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Abstract
Metamaterials are artificial materials that are de-
signed to meet unseen properties in nature, such
as ultra-stiffness and negative materials indices.
In mechanical metamaterial design, three key
modalities are typically involved, i.e., 3D topol-
ogy, density condition, and mechanical property.
Real-world complex application scenarios place
the demanding requirements on machine learning
models to consider all three modalities together.
However, a comprehensive literature review in-
dicates that most existing works only consider
two modalities, e.g., predicting mechanical prop-
erties given the 3D topology or generating 3D
topology given the required properties. There-
fore, there is still a significant gap for the state-
of-the-art machine learning models capturing the
whole. Hence, we propose a unified model named
UNIMATE, which consists of a modality align-
ment module and a synergetic diffusion gener-
ation module. Experiments indicate that UNI-
MATE outperforms the other baseline models
in topology generation task, property prediction
task, and condition confirmation task by up to
80.2%, 5.1%, and 50.2%, respectively. We open-
source our proposed UNIMATE model and corre-
sponding results at https://github.com/
wzhan24/UniMate.

1. Introduction
Metamaterials are synthetic materials with unique proper-
ties, which are typically rarely observed in natural mate-
rials (Engheta & Ziolkowski, 2006). To be specific, me-
chanical metamaterials are a specific class of metamaterials
designed to achieve unusual mechanical properties through
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Figure 1. Trinity Representation of Metamaterials.

their engineered structures rather than the chemical compo-
sition. These materials are revolutionizing various fields,
offering novel solutions for challenges in engineering, man-
ufacturing, and materials science (Barchiesi et al., 2019).
Metamaterials can have many possible important merits
that classic materials do not have, like negative Poisson’s
ratio (Wang et al., 2020a) (favored for soft device), energy
absorption behavior (Yuan et al., 2019) (favored for cush-
ioning device), tunability (Sheng & Varadan, 2007) (favored
for device with customized features), and extreme strength-
to-weight ratio (Wang et al., 2020b) (favored for ultra-light
and strong device). With the unique and superior merits of
metamaterials, they have become an optimal choice in many
engineering fields like energy storage, biomedical, acoustics,
photonics, and thermal management (Surjadi et al., 2019).

Metamaterial design has a higher degree of freedom com-
pared to traditional material design due to the possibility
of manipulating and engineering the properties at the sub-
wavelength level. In traditional material design, owing to
natural laws, only a small amount of components can be
tailored, like the percentage of each element, the phase
of materials, etc. However, metamaterials can have artifi-
cially programmed structures as long as certain manufactur-
ing requirements (e.g., periodicity) are satisfied (Sinha &
Mukhopadhyay, 2023). Therefore, the design tasks are mul-
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Table 1. Comprehensive Review of Model’s Ability for Metamaterial

MODEL TOPOLOGY GENERATION PROPERTY PREDICTION CONDITION CONFIRMATION

SCHNET (SCHÜTT ET AL., 2017)
FTCP (REN ET AL., 2020)
COND-DFC-VAE (COURT ET AL., 2020)
PAINN(SCHÜTT ET AL., 2021)
CDVAE (XIE ET AL., 2022)
CG-SCHNET (GEBAUER ET AL., 2022)
MCGCNN (MEYER ET AL., 2022)
MACE (BATATIA ET AL., 2022)
EQUIFORMER(LIAO & SMIDT, 2022)
EDM (HOOGEBOOM ET AL., 2022)
SPHERENET (LIU ET AL., 2022)
DIFFCSP(JIAO ET AL., 2023)
UNITRUSS (ZHENG ET AL., 2023A)
VISNET(WANG ET AL., 2024)
SYMAT (LUO ET AL., 2024B)
EQUICSP (LIN ET AL., 2024)
COND-CDVAE (LUO ET AL., 2024A)
MACE+VE (GREGA ET AL., 2024)
COMFORMER (YAN ET AL., 2024)
UNIMATE (OURS)

tifaceted (Zheng et al., 2023a; Bastek et al., 2022b; Maurizi
et al., 2022), e.g., giving part of the structure and generating
the rest according to some desired property, giving part of
the properties and generating a suitable structure and the
rest of the property, giving the structures and predicting the
possible properties, and giving the structures and properties
and selecting the optimal conditions during the generation.
Mastering all the above tasks is challenging and requires
comprehensive knowledge and consideration of all possible
aspects. To the best of our knowledge, there is no exist-
ing AI work that models all metamaterial design aspects
together, as shown in Table 1, and the detailed review and
why we need the comprehensive modeling are expressed
below.

Formally, three key aspects (i.e., data modalities) compose
the entire mechanical metamaterial design or generation, as
shown in Figure 1, i.e., 3D topology, density condition, and
mechanical property (Yu et al., 2018). Knowing any two
of these three aspects, we expect to derive the other one.
For example, given the restrained density condition and
the target property (e.g., stiffness), in this paper, we study
how to empower generative models to design an effective
structural organization among many possible 3D topologies,
which task can be named as Topology Generation, the other
two tasks are named Condition Confirmation and Property
Prediction, their mathematical illustrations are expressed in
Section 2.2.

The mechanical metamaterial community is eager for the
comprehensive modeling method to address existing chal-
lenges: (C1) Data Complexity: mechanical metamaterial

design involves three modalities with different formats and
distributions. Hence it is difficult to utilize all such informa-
tion; (C2) Task Diversity: given the complexity of data, any
part of the data can be missing and requires design effort.
Therefore there can be various design tasks; (C3) Lack of
Benchmark: there is a lack of suitable benchmark that cov-
ers the diverse tasks, including a dataset providing varied
topologies, density conditions and properties, and suitable
metrics to evaluate the model performance. However, as
shown in Table 1, existing works on material design are not
satisfied, models like FTCP (Ren et al., 2020), SyMat (Luo
et al., 2024b), EquiCSP (Lin et al., 2024) are solely targeted
for topology generation. One relatively “versatile” model
is Cond-DFC-VAE (Court et al., 2020), which can perform
both structure generation and property prediction. However,
Cond-DFC-VAE can only take structural information as in-
put when performing property prediction tasks, such that
when adopting it to the condition selection, the input to be
handled is biased, i.e., only topological information is taken.

Motivated by the above analysis, we aim to propose a uni-
fied model that is versatile enough and can tackle three
data modalities together in mechanical metamaterial design.
Our proposed UNIMATE consists of two novel components,
a modality alignment module and a synergetic generation
module. The modality alignment module compresses the
three different modalities into a shared latent space and uses
tripartite optimal transport to align the latent tokens from
each modality. The synergetic generation module receives
all the latent tokens (some are unknown) and completes
the unknown tokens through a score-based diffusion model.
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Finally the denoised tokens from the diffusion model are
reverted by a decoder(s) into the raw design space. In prin-
ciple, the modality alignment module helps to narrow the
large gap among the three modalities, which significantly
alleviates challenge C1; the synergetic generation mod-
ule, owing to its intrinsic flexible nature, is well-suited for
address challenge C2. We propose a new dataset and new
metrics, which help to solve challenge C3.

This work has the following main contributions:

• Problem Formalization: We propose and formalize
a general design task for mechanical metamaterial de-
sign. The task defined in this work can be generalized
to many specific important tasks, including topology
generation, property prediction, and condition confir-
mation.

• Unified Model: We propose a unified model to address
the general design task. This unified model can per-
form diverse kinds of tasks in mechanical metamaterial
design.

• Benchmarking and Experimentation: We propose a
suitable benchmark for the metamaterial design tasks
and compare our model with six baselines. The result
shows the superiority of our model.

2. Preliminary
Here, we briefly and formally introduce the background of
metamaterial and relevant main tasks.

We use regular letters to denote scalars (e.g., n), boldface
lowercase letters to denote vectors (e.g., vi), and boldface
uppercase letters to denote matrices (e.g., Wi), italic upper-
case letters to denote sets (e.g., L).

2.1. Background of Mechanical Metamaterial

As shown disentangled in Figure 2, mechanical metamateri-
als are basically substrate material accumulated according to
synthetic spatial structures, i.e., lattice structures. To avoid
complicated design, lattice structures are normally set to be
periodic so that the entire body of metamaterial is made of
a repeating smallest cell, called a unit cell. Therefore, the
definition of the topology of metamaterial can be expressed
as the topology of a unit cell (essentially a 3D graph) and
three lattice vectors indicating how the unit cell is repeated.
Given such topology information, we can customize how
“densely” substrate material is accumulated along each edge
(i.e., relative density1 condition). When 3D topology and
relative density conditions are determined, the mechanical
properties of the metamaterial can be estimated, including

1In this paper, we use “relative density” and “density” inter-
changeably

Young’s modulus, shear modulus, and Poisson’s ratio (Wort-
man & Evans, 1965). Hence, we formally define mechanical
metamaterial as follows.

Metamaterial Trinity Representation (MTR) represents
a complete metamaterial representation, denoted asM =
(T , ρ,p), where M is a tuple of 3D topology T , density
condition ρ, and mechanical properties p.

Equipment
Lattice

Substrate Molecule Unit Cell

Figure 2. Hierarchical Composition of Mechanical Metamaterial.

3D Topology is represented by T = (L,X,A), where
L = [l1, l2, l3] contains the three lattice vectors indicating
the axes along which the unit cell is stacked; X ∈ Rn×3

is the 3D coordinates matrix of nodes, and A ∈ Rn×n is
the adjacency matrix without self-loop, where n denotes the
node numbers, with Ai,j = 1 if ith node connects jth node.

Relative Density Condition is denoted as ρ =
∫
Ω̃
dω∫

Ω
dω

, where

Ω and Ω̃ stands for the unit cell zone and solid zone within
the unit cell, and dω is a small volume; in other words,
density means the ratio of solid matter within the unit cell.

Mechanical Properties is denoted as p, a vector indicating
the mechanical attributes of materials, such as Young’s mod-
ulus, shear modulus, Poisson’s ratio (Wortman & Evans,
1965), etc.

The definition of MTR allows us to formalize the problem of
designing a mechanical metamaterial as deriving a complete
MTR.

2.2. Main Tasks

Given the background in Section 2.1, to derive a complete
MTR, we focus on three basic tasks with different unknown
components of the MTR concerned.

Conditional Topology Generation. Given restrained rel-
ative density ρ and desired property p, we aim to generate
3D topology T that meets certain geometric requirements
(periodicity and symmetry) and matches the given property
under the given density.
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Figure 3. Pipeline Illustration of UNIMATE. Three modalities are fed into the model, crossing two modules, and generating reconstructed
data for training. In the inference phase, the targeted modality data is generated from noise.

Property Prediction. Given the topology T and density
condition ρ, we aim to predict the corresponding property p,
i.e., whether and how well a specific topology can perform
under a particular density.

Condition Confirmation. Given topology T and property
p, we aim to confirm the corresponding density condition ρ.
This task helps the researchers to know how light or heavy
the designed material can be, with the given topology and
given property. This task holds particular significance in
designing materials that are light yet exhibit high stiffness,
as well as in the development of lightweight cushioning
materials.

3. Methodology
In this section, we introduce the details of the proposed
UNIMATE model that is designed to handle diverse tasks in
a unified framework for metamaterial design. We begin with
an overview of the model in Section 3.1, which consists of
two main modules, i.e., Metamaterial Modality Alignment
in Section 3.2 and Metamaterial Synergetic Generation in
Section 3.3. Section 3.4 explains the training and inference
procedures of our model.

3.1. Overview

There are three key challenges in mechanical metamaterial
design, i.e., data complexity, task diversity, and lack of
benchmark. To demonstrate this, in this paper, we first
prepare a benchmark to solve the third challenge together,
and the details are given in Appendix A.

To be specific, for addressing the first two challenges, we
propose a model with two specially designed modules, i.e.,

one for modality alignment and the other for a synergetic
generation as shown in Figure 3. The modality alignment
module maps the raw information into a shared latent space
and aligns the latent tokens from each modality. The syn-
ergetic generation module takes the known latent tokens as
context and generates the unknown tokens.

Next, we will elaborate on the technical details of meta-
material modality alignment and metamaterial synergetic
generation.

3.2. Metamaterial Modality Alignment

In brief, the modality alignment module is designed to align
the three modalities, thus facilitating the generation process
and addressing the challenge C1.

Since continuous spaces are more difficult to align, inspired
by inspired by VQ-VAE (Van Den Oord et al., 2017), we
first map the raw data into a discrete latent space. Then, we
use three pairs of encoders and decoders to map the data
from raw format into the latent space. These tokens are then
mapped into a shared discrete latent space by comparing
with a codebook, which is essentially a set of prototype
tokens Z = {zi}κi=1, where zi ∈ Rd, κ is the codebook
size, and d is the token dimension.

The three pairs of encoders E and decoders D correspond-
ing to the three different modalities for topology T , density
ρ, and property p are denoted as {ET ,DT }, {Eρ,Dρ}, and
{Ep,Dp}. For example, ET is a graph convolutional net-
work (GCN) defined as

X̃ = ET (X,A) = GCNi=1,...,L(X,A),

X̃
l
= GCNl(X̃

l−1
,A) = Aσ(X̃

l−1
,A)W l,

(1)
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where X̃
0
= X and 1 ≤ l ≤ L denotes the number of

layers. W l denotes the lth layer’s parameters, σ denotes
Sigmoid activation function, and X̃ is the latent embedding
consisting of latent tokens x̃i.

After the latent tokens (e.g., x̃i) obtained, We introduce a
codebook to “round” the latent tokens, i.e., find the nearest
prototype token in the codebook and substitute the latent
tokens with the prototype token. The subscription “round”
(e.g., X̃round) below means rounded token(s).

Then, DT is introduced to decode the rounded tokens, con-
sisting of several transformer layers with a final linear layer:

X̂ = DT (X̃round) = TransLayeri=1,...,L(X̃round)W T , (2)

where each TransLayerl is a transformer layer using multi-
head self-attention, and W T ∈ Rd×3 is to calculate the
vertex coordinates. Consequently, the reconstructed the
adjacency matrix Â can be obtained by

Âi,j = CosSim(x̂i, x̂j), (3)

where CosSim denotes cosine similarity.

In addition to coordinates X and adjacency matrix A, to
derive the MTR, the lattice vector L can be calculated ac-
cording to the method mentioned in Appendix A.2.

Similarly, Eρ andDρ are each a multilayer perceptron (MLP)
to process density ρ and its latent representation ρ̃:

ρ̃ = Eρ(ρ), and ρ̂ = Dρ(ρ̃round), (4)

Also, Ep and Dp are two series of MLPs, each MLP for
one dimension of p. The encoder maps the property p into
a series of tokens P̃ , while the decoder does the reverse
operation.

It should be noted that the output of the encoders, i.e.,
X̃, ρ̃, P̃ , are not directly input into the decoders, but af-
ter “rounding” them into the nearest tokens in the codebook
Z . X̃, ρ̃, P̃ are concatenated into latent MTR (LMTR):

M̃ = [X̃; ρ̃; P̃ ]. (5)

M̃ can also be reformatted as a series of tokens: M̃ =
[m̃0, m̃1, . . . , m̃h], where each m̃ ∈ Rd is a latent token,
h is the LMTR token number, d is the token dimension
(also named latent dimension). For each token m in M̃ , the
rounding process is performed as:

m̃round,i = zj , where j = min
k

∥m̃i − zk∥, (6)

then, we get [X̃round; ρ̃round; P̃ round].

The above three different modalities are being mapped into
a shared discrete space comprising a series of tokens by the
encoders and the codebook. A suitable method is needed

to align the three modalities. Optimal transport (Sinkhorn,
1967) (OT) provides a way to align two different distribu-
tions. To apply OT in our task, we generalize it into tripartite
OT (TOT), which considers three modalities. The process of
implementing TOT is to lower the tripartite Wasserstein dis-
tance (TWD) by optimizing the latent tokens. This optimiza-
tion is then realized by optimizing the encoders mentioned
in Section 3.1. The TWD, dw, is defined as

dw = inf
λ(α,β,γ)∈Λ(α,β,γ)

Ex,y,z∈λ(α,β,γ) [c(x, y, z)], (7)

where α, β and γ are the marginal distribution of x, y and
z, and c(x, y, z) is the tripartite cost defined as

c(x, y, z) = CosSim(x, y) + CosSim(y, z) + CosSim(x, z).
(8)

Minimizing the dw in Equation (7) by optimizing the dis-
tribution of the three modalities x, y and z provides a way
to align the three modalities. To achieve this, we propose
a tripartite Sinkhorn algorithm (TSA), which is a gener-
ation of (Sinkhorn, 1967). The details can be found in
Appendix B.2. Briefly speaking, the vanilla Sinkhorn al-
gorithm (Sinkhorn, 1967) involves two distributions, such
that to process the three modalities, we need to generalize
the vanilla Sinkhorn algorithm into the tripartite Sinkhorn
algorithm by generalizing the transport plan iteration pro-
cess and adding the preprocessing (calculating the token
frequency first, i.e., lines 3 to 10 in Alg. 1).

Alg. 1 gives the detailed implementation of our proposed
TSA. Firstly, the marginal distribution of X̃round, ρ̃round

and P̃ round is calculated with respect to the latent token
series {zi} (lines 2 to 10 in Alg. 1). According to TSA,
the transport plan (which is essentially a 3D tensor) can be
expressed as TransPlan = u⊙ v ⊙w ⊗M , where u, v
and w are three bases and M is a damping matrix that is
determined by the latent token series. Therefore, only u, v,
and w need to be calculated. Finally, lines 12 to 17 in Alg. 1
calculate the three bases in an iterative way.

With respect to the alignment operation, to optimize the
model, the alignment loss can be defined as

Lalign = αT (||X − X̂||+ ||X̃ − X̃round||+ ||A− Â||)
+ αρ(||ρ− ρ̂||+ ||ρ̃− ρ̃round||)
+ αp(||p− p̂||+ ||P̃ − P̃ round||)
+ αwdw.

(9)

where αT , αρ, αp and αw are four hyperparameters.

After minimizing this alignment loss, we can obtain a 3D
tensor that indicates the collaborative distribution of the
three (latent) representations. Therefore, in the generation
stage, instead of randomly choosing one starting point from
pure noise, we can choose from the elements with higher
probability as the starting point. This operation can decrease
the discrepancy between the starting point and ending point
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of the diffusion process. Hence, it will be simpler to gen-
erate proper outputs, which increase the robustness of the
generation process.

3.3. Metamaterial Synergetic Generation

To address challenge C2, the synergetic generation module
is proposed for diverse tasks during metamaterial design.

We implement the synergetic generation process as a
partially frozen diffusion process, since a diffusion
model (Song & Ermon, 2019) can take inputs with flexible
shape if the backbone is a flexible model, while the frozen
operation can provide context for the diffusion process.

The input to the synergetic generation module is the rounded
LMTR M̃ round, which is a series of tokens. Part of the
input tokens are added with noise and are considered as
unknown tokens. The indices of the known tokens and
unknown tokens are denoted as Ikn and Iun, respectively,
with Ikn ∪ Iun = I = {0, 1, . . . , h − 1}, where h is the
number of all tokens. The known and unknown tokens
can be denoted as M̃ round(Ikn) and M̃ round(Iun). The
score-based diffusion process (Song & Ermon, 2019) can
be expressed as a series of denoising steps, with each step
being:

M̃ t = M̃ t−1 +
αi

2
ϕ(M̃ t−1) +

√
αiZt, (10)

where t ∈ {0, 1, . . . , T}, T is the time step number, αi is
a scalar declining with the diffusion process (we use the
same setting of αi as in (Song & Ermon, 2019)), ϕ is a
transformer backbone, and Zt is Gaussian noise with the
same shape as M̃ t. M̃0 is set to be M̃ round.

To keep the given context tokens intact, the transformer
backbone performs partially frozen diffusion. In other
words, for partially frozen diffusion, all the tokens go
through each layer of the transformer and yield an output
token series. Then, the formerly known tokens in the output
are replaced with their initial values. Such partially frozen
processing can be expressed formally as:

ϕ(M̃ , Iun) = [ϕ(M̃)(Iun);M̃(Ikn)]. (11)

Then, Equation (10) becomes

M̃ t = M̃ t−1 +
αi

2
ϕ(M̃ , Iun) +

√
αiZt. (12)

Owing to such a partially frozen operation and the intrinsic
mechanism of the transformer, our model can take a series
of tokens with arbitrary series length (except for memory
limit’s sake), while an arbitrary subset of the tokens can
be set as unknown. The known tokens provide context
information for other tokens, especially in the attention
operation of the transformer. Therefore, we name such a

generation as synergetic generation. Finally, the generation
loss is defined as

Lgen = ∥M̃ round − M̃T ∥. (13)

3.4. Optimization and Inference

The training process is as follows: (1) the encoders project
the raw MTR into latent space; (2) the codebook is used to
round the latent tokens; (3) TOT is used to align different
modalities; (4) the decoders are used to reconstruct the raw
MTR; (5) add Gaussian noise to one random type of tokens
(e.g., topology tokens) to obtained noised LMTR; (6) the
noised LMTR is input into the diffusion model for denoising
(i.e., the synergetic generation process). Note that steps 4
and 5 do not rely on each other, so they are two parallel
operations. The training loss is

L1 = λalignLalign + λgenLgen, (14)

which basically considers the MTR reconstruction error, the
token rounding error, the modality align error and the error
between generated tokens and initial latent tokens.

When using the model for testing or inference, it is assumed
that part of the raw MTR is provided (although the model
can also do unconditional generation to provide a random de-
sign). Then, the given part goes through the corresponding
encoder(s), and some latent tokens are provided accordingly.
Then, the unknown tokens are initialized with the condi-
tional probability according to the transport plan to provide
a high-quality initialization that is aligned with the input
condition. The diffusion model then generates the com-
pleted M̃ round, which then is reverted to the raw design
space by the decoders.

4. Experiments
4.1. Experiment Setup

Datasets. Existing works lack a suitable dataset covering
all three tasks in Section 2.2. To address this, we construct a
new dataset based on (Lumpe & Stankovic, 2021) by select-
ing samples, assigning multiple density conditions to each
topology, and computing mechanical properties via finite
element simulation. Further details are in Appendix A.1.

Baselines. As detailed in Section 5, existing methods related
to our work fall into generation-oriented and prediction-
oriented models. For generation, we use CDVAE (Xie et al.,
2022) and SyMat (Luo et al., 2024b) as baselines, both
designed for periodic crystal structure generation. For pre-
diction, we include Equiformer (Liao & Smidt, 2022), ViS-
Net (Wang et al., 2024), MACE-ve (Grega et al., 2024), and
uniTruss (Zheng et al., 2023a), which predict (meta)material
properties from topology. Additionally, we adapt uniTruss
for generation using its reconstruction capability.
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Table 2. Effectiveness Comparison.

MODEL
TOPO. GEN. TASK PROP. PRED. TASK COND. CONFIRM. TASK
Fqua Fcond NRMSEpp NRMSEcc

(×10−2, ↓) (×10−2, ↓) (×10−2, ↓) (×10−2, ↓)
CDVAE (XIE ET AL., 2022) 19.23 32.71 N/A N/A
EQUIFORMER (LIAO & SMIDT, 2022) N/A N/A 5.31 38.05
VISNET (WANG ET AL., 2024) N/A N/A 3.12 10.43
SYMAT (LUO ET AL., 2024B) 16.94 33.37 N/A N/A
UNITRUSS (ZHENG ET AL., 2023A) 19.43 33.77 2.71 8.89
MACE+VE (GREGA ET AL., 2024) N/A N/A 2.57 9.09
UNIMATE (OURS) 2.74 7.81 2.44 4.43

4.2. Effectiveness Analysis

To evaluate the effectiveness of our model, we compare its
performance with the baseline models on the three tasks
mentioned in Section 2.2. For topology generation, we con-
sider the two generation-oriented baselines. For property
prediction and condition confirmation, we consider the four
prediction-oriented baselines. Existing models are not well
suited for condition confirmation since they are not designed
to input 3D topology and mechanical properties simultane-
ously. Therefore, we revise the three prediction-oriented
models by forcing them to predict density for the condition
confirmation task. The metrics we use to assess the genera-
tion result are Fqua and Fcond. Specifically, Fqua measures
the topology quality, including symmetry and periodicity,
while Fcond measures how closely the result matches the
ground truth topology. Details regarding these two metrics
can be found in Appendix A.2. For the property prediction
and condition confirmation tasks, we simply calculate the
normalized root mean square error (NRMSE) between the
model’s output and the ground truth value.

As listed in Table 2, our model outperforms other baselines
in all three tasks. In the topology generation task, property
prediction task, and condition confirmation task, our model
outperforms the second-best model by 80.2%, 5.1%, and
50.2%, respectively. This result verifies the superiority of
our model in terms of effectiveness.

4.3. Time and Space Efficiency

To compare the time efficiency of our model with other
models, we train each model on our dataset with varied batch
sizes and record the average time required for processing
each batch. The result is shown in Figure 4. According
to Figure 4, the batch processing time for each model is
roughly in linear relation to the batch size. In terms of the
slope of each line in Figure 4, our model has a medium-level
slope, implying a medium-level time efficiency. Additional
results for other baselines can be found in Appendix C.1.

However, it should be noted that three lines in Figure 4 stop
at smaller batch sizes. The reason is that these models trig-

0 2000 4000 6000 8000 10000
Batch Size

0

2

4

6

8

Tr
ai

ni
ng

 T
im

e 
pe

r B
at

ch
 (s

) SyMat
MACE-ve
Equiformer
UniMetaMate

Figure 4. Comparison of Time Efficiency.

ger an out-of-memory error with the GPU near the stopping
point of each line. Our model, on the other hand, triggers
no error even after the batch size of 10000. Therefore, our
model has a far higher space efficiency than other models
considered.

4.4. Parameter Sensitivity

We also study the parameter sensitivity of our model by
tuning the latent token dimension d and number of to-
kens within the codebook n. The resulting generation met-
ric Fqua is shown in Figure 5, with other metrics in Ap-
pendix C.2. From Figure 5, it can be seen that our model
performs better roughly with a larger latent token dimension
and larger codebook size.
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Figure 5. Fqua under different parameters.
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4.5. Ablation Study

Table 2 shows that our model performs well in capturing the
cross-modality correlation. For the ablation study, 3 cases
are used to figure out how much the diffusion generation
module (with/without the partially frozen diffusion tech-
nique), the encoder-decoder compression module, and the
alignment operation contribute to our model’s correlation-
capturing ability.

Table 3. Ablation Study.

Fqua(↓) Fcond(↓) NRMSEpp(↓) NRMSEdp(↓)
CASE 1 0.0531 0.1136 0.0472 0.0757
CASE 2 0.0295 0.0812 0.0263 0.0510
CASE 3 0.0405 0.0813 0.0322 0.0423
CASE 4 0.0274 0.0781 0.0244 0.0443

Ablation case 1: (diffusion model alone) Instead of gener-
ation in the LMTR space, the diffusion model can also be
used to directly generate samples in the raw MTR space (al-
though a linear layer is needed to bridge the gap between the
input space dimension and transformer layers’ processing
dimension).

Ablation case 2: (mapping into latent space + diffusion
model) In this case, we still use the encoder-decoder module
to compress the original MTR into latent MTR and then im-
plement the diffusion module without alignment operation.

Ablation case 3: (vanilla diffusion) In this case, we simply
remove the partially frozen diffusion technique from the full
model. Specifically, this means that all tokens, including
the context tokens that should not be changed, are changed
through each layer in the diffusion backbone.

Ablation case 4: (full model) This case corresponds to the
full model, including design space unification, latent space
alignment, and synergetic generation.

Table 3 lists the result of the ablation study. From Table 3 it
can be seen that the unification and the alignment operation
are both beneficial to our model’s performance. The unifica-
tion process boosts the performance by 37.5% in average,
and the TOT alignment provides 7.8% boost upon case 2. By
comparing case 3 and case 4 it can be seen that the partially
frozen diffusion technique provides a 13.9% performance
boost in average, in contrast to vanilla diffusion.

4.6. Case Study

To illustrate the application of our model, here we provide
a case study on topology generation with high stiffness
and low density (HSLD). We train our model on a dataset
of metamaterials exhibiting better HSLD filtered from our
original dataset to emphasize the wanted HSLD attribute.
We restrict the density condition to a low value (e.g., 0.3),
and we tune the wanted stiffness within a range (e.g., 0.1

to 0.5). Our model can yield topologies as a transiting
series along with the transiting properties, as illustrated in
Figure 6.

Figure 6 shows that our model suggests octet truss topology
in the HSLD-targeted task, while octet truss is known to
be a promising candidate for high-stiffness topology (Song
et al., 2019). Our model can also generate some novel
intermediate topologies that are not in the training dataset,
which implies its potential to approximate the intermediate
transition within a given distribution and to propose novel
metamaterial candidates with wanted properties.

Octet FCCIntermediate structures

High StiffnessLow Stiffness

Structural Transition

Property Transition

Medium Stiffness

Figure 6. Case Study on HSLD metamaterial.

5. Related Work
Material Structure Generation. Diffusion models (Yang
et al., 2023) and variational autoencoders (VAEs)(Kingma,
2013; Chen et al., 2025a) are widely used for material struc-
ture generation. SyMat(Luo et al., 2024b), EquiCSP (Lin
et al., 2024), and DiffCSP (Jiao et al., 2023) employ diffu-
sion models for crystal topology generation, with SyMat
incorporating an additional VAE for lattice vector and atom
type generation. These models focus on unconditional gen-
eration, lacking property awareness. CDVAE (Xie et al.,
2022) integrates a diffusion model with a VAE, encoding
structures into a latent space for conditional generation.
Cond-CDVAE (Luo et al., 2024a) extends CDVAE with
conditional Langevin sampling. For molecular generation,
cG-SchNet (Gebauer et al., 2022) and EDM (Hoogeboom
et al., 2022) are conditional models: cG-SchNet leverages
SchNet (Schütt et al., 2017) for latent space encoding, while
EDM processes conditions akin to diffusion time steps.
Cond-DFC-VAE (Court et al., 2020) combines crystal gen-
eration with property prediction but relies on an external
predictor.

Material Property Prediction. MACE (Batatia et al., 2022)
introduces a high-order message-passing network for graph-
based materials, with MACE-ve (Grega et al., 2024) enhanc-
ing it through additional components and training modifica-
tions. ComFormer (Yan et al., 2024) applies transformers to
tokenized crystalline structures. ViSNet (Wang et al., 2024)
utilizes graph attention for feature fusion. SphereNet (Liu
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et al., 2022) employs 3D spherical representations for mes-
sage passing. mCGCNN (Meyer et al., 2022) processes em-
bedded node and edge features via CGCNN (Xie & Gross-
man, 2018). Equiformer (Liao & Smidt, 2022) adapts trans-
formers for graph-based learning with equivariant attributes.
SchNet (Schütt et al., 2017) utilizes continuous filters for
molecular convolutions, while PaiNN (Schütt et al., 2021)
alternates between two types of equivariant message-passing
blocks. uniTruss (Zheng et al., 2023a), a VAE-based model
for metamaterial property prediction, is not inherently de-
signed for material generation.

6. Conclusion
We formalize the diverse mechanical metamaterial design
tasks into a general task. Based on the general task, we pro-
pose a unified model, UNIMATE, which addresses the data
complexity challenge and task diversity challenges. Experi-
ments show that UNIMATE outperforms other baseline mod-
els by a significant margin. We also prepare a benchmark to
support the training and evaluation of metamaterial design
models, which addresses the lack of benchmark challenge.
In summary, this paper contributes to problem formaliza-
tion, model, and benchmark development for mechanical
metamaterial design.
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A. Benchmarking Details
A.1. Dataset

Our data set is built on the basis of the dataset proposed in Lumpe & Stankovic (2021). That dataset contains 17087
topologies, out of which we randomly select 500 topologies with no more than 20 vertices. Figure A.1 illustrates some of
the selected topologies.

Figure A.1. Example Topologies.

Given these 500 topologies, we randomly assign 3 different edge radius for each topology. Given a topology, edge radius
and relative density can be deferred based on each other according to:

d = πr2lequ, (15)

where d is relative density, r is edge radius lequ is the equivalent total edge length:

lequ =
∑
i

linner,i +
1

2

∑
i

lface,i +
1

4

∑
i

lframe,i, (16)

where the “inner”, “face” and “frame” subscripts indicate edges that are within the unit cell, on the surface, or on the
outer frame (connecting two near corner vertices). Therefore, edge radius and relative density are equivalent, given a
topology. For each topology-density pair, we mesh the 3D structure into small cubic voxels and then apply homogenization
simulation (Silveirinha, 2007) to calculate the homogenized mechanical properties of the structure. After such operation, we
have 1500 data points (500 topology and 3 densities for each topology, with matching properties). Based on these 1500 data
points, we apply data augmentation by rotating the topology and the properties with the same random rotating angle. Each
data point is rotated 9 times, so in total, our dataset contains 15000 samples. Our dataset is also provided in the project
repository at https://github.com/wzhan24/UniMate.
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A.2. Metrics

We use different metrics for evaluating a model’s performance in the three tasks: topology generation, property prediction
and condition confirmation.

A.2.1. TOPOLOGY GENERATION

For the generation result assessment, we design two metrics, Fqua and Fcond. Fqua is used to measure the quality of a 3D
topology, defined as:

Fqua =
2FsymFper

Fsym + Fper
, (17)

where Fsym measures the central symmetry and Fper measures the periodicity. We denote the vertex coordinates as
X = [x0,x1, . . . ,xq], where x ∈ R3 is 3D coordinates of a vertex, q is the number of vertices within a unit cell. Fsym is
defined as:

Fsym(X) =
1

q

∑
i

min
j

∥xi + xj

2
− c∥, (18)

where c is the centroid coordinates of all the vertices:

c =
1

q

∑
i

xi. (19)

Since all the topologies in our dataset are of cubic shape, we define periodicity metric based on cubic shape. We find the
eight corners out of all the vertices by:

Xcorner = {xi|i in Icorner}, with Icorner = argsort(−X)[0 : 8], (20)

Icorner corresponds to the indices of the eight vertices that are farthest from the centroid. After finding the eight corners, we
set them into four pairs, each pair containing one corner and another corner that is farthest from it. Figure A.2 illustrates the
four pairs (e.g., corner 1 and 1’). One random corner is set as a anchor corner (e.g., corner 1). For the other 3 pairs (2, 2’, 3,
3’ and 4, 4’), we consider the one closer to the anchor as a “positive” corner. For example, in the 2-2’ pair, corner 2 is closer
to corner 1.

12

34’

1’ 2’

43’

Figure A.2. Illustration of Eight Corners.

After matching all eight corners with their relative status (i.e., the topological relation with respect to the anchor), the vector
of each outer frame edge can be derived, e.g.:

e2−1 = x2 − x1, (21)

where e2−1 is the edge vector between corner 2 and corner 1, with other ei−j similarly defined. Then, three average axes
can be defined as:

l1 =
1

4
(e2−1 + e4′−3 + e1′−2′ + e3′−4), (22)
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l2 =
1

4
(e3−1 + e4′−2 + e1′−3′ + e2′−4), (23)

l3 =
1

4
(e4−1 + e3′−2 + e2′−3′ + e1′−4′). (24)

With the above definition, Fper can be defined as:

Fper =
1

12
(||e2−1 − l1||+ ||e4′−3 − l1||+ ||e3′−4 − l1||+ ||e1′−2′ − l1||

+ ||e3−1 − l2||+ ||e4′−2 − l2||+ ||e2′−4 − l2||+ ||e1′−3′ − l2||
+ ||e4−1 − l3||+ ||e2′−3 − l3||+ ||e3′−2 − l3||+ ||e1′−4′ − l3||).

(25)

Fcond is defined as:
Fcond(X;Xgt) =

1

q

∑
i

min
j

∥xi − xgt,j∥, (26)

where Xgt is the ground truth vertex coordinates, with xgt,j being the jth ground truth vertex’s coordinates. Therefore,
Fcond measures how close a generated result is to the ground truth structure that matches the given condition perfectly.

A.2.2. PROPERTY PREDICTION AND CONDITION CONFIRMATION

For property prediction and condition confirmation tasks, we use NRMSE as the metric, respectively as NRMSEpp and
NRMSEcc, defined as:

NRMSEpp =
1

maxi,j(pgt,i,j)−mini,j(pgt,i,j)

√√√√ 1

N

N∑
i=1

||p̂i − pgt,i||2, (27)

NRMSEcc =
1

maxi(ρgt,i)−mini(ρgt,i)

√√√√ 1

N

N∑
i=1

(ρ̂i − ρgt,i)2, (28)

where pgt,i is the ith ground truth property (with pgt,i,j being its jth component) in the dataset, p̂i is the output value from
the model for the ith property, ρgt,i is the ith ground truth density in the dataset, ρ̂i is the output value from the model for
the ith density and N is the dataset size.

B. Experimental Details
B.1. Implementation Details

We conduct all the experiments on a Linux platform with an NVIDIA A100 GPU (80GB version). We use the same dataset
division ratio (i.e.70% for training, 15% for validation and 15% for testing) for each model. We run the training process until
each model reaches its best performance, although other models generally require more epochs to converge than our model.

The topology encoder ET and decoder DT are each a three-layer GCN, with the latent dimension same as the codebook
token dimension (e.g., 128). The property encoder Ep and decoder Dp, and the density encoder Eρ and decoder Dρ are each
a three-layer MLP, with the latent dimension same as the codebook token dimension.

B.2. Algorithm Details

Alg. 1 shows the detailed Tripartite Sinkhorn Algorithm.

C. Additional Experimental Results
C.1. Time and Space Efficiency

Table C.1 gives additional results of time and space efficiency analysis results for baselines not mentioned in Section 4.3.
Each element in Table C.1 indicates processing time for one batch (seconds per batch) with different size, and “OOM”
indicates out of memory error.
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Algorithm 1 Tripartite Sinkhorn Algorithm

1: Input: {X̃i

round}B−1
i=0 , {ρ̃i

round}B−1
i=0 , {P̃ i

round}B−1
i=0 , ϵ

2: FT , Fρ, Fp = 0n //F represents the frequency of tokens, B is batch size, ϵ is a small positive number
3: u,v,w = 1

n1n

4: for i = 0 to B − 1 do
5: for j = 0 to lT − 1 // lT − 1 is the number of tokens in X̃ do
6: FT ,k ←− FT ,k + 1, if zk = t̃

i
round,j // t̃

i
round,j is the jth token in T̃

i

round

7: end for
8: Update FD and FP

9: end for
10: Normalize FT , Fρ, Fp

11: C = {Ci,j,k|Ci,j,k = c(zi, zj , zk)}, M = exp(−C/ϵ)
12: for i = 0 to N − 1 do
13: u←− FT

1⊗v⊗w⊙M , v ←− Fρ

u⊗1⊗w⊙M , w ←− Fp

u⊗v⊗1⊙M //⊙ is Hadamard product, ⊗ is Kronecker product
14: if u, v, w all converge then
15: break
16: end if
17: end for
18: TransPlan = u⊙ v ⊙w ⊗M
19: dw = ⟨C,TransPlan⟩ //⟨ , ⟩ is Frobenius inner product
20: Return TransPlan, dw

Table C.1. Additional Time and Space Analysis Results.

MODEL\BATCH SIZE 200 1000 2000 3000 5000 7000 10000

CDVAE (XIE ET AL., 2022) 0.2416 0.4372 OOM OOM OOM OOM OOM
VISNET (WANG ET AL., 2024) 0.0285 0.0366 0.0575 0.0772 0.1085 0.1473 0.1931
UNITRUSS (ZHENG ET AL., 2023A) 0.0108 0.01385 0.015 0.01435 0.01406 0.01441 0.0199

C.2. Parameter Sensitivity

Table C.2 provides additional results for parameter sensitivity analysis. Each element in Table C.2 shows the
Fcond\NRMSEpp\NRMSEcc metrics under given latent dimension and number of tokens (i.e., codebook size).

Table C.2. Additional Parameter Sensitivity Analysis Results.

LAT. DIM.\NUM. OF TOKEN 32 64 128

32 0.0836\0.0324\0.0402 0.0769\0.0288\0.0436 0.0833\0.0294\0.0419
64 0.0779\0.0309\0.0404 0.0813\0.0300\0.0409 0.0783\0.0295\0.0442
128 0.0795\0.0286\0.0409 0.0798\0.0331\0.0430 0.0818\0.0282\0.0437
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