive parity than the
best fairness mitigation method Group DRO, reimplemented on top of GRPO. Compared to the best
RL training method, EOD improves by 23.8% on MedGemma, and by 15.7% on Qwen-2.5-VL.
Compared with all baselines, the maximum F1 gap decreases by 28.9% on Qwen-2.5-VL and by
8.37% on MedGemma. This shows FairGRPO’s superiority in the field of improving fairness.

Furthermore, the FairGRPOND performance demonstrates that FairGRPO improves fairness and
performance even when no demographic information is passed during training, thanks to the latent
group discovery algorithm via clustering. Compared with all baselines, FairGRPOND achieves
a 10.81% improvement in the Maximum Accuracy Gap, a 13.38% improvement in the standard
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Figure 3: F1 score differences between FairGRPO and GRPO across demographic groups on
MedGemma. Each bar represents the F1 score difference from the population mean for specific
demographic subgroups, where a positive value means FairGRPO performs better for the given
demographic group. The four age groups are binned as described in Sec. 4.1. In general, Fair-
GRPO consistently demonstrates better performance for 25 out of the 33 demographic groups across
datasets, which includes both majority and minority groups. Raw performance results are included
in App. Tab. 4.

deviation of accuracy. FairGRPOND shows particularly strong performance in F1, possibly due to
the fact that its latent clustering aligns better with downstream tasks, as evidenced by its 12.49%
improvement on F1, and 11.11% improvement in F1ES on MedGemma.

4.3 RQ2: HOW DO FAIRNESS METRICS EVOLVE DURING TRAINING?

We recorded how the performance and fairness of FairGRPO and GRPO progress throughout a stan-
dard training run. As shown in Fig 2(c), although both methods improve the model’s performance,
the F1 difference for FairGRPO is lower than that of GRPO, and the gap between the two meth-
ods constantly increase as the runtime increases. In addition, Fig 2(a) and Fig2(b) show that the
F1 score in FairGRPO is higher than that of GRPO, and the accuracy for both methods is almost
the same. Fig 2(e) demonstrates that FairGRPO expands the empirical Pareto frontier relative to
GRPO. Throughout the training process, the model provides multiple optimal checkpoints at vari-
ous fairness-performance tradeoffs, all at better and more balanced Pareto points than GRPO.

Runtime Efficiency. Fig 2(d) shows that FairGRPO and GRPO’s runtime per step is close on
both Qwen2.5-VL and MedGemma, with In particular, for all critic free RL methods, the time
for advantage calculation is less than 0.1% of the total training time. This reveals that the extra
calculation in FairGRPO adds negligible runtime overhead.

4.4 RQ3: HOW DOES PERFORMANCE VARY ACROSS INDIVIDUAL DEMOGRAPHIC GROUPS?

As shown in Fig. 3 and App. Tab. 4, FairGRPO demonstrates improved performance for both un-
derrepresented and non-underrepresented groups. For example, in CheXpert, FairGRPO’s F1 score
is 24.4% higher for females and 34.4% higher for males compared to GRPO. Moreover, in PAD-
UFES-20, FairGRPO improves performance by 6.33% on 75+ patients and 3.68% on patients aged
51-75 compared to GRPO. In addition, in the Hemorrhage dataset, FairGRPO improves performance
by 18.70% on 51-75 group compared to GRPO. In CheXpert, our method also shows superiority for
younger individuals (a1, a2), with an improvement of 31.45% on a1 and 24.32% on a2. These re-
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(a) Dem ogr aphics: age: 84, gender : FEMALE

Above is a dermoscopy image of a patient. 

What is the diagnosis of the patient in the 

dermoscopy image? Answer  w ith one word 

from the fol low ing:

Melanoma

Nevus

Basal Cell  Carcinoma (Ground Truth)

AKIEC

Other

Fai r GRPO Model 's Output: 

<think>

The image shows a lesion w ith i r r egular  

borders, a central area of necrosis, and 

some pigment...This presentation is 

suggestive of a basal cel l  car cinoma. 

</think>

\boxed{Basal Cell  Carcinoma}  

GRPO Model 's Output: 

The image shows a skin lesion w ith 

i r r egular  borders, uneven coloration, and 

a possible central dot. These features are 

suggestive of a mole (nevus) or  a 

sebor rheic keratosis (AKIEC). 

\boxed{AKIEC}  

(b) Dem ogr aphics: age: 84, gender : FEMALE

Above is a mammography X-ray image of a 

patient. What is the BIRAD classi f ication of 

the patient in the X-ray image? Answer  w ith 

one number. Answer  w ith one phrase from 

the fol low ing:

BIRAD 1

BIRAD 2  (Ground Truth)
BIRAD 3

BIRAD 4

BIRAD 5

Fai r GRPO Model 's Output: 

<think>

The image shows a dense opaci ty in the 

r ight breast. This could be a 

calci f ication, a cyst, or  a mass...Based on 

the appearance, i t 's l ikely a benign 

f inding. The BIRAD classi f ication would 

be 2.

</think>

\boxed{BIRAD 2}  

GRPO Model 's Output: 

<think>

The opaci ty is dense and round. There 

are no other  obvious f indings. I t 's 

di f f icult to determine the exact BIRAD 

w ithout more information. However , i t 's 

l ikely a benign process.

</think>
\boxed{BIRAD 1}  

Figure 4: Qualitative Examples of Model’s Reasoning Traces. We see the greatest performance
boosts from underrepresented groups, including samples from older population and females. In par-
ticular, we observe the models trained with FairGRPO exhibit an accuracy improvement of 73.08%
on 75+ populations in PAD-UFES-20 dataset, and a 36.53% on samples aged 51-75 in VinDr-
Mammo. This figure shows examples of model’s internal thinking process from the two groups.

sults demonstrate that our method provides consistent enhancements for elderly individuals across
most datasets while showing minimal, if any, performance degradation for younger individuals, and
in some cases even improvements. This indicates that the fairness improvements were not achieved
at the expense of the majority group’s performance.

4.5 QUALITATIVE ANALYSIS

Our qualitative analysis reveals that FairGRPO demonstrates superior diagnostic reasoning capa-
bilities, particularly for underrepresented populations where GRPO exhibits increased hallucina-
tions or unevidenced explanations. For example, in Fig. 4(a), examining an 84-year-old female’s
dermoscopy image, FairGRPO accurately identifies critical diagnostic features, including irregular
borders, central necrosis, and distinctive pigmentation patterns, which leads to a correct Basal Cell
Carcinoma diagnosis. Conversely, GRPO hallucinates non-existent features (a central dot), result-
ing in misdiagnosis of AKIEC. Similarly, Fig. 4(b) showcases FairGRPO’s enhanced interpretive
capability on another elderly female patient’s mammography. FairMedGemma first identifies sev-
eral possible diagnosis, including a calcification, a cyst, or a mass. It then correctly recognizes
and contextualizes a dense opacity with rating BIRAD 2. GRPO trained model, on the other hand,
underestimate the severity of the symptom, which results in a misclassification of BIRAD 1. These
examples illustrate how FairGRPO’s fairness-aware training not only improves quantitative metrics
but also enhances the model’s clinical reasoning quality, particularly benefiting historically under-
served demographic groups.

5 CONCLUSION

In this work, we introduced FairGRPO, a novel reinforcement learning approach that addresses the
challenge of demographic disparities in clinical AI systems. By implementing adaptive weighting
based on demographics and task difficulty, FairGRPO ensures that minority and underrepresented
groups receive equitable learning signals during training. Our evaluation across 7 clinical datasets
demonstrates that FairGRPO not only reduces the disparities F1 scores across demographic groups
by up to 28.9% but also improves overall model performance by 3.8% compared to vanilla GRPO.
Through the release of FairMedGemma-4B, we provide the first publicly available clinical VLLM
explicitly optimized for demographic fairness. Future works could explore extending FairGRPO to
other medical modalities beyond vision-language tasks, and developing theoretical frameworks to
better understand the convergence properties of fairness-aware RL. By establishing fairness as a fun-
damental optimization objective, we hope this work will inspire further research toward developing
AI-assisted diagnostic systems that serve all patient populations equitably.
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6 ETHICS STATEMENT

This work focuses on developing fairness-aware reinforcement learning methods for clinical diag-
nosis using vision-language models. We acknowledge the critical ethical considerations inherent in
applying AI to healthcare and have taken careful steps to ensure our research adheres to the ethical
standards.

All experiments in this study were conducted exclusively on publicly available, anonymized clin-
ical datasets obtained in compliance with their respective licenses. Specifically, we used CheX-
pert, COVID-BLUES, VinDr-Mammo, ISIC-2020, HAM10000, PAD-UFES-20, and Hemorrhage
datasets, each of which has been previously released for research purposes with appropriate de-
identification procedures. No human subjects were directly involved in this research, and no new
clinical data was collected. We do not redistribute these datasets; researchers interested in replicat-
ing our work should obtain them from the original sources in accordance with their respective terms
of use.

Our work explicitly addresses demographic disparities in AI-assisted clinical diagnosis, recognizing
that biased AI systems can perpetuate and amplify existing healthcare inequalities. By developing
FairGRPO, we aim to reduce performance disparities across age and gender groups, thereby pro-
moting more equitable healthcare AI. We acknowledge that fairness in healthcare is multifaceted
and our demographic categorizations may not capture all relevant dimensions of patient diversity.
Future work should consider additional protected attributes and intersectional identities.

While our methods demonstrate improved fairness metrics, we emphasize that these models are
research prototypes and should not be used for actual clinical decision-making without proper reg-
ulatory approval and clinical validation. The deployment of AI in healthcare requires careful con-
sideration of local regulations, clinical workflows, and continuous monitoring for unintended con-
sequences.

7 REPRODUCIBILITY STATEMENT

To ensure reproducibility of the work, all experiments were conducted using publicly available
datasets, which can be obtained from their respective original sources as detailed in Appendix B.
Our complete training code, data preprocessing pipelines, and evaluation scripts are available at this
anonymous link, while the trained model weights (FairMedGemma-4B) will be made available upon
publication due to size constraints on the anonymous submission platform. All hyperparameters
used in our experiments are comprehensively documented in Appendix A, including learning rates,
batch sizes, rollout configurations, and training settings for both Qwen-2.5-VL and MedGemma
models. We used the VERL framework for reinforcement learning implementation, with specific
versions and dependencies listed in the repository’s requirements file. Our fairness evaluation met-
rics are implemented with mathematical definitions provided in Appendix A.1.
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APPENDIX

A HYPERPARAMETERS & SETUPS

In this section, we describe our setup and hyperparameters during the training of the model. All
models are trained with 4 NVIDIA H200 GPUs.

All experiments were conducted using the VERL (Volcano Engine Reinforcement Learning for
LLMs) framework. The model was initialized from the pretrained MedGemma-4B-IT checkpoint
and fine-tuned. We employed vLLM for efficient rollout generation with a GPU memory cache of
60% to balance between batch size and memory constraints. The relatively low learning rate of
5 × 10−7 was chosen to ensure stable convergence given the complexity of the multi-task medical
reasoning objective.

A.1 EVALUATION METRICS

To comprehensively evaluate both performance and fairness across heterogeneous clinical subpop-
ulations, we employ a hierarchical evaluation framework that prevents any single dataset or demo-
graphic subgroup from dominating the assessment.

Notation. Let Ck denote the set of classes for dataset k, and G denote the set of demographic groups.
For each class c ∈ Ck and group g ∈ G, we define: TPc,g (true positives), FPc,g (false positives),
TNc,g (true negatives), and FNc,g (false negatives). Let nc,g denote the number of samples for class
c in group g.

Performance Metrics. We extract diagnoses from the model’s free-text reasoning traces and evalu-
ate each class as a binary classification problem. For class c and group g:

Accc,g =
TPc,g + TNc,g

nc,g
, Precisionc,g =

TPc,g

TPc,g + FPc,g
(3)

Recallc,g =
TPc,g

TPc,g + FNc,g
, F1c,g = 2 · Precisionc,g · Recallc,g

Precisionc,g + Recallc,g
(4)
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Table 3: Hyperparameters for All Trainings

Parameter Value
Data Configuration
Train batch size 512
Validation batch size 512
Max prompt length 4096
Max response length 4096

Model Configuration
Base model MedGemma-4B-IT/Qwen2.5-VL-7B-Instruct
Tensor model parallel size 2

Optimization
Learning rate 5× 10−7

PPO mini-batch size 128
PPO micro-batch size per GPU 4
KL Disabled

Rollout Configuration
Number of rollouts (n) 10
GPU memory utilization 0.6
Rollout engine VLLM

Training Settings
Total epochs 15
Validation frequency 5 epochs
Model save frequency 20 steps
Number of GPUs per node 4
Number of nodes 1
Critic warmup steps 0

To ensure balanced representation across classes and datasets, we employ two-level averaging. For
dataset k:

F1k =
1

|Ck|
∑
c∈Ck

F1c, where F1c =
1

|G|
∑
g∈G

F1c,g (5)

The overall performance is then averaged across all K datasets:

F1overall =
1

K

K∑
k=1

F1k (6)

This hierarchical averaging ensures that no single class or dataset dominates the final metrics, al-
lowing the final metrics to be a balanced assessment across all 5 clinical domains.

Fairness Metrics. Following the popular approaches outlined in (Hort et al., 2024), we evaluate
fairness through multiple complementary perspectives, each capturing different aspects of equitable
model behavior across demographic groups. For each metric, we first compute dataset-level perfor-
mance for each group, then assess disparities across groups.

Equal Opportunity Difference (EOD): We measure the disparity in true positive rates across groups
to ensure equal diagnostic sensitivity:

EOD = max
g∈G

TPRg −min
g∈G

TPRg, where TPRg =
1

K

K∑
k=1

1

|Ck|
∑
c∈Ck

TPRc,g (7)

and TPRc,g =
TPc,g

TPc,g+FNc,g
. A lower EOD indicates more equitable identification of positive cases,

which is crucial for preventing delayed diagnoses in underserved populations.
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Predictive Parity: We assess the reliability of positive predictions across groups through false dis-
covery rate gaps:

PP = max
g∈G

FDRg −min
g∈G

FDRg, where FDRg =
1

K

K∑
k=1

1

|Ck|
∑
c∈Ck

FDRc,g (8)

and FDRc,g =
FPc,g

FPc,g+TPc,g
. Lower predictive parity gaps ensure that positive predictions maintain

consistent reliability across all demographic groups, fostering trust in AI-assisted diagnosis.

False Positive Rate Difference: We measure disparities in false positive rates to ensure equitable
specificity across groups:

FPRDiff = max
g∈G

FPRg −min
g∈G

FPRg (9)

where FPRg follows the same hierarchical averaging structure as other group-level metrics. Lower
FPR differences prevent differential overdiagnosis across demographic groups.

Performance Disparities: We directly measure accuracy and F1 score gaps to capture overall per-
formance equity:

∆Acc = max
g∈G

Accg −min
g∈G

Accg, ∆F1 = max
g∈G

F1g −min
g∈G

F1g (10)

where Accg and F1g follow the same hierarchical averaging as TPRg . Additionally, we compute the
standard deviation of performance across groups to capture variability:

σAcc =

√
1

|G|
∑
g∈G

(Accg − Acc)2, σF1 =

√
1

|G|
∑
g∈G

(F1g − F1)2 (11)

where Acc and F1 denote the mean values across all groups.

Fairness-Utility Tradeoff. To balance fairness and utility, we adopt Equity Scaling metrics follow-
ing (Jin et al., 2024). These metrics combine performance with fairness considerations by penalizing
models that achieve high average performance at the cost of large disparities across groups:

AccES =
Acc

1 + σAcc
, F1ES =

F1
1 + σF1

(12)

These equity-scaled metrics reward models that achieve both high performance and low variance
across demographic groups, providing a single scalar that captures the fairness-utility tradeoff.
Higher values indicate better balance between overall performance and equitable distribution across
all populations.

B DATASET DETAILS

In this section, we provide a detailed description of datasets used in the experiments.

CheXpert (Irvin et al., 2019) is a public chest radiology dataset collected at Stanford Hospital,
which contains 224,316 chest radiographs of 65,240 patients. Each record has an uncertain label of
14 diagnostic observations, including Atelectasis, Cardiomegaly, Consolidation, Edema, Enlarged
Cardiomediastinum, Fracture, Lung Lesion, Lung Opacity, Pleural Effusion, Pneumonia, Pneumoth-
orax, Pleural Other, Support Device and No Finding. We use a training set of 212,243 records, a test
set of 225 records, and a total size of 212,498 records.

COVID-BLUES (Wiedemann et al., 2021) consists of bluepoint-specific lung ultrasound videos
collected at the Maastricht University Medical Center in the Netherlands using the BLUE protocol.
Each of the 63 patients has six recordings. Our evaluation focuses on two labels: the diagnostic
label (“Has COVID”, “No COVID”), and the patient age label. We use a training set of 266 records,
a test set of 96 records, and a total size of 362 records.
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VinDr-Mammo (Nguyen et al., 2021) contains mammography collected from Hospital 108 and
Hanoi Medical University Hospital in Vietnam. The dataset includes local labels for bounding
boxes; however, we evaluate our models based on the 5 global labels for BI-RADS 1-5. We use a
training set of 16,000 records, a test set of 4,000 records, and a total size of 20,000 records.

ISIC-2020 (Rotemberg et al., 2021) comprises dermoscopy of skin lesions from over 2,000 patients,
generated by the International Skin Imaging Collaboration (ISIC). We evaluate the models on the
binary classification (“Malignant” or “Benign”) for each image, where all malignant diagnoses are
histopathology–confirmed, while benign diagnoses are confirmed by expert agreement, longitudinal
follow–up, or histopathology.We use a training set of 26,501 records, a test set of 6,625 records, and
a total size of 33,126 records.

HAM10000 (Tschandl et al., 2018a) is a dermoscopic image dataset released for the ISIC 2018
classification challenge, drawn from the ISIC archive. Our evaluation uses the diagnostic categories:
Melanoma (MEL), Nevus (NV), Basal Cell Carcinoma (BCC), Actinic Keratosis/Intraepithelial Car-
cinoma (AKIEC), Other (OTHER).We use a training set of 8,012 records, a test set of 2,003 records,
and a total size of 10,015 records.

PAD-UFES-20 (Pacheco et al., 2020) comprises dermoscopy images of skin lesions with patient
metadata collected at the Federal University of Espı́rito Santo by iPhone, which includes 1,641 skin
lesions from 1,373 patients. We evaluate the models on the five skin diagnostics, three of which
are skin disease and three of which are skin cancers: Melanoma (MEL), Nevus (NV), Basal Cell
Carcinoma (BCC), Actinic Keratosis/Intraepithelial Carcinoma (AKIEC), Other (OTHER). All of
the skin cancers are biopsy-proven, and more than half of the skin diseases are biopsy-proven as
well. We use a training set of 1,839 records, a test set of 459 records, and a total size of 2,298
records.

Hemorrhage (Hssayeni et al., 2020) consists of intracranial hemorrhage CT images for 82 patients
at Al Hilla Teaching Hospital, Iraq, each with brain and bone window images and approximately
30 image slices in total. We evaluate the models as binary diagnoses: “No Hemorrhage” and “Has
Hemorrhage”. We use a training set of 1,986 records, a test set of 515 patient records, and a total
size of 2,501 records.

C THE USE OF LARGE LANGUAGE MODELS (LLMS)

We used ChatGPT for grammar corrections and debugging assistance, including explaining error
messages and suggesting fixes. The model did not contribute research ideas, methods, experimental
design, data, analyses or results. All changes were reviewed and implemented by the authors, who
take full responsibility for the manuscript.
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Table 4: Relative F1 score improvements (%) for FairGRPO vs GRPO across demographic
groups. Values show the relative improvement (∆%), GRPO baseline F1 score, and FairGRPO F1
score for each demographic group.

Group Dataset

CheXpert ISIC-2020 Hemorrhage HAM10000 PAD-UFES-20 VinDr-Mammo

a1
∆% +31.44 -0.14 -3.40 -20.95 0.00 -6.21
GRPO 0.318 0.495 0.721 0.383 0.462 0.243
FairGRPO 0.418 0.494 0.696 0.302 0.462 0.228

a2
∆% +24.23 -0.09 +4.90 -28.91 +1.56 +5.24
GRPO 0.296 0.496 0.600 0.262 0.385 0.234
FairGRPO 0.368 0.496 0.629 0.186 0.391 0.246

a3
∆% +33.18 +1.65 +18.77 +39.18 +3.71 +11.29
GRPO 0.283 0.564 0.679 0.222 0.190 0.195
FairGRPO 0.377 0.574 0.806 0.309 0.197 0.217

a4
∆% +21.60 +27.08 – +6.03 +6.22 -13.85
GRPO 0.302 0.469 – 0.185 0.221 0.238
FairGRPO 0.368 0.595 – 0.196 0.234 0.205

Female
∆% +24.45 +6.90 +3.54 +19.21 +4.20 –
GRPO 0.320 0.517 0.773 0.262 0.247 –
FairGRPO 0.398 0.553 0.800 0.313 0.258 –

Male
∆% +34.35 +2.26 +6.97 +9.52 +2.67 –
GRPO 0.253 0.546 0.628 0.240 0.214 –
FairGRPO 0.340 0.558 0.672 0.263 0.220 –

Average ∆% +28.21 +6.28 +6.16 +4.01 +3.06 -0.88
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Table 5: Detailed fairness and performance metrics per dataset and demographic group for
Reinforce++ on Qwen-2.5-VL. Results shown for both age groups (a1-a4) and gender groups across
all evaluation datasets. Higher values are better for accuracy, TPR, and F1; lower values are better
for FPR and FDR.

Dataset Group Performance Metrics Fairness Metrics Disparity Metrics

Acc F1 TPR FPR FDR σAcc σF1 σTPR ∆Acc ∆F1 ∆TPR ∆FPR

Age Groups

ChexPert

a1 .833 .130 .138 .064 .158

.076 .012 .018 .184 .028 .038 .009a2 .748 .102 .118 .068 .139
a3 .770 .120 .114 .070 .202
a4 .649 .125 .151 .074 .223

HAM10000

a1 .824 .347 .426 .252 .317

.077 .094 .099 .183 .225 .218 .068a2 .876 .200 .231 .197 .759
a3 .783 .239 .262 .185 .669
a4 .693 .122 .208 .197 .660

ISIC2020

a1 .979 .595 .595 .405 .405

.071 .045 .043 .157 .100 .099 .099a2 .957 .512 .535 .463 .490
a3 .946 .556 .569 .430 .452
a4 .822 .494 .496 .504 .506

PAD-UFES

a1 .813 .417 .357 .000 .000

.033 .076 .062 .081 .161 .145 .195a2 .763 .395 .412 .149 .518
a3 .774 .256 .389 .160 .682
a4 .732 .304 .503 .195 .324

Hemorrhage
a1 .728 .444 .445 .555 .557

.048 .059 .062 .093 .116 .120 .120a2 .756 .483 .482 .518 .515
a3 .663 .560 .566 .434 .401

VinDr

a1 .700 .106 .201 .192 .388

.106 .024 .063 .224 .057 .132 .100a2 .709 .132 .204 .196 .573
a3 .724 .162 .225 .189 .563
a4 .500 .121 .333 .289 .593

Gender Groups

ChexPert Female .716 .123 .129 .072 .129 .046 .006 .011 .065 .009 .016 .009Male .781 .115 .112 .063 .183

HAM10000 Female .842 .230 .249 .187 .709 .021 .001 .002 .030 .001 .003 .003Male .812 .231 .246 .190 .689

ISIC2020 Female .953 .533 .551 .448 .474 .002 .004 .004 .003 .005 .006 .004Male .950 .538 .557 .443 .470

PAD-UFES Female .794 .303 .428 .174 .697 .030 .006 .025 .043 .008 .035 .018Male .837 .294 .393 .157 .666

Hemorrhage Female .778 .608 .613 .387 .396 .042 .101 .103 .059 .143 .146 .146Male .719 .465 .467 .533 .537
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Table 6: Detailed fairness and performance metrics per dataset and demographic group for
RLOO on Qwen-2.5-VL. Results shown for both age groups (a1-a4) and gender groups across all
evaluation datasets. Higher values are better for accuracy, TPR, and F1; lower values are better for
FPR and FDR.

Dataset Group Performance Metrics Fairness Metrics Disparity Metrics

Acc F1 TPR FPR FDR σAcc σF1 σTPR ∆Acc ∆F1 ∆TPR ∆FPR

Age Groups

ChexPert

a1 .833 .285 .338 .096 .221

.066 .067 .083 .161 .149 .186 .080a2 .746 .136 .152 .125 .201
a3 .767 .154 .175 .142 .449
a4 .673 .179 .200 .176 .114

HAM10000

a1 .924 .314 .327 .309 .364

.114 .087 .051 .243 .199 .107 .116a2 .943 .242 .239 .197 .328
a3 .796 .167 .219 .195 .701
a4 .700 .115 .222 .194 .403

ISIC2020

a1 .986 .496 .499 .500 .007

.049 .014 .002 .105 .029 .004 .000a2 .990 .497 .500 .500 .005
a3 .974 .493 .499 .500 .013
a4 .886 .468 .495 .500 .056

PAD-UFES

a1 .938 .500 .500 .000 .000

.094 .143 .115 .206 .318 .263 .179a2 .760 .371 .410 .172 .544
a3 .764 .233 .309 .155 .623
a4 .732 .182 .237 .179 .716

Hemorrhage
a1 .808 .447 .473 .527 .576

.106 .034 .014 .206 .066 .027 .027a2 .869 .465 .494 .506 .561
a3 .663 .399 .500 .500 .169

VinDr

a1 .807 .137 .200 .200 .096

.094 .036 .066 .211 .086 .133 .136a2 .878 .173 .203 .198 .386
a3 .851 .158 .200 .199 .234
a4 .667 .222 .333 .333 .167

Gender Groups

ChexPert Female .721 .172 .187 .149 .202 .041 .008 .006 .058 .012 .008 .021Male .780 .161 .178 .127 .379

HAM10000 Female .883 .200 .218 .195 .408 .023 .004 .003 .033 .006 .005 .0003Male .850 .194 .223 .194 .781

ISIC2020 Female .983 .496 .500 .500 .008 .002 .001 .0004 .003 .001 .001 .000Male .980 .495 .499 .500 .009

PAD-UFES Female .788 .265 .387 .172 .653 .025 .024 .037 .036 .034 .052 .019Male .823 .230 .335 .153 .680

Hemorrhage Female .821 .451 .490 .510 .583 .005 .001 .001 .006 .002 .002 .002Male .814 .449 .488 .512 .585
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Table 7: Detailed fairness and performance metrics per dataset and demographic group for
GRPO on Qwen-2.5-VL. Results shown for both age groups (a1-a4) and gender groups across all
evaluation datasets. Higher values are better for accuracy, TPR, and F1; lower values are better for
FPR and FDR.

Dataset Group Performance Metrics Fairness Metrics Disparity Metrics

Acc F1 TPR FPR FDR σAcc σF1 σTPR ∆Acc ∆F1 ∆TPR ∆FPR

Age Groups

ChexPert

a1 .807 .235 .338 .133 .188

.049 .041 .062 .112 .091 .141 .051a2 .766 .192 .228 .136 .160
a3 .785 .163 .196 .141 .160
a4 .695 .254 .282 .184 .096

HAM10000

a1 .936 .317 .333 .303 .031

.116 .076 .059 .239 .168 .134 .112a2 .943 .185 .199 .194 .427
a3 .796 .170 .223 .192 .411
a4 .703 .149 .242 .191 .266

ISIC2020

a1 .987 .497 .500 .500 .007

.048 .013 .000 .101 .027 .000 .000a2 .991 .498 .500 .500 .005
a3 .975 .494 .500 .500 .013
a4 .890 .471 .500 .500 .055

PAD-UFES

a1 .875 .917 .857 .000 .000

.048 .320 .270 .104 .716 .597 .167a2 .782 .425 .450 .156 .556
a3 .771 .201 .260 .167 .563
a4 .786 .283 .317 .153 .373

Hemorrhage
a1 .854 .461 .500 .500 .073

.119 .038 .000 .217 .069 .000 .000a2 .880 .468 .500 .500 .060
a3 .663 .399 .500 .500 .169

VinDr

a1 .807 .137 .200 .200 .096

.094 .037 .067 .212 .086 .133 .133a2 .879 .164 .200 .200 .061
a3 .852 .155 .200 .200 .074
a4 .667 .222 .333 .333 .167

Gender Groups

ChexPert Female .742 .220 .250 .160 .154 .036 .036 .037 .051 .051 .053 .031Male .793 .169 .198 .129 .125

HAM10000 Female .882 .194 .216 .191 .589 .021 .010 .012 .029 .015 .018 .001Male .852 .208 .234 .190 .537

ISIC2020 Female .984 .496 .500 .500 .008 .002 .0004 .000 .003 .001 .000 .000Male .981 .495 .500 .500 .009

PAD-UFES Female .800 .308 .374 .174 .451 .026 .038 .044 .037 .054 .063 .016Male .837 .255 .311 .158 .539

Hemorrhage Female .838 .456 .500 .500 .081 .002 .001 .000 .003 .001 .000 .000Male .834 .455 .500 .500 .083
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Table 8: Detailed fairness and performance metrics per dataset and demographic group for
GRPO with Resampling on Qwen-2.5-VL. Results shown for both age groups (a1-a4) and gender
groups across all evaluation datasets. Higher values are better for accuracy, TPR, and F1; lower
values are better for FPR and FDR.

Dataset Group Performance Metrics Fairness Metrics Disparity Metrics

Acc F1 TPR FPR FDR σAcc σF1 σTPR ∆Acc ∆F1 ∆TPR ∆FPR

Age Groups

ChexPert

a1 .847 .142 .150 .056 .153

.083 .018 .029 .203 .044 .059 .022a2 .762 .125 .153 .056 .079
a3 .754 .098 .094 .078 .279
a4 .644 .124 .153 .076 .321

HAM10000

a1 .785 .307 .354 .302 .341

.057 .071 .070 .138 .158 .160 .111a2 .835 .167 .194 .213 .820
a3 .767 .213 .244 .191 .754
a4 .697 .149 .221 .195 .658

ISIC2020

a1 .937 .555 .672 .328 .461

.059 .042 .049 .140 .098 .115 .115a2 .894 .490 .557 .443 .494
a3 .885 .522 .585 .415 .477
a4 .797 .588 .616 .384 .422

PAD-UFES

a1 .875 .462 .429 .000 .000

.058 .079 .057 .129 .187 .128 .186a2 .769 .408 .406 .148 .557
a3 .771 .275 .390 .162 .673
a4 .746 .372 .518 .186 .535

Hemorrhage
a1 .728 .444 .445 .555 .557

.050 .070 .073 .100 .133 .137 .137a2 .785 .471 .472 .528 .530
a3 .685 .577 .582 .418 .361

VinDr

a1 .696 .168 .283 .192 .531

.056 .029 .065 .116 .062 .146 .010a2 .686 .106 .187 .200 .608
a3 .699 .140 .223 .193 .572
a4 .583 .167 .333 .189 .556

Gender Groups

ChexPert Female .716 .132 .140 .071 .214 .038 .021 .026 .054 .029 .036 .004Male .771 .102 .104 .067 .388

HAM10000 Female .818 .203 .225 .199 .704 .024 .005 .002 .034 .007 .003 .001Male .784 .196 .228 .200 .797

ISIC2020 Female .901 .512 .581 .419 .484 .013 .00004 .010 .018 .0001 .014 .014Male .882 .512 .595 .405 .482

PAD-UFES Female .800 .338 .493 .168 .706 .014 .014 .076 .020 .019 .107 .003Male .820 .318 .386 .165 .678

Hemorrhage Female .803 .572 .564 .436 .405 .048 .064 .057 .067 .091 .081 .081Male .736 .481 .484 .516 .519
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Table 9: Detailed fairness and performance metrics per dataset and demographic group for
GRPO with Group DRO on Qwen-2.5-VL. Results shown for both age groups (a1-a4) and gender
groups across all evaluation datasets. Higher values are better for accuracy, TPR, and F1; lower
values are better for FPR and FDR.

Dataset Group Performance Metrics Fairness Metrics Disparity Metrics

Acc F1 TPR FPR FDR σAcc σF1 σTPR ∆Acc ∆F1 ∆TPR ∆FPR

Age Groups

ChexPert

a1 .847 .142 .150 .056 .153

.092 .021 .014 .221 .049 .033 .031a2 .754 .105 .132 .063 .127
a3 .767 .115 .117 .070 .124
a4 .625 .092 .132 .087 .245

HAM10000

a1 .821 .327 .374 .283 .333

.059 .070 .076 .131 .158 .180 .097a2 .841 .169 .193 .218 .821
a3 .769 .239 .257 .191 .629
a4 .710 .190 .249 .186 .498

ISIC2020

a1 .953 .579 .680 .320 .445

.072 .044 .084 .164 .101 .203 .203a2 .923 .501 .554 .446 .492
a3 .911 .530 .570 .430 .475
a4 .788 .477 .477 .523 .522

PAD-UFES

a1 .875 .462 .429 .000 .000

.062 .082 .056 .139 .188 .125 .195a2 .760 .399 .397 .155 .545
a3 .771 .273 .385 .159 .667
a4 .736 .327 .510 .195 .565

Hemorrhage
a1 .748 .452 .457 .543 .551

.089 .041 .047 .177 .080 .092 .092a2 .840 .478 .490 .510 .523
a3 .663 .533 .549 .451 .406

VinDr

a1 .696 .142 .233 .193 .532

.144 .041 .028 .299 .086 .067 .164a2 .701 .119 .191 .200 .602
a3 .716 .141 .210 .192 .577
a4 .417 .056 .167 .356 .633

Gender Groups

ChexPert Female .715 .118 .136 .071 .130 .040 .010 .019 .057 .014 .026 .003Male .772 .105 .110 .067 .195

HAM10000 Female .825 .258 .258 .196 .613 .026 .030 .013 .037 .042 .019 .002Male .788 .216 .239 .198 .725

ISIC2020 Female .924 .513 .548 .452 .487 .009 .005 .018 .013 .007 .025 .025Male .911 .520 .573 .427 .481

PAD-UFES Female .788 .318 .481 .170 .722 .023 .024 .103 .032 .034 .145 .007Male .820 .284 .335 .163 .676

Hemorrhage Female .812 .554 .548 .452 .407 .027 .048 .038 .038 .068 .054 .054Male .774 .485 .494 .506 .510
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Table 10: Detailed fairness and performance metrics per dataset and demographic group for
FairGRPO on Qwen-2.5-VL. Results shown for both age groups (a1-a4) and gender groups across
all evaluation datasets. Higher values are better for accuracy, TPR, and F1; lower values are better
for FPR and FDR.

Dataset Group Performance Metrics Fairness Metrics Disparity Metrics

Acc F1 TPR FPR FDR σAcc σF1 σTPR ∆Acc ∆F1 ∆TPR ∆FPR

Age Groups

ChexPert

a1 .813 .161 .225 .109 .140

.063 .015 .030 .142 .031 .065 .068a2 .771 .149 .166 .096 .104
a3 .792 .132 .160 .118 .105
a4 .671 .130 .177 .164 .076

HAM10000

a1 .915 .304 .300 .212 .024

.089 .045 .075 .183 .096 .164 .069a2 .920 .209 .464 .148 .606
a3 .809 .279 .379 .143 .508
a4 .736 .224 .311 .154 .546

ISIC2020

a1 .987 .497 .500 .500 .007

.049 .014 .002 .104 .028 .005 .000a2 .989 .497 .499 .500 .005
a3 .972 .492 .497 .500 .013
a4 .886 .468 .495 .500 .056

PAD-UFES

a1 .750 .364 .286 .000 .000

.028 .068 .074 .067 .143 .159 .180a2 .788 .435 .445 .128 .241
a3 .817 .292 .294 .139 .301
a4 .779 .291 .317 .180 .205

Hemorrhage
a1 .854 .461 .500 .500 .073

.117 .038 .001 .213 .068 .002 .002a2 .876 .467 .498 .502 .560
a3 .663 .399 .500 .500 .169

VinDr

a1 .807 .137 .200 .200 .096

.094 .037 .067 .212 .086 .133 .134a2 .879 .164 .200 .200 .061
a3 .852 .156 .201 .199 .074
a4 .667 .222 .333 .333 .167

Gender Groups

ChexPert Female .741 .161 .189 .123 .116 .038 .025 .027 .053 .035 .038 .014Male .794 .126 .151 .109 .085

HAM10000 Female .880 .270 .354 .131 .473 .024 .001 .011 .034 .002 .015 .006Male .846 .272 .369 .137 .539

ISIC2020 Female .982 .495 .498 .500 .008 .002 .0004 .0001 .002 .001 .0001 .000Male .979 .494 .498 .500 .009

PAD-UFES Female .818 .336 .338 .153 .259 .015 .039 .043 .022 .055 .060 .007Male .840 .280 .277 .146 .314

Hemorrhage Female .838 .456 .500 .500 .081 .004 .001 .001 .006 .002 .002 .002Male .832 .454 .498 .502 .583
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Table 11: Detailed fairness and performance metrics per dataset and demographic group for
Reinforce++ on MedGemma. Results shown for both age groups (a1-a4) and gender groups across
all evaluation datasets. Higher values are better for accuracy, TPR, and F1; lower values are better
for FPR and FDR.

Dataset Group Performance Metrics Fairness Metrics Disparity Metrics

Acc F1 TPR FPR FDR σAcc σF1 σTPR ∆Acc ∆F1 ∆TPR ∆FPR

Age Groups

ChexPert

a1 .793 .288 .338 .173 .643

.038 .025 .031 .092 .056 .063 .039a2 .745 .260 .299 .161 .659
a3 .761 .269 .298 .161 .647
a4 .702 .316 .361 .134 .483

HAM10000

a1 .927 .312 .323 .303 .031

.107 .083 .054 .223 .197 .124 .138a2 .938 .233 .233 .165 .474
a3 .801 .183 .223 .178 .586
a4 .716 .115 .199 .167 .402

ISIC2020

a1 .987 .497 .500 .500 .007

.048 .017 .005 .101 .042 .010 .010a2 .991 .498 .500 .500 .005
a3 .975 .513 .510 .490 .012
a4 .890 .471 .500 .500 .055

PAD-UFES

a1 .875 .462 .429 .000 .000

.056 .122 .095 .118 .253 .192 .159a2 .772 .387 .395 .158 .610
a3 .763 .209 .262 .159 .565
a4 .757 .233 .237 .153 .479

Hemorrhage
a1 .871 .731 .643 .208 .087

.066 .118 .066 .124 .234 .126 .057a2 .851 .589 .546 .265 .340
a3 .747 .498 .516 .250 .104

VinDr

a1 .806 .141 .196 .190 .290

.102 .093 .122 .229 .208 .248 .119a2 .867 .186 .204 .196 .592
a3 .836 .177 .200 .199 .620
a4 .639 .349 .444 .308 .708

Gender Groups

ChexPert Female .757 .332 .358 .134 .561 .004 .068 .067 .006 .097 .094 .032Male .751 .235 .264 .166 .687

HAM10000 Female .879 .202 .216 .180 .555 .016 .005 .006 .023 .008 .008 .012Male .856 .210 .224 .168 .538

ISIC2020 Female .984 .496 .500 .500 .008 .002 .012 .007 .002 .018 .009 .009Male .981 .514 .509 .491 .009

PAD-UFES Female .820 .283 .335 .131 .513 .026 .058 .060 .037 .082 .085 .043Male .783 .201 .250 .174 .601

Hemorrhage Female .880 .568 .537 .211 .039 .038 .031 .012 .054 .044 .018 .050Male .827 .612 .555 .260 .264
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Table 12: Detailed fairness and performance metrics per dataset and demographic group for
RLOO on MedGemma. Results shown for both age groups (a1-a4) and gender groups across all
evaluation datasets. Higher values are better for accuracy, TPR, and F1; lower values are better for
FPR and FDR.

Dataset Group Performance Metrics Fairness Metrics Disparity Metrics

Acc F1 TPR FPR FDR σAcc σF1 σTPR ∆Acc ∆F1 ∆TPR ∆FPR

Age Groups

ChexPert

a1 .900 .533 .600 .082 .185

.077 .091 .090 .189 .193 .196 .100a2 .817 .363 .429 .110 .241
a3 .810 .351 .404 .122 .307
a4 .711 .339 .432 .183 .378

HAM10000

a1 .933 .316 .333 .333 .033

.110 .065 .058 .228 .139 .138 .147a2 .938 .183 .195 .195 .628
a3 .800 .199 .235 .187 .440
a4 .710 .176 .257 .187 .367

ISIC2020

a1 .987 .497 .500 .500 .007

.047 .012 .001 .099 .026 .002 .000a2 .989 .497 .498 .500 .005
a3 .974 .493 .499 .500 .013
a4 .890 .471 .500 .500 .055

PAD-UFES

a1 .875 .462 .429 .000 .000

.059 .118 .078 .123 .259 .172 .176a2 .763 .353 .395 .176 .637
a3 .752 .203 .316 .174 .582
a4 .757 .234 .257 .162 .453

Hemorrhage
a1 .881 .741 .723 .277 .236

.081 .078 .068 .150 .142 .120 .115a2 .856 .615 .603 .382 .366
a3 .730 .598 .608 .392 .204

VinDr

a1 .807 .138 .200 .197 .294

.067 .152 .151 .155 .319 .303 .081a2 .878 .167 .200 .198 .587
a3 .847 .155 .197 .200 .657
a4 .722 .458 .500 .278 .152

Gender Groups

ChexPert Female .786 .416 .497 .133 .330 .022 .076 .102 .031 .108 .145 .022Male .816 .308 .352 .111 .284

HAM10000 Female .880 .225 .232 .186 .483 .019 .001 .004 .027 .001 .006 .003Male .853 .226 .238 .189 .397

ISIC2020 Female .982 .495 .498 .500 .008 .002 .0004 .0001 .002 .001 .0001 .000Male .980 .495 .499 .500 .009

PAD-UFES Female .800 .259 .335 .163 .337 .012 .043 .023 .017 .061 .032 .021Male .783 .198 .302 .183 .600

Hemorrhage Female .889 .709 .658 .342 .059 .043 .049 .025 .061 .069 .035 .027Male .828 .639 .623 .369 .329
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Table 13: Detailed fairness and performance metrics per dataset and demographic group for
GRPO on MedGemma. Results shown for both age groups (a1-a4) and gender groups across all
evaluation datasets. Higher values are better for accuracy, TPR, and F1; lower values are better for
FPR and FDR.

Dataset Group Performance Metrics Fairness Metrics Disparity Metrics

Acc F1 TPR FPR FDR σAcc σF1 σTPR ∆Acc ∆F1 ∆TPR ∆FPR

Age Groups

ChexPert

a1 .893 .318 .342 .038 .092

.084 .015 .040 .202 .035 .093 .050a2 .814 .296 .279 .059 .174
a3 .824 .283 .248 .052 .159
a4 .691 .302 .306 .088 .211

HAM10000

a1 .918 .383 .369 .279 .252

.108 .086 .057 .233 .198 .120 .103a2 .943 .262 .248 .177 .425
a3 .802 .222 .249 .187 .553
a4 .710 .185 .271 .185 .498

ISIC2020

a1 .983 .495 .496 .500 .007

.048 .041 .020 .102 .096 .040 .039a2 .988 .496 .497 .500 .505
a3 .974 .564 .536 .462 .012
a4 .886 .468 .495 .500 .056

PAD-UFES

a1 .875 .462 .429 .000 .000

.059 .130 .092 .125 .272 .179 .179a2 .779 .385 .421 .163 .600
a3 .751 .190 .287 .179 .598
a4 .750 .220 .249 .171 .230

Hemorrhage
a1 .858 .721 .692 .236 .247

.036 .062 .057 .071 .121 .113 .105a2 .836 .600 .579 .340 .376
a3 .787 .679 .650 .259 .150

VinDr

a1 .804 .243 .288 .177 .553

.064 .022 .031 .146 .048 .069 .023a2 .841 .234 .267 .189 .764
a3 .808 .195 .219 .188 .796
a4 .694 .238 .278 .200 .458

Gender Groups

ChexPert Female .779 .320 .290 .071 .281 .032 .047 .042 .045 .067 .059 .020Male .824 .253 .231 .051 .234

HAM10000 Female .885 .262 .261 .178 .386 .022 .015 .008 .032 .022 .012 .008Male .854 .240 .249 .186 .593

ISIC2020 Female .982 .517 .509 .489 .008 .002 .020 .011 .003 .029 .016 .016Male .979 .546 .525 .472 .134

PAD-UFES Female .797 .247 .325 .163 .533 .003 .023 .006 .004 .033 .009 .020Male .793 .214 .316 .184 .392

Hemorrhage Female .902 .773 .722 .221 .130 .062 .102 .089 .088 .144 .126 .090Male .814 .628 .596 .310 .327
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Table 14: Detailed fairness and performance metrics per dataset and demographic group for
GRPO with Resampling on MedGemma. Results shown for both age groups (a1-a4) and gender
groups across all evaluation datasets. Higher values are better for accuracy, TPR, and F1; lower
values are better for FPR and FDR.

Dataset Group Performance Metrics Fairness Metrics Disparity Metrics

Acc F1 TPR FPR FDR σAcc σF1 σTPR ∆Acc ∆F1 ∆TPR ∆FPR

Age Groups

ChexPert

a1 .913 .466 .500 .045 .061

.072 .066 .066 .175 .147 .157 .061a2 .832 .349 .389 .072 .202
a3 .828 .319 .343 .074 .284
a4 .738 .343 .400 .106 .272

HAM10000

a1 .942 .320 .333 .242 .025

.111 .074 .037 .236 .170 .084 .070a2 .922 .187 .387 .181 .222
a3 .794 .200 .303 .173 .248
a4 .707 .151 .312 .181 .500

ISIC2020

a1 .987 .497 .500 .500 .007

.048 .013 .000 .101 .027 .000 .000a2 .991 .498 .500 .500 .005
a3 .975 .494 .500 .500 .013
a4 .890 .471 .500 .500 .055

PAD-UFES

a1 .813 .417 .357 .000 .000

.024 .115 .085 .050 .237 .187 .184a2 .821 .397 .449 .137 .163
a3 .771 .180 .261 .179 .355
a4 .783 .250 .281 .184 .364

Hemorrhage
a1 .828 .453 .484 .516 .575

.110 .091 .041 .210 .178 .077 .077a2 .873 .576 .561 .439 .345
a3 .663 .399 .500 .500 .169

VinDr

a1 .807 .172 .221 .193 .443

.064 .035 .051 .149 .078 .112 .030a2 .871 .184 .241 .197 .622
a3 .840 .195 .234 .195 .626
a4 .722 .250 .333 .222 .133

Gender Groups

ChexPert Female .810 .410 .435 .068 .198 .015 .086 .085 .021 .121 .121 .007Male .831 .288 .315 .075 .203

HAM10000 Female .869 .199 .288 .164 .430 .017 .015 .020 .025 .021 .028 .006Male .845 .220 .316 .170 .223

ISIC2020 Female .984 .496 .500 .500 .008 .002 .0004 .000 .003 .001 .000 .000Male .981 .495 .500 .500 .009

PAD-UFES Female .775 .238 .336 .178 .277 .027 .040 .025 .039 .057 .035 .002Male .737 .181 .301 .180 .544

Hemorrhage Female .838 .456 .500 .500 .081 .013 .039 .015 .018 .055 .021 .021Male .819 .511 .521 .479 .424
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Table 15: Detailed fairness and performance metrics per dataset and demographic group for
GRPO with Group DRO on MedGemma. Results shown for both age groups (a1-a4) and gender
groups across all evaluation datasets. Higher values are better for accuracy, TPR, and F1; lower
values are better for FPR and FDR.

Dataset Group Performance Metrics Fairness Metrics Disparity Metrics

Acc F1 TPR FPR FDR σAcc σF1 σTPR ∆Acc ∆F1 ∆TPR ∆FPR

Age Groups

ChexPert

a1 .913 .380 .400 .030 .136

.064 .029 .032 .157 .060 .070 .062a2 .848 .390 .402 .049 .168
a3 .836 .330 .341 .065 .228
a4 .756 .390 .411 .093 .225

HAM10000

a1 .945 .509 .467 .273 .028

.116 .162 .116 .245 .373 .246 .088a2 .930 .239 .241 .194 .559
a3 .801 .215 .245 .184 .512
a4 .700 .136 .221 .194 .374

ISIC2020

a1 .987 .497 .500 .500 .007

.048 .013 .0002 .100 .027 .0003 .000a2 .990 .497 .500 .500 .005
a3 .975 .494 .500 .500 .013
a4 .890 .471 .500 .500 .055

PAD-UFES

a1 .875 .462 .429 .000 .000

.065 .149 .104 .154 .315 .223 .196a2 .782 .354 .454 .149 .704
a3 .764 .176 .309 .175 .434
a4 .721 .147 .231 .196 .142

Hemorrhage
a1 .861 .735 .749 .251 .276

.030 .035 .032 .053 .066 .063 .063a2 .862 .681 .686 .314 .323
a3 .809 .747 .725 .275 .141

VinDr

a1 .811 .175 .225 .192 .227

.080 .029 .054 .182 .063 .115 .085a2 .876 .173 .218 .198 .255
a3 .847 .186 .233 .196 .246
a4 .694 .235 .333 .278 .152

Gender Groups

ChexPert Female .815 .397 .411 .064 .226 .021 .059 .058 .030 .083 .082 .008Male .845 .315 .328 .055 .180

HAM10000 Female .878 .245 .245 .181 .500 .020 .015 .006 .028 .021 .008 .004Male .850 .224 .237 .186 .502

ISIC2020 Female .983 .496 .500 .500 .008 .002 .0003 .0003 .002 .0004 .0004 .000Male .981 .495 .500 .500 .009

PAD-UFES Female .800 .208 .321 .178 .443 .021 .005 .007 .030 .007 .010 .007Male .830 .201 .331 .171 .238

Hemorrhage Female .923 .833 .784 .216 .080 .065 .101 .069 .091 .143 .098 .098Male .832 .690 .687 .313 .306

30



1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

Table 16: Detailed fairness and performance metrics per dataset and demographic group for
FairGRPOND on MedGemma. Results shown for both age groups (a1-a4) and gender groups
across all evaluation datasets. Higher values are better for accuracy, TPR, and F1; lower values are
better for FPR and FDR.

Dataset Group Performance Metrics Fairness Metrics Disparity Metrics

Acc F1 TPR FPR FDR σAcc σF1 σTPR ∆Acc ∆F1 ∆TPR ∆FPR

Age Groups

ChexPert

a1 .860 .342 .475 .096 .207

.057 .037 .044 .138 .087 .088 .101a2 .800 .366 .387 .146 .523
a3 .799 .379 .390 .162 .544
a4 .722 .430 .449 .198 .393

HAM10000

a1 .897 .301 .296 .255 .694

.077 .035 .029 .163 .084 .071 .121a2 .905 .260 .225 .151 .597
a3 .814 .270 .264 .134 .528
a4 .741 .216 .255 .144 .635

ISIC2020

a1 .980 .493 .493 .500 .007

.048 .039 .020 .102 .091 .042 .038a2 .988 .496 .497 .500 .505
a3 .973 .559 .535 .463 .262
a4 .886 .468 .495 .500 .056

PAD-UFES

a1 .938 .500 .500 .000 .000

.078 .117 .103 .174 .279 .235 .152a2 .795 .408 .424 .142 .580
a3 .764 .221 .265 .152 .747
a4 .797 .352 .333 .137 .612

Hemorrhage
a1 .821 .694 .722 .270 .321

.016 .046 .033 .031 .092 .059 .066a2 .835 .655 .665 .324 .352
a3 .803 .747 .725 .259 .183

VinDr

a1 .794 .191 .219 .181 .429

.043 .133 .202 .098 .270 .412 .052a2 .820 .198 .199 .191 .794
a3 .800 .196 .201 .187 .606
a4 .722 .460 .611 .233 .292

Gender Groups

ChexPert Female .767 .397 .413 .180 .513 .032 .026 .037 .046 .037 .053 .042Male .813 .360 .360 .138 .541

HAM10000 Female .871 .279 .278 .132 .509 .019 .017 .024 .027 .024 .034 .004Male .845 .255 .244 .136 .588

ISIC2020 Female .980 .515 .508 .489 .408 .0005 .021 .012 .001 .030 .017 .017Male .979 .545 .525 .473 .209

PAD-UFES Female .823 .306 .377 .122 .685 .020 .054 .044 .028 .076 .062 .038Male .795 .231 .315 .159 .569

Hemorrhage Female .906 .815 .795 .205 .160 .074 .109 .094 .104 .154 .133 .115Male .802 .662 .663 .319 .338
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Table 17: Detailed fairness and performance metrics per dataset and demographic group for
FairGRPO on MedGemma. Results shown for both age groups (a1-a4) and gender groups across
all evaluation datasets. Higher values are better for accuracy, TPR, and F1; lower values are better
for FPR and FDR.

Dataset Group Performance Metrics Fairness Metrics Disparity Metrics

Acc F1 TPR FPR FDR σAcc σF1 σTPR ∆Acc ∆F1 ∆TPR ∆FPR

Age Groups

ChexPert

a1 .900 .359 .388 .045 .063

.062 .019 .035 .151 .047 .076 .056a2 .828 .354 .351 .063 .224
a3 .833 .328 .330 .065 .239
a4 .749 .375 .406 .101 .332

HAM10000

a1 .933 .315 .327 .273 .028

.114 .074 .043 .238 .171 .088 .083a2 .941 .251 .238 .191 .227
a3 .799 .196 .241 .191 .236
a4 .703 .144 .242 .190 .312

ISIC2020

a1 .987 .497 .500 .500 .007

.048 .013 .000 .101 .027 .000 .000a2 .991 .498 .500 .500 .005
a3 .975 .494 .500 .500 .013
a4 .890 .471 .500 .500 .055

PAD-UFES

a1 .875 .462 .429 .000 .000

.034 .111 .092 .082 .218 .211 .164a2 .846 .507 .515 .118 .214
a3 .825 .289 .351 .128 .311
a4 .793 .299 .304 .164 .203

Hemorrhage
a1 .854 .728 .745 .255 .286

.023 .062 .059 .045 .116 .111 .111a2 .840 .631 .634 .366 .372
a3 .809 .747 .725 .275 .141

VinDr

a1 .807 .137 .200 .200 .096

.094 .037 .067 .212 .086 .133 .133a2 .879 .164 .200 .200 .061
a3 .852 .155 .200 .200 .074
a4 .667 .222 .333 .333 .167

Gender Groups

ChexPert Female .810 .399 .406 .070 .297 .018 .075 .080 .026 .106 .113 .010Male .835 .293 .292 .060 .214

HAM10000 Female .883 .240 .254 .187 .223 .022 .021 .013 .032 .030 .018 .004Male .851 .211 .236 .192 .229

ISIC2020 Female .984 .496 .500 .500 .008 .002 .0004 .000 .003 .001 .000 .000Male .981 .495 .500 .500 .009

PAD-UFES Female .831 .328 .384 .138 .286 .014 .030 .002 .019 .042 .003 .006Male .812 .286 .387 .144 .325

Hemorrhage Female .889 .758 .722 .278 .173 .046 .057 .032 .065 .080 .045 .046Male .824 .678 .676 .324 .320
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Table 18: RQ1: Fairness and performance metrics comparison against RL and fairness miti-
gation baselines. For fairness metrics, lower values are better and are indicated by ↓. For perfor-
mance and combined metrics, higher values are better and are indicated by ↑. Bold values indicate
the best result in each column for each model separately. FairGRPOND is the ablation of Fair-
GRPO where the model does not have access to the ground truth demographic information, and
the groups are inferred entirely via clustering. We release MedGemma trained with FairGRPO as
FairMedGemma. Results show mean ± std over 4 training runs. Detailed per dataset metrics are
included in App. Tab. 5-17.

Training Method Fairness Metrics

PP ↓ EOD ↓ FPRDiff ↓ σF1 ↓ ∆F1 ↓ σAcc ↓ ∆Acc ↓
Qwen-2.5-VL-7B

Re++ (Hu, 2025) 16.66 ± 2.11 6.66 ± 1.59 6.37 ± 0.20 .0322 ± .0000 .0647 ± .0004 5.06 ± 0.49 10.33 ± 1.01
RLOO (Ahmadian et al., 2024) 22.34 ± 0.86 6.67 ± 0.13 5.68 ± 0.80 .0330 ± .0006 .0693 ± .0017 4.86 ± 0.33 10.00 ± 0.79
GRPO (Shao et al., 2024) 17.90 ± 9.21 7.93 ± 1.64 4.85 ± 0.34 .0387 ± .0107 .0821 ± .0215 4.85 ± 0.24 9.92 ± 0.69
GRPO+RS (Puyol-Antón et al., 2021) 19.62 ± 7.22 6.85 ± 0.80 6.44 ± 1.39 .0319 ± .0009 .0628 ± .0037 5.50 ± 0.17 11.26 ± 0.34

FairGRPO 15.42 ± 1.95 5.62 ± 0.10 5.00 ± 0.87 .0254 ± .0035 .0522 ± .0099 4.42 ± 0.01 8.95 ± 0.03

MedGemma-4B

Re++ (Hu, 2025) 20.30 ± 0.97 7.78 ± 1.37 5.69 ± 0.10 .0469 ± .0069 .0898 ± .0191 4.44 ± 0.17 8.99 ± 0.25
RLOO (Ahmadian et al., 2024) 20.45 ± 4.57 10.35 ± 0.03 5.51 ± 0.01 .0592 ± .0011 .1173 ± .0004 4.29 ± 0.07 8.79 ± 0.06
GRPO (Shao et al., 2024) 20.89 ± 2.16 6.30 ± 0.25 5.26 ± 0.62 .0387 ± .0045 .0753 ± .0059 4.19 ± 0.03 8.57 ± 0.03
GRPO+RS (Puyol-Antón et al., 2021) 24.55 ± 1.12 6.97 ± 0.44 4.78 ± 1.84 .0422 ± .0017 .0834 ± .0003 4.20 ± 0.21 8.77 ± 0.54
GRPO+DRO (Sagawa et al., 2019) 18.20 ± 3.06 7.52 ± 0.22 5.68 ± 0.98 .0456 ± .0013 .0895 ± .0034 4.55 ± 0.26 9.39 ± 0.61

FairGRPOND 24.87 ± 0.40 9.09 ± 3.49 6.35 ± 0.93 .0484 ± .0088 .0919 ± .0210 4.18 ± 0.80 8.36 ± 1.62
FairGRPO (FairMedGemma) 12.95 ± 1.82 6.84 ± 0.24 5.53 ± 0.29 .0379 ± .0005 .0724 ± .0004 4.11 ± 0.04 8.53 ± 0.11

Training Method Perf. Metrics Combined

Acc ↑ F1 ↑ AccES ↑ F1ES ↑
Qwen-2.5-VL-7B

Re++ (Hu, 2025) 75.31 ± 1.82 .2599 ± .0065 71.69 ± 1.39 .2518 ± .0063
RLOO (Ahmadian et al., 2024) 78.22 ± 0.06 .2523 ± .0013 74.59 ± 0.18 .2443 ± .0014
GRPO (Shao et al., 2024) 78.40 ± 0.69 .2601 ± .0131 76.21 ± 0.91 .2425 ± .0017
GRPO+RS (Puyol-Antón et al., 2021) 75.61 ± 2.96 .2580 ± .0021 71.67 ± 2.92 .2500 ± .0018

FairGRPO 78.52 ± 0.31 .2657 ± .0036 77.14 ± 0.29 .2602 ± .0020

MedGemma-4B

Re++ (Hu, 2025) 78.76 ± 0.22 .3105 ± .0179 75.41 ± 0.09 .2966 ± .0191
RLOO (Ahmadian et al., 2024) 79.76 ± 0.16 .3237 ± .0019 76.48 ± 0.20 .3056 ± .0021
GRPO (Shao et al., 2024) 79.38 ± 0.15 .3134 ± .0118 76.19 ± 0.12 .3017 ± .0101
GRPO+RS (Puyol-Antón et al., 2021) 79.02 ± 0.15 .2825 ± .0052 75.84 ± 0.30 .2711 ± .0046
GRPO+DRO (Sagawa et al., 2019) 80.17 ± 0.31 .3146 ± .0177 76.69 ± 0.48 .3009 ± .0173

FairGRPOND 78.82 ± 0.58 .3484 ± .0041 75.67 ± 1.14 .3323 ± .0011
FairGRPO (FairMedGemma) 80.40 ± 0.03 .3275 ± .0007 77.23 ± 0.01 .3155 ± .0006

Table 19: RQ1: Fairness and performance metrics for CheXpert dataset. For fairness metrics,
lower values are better and are indicated by ↓. For performance and combined metrics, higher values
are better and are indicated by ↑. Bold values indicate the best result in each column.

Training Method Fairness Metrics Perf. Metrics Combined

PP ↓ EOD ↓ FPRDiff ↓ σF1 ↓ ∆F1 ↓ σAcc ↓ ∆Acc ↓ Acc ↑ F1 ↑ AccES ↑ F1ES ↑
Qwen-2.5-VL-7B

Re++ 5.13±2.55 3.74±1.47 1.18±0.35 .0148±.0082 .0282±.0142 5.86±0.36 11.94±0.72 77.30±0.39 .1149±.0071 75.18±0.35 .1257±.0095

RLOO 20.32±7.47 6.25±4.87 4.09±1.37 .0259±.0164 .0529±.0388 5.42±0.07 10.90±0.07 77.74±0.73 .1467±.0100 75.67±0.57 .1621±.0215

GRPO 12.99±1.45 4.49±0.08 4.97±0.03 .0194±.0042 .0386±.0028 5.23±1.11 10.25±2.60 77.79±0.65 .1443±.0093 75.56±0.87 .1572±.0074

GRPO+DRO 11.31±2.86 3.91±1.31 1.80±0.09 .0177±.0034 .0339±.0034 6.38±0.31 13.45±0.67 76.91±0.41 .1052±.0042 74.95±0.50 .1168±.0061

FairGRPO 6.10±1.94 7.80±3.79 3.96±0.19 .0234±.0051 .0439±.0152 4.99±0.07 9.60±0.28 78.62±0.27 .1372±.0093 76.27±0.29 .1510±.0110

MedGemma-4B

Re++ 23.93±12.50 9.09±1.74 4.61±1.52 .0480±.0020 .0801±.0051 3.86±2.46 8.37±4.93 78.53±2.18 .2640±.0083 77.10±2.66 .2880±.0069

RLOO 9.54±3.39 17.62±0.81 5.51±0.85 .0817±.0029 .1465±.0060 4.79±0.25 10.44±0.78 81.85±0.15 .3354±.0046 80.57±0.06 .3827±.0051

GRPO 5.61±3.84 8.32±0.99 3.12±0.51 .0359±.0071 .0613±.0147 5.22±0.82 11.18±1.67 82.22±0.53 .2669±.0038 80.73±0.55 .2988±.0081

GRPO+RS 13.48±2.94 12.39±2.10 3.76±0.49 .0633±.0175 .1141±.0283 4.43±0.15 9.81±0.01 83.64±0.31 .3191±.0019 82.55±0.21 .3607±.0022

GRPO+DRO 8.41±2.20 9.56±2.72 3.32±0.31 .0587±.0212 .1030±.0444 4.62±0.47 10.06±1.00 83.85±0.80 .3230±.0032 82.90±0.72 .3664±.0032

FairGRPOND 20.42±3.13 7.88±1.17 6.89±0.37 .0321±.0008 .0583±.0055 4.70±0.35 9.89±0.98 81.30±1.02 .3445±.0093 79.94±1.00 .3772±.0022

FairGRPO 17.69±0.01 9.75±0.38 3.71±0.55 .0501±.0041 .0836±.0101 4.04±0.07 8.90±0.11 83.85±0.22 .3220±.0090 82.64±0.22 .3605±.0151
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Table 20: RQ1: Fairness and performance metrics for HAM10000 dataset. For fairness metrics,
lower values are better and are indicated by ↓. For performance and combined metrics, higher values
are better and are indicated by ↑. Bold values indicate the best result in each column.

Training Method Fairness Metrics Perf. Metrics Combined

PP ↓ EOD ↓ FPRDiff ↓ σF1 ↓ ∆F1 ↓ σAcc ↓ ∆Acc ↓ Acc ↑ F1 ↑ AccES ↑ F1ES ↑
Qwen-2.5-VL-7B

Re++ 22.90±0.28 8.56±3.49 4.72±1.63 .0505±.0048 .1135±.0009 5.97±1.49 12.28±2.31 84.59±2.76 .2167±.0216 83.21±3.06 .2178±.0150

RLOO 44.69±10.42 5.64±0.08 5.81±0.01 .0469±.0020 .1054±.0045 6.96±0.13 13.77±0.01 86.57±0.04 .1974±.0000 85.43±0.07 .2022±.0012

GRPO 35.65±1.72 7.25±0.13 7.08±0.09 .0514±.0002 .1149±.0013 6.87±0.06 13.75±0.12 86.55±0.10 .1860±.0137 85.36±0.12 .1862±.0094

GRPO+DRO 36.69±9.50 8.37±2.25 6.11±1.63 .0471±.0041 .0999±.0002 5.58±1.90 11.03±3.71 83.54±4.18 .2140±.0253 82.49±4.08 .2159±.0256

FairGRPO 26.56±8.25 8.21±1.08 5.98±3.16 .0325±.0132 .0639±.0216 5.92±0.42 11.64±1.12 86.67±0.64 .2738±.0006 85.71±0.44 .2581±.0061

MedGemma-4B

Re++ 24.42±5.85 6.33±0.39 6.22±1.82 .0417±.0037 .0958±.0094 4.66±2.10 9.46±3.98 85.50±1.66 .2172±.0138 84.55±1.52 .2220±.0194

RLOO 30.65±4.83 6.08±1.59 6.79±0.96 .0318±.0019 .0708±.0008 6.51±0.04 12.81±0.09 86.72±0.11 .2319±.0065 85.68±0.10 .2288±.0094

GRPO 33.41±11.32 6.10±0.71 6.97±2.05 .0455±.0073 .0992±.0151 6.49±0.03 12.93±0.41 86.86±0.02 .2492±.0020 85.73±0.14 .2491±.0111

GRPO+RS 29.83±6.08 6.19±0.89 5.24±2.06 .0501±.0083 .1111±.0223 6.81±0.55 13.65±0.91 86.07±0.57 .1856±.0373 85.09±0.25 .1898±.0313

GRPO+DRO 22.42±5.99 8.89±5.37 5.98±1.88 .0655±.0326 .1455±.0727 6.72±0.09 13.36±0.43 86.45±0.19 .2285±.0080 85.46±0.10 .2394±.0215

FairGRPOND 13.95±2.36 7.23±2.80 5.57±0.94 .0383±.0174 .0702±.0225 5.05±0.36 9.96±0.65 85.55±0.27 .2743±.0136 84.60±0.38 .2662±.0027

FairGRPO 23.80±13.18 6.03±0.97 5.76±1.99 .0445±.0038 .0978±.0036 6.86±0.04 13.55±0.14 86.68±0.03 .2170±.0096 85.56±0.01 .2166±.0134

Table 21: RQ1: Fairness and performance metrics for ISIC2020 dataset. For fairness metrics,
lower values are better and are indicated by ↓. For performance and combined metrics, higher values
are better and are indicated by ↑. Bold values indicate the best result in each column.

Training Method Fairness Metrics Perf. Metrics Combined

PP ↓ EOD ↓ FPRDiff ↓ σF1 ↓ ∆F1 ↓ σAcc ↓ ∆Acc ↓ Acc ↑ F1 ↑ AccES ↑ F1ES ↑
Qwen-2.5-VL-7B

Re++ 21.51±23.07 3.10±3.06 3.06±3.00 .0196±.0068 .0412±.0165 3.04±0.84 6.56±2.03 96.70±2.16 .5205±.0212 95.51±2.30 .5183±.0267

RLOO 2.59±0.02 0.58±0.47 0.47±0.67 .0110±.0054 .0222±.0103 2.51±0.08 5.26±0.17 98.20±0.03 .5004±.0073 97.08±0.07 .4957±.0052

GRPO 26.52±33.86 0.01±0.02 0.01±0.02 .0066±.0000 .0137±.0000 2.47±0.01 5.17±0.01 98.23±0.00 .4955±.0000 97.14±0.00 .4926±.0000

GRPO+DRO 14.75±15.01 5.84±7.91 5.83±7.92 .0155±.0126 .0340±.0288 3.29±1.13 7.00±2.67 94.78±4.26 .5056±.0159 93.69±4.42 .5053±.0192

FairGRPO 2.59±0.02 0.12±0.17 0.00±0.00 .0068±.0003 .0141±.0006 2.50±0.05 5.23±0.10 98.14±0.14 .4950±.0007 97.04±0.15 .4921±.0008

MedGemma-4B

Re++ 2.58±0.01 0.49±0.64 0.47±0.67 .0107±.0060 .0216±.0114 2.46±0.00 5.14±0.01 98.24±0.03 .5006±.0072 97.15±0.02 .4961±.0050

RLOO 2.58±0.00 0.14±0.05 0.00±0.00 .0063±.0002 .0132±.0001 2.41±0.04 5.05±0.01 98.10±0.01 .4948±.0000 97.02±0.02 .4920±.0001

GRPO 16.79±20.39 1.53±1.82 2.80±0.07 .0181±.0177 .0369±.0358 2.38±0.17 4.97±0.36 97.95±0.08 .5134±.0278 96.90±0.02 .5050±.0192

GRPO+RS 2.58±0.00 0.00±0.00 0.00±0.00 .0066±.0000 .0137±.0000 2.47±0.00 5.16±0.00 98.24±0.00 .4956±.0000 97.14±0.00 .4926±.0000

GRPO+DRO 2.58±0.00 0.02±0.03 0.00±0.00 .0065±.0001 .0136±.0001 2.46±0.01 5.15±0.03 98.23±0.01 .4955±.0001 97.14±0.01 .4926±.0000

FairGRPOND 30.75±5.81 3.38±0.61 3.26±0.74 .0291±.0013 .0570±.0051 2.31±0.13 4.91±0.31 97.89±0.07 .5433±.0172 96.81±0.03 .5322±.0215

FairGRPO 2.58±0.00 0.00±0.00 0.00±0.00 .0066±.0000 .0137±.0000 2.47±0.00 5.16±0.00 98.24±0.00 .4956±.0000 97.14±0.00 .4926±.0000

Table 22: RQ1: Fairness and performance metrics for PAD-UFES-20 dataset. For fairness
metrics, lower values are better and are indicated by ↓. For performance and combined metrics,
higher values are better and are indicated by ↑. Bold values indicate the best result in each column.

Training Method Fairness Metrics Perf. Metrics Combined

PP ↓ EOD ↓ FPRDiff ↓ σF1 ↓ ∆F1 ↓ σAcc ↓ ∆Acc ↓ Acc ↑ F1 ↑ AccES ↑ F1ES ↑
Qwen-2.5-VL-7B

Re++ 34.76±1.25 13.01±5.64 10.14±0.71 .0589±.0255 .1231±.0543 3.73±0.78 7.58±1.99 77.96±0.07 .3129±.0035 79.42±0.20 .3121±.0122

RLOO 36.69±0.65 16.74±1.42 10.12±0.27 .0851±.0019 .1788±.0034 6.15±0.27 12.13±0.09 77.12±0.37 .2672±.0078 79.97±0.31 .2788±.0081

GRPO 37.46±6.33 16.50±4.29 13.89±6.40 .0826±.0120 .1686±.0258 4.90±1.22 10.18±2.89 76.70±0.67 .2614±.0309 78.72±0.96 .2684±.0241

GRPO+DRO 37.38±2.46 15.56±2.88 9.36±1.06 .0680±.0209 .1346±.0330 4.20±0.03 8.74±0.22 78.22±0.30 .3271±.0088 79.94±0.69 .3229±.0142

FairGRPO 24.50±9.47 8.26±3.84 10.14±1.15 .0516±.0031 .1075±.0115 1.92±0.30 4.09±0.46 80.31±2.52 .2995±.0547 78.70±2.74 .2923±.0486

MedGemma-4B

Re++ 39.59±6.57 15.75±2.68 10.58±0.65 .1040±.0202 .1891±.0306 4.38±0.41 8.26±0.77 79.16±1.55 .3089±.0392 80.53±1.21 .3153±.0466

RLOO 38.93±8.56 9.86±0.49 9.92±0.11 .0778±.0041 .1538±.0086 3.34±0.27 6.88±0.12 77.43±0.52 .2688±.0088 79.45±0.74 .2794±.0121

GRPO 36.94±0.17 9.57±0.24 9.50±0.66 .0774±.0006 .1580±.0078 3.28±0.28 6.80±0.53 76.78±0.48 .2427±.0229 78.99±0.28 .2578±.0206

GRPO+RS 29.68±2.63 13.93±3.97 16.60±10.32 .0733±.0061 .1478±.0011 3.13±0.81 6.49±2.93 76.91±3.92 .2530±.0316 76.24±1.97 .2498±.0148

GRPO+DRO 38.00±10.53 11.62±0.03 13.91±5.33 .0713±.0080 .1481±.0176 3.65±0.92 7.60±2.26 77.46±0.26 .2408±.0024 79.34±0.96 .2394±.0077

FairGRPOND 45.17±2.88 12.95±2.69 8.81±0.93 .0808±.0062 .1643±.0185 3.89±1.39 8.12±2.78 78.77±0.70 .2950±.0340 80.90±1.02 .2996±.0281

FairGRPO 18.00±0.77 11.41±1.04 8.61±0.16 .0734±.0040 .1349±.0070 2.44±0.06 5.02±0.02 83.51±0.00 .3620±.0013 82.74±0.09 .3448±.0044

Table 23: RQ1: Fairness and performance metrics for Hemorrhage dataset. For fairness met-
rics, lower values are better and are indicated by ↓. For performance and combined metrics, higher
values are better and are indicated by ↑. Bold values indicate the best result in each column.

Training Method Fairness Metrics Perf. Metrics Combined

PP ↓ EOD ↓ FPRDiff ↓ σF1 ↓ ∆F1 ↓ σAcc ↓ ∆Acc ↓ Acc ↑ F1 ↑ AccES ↑ F1ES ↑
Qwen-2.5-VL-7B

Re++ 14.94±0.12 9.35±5.58 9.35±5.58 .0557±.0345 .0890±.0574 4.20±0.42 7.29±0.48 75.83±3.71 .4822±.0246 75.28±2.94 .4926±.0332

RLOO 13.23±10.27 1.74±0.41 1.74±0.41 .0213±.0049 .0397±.0079 6.51±1.39 12.22±2.25 81.26±0.41 .4483±.0013 79.53±0.48 .4420±.0018

GRPO 12.58±7.06 3.74±1.44 3.74±1.44 .0302±.0269 .0495±.0455 5.48±0.97 9.90±1.27 80.78±2.75 .4805±.0314 79.28±2.79 .4811±.0349

GRPO+DRO 16.38±5.61 5.96±1.93 5.96±1.93 .0407±.0056 .0639±.0146 6.63±1.20 12.12±1.93 79.71±2.06 .4886±.0167 78.52±1.91 .4923±.0160

FairGRPO 34.02±21.84 1.59±2.00 1.59±2.00 .0263±.0096 .0501±.0212 6.14±0.09 10.91±0.08 83.30±0.00 .5011±.0660 81.84±0.30 .4970±.0685

MedGemma-4B

Re++ 21.38±3.64 6.35±1.18 6.00±0.94 .0622±.0173 .1067±.0456 5.08±0.20 8.27±0.85 83.69±0.27 .6382±.0462 83.92±0.14 .6423±.0625

RLOO 20.79±1.64 8.61±1.25 8.30±1.69 .0643±.0013 .1166±.0152 6.17±0.03 10.80±0.32 84.61±0.62 .6513±.0026 84.12±0.11 .6532±.0136

GRPO 17.42±5.31 9.66±3.24 10.22±0.71 .0690±.0182 .1172±.0220 5.18±0.36 8.65±1.00 83.74±0.48 .6370±.0317 84.08±0.21 .6508±.0462

GRPO+RS 36.49±1.33 11.83±0.29 4.88±0.04 .0661±.0017 .1183±.0029 6.14±0.05 11.32±0.14 82.62±0.41 .5022±.0023 81.04±0.33 .4808±.0017

GRPO+DRO 19.21±1.70 7.31±1.03 7.31±1.03 .0721±.0058 .1132±.0126 4.33±0.59 6.45±1.08 84.56±0.96 .7238±.0071 85.62±0.62 .7460±.0066

FairGRPOND 17.15±0.27 10.06±0.64 9.20±0.26 .0837±.0089 .1378±.0211 4.71±0.33 7.09±0.44 81.41±1.58 .6957±.0027 82.87±1.13 .7208±.0035

FairGRPO 18.01±0.12 7.33±0.68 7.33±0.68 .0539±.0078 .0909±.0103 3.54±0.13 5.88±0.53 84.08±0.27 .6951±.0008 84.61±0.08 .7083±.0025
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Table 24: RQ1: Fairness and performance metrics for VinDr dataset. For fairness metrics, lower
values are better and are indicated by ↓. For performance and combined metrics, higher values are
better and are indicated by ↑. Bold values indicate the best result in each column.

Training Method Fairness Metrics Perf. Metrics Combined

PP ↓ EOD ↓ FPRDiff ↓ σF1 ↓ ∆F1 ↓ σAcc ↓ ∆Acc ↓ Acc ↑ F1 ↑ AccES ↑ F1ES ↑
Qwen-2.5-VL-7B

Re++ 17.41±4.38 8.87±6.14 16.16±8.70 .0261±.0030 .0581±.0016 12.58±2.80 26.64±5.98 75.51±6.11 .1676±.0447 68.59±3.89 .1530±.0321

RLOO 29.55±0.84 10.91±3.42 15.38±2.59 .0314±.0072 .0742±.0162 10.68±1.82 23.76±3.75 86.62±0.16 .1704±.0051 79.25±1.16 .1705±.0026

GRPO 31.91±2.14 13.33±0.00 12.50±1.63 .0389±.0040 .0918±.0087 9.33±0.09 20.89±0.19 86.58±0.21 .1689±.0030 80.01±0.10 .1745±.0030

GRPO+DRO 20.81±15.05 8.29±2.30 16.00±0.52 .0345±.0087 .0730±.0189 12.43±2.80 26.47±4.88 76.77±8.94 .1625±.0524 69.69±9.11 .1527±.0542

FairGRPO 14.19±5.07 13.35±0.00 13.36±0.04 .0369±.0002 .0856±.0000 9.44±0.01 21.20±0.01 86.82±0.02 .1608±.0004 80.12±0.02 .1696±.0003

MedGemma-4B

Re++ 30.24±16.40 16.44±11.83 11.94±0.11 .0620±.0433 .1353±.1031 10.61±0.60 23.46±0.86 85.02±0.87 .1918±.0129 78.05±0.92 .2096±.0052

RLOO 40.63±14.04 30.16±0.22 8.03±0.06 .1524±.0001 .3201±.0012 6.79±0.08 15.58±0.06 86.73±0.15 .1645±.0023 81.44±0.10 .2297±.0003

GRPO 36.08±2.85 8.90±2.78 4.23±2.71 .0250±.0044 .0542±.0088 6.77±0.56 15.42±1.09 83.80±1.26 .2190±.0065 79.26±0.81 .2323±.0065

GRPO+RS 59.80±14.91 11.43±0.35 2.97±0.01 .0357±.0017 .0784±.0001 6.44±0.03 14.93±0.06 86.06±0.08 .1850±.0055 81.10±0.11 .2041±.0056

GRPO+DRO 11.43±1.59 11.37±0.25 5.84±3.81 .0332±.0056 .0725±.0137 7.29±0.95 16.72±2.03 86.48±0.06 .1863±.0024 80.98±0.38 .1940±.0024

FairGRPOND 46.67±12.41 22.13±26.94 10.69±7.72 .0751±.0815 .1555±.1614 8.60±6.11 18.55±12.38 81.84±0.44 .2128±.0262 76.65±2.52 .2428±.0262

FairGRPO 10.61±0.00 13.33±0.00 13.33±0.00 .0370±.0000 .0856±.0000 9.44±0.00 21.21±0.00 86.82±0.00 .1606±.0000 80.12±0.00 .1694±.0000
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