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Abstract

Osteoporosis is the leading cause of bone fractures in the elderly, yet it often goes un-
diagnosed mainly due to the high cost and limited accessibility of dual-energy X-ray ab-
sorptiometry (DXA), the current gold standard for diagnosis. Additionally, deep learning
algorithms like Generative Adversarial Networks (GANs) have shown promising results
in diagnosing osteoporosis by estimating bone mineral content (BMC). However, previ-
ous GAN-based approaches have not addressed uncertainty estimation, which is critical to
improving reliability in clinical decision-making. To build on previous work, we propose
a novel method that combines random fast denoising diffusion probabilistic model (Ran-
dom Fast-DDPM) for BMC estimation with a variance-based uncertainty quantification
technique. Unlike GANs, which only estimate BMC, our method also captures prediction
uncertainty, adding a layer of reliability to the diagnostic process. The proposed method
achieved a high Pearson correlation coefficient, r=0.82 in BMC estimation and reported an
overall uncertainty score of 0.189 which needs further investigation to assess its reliability.
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1. Introduction

Osteoporosis is a fast-growing bone disease and is expected to affect over 263 million people
by 2035 (Zhu et al., 2023). Unfortunately, dual-energy X-ray absorptiometry (DXA), is not
cost-effective and is often not available to many patients. This creates a big burden for
both healthcare providers and patients. At the same time, the field of artificial intelligence
has made strong progress in recent years, leading to new solutions such as using Gener-
ative Adversarial Networks (GANs) to estimate bone mineral content (BMC) (Gu et al.,
2023). While these methods show promise, they lack an essential component for clinical
adoption: an estimation of how confident the model is in its predictions. In real-world di-
agnosis support, especially in borderline or atypical cases, it is crucial not only to generate
a prediction but also to convey how much uncertainty surrounds that prediction. Without
such information, clinicians may either over-rely on or distrust the model entirely. In addi-
tion, diffusion models have recently shown state-of-the-art results in high-quality medical
image generation compared to GANs (Müller-Franzes et al., 2023). But, fast denoising
diffusion probabilistic models (Fast-DDPM), a newer diffusion approach designed for faster
and less computationally intensive image generation than standard DDPM (Jiang et al.,
2024), can still produce poor image quality when sampling from random timesteps. There-
fore, to combine fast and high-quality image generation which is essential for accurate BMC
prediction, with uncertainty quantification, we propose a Random Fast Denoising Diffusion
Probabilistic Model (Random Fast-DDPM) with a variance-based uncertainty quantifica-
tion technique. The key idea is to train the model like a standard DDPM using all 1,000
timesteps, but to sample like Fast-DDPM using uniform or non-uniform random timesteps.
This design enables the model to generate high-quality images at any sampling timestep
while also allowing straightforward uncertainty estimation.

2. Method

2.1. Dataset and Preprocessing

The dataset comprises 600 patients who underwent hip arthroplasty at Osaka University
Hospital (May 2011–Dec 2015). Each patient has 4–5 X-ray images in different poses, paired
with a proximal femur (PF-DRR) and corresponding CT-derived BMC. In total, there are
2651 image pairs, with 2118 used for training and 533 for testing. Additionally, a validation
set of 120 CT-BMC values is provided in a CSV file. For preprocessing, all images were
resized from 256×128 to 128×64 and normalized to the [0, 1] range.

2.2. Model Architecture

The proposed model is based on a U-Net architecture composed of encoder, bottleneck,
and decoder modules. The input is a concatenation of the PF image and its corresponding
X-ray (2 channels), with batch size B=8, and is projected to shape B×128×128×64 by a
convolutional layer. The encoder has 6 downsampling blocks, each comprising two ResNet
blocks with normalization, attention, activation, timestep embedding, and downsampling
layers. This reduces spatial resolution to 4×2 and increases channel depth to 512. The
bottleneck contains two mid-blocks, each with two ResNet layers, attention, and embedding
layers, maintaining shape B×512×4×2 to enhance global context. The decoder reverses
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the encoder and uses skip connections to progressively upsample back to B×128×128×64,
followed by a final convolutional layer producing the output shape B×1×128×64.

2.3. Training and Sampling Protocol

To run Algorithm 1, we trained the model on a NVIDIA A6000 GPU using a linear scheduler
to gradually add noise. We used MSE as the loss to compare predicted and true noise, and
optimized with Adam at a learning rate of 0.00002.

Table 1: Training and Sampling Procedures for Random Fast DDPM

Training Procedure (Algorithm 1) Sampling Procedure (Algorithm 2)

1. Initialize 1. Initialize
Shuffle timesteps: S ←
Shuffle({0, . . . , T−1}), set i← 0

Sample conditional image c ∼ pc(c) and
noise ϵ ∼ N (0, I)

2. Sample and Prepare 2. Add Noise
Sample training pair (x0, c) ∼ pjoint(x0, c) Compute noisy input: x(T ) = α(T )c +

σ(T )ϵ
If i ≥ T , reshuffle S, reset i← 0 Select timesteps {t1, . . . , tN} ⊂

{T−1, . . . , 0} (e.g., 10 steps)
Choose timestep: t← S[i], then i← i+ 1
3. Noise Injection 3. Iterative Denoising
Sample noise ϵ ∼ N (0, I) For each t in {t1, . . . , tN}:
Compute: x̃ =

√
ᾱtx0 +

√
1−ᾱtϵ Form x̂(t) = [x(t) ∥ c]

Concatenate: x̂ = [x̃ ∥ c] Predict noise: ϵθ(x̂(t), t)
Update: See Eq. 1

4. Optimization 4. Output
Update model: ∇θ∥ϵ− ϵθ(x̂, t)∥2 Return final result: x(0)

x(t−∆t) =
α(t−∆t)

α(t)
x(t) +

[
σ(t−∆t)− α(t−∆t)

α(t)
σ(t)

]
ϵθ(x̂(t), t) (1)

Algorithm 1 handles training by adding noise to PF images and learn to denoise using shuf-
fled timesteps. Algorithm 2 performs sampling and estimate BMC to quantify uncertainty.

3. Results

In this first experiment, our proposed Random Fast-DDPM used the same uniform timesteps
as Fast-DDPM (Jiang et al., 2024), specifically [0, 199, 299, 399, 499, 599, 699,

799, 899, 999], and achieved a Pearson correlation of r=0.82 for BMC estimation (Fig-
ure 1b), demonstrating strong reconstruction capability from any timestep. Figure 1a shows
the conditional X-ray and predicted PFs with the lowest and highest uncertainty maps,
corresponding to BMC values of 17.28 and 14.61, respectively. These maps, based on
pixel-wise variance, highlight areas of low model confidence. Overall, BMC prediction un-
certainty was low, with a mean of 0.189, ranging from 0.016 to 1.176. While the model is
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(a) PFs, BMCs, and uncertainty maps. (b) (BMC p.c.c : r = 0.82).

Figure 1: Qualitative and quantitative evaluation of BMC prediction.

generally confident, further analysis is needed to evaluate how uncertainty relates to actual
prediction error, in order to fully validate our uncertainty estimation method.
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