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Abstract—Remote control of robotic systems, also known as
teleoperation, is crucial for the development of autonomous
vehicle (AV) technology. It allows a remote operator to view
live video from AVs and, in some cases, to make real-time
decisions. The effectiveness of video-based teleoperation systems
is heavily influenced by the quality of the cellular network and,
in particular, its packet loss rate and latency. To optimize these
parameters, an AV can be connected to multiple cellular networks
and determine in real time over which cellular network each
video packet will be transmitted. We present an algorithm, called
Active Network Selector (ANS), which uses a time series machine
learning approach for solving this problem. We compare ANS
to a baseline non-learning algorithm, which is used today in
commercial systems, and show that ANS performs much better,
with respect to both packet loss and packet latency.

I. INTRODUCTION

Remote control of robotic systems and machines, also
known as teleoperation, plays a key role in AV technology.
The idea behind AV teleoperation is that a remote operator
in a control center can intervene in the operation of one or
more AVs, ranging from direct driving to acting as a remote
safety driver in challenging situations [21]. The overarching
objective is, however, to provide AVs with sufficient high-
quality data and training so that they can make intelligent
decisions themselves in real-time, eliminating the need for a
remote driver. But even if the AV becomes fully autonomous,
it will have to send high-quality real-time video to a control
center.

Acquiring high-quality live video over cellular networks
with latency not exceeding 100ms is one of the greatest
challenges of teleoperation. To address the formidable latency
constraints, UDP-based (rather than TCP-based) transport is
used. To address possible packet losses, forward error correc-
tion (FEC) techniques, which use cross-packet redundancy, are
employed [10], [22].

Cellular networks are known to be unstable and exhibit
dynamic behavior for many reasons. Radio interference, con-
gestion, and handover between base stations all undermine
network stability and make it very challenging to operate on.
Even with the most advanced FEC-based video encoding, the
quality of the live video from the AV is heavily influenced
by the quality of the cellular network and, in particular, its
packet loss rate and latency. To minimize these parameters,
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Figure 1: The results of our communication test drives: Red
spots indicate high packet loss in the Loss column and poor
signal quality in the RSRP column; green spots indicate high
velocity in the Speed column; the Handover column indicates
the number of handover events that occurred in each location

it is possible to connect AVs to multiple cellular networks.
The AV is then required to determine in real-time over which
cellular network its next video packets should be transmitted
such that the packet loss rate and latency are minimized. We
call this the multi-cellular packet routing (MPR) problem. To
the best of our knowledge, we are the first to address this
problem.

Transmitting each packet over multiple cellular networks
increases the complexity of the system, the communication
cost, and requires a new family of transport protocols. This
paper seeks a less complex method – transmitting video pack-
ets over one cellular network – for solving the MPR problem.
We conducted test drives with a vehicle connected to three
different cellular networks. Figure 1 shows the correlation
between packet losses, handovers, user measurement of the
received signal quality from the cell (RSRP), and vehicle
speed. The first column on the left (Loss) is a heat map that
shows the number of lost packets on each cellular network
and in each location of the moving vehicle. The red color
indicates a higher packet loss. The second column (Handover)
is a heat map that shows the locations of handover events. The
numbers on these maps indicate the total number of handover
events that occur in each location. The blue circles in this
column indicate the antenna coverage as documented in the
OpenCelliD database [14]. The third column (RSRP) shows
the user measurements of the received signal quality from the



Figure 2: Latency comparison of three different cellular net-
works (Modems 1, 2, and 3) over a period of time. It is evident
that no single network can offer latency shorter than 100ms
during any of the considered time intervals

cell, represented by the reference signal received power (red
indicates low quality signal). Finally, the last column is a heat
map of vehicle velocity at various locations, (green indicates
high velocity). The most important observation from this figure
is that there is a strong correlation between the RSRP quality,
the frequency of handover events, and the packet loss rate.
For example, for network 1 in this figure, when the RSRP
measurements are closer to dark red, the number of packet
losses and the number of handovers are greater.

High latency is another crucial factor affecting the quality
of teleoperation live video. Figure 2 shows the latency of
our three cellular networks during a 4-second time period.
While the transmission rate is almost constant and there is
no congestion, clearly no single cellular network can offer
sufficiently low latency, up to 100ms. Each cellular network
has time periods during which its latency is above the 100ms
horizontal dashed line, but, interestingly, these time periods
are different for the different cellular networks. This suggests
that sending different packets over different cellular networks
can significantly improve video quality compared to sticking
to the best single network.

We believe that machine learning (ML) is a good way to
solve the difficult MPR problem, given the widespread use of
AVs for traveling along predefined routes today. We conducted
100 communication test drives, each lasting approximately 15–
20 minutes, in the same geographical area, using the same
route. We then captured important network communication
parameters, including GPS longitude, GPS latitude, RSRP,
RSRQ, RSSI, bit rate, packet loss rate, bandwidth, and latency.
We then use these parameters to train our ML algorithms.

We present three ML algorithms. The first algorithm is
called LossPredict. This algorithm uses the above features
to predict which of the cellular networks is more likely to
deliver the next packet with no loss. The second proposed
ML algorithm is called HandPredict. It uses the above features
to predict which of the cellular networks is less likely to
experience a handover while the next packets are transmitted.
While both algorithms perform very well, with prediction
accuracy of more than 80%, we found HandPredict to be better

in terms of the tradeoff between loss prediction and cost. This
algorithm needs fewer parameters than LossPredict to achieve
better packet loss prediction. The third proposed algorithm is
called LatencyPredict. It uses the above features to predict the
latency of the next video packets for each cellular network.

ML algorithms can detect invisible patterns in network
behavior, such as deteriorating signal quality or decreasing
bitrate. By leveraging these parameters, the proposed algo-
rithms perform much better than, for example, a non-learning
algorithm that relies only on GPS coordinates or on RSRP and
RSRQ values for predicting network quality. Our work reveals
that relying only on GPS coordinates, or only on RSRP and
RSRQ values, to predict network quality is insufficient.

Our contribution is a generic approach for selecting the
cellular network over which the next video packets will be
transmitted by an AV. We defined a new problem, MPR, and
propose a new algorithm, called ANS, to solve it. ANS aims to
minimize the packet loss rate and packet latency with no prior
knowledge of the geographical area, the AV mobility pattern,
or the cellular network coverage. Commercial companies can
use the proposed framework by modeling a geographical area
with test drives, recording the relevant features, and training
the proposed ML models.

The rest of this paper is structured as follows: Section II
reviews related work. Section III describes the end-to-end
forecasting framework of the three proposed ML algorithms.
Section IV presents training results. Section V evaluates
the trained ML algorithms on out-of-sample communication
drives. Section VI presents an algorithm that uses these ML
algorithms and compares our results to a baseline algorithm
used today in commercial systems. Finally, Section VII con-
cludes the paper.

II. RELATED WORK

Network communication prediction is not a new idea [7].
Many studies have been conducted to develop ways for ef-
ficient management of users in a cellular network. With the
introduction of 5G networks, new efforts have been made to
anticipate future cellular handovers and support various quality
of service-sensitive [1], [2].

In [1], the authors rely on predictable user patterns. Since
they assume a fixed path, the antennas of the serving cells’ are
known to the handover prediction. In contrast, in our work,
we use data from communication test drives and learn from it
without any prior assumptions.

The authors of [20] address the problem of handover
decision-making for moving vehicles across different base
stations. They use deep reinforcement learning to learn an
optimal handover policy that minimizes the number of unnec-
essary handovers and maximizes network throughput. While
they consider a single cellular network, we consider multiple
networks and define a different optimization problem.

In [12], the authors propose a data-driven ML scheme to
solve the handover prediction task. They employ a multi-layer
perceptron for the ML model based mainly on the received sig-
nal strength from the simulations. Again, their work is different



from our work since they consider a single cellular network
and a different optimization problem. Moreover, unlike our
work, their results are based on ns-3 [19] simulations and not
on real data.

The work of [8] investigates user mobility prediction in
automotive scenarios with the use of long short term memory
(LSTM) recurrent neural network configurations. Similar to
us, the authors show that LSTM can provide accurate mobility
predictions. In contrast to our work, their results are based on
simulations and not real data.

The authors of [5] leverage channel state information cou-
pled with the user’s handover history for supervised ML
that predicts future handovers. This approach relies on user
equipment to report channel gain to the base station on a
regular basis, which may delay or distort the forecast. In
contrast, our ML predictors are trained offline, so the only
inference of our ML trained models is the time it takes to
calculate the prediction.

III. A DEEP LEARNING FORECASTING FRAMEWORK

In Section I we defined the MPR problem as a decision
made by an AV connected to multiple cellular networks about
over which cellular network to send the next video packets to
ensure high-quality real-time video streaming. In this section,
we transform the MPR problem into a time series forecasting
problem. Time series data comprises a discrete or continuous
set of values recorded over time. In the context of this work,
each time record represents 1 second and contains several
parameters such as RSSI, RSRP, latency, GPS longitude,
and GPS latitude. We then present the three ML algorithms:
HandPredict for handover prediction, LossPredict for packet
loss prediction, and LatencyPredict for latency prediction. The
three algorithms share the same framework but have different
ML loss functions and activation functions.

For HandPredict, we denote the predicted binary outcome at
time 𝑡 +𝐻 as 𝑌𝑡+𝐻 , where 𝐻 represents the prediction horizon.
This value is based on a probabilistic model with parameters
𝜃. The mathematical representation is as follows:

𝑌𝑡+𝐻 =

{
1 if 𝑃𝜃 (𝑌𝑡+𝐻 = 1|𝑋𝑡−𝑇 , .., 𝑋𝑡 ) ≥ 𝐷thresh

0 if 𝑃𝜃 (𝑌𝑡+𝐻 = 1|𝑋𝑡−𝑇 , .., 𝑋𝑡 ) < 𝐷thresh,

where 𝑃𝜃 (𝑌𝑡+𝐻 = 1|𝑋𝑡−𝑇 , .., 𝑋𝑡 ) is the conditional probability
of 𝑌𝑡+𝐻 being equal to 1 given the input features 𝑋𝑡−𝑇 , .., 𝑋𝑡 ,
𝑡 is the current time step, and 𝑇 is the number of time steps
included in the past window input features. This equation
compares the calculated probability to a decision threshold
𝐷thresh. If the probability is greater than or equal to the
threshold, the predicted outcome 𝑌𝑡+𝐻 is set to 1. Otherwise,
it is set to 0. For LossPredict and LatencyPredict, the ML
models operate within a regression framework, thus predicting
a continuous value with a 1-second prediction horizon. Our
aim is to meet the 100ms constraints. Thus, our predictions
are made 1 second ahead of each step.

Figure 3 presents the proposed ML framework for HandPre-
dict, LossPredict, and LatencyPredict. This framework begins
with five data preprocessing stages ((a)–(e) in the figure). The

first preprocessing stage is feature selection, which determines
the model input. Then, the input data passes through a nor-
malization stage (b) and a missing data imputation stage (c).
The time series data are then transformed into sequential data
with input and output pairs (stages (d) and (e)). The model
subsequently uses a 1D-CNN [13] stage (f), which takes the
sequential data and extracts features from it. Next, there is
a two-LSTM layer stage (g), during which the LSTM [24]
learns nonlinear information derived from the output layers of
the CNN. The two-LSTM layer uses guidance from patterns
discovered by the earlier layers to detect important hidden
information during every time period. Lastly, we use different
ML loss and activation functions for each of the algorithms.
Below, we explain each stage in more detail.

(a) Feature selection: The selected features play a signif-
icant role in any ML model. In our problem, incorporating
features that have a large impact on the handover probability or
packet loss prediction enhances the model’s accuracy. Increas-
ing the number of features, however, also increases the input
dimension of the CNN model, which leads to more parameters
to learn. To address this, we employ a correlation analysis
technique [18] that selects the most important features and
removes those that have a high correlation with the selected
features. Specifically, we remove features whose correlation
coefficients with the selected features are > 0.9. Figure 4
shows a correlation matrix between the various features in
a set of test drives. It is evident from this matrix, for example,
that RSRP, RSSI, and RSRQ are highly correlated with each
other, which means that one of them can be omitted.

(b) Normalization: To use different variables with different
units and size ranges, all variables are normalized to [0, 1].
We use min–max normalization [16], which converts each
pair of input and output variables, 𝑋 and 𝑌 , as follows:

𝑥′
𝑖 𝑗

=
𝑥𝑖 𝑗−𝑥min

𝑗

𝑥max
𝑗
−𝑥min

𝑗

, 𝑦′
𝑖
=

𝑦𝑖 𝑗−𝑦min

𝑦max−𝑦min . Here, 𝑥𝑖 𝑗 and 𝑥′
𝑖 𝑗

are the

original and normalized values of the 𝑗 th input variable in
the 𝑖th input sample, respectively; 𝑦𝑖 and 𝑦′

𝑖
are the original

and normalized values in the 𝑖th output sample, respectively;
𝑥min
𝑗

and 𝑥max
𝑗

are the minimum and maximum values of the
jth input variable in all ith input samples, respectively; finally,
𝑦min and 𝑦max are the minimum and maximum values of all
output samples, respectively.

(c) Handling missing data: Real datasets are usually
incomplete, with many missing values. For example, in our
dataset, 36% of the points lack their “GPS longitude” and
“GPS latitude” features. Missing dataset values are a challenge
for most ML techniques. To address this challenge, a common
practice is to identify and replace missing values before
modeling the prediction task, a technique known as missing
data imputation [3], [4]. A popular algorithm for missing data
imputation is the 𝑘-nearest neighbor (KNN) [17]. Using KNN
for each sample with missing values, the algorithm finds 𝑘
closest samples in the dataset based on Euclidean distance
and uses their mean instead of the missing value. We use this
method with 𝑘 = 2.

(d) Sequential data representation: Our dataset consists of
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Figure 3: The pipeline stages in the proposed ML framework

Figure 4: A correlation matrix that represents the relationships
between pairs of features in a dataset of communication
drives; each value in this matrix represents the strength of
the relationship between the two corresponding features;

time series data obtained by DriveU Ltd., which covers several
cellular networks, and includes multiple features such as
RSRQ, RSRP, GPS latitude, GPS longitude, etc. We represent
the time series data as a matrix, with rows representing 1-
second time steps and columns representing various features.
We use 1-second time steps in order to meet the strict video
end-to-end latency requirements.

To apply supervised learning to time series data, the data
must be converted into input–output pairs. To this end, we
use the sliding window technique [9], which requires two
parameters: the sliding window length and the sliding step.
We set both to 1 second, for predicting ten time steps ahead.
We use sliding window lengths of 32, 64, and 128 seconds,
resulting in 32, 64, and 128 rows of multiple features for
each training sample, respectively. Since the sliding step is
1 second long, there is an overlap between the windows and
the maximum number of training samples is obtained.

In supervised learning, classification tasks and regression
tasks require labeled data. For handover prediction, we identify
two significant events as handover labels: the label is 1 if the
serving cell changes from X to Y in consecutive time steps,
and 0 if there is no change. For the packet loss rate prediction
task, the packet loss rate recorded data on time step 𝑡 + 1 is

used as the label for each sample.
(e) Balancing the data: An imbalanced dataset can be

biased towards the majority class. This bias can lead to poor
performance among the minority population and decrease
overall accuracy. By balancing the dataset, the ML model is
trained on a representative sample of the entire dataset, thereby
making it more general. We use an undersample technique
[23], which removes a portion of the data from the majority
class, to balance the dataset for the handover prediction.
Undersampling does not affect the correlation structure within
each window in the original sequential data. To this end, we
count the number of samples in the dataset whose handover
label is 1, and find an imbalance ratio of 2 : 98, indicating that
only 2% of the samples have handovers. To ensure a balanced
training set with a 50 : 50 ratio, we randomly choose the same
number of samples with and without handovers from the same
test drives. For packet loss prediction, which is a regression
task, we predict a continuous value and do not balance the
dataset. Thus we can still use all the samples.

The last two stages, (f) and (g), contain the proposed neural
network architecture, which is inspired by [15]. This includes
using a CNN for feature extraction and incorporating LSTM
layers, followed by fully-connected layers, for prediction.

(f) Using a CNN for feature extraction: It is common to
use CNNs in image processing applications. Unlike convolu-
tional CNNs, which use squared filters for image processing,
the 1D-CNN uses rectangular filters to recognize features in
a time series. In each rectangular filter, h is the number of
samples in a test drive, and w is the number of features selected
from the input data. A 1D-CNN can extract important temporal
features using convolutional layers. To increase the nonlinear
features of the CNN, we apply a ReLU activation function,
which enhances the expression ability of the network. Typi-
cally, to minimize input complexity and ensure translation in-
variance, a CNN framework involves successive convolutional
and pooling layers. However, since the recurrent layers need to
process a sliding window of temporal data, we exclude pooling
operations from our architecture. We use four convolutional
layers, each with three single-stride kernels.



Model name GPS-only RSRP\RSRQ 7-feature 8-feature 9-feature

Features GPS longitude
GPS latitude

RSRP
RSRQ

Time stamp
RSRP
RSRQ

Modem bandwidth
Normalized bandwidth

Packet loss rate
Total bit-rate

Time stamp
RSRP
RSRQ

Modem bandwidth
Normalized bandwidth

Total bit-rate
GPS longitude
GPS latitude

Time stamp
RSRP
RSRQ

Modem bandwidth
Normalized bandwidth

Packet loss rate
Total bit-rate

GPS longitude
GPS latitude

Algorithm
HandPredict HandPredict HandPredict HandPredict

LossPredict
LatencyPredict LatencyPredict LatencyPredict LatencyPredict

Table 1: The different sets of input features for each algorithm

(g) LSTM for prediction: An LSTM architecture [11] is
used for making the final prediction. First, the output of the
CNN feature extractor is passed as input to the first LSTM
layer. The output of the first LSTM layer is the input to the
second LSTM layer, and then we have three fully connected
layers that calculate the final prediction.

Before choosing the above architecture, we tested several
alternatives, such as: (a) a bi-directional LSTM with self-
attention, which has higher complexity, but did not provide a
better prediction; (b) a temporal convolutional network whose
results were worse than those of our architecture.

For HandPredict, the output layer estimates the likelihood
that a handover event will occur, which is subsequently
compared to the actual label. The error value is computed
using a binary cross-entropy ML loss function. For LossPredict
and LatencyPredict, the output layer predicts a continuous
value of the packet loss rate or latency, respectively. The error
value is then computed using a mean square error and a mean
absolute error (MAE), for the ML loss functions. Using these
algorithms, an AV can anticipate a deteriorating signal quality
or decreasing bitrate in the cellular network, and thus can
determine in real-time over which cellular network the next
video packets should be transmitted.

Figures 1 and 2 demonstrate that different cellular networks
behave differently in the same geographical area. For this rea-
son, we used data from each cellular network to train separate
instances of the same ML models. During training, after each
epoch, the gradients of each layer in all the models were
averaged. This ensures that each model contributes equally
to the learning process, and that the model will perform
consistently regardless of the underlying cellular network [6].
During inference, the unified model uses the shared weights
to predict the latency and the probability for a handover. This
approach simplifies the deployment process since only one ML
model has to be maintained.

IV. MACHINE LEARNING MODELS TRAINING RESULTS

In this section, we show training results for HandPredict,
LossPredict, and LatencyPredict. The results we show is for
the unified neural network for each ML model. Table 1
presents the different sets of input features for each algo-
rithm. The table shows the four HandPredict models and the
four LatencyPredict models. During training, we found that
predicting the probability of a handover event requires less
training than predicting packet latency and packet loss rate.
Therefore, HandPredict uses two separate datasets: a dataset
with 80 test drives and a dataset with only 20 test drives. In

(a) ML loss accuracy as a
function of the time for different

window lengths

(b) True accuracy as a function
of the time for different window

lengths and thresholds

Figure 5: The prediction dataset of HandPredict for 80 test
drives (first configuration)

(a) ML loss accuracy as a
function of the time for different

window lengths

(b) True accuracy as a function
of the time for different window

lengths and thresholds

Figure 6: The prediction dataset of HandPredict for 20 test
drives (second configuration)

contrast, LatencyPredict and LossPredict use only the large
dataset, with 80 test drives. These drives conducted over a
fixed route. Additionally, while we use four different models
for HandPredict and LatencyPredict, only the 8-feature model
is used for LossPredict. Without these features, predicting the
packet loss rate is less accurate.

As Table 1 shows, one of our models uses only RSRP
and RSRQ. The justification for this model is that the key to
performing a handover process is by considering the RSRP
and RSRQ measurements in the following way: The user
measures the serving cell’s RSRP and RSRQ, and compares
these values to those of the neighboring cells. If the RSRP of
the serving cell is below some threshold (often between -115
and -100 dBm), or if the RSRQ is below another threshold
(often between -19.5 and -3 dB), or if the RSRP and RSRQ
from the neighbouring cell are significantly better, a handover
request is submitted.

To train the various ML models, the architecture of Figure
3 is used, with two different configurations for stages (f) and
(g). In the first configuration, the model is trained using a
dataset of 80 test drives, each lasting 15–20 minutes. In this
configuration, the batch size is set to 512, the learning rate to
0.001, the ML loss function is binary cross-entropy, and the
activation function is sigmoid. In the second configuration,
we train the model on a smaller dataset consisting of only 20
drives. In this case, the batch size is 128, and the learning rate



Figure 7: Packet loss prediction ratio of LossPredict on a
validation dataset of 80 test drives

is 0.001.
The first set of results we show is for the HandPredict algo-

rithm. Figure 5(a) shows the ML loss accuracy as a function
of the sliding window length for the first configuration on both
training and validation sets. Training is stopped when the ML
loss accuracy on the validation set does not improve during
several consecutive epochs. The considered window length
varies from 32 to 128 seconds. It is evident that a 64-second
sliding window yields the best performance. Figure 5(b) shows
true accuracy as a function of sliding window lengths. The true
accuracy metric is the ratio of accurate predictions made on
the validation set. If the ML model predicted value is higher
than 𝐷thresh, the prediction is considered a handover event.
Figure 5(b) shows the true accuracy for two different 𝐷thresh:
0.6 and 0.7. It is evident that a sliding window length of 64
yields the best true accuracy. Figure 6(a) and Figure 6(b) are
similar to Figure 5(a) and Figure 5(b), respectively, but use
the second configuration.

The second set of results is for the LossPredict algorithm.
For this model, only one configuration is used. The model is
trained using a dataset of 80 test drives, each lasting 15–20
minutes. The batch size is set to 512, the learning rate to 0.001,
the ML loss function is mean square error, and the activation
function is the identity function.

Figure 7 shows the calculated percentage of correct predic-
tion of training on the validation set. The x-axis indicates the
epoch number during training. The y-axis represents the ratio
between the predicted value and the real value. In this graph,
“1” on the y-axis indicates that the predicted value is equal
to the real value of the packet loss rate when checked on the
validation set. Recall that the prediction of a packet loss rate
is a continuous value.

It is evident that for LossPredict, the 32-second sliding win-
dow outperforms the 128-second counterpart, as its accuracy
ratio falls below 2; yet, it does not achieve the accuracy of
the 64-second window, probably due to insufficient feature
capture. For the 64-window length, the LossPredict algorithm
achieves approximately 80% accuracy around the 50th epoch
when the ratio is near 1. The ML model’s accuracy, using
a 128-second window, shows minor improvement after 80

training epochs, possibly due to the size of the neural network
requiring more parameters for learning. This suggests that
future ML models could benefit from increasing the number
of layers and neurons.
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(b) 64 window length
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(c) 128 window length

Figure 8: Latency prediction ratio of LatencyPredict on a
validation dataset of 80 test drives

The third set of results is for the LatencyPredict algorithm.
This algorithm has the same four models as HandPredict.
These models are trained using a dataset of 80 test drives,
each lasting 15–20 minutes. The batch size is set to 512, the
learning rate to 0.001, the ML loss function is the MAE, and
the activation function is the identity function.

Figure 8 shows the calculated percentage of the correct
latency prediction on the validation set. The x-axis indicates
the epoch number during training and the y-axis represents
the ratio between the predicted and real latency values. Thus,
the value “1” on the y-axis indicates that the predicted value
is equal to the real value of the latency when checked on the
validation set. Recall that the packet latency prediction is a
continuous value.

It is evident that for LatencyPredict, the 7-feature and 9-
feature models achieve the best prediction on the validation
set, regardless of their window length. On the other hand, the
GPS-only and RSRP/RSRQ models achieve low accuracy on
the validation set. This indicates that using only these features
might not be enough for latency prediction.

V. EVALUATION ON NEW TEST DRIVES

This section presents evaluation results from 20 test drives
that were not used during training. Figure 9 presents confusion
matrices for HandPredict’s four different models (see Table
1): the 9-feature model, which uses all nine features, the 7-
feature model, which uses a reduced set of input features,
the GPS-only model, and the RSRP/RSRQ model. The figure
highlights the best and worst true positive (TP) accuracies in
green and red, respectively, from which we draw the following
conclusions:
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Figure 9: A confusion matrix for each of the four models of
HandPredict with different sliding window lengths

• GPS coordinates alone are insufficient for predicting han-
dover events. Using only RSRP and RSRQ yields better
performance but is also not enough.
• For the larger dataset, consisting of 80 test drives, the 128-
second window length has the worst TP accuracy when all
input features are used. A 64-second window length brings
the highest TP accuracy of 88%, while a 32-second window
length achieves a 86% TP accuracy. These results correspond
to a strict threshold of 0.7. For the 7-feature model, 32- and
128-second windows have a similar confusion matrix, while a
64-second window has a 10% better TP accuracy. The GPS-
only model and the RSRP/RSRQ-model have low TP accuracy.
• The number of input features used for each ML model has a
significant impact on the prediction accuracy, and in particular
on the TP accuracy. The GPS-only model has a very low TP.
The RSRP/RSRQ-model has a better TP accuracy than the
GPS-only model but it is worse than the 7-feature model. The
9-feature model achieves the best TP accuracy – 88%.
• Longer windows do not necessarily improve TP accuracy.

The receiver operating characteristic (ROC) curve illustrates
the trade-off between the TP and false positive (FP) values of
an ML model. Figure 10 shows the ROC curve for different
models and window lengths. The models whose curves are
closer to the top-left corner have better performance than
those whose curves are closer to the bottom-right corner. The
curve of an ML model whose decisions are made randomly
is expected to be close to the diagonal line, which represents
𝐹𝑃 = 𝑇𝑃. The figure also indicates the area under the ROC
curve (AUC) for each model. The AUC range is [0, 1]. For

(a) The 9-feature model with different window lengths
(32,64,128)

(b) A 64-second window with four different models
of HandPredict

Figure 10: TP vs. FP of HandPredict for several
combinations of input features and window lengths

Window Length Accuracy [%]
32 65
64 80
128 61

Table 2: Packet loss prediction accuracy of LossPredict for the
8-feature model with unseen test drives, using a dataset of 80
test drives

ML models whose predictions are 100% accurate, AUC is 1,
whereas for those whose predictions are 0% accurate, AUC is
0.

Figure 10(a) shows the trade-off between TP and FP for the
9-feature model of HandPredict when trained with 3 different
sliding window lengths: 32, 64, and 128 seconds. The results
show that a 128-second window yields the best trade-off,
as its curve is closest to the top left corner. With respect
to TP accuracy only, a 64-second window brings the best
results. Figure 10(b) compares the four different HandPredict
models trained with a 64-second window. The figure shows
that the 9-feature model achieves the best trade-off between
TP and FP with an AUC of 0.83. The 7-feature model and the
RSRP/RSRQ model exhibit comparable results, with AUCs of
0.79 and 0.78 respectively. The GPS-only model has the worst
results.

Table 2 shows the packet loss rate prediction accuracy for
unseen test drives, using LossPredict with the 8-feature model,
for a dataset of 80 test drives. The considered window lengths
are 32, 64, and 128 seconds. It is evident that a 64-second



sliding 
window length GPS-only RSRP\RSRQ 7-feature 9-feature

32 0.02 0.04 0.01 0.0012
64 0.03 0.07 0.006 0.006

128 0.03 0.056 0.02 0.0146

MAE between prediction and label

Figure 11: Latency prediction accuracy for each of the four
LatencyPredict models, with different window lengths

Figure 12: Video packet loss rate of Baseline and ANS
across 20 test drives

Algorithm 1 Active Network Selection (ANS)
1: Initialize 𝐶𝑁 as an empty list
2: for each 𝑐𝑒𝑙𝑙𝑢𝑙𝑎𝑟 𝑛𝑒𝑡𝑤𝑜𝑟𝑘𝑖
3: 𝑙𝑎𝑡𝑒𝑛𝑐𝑦𝑖 ← LatencyPredict(𝑐𝑒𝑙𝑙𝑢𝑙𝑎𝑟 𝑛𝑒𝑡𝑤𝑜𝑟𝑘𝑖)
4: ℎ𝑎𝑛𝑑𝑜𝑣𝑒𝑟 𝑝𝑖 ← HandPredict(𝑐𝑒𝑙𝑙𝑢𝑙𝑎𝑟 𝑛𝑒𝑡𝑤𝑜𝑟𝑘𝑖)
5: Add (𝑙𝑎𝑡𝑒𝑛𝑐𝑦𝑖 ,ℎ𝑎𝑛𝑑𝑜𝑣𝑒𝑟 𝑝𝑖) to 𝐶𝑁
6: end for
7: Sort 𝐶𝑁 from the minimum to the maximum latency
8: for each 𝑐𝑒𝑙𝑙𝑢𝑙𝑎𝑟 𝑛𝑒𝑡𝑤𝑜𝑟𝑘 in sorted 𝐶𝑁
9: if ℎ𝑎𝑛𝑑𝑜𝑣𝑒𝑟 𝑝𝑟𝑜𝑏𝑖 < 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 then

10: choose this network for the next packets
11: exit
12: end if
13: end for
14: Choose a random network from CN for the next packets

window yields the best prediction accuracy. The 32-second
window and the 128-second window require refinement of
more parameters, such as the learning rate and the number
of trainable parameters, to achieve good performance.

Evaluating the tradeoff between prediction accuracy and
cost, it is evident that HandPredict outperforms LossPredict.
Table 2 and Figure 9 show that HandPredict has better
TP accuracy across various configurations. When compared
against LossPredict, HandPredict is usually comparable or
better. Furthermore, HandPredict is more efficient as it can
also use a dataset of 20 test drives, in contrast to LossPredict,
which must use larger datasets. This implies that LossPredict
is more expensive, both in terms of the number of features it
uses and the number of test drives required for training.

Figure 11 shows the MAE latency prediction accuracy for
LatencyPredict’s four models on new test drives. It is evident
that the 9-feature model achieves the best accuracy. It is
also clear that the length of the sliding window does not
significantly affect the results in this case.

VI. AN ALGORITHM FOR NETWORK SELECTION

We now present our Active Network Selection (ANS)
algorithm for solving the MPR problem from Section I. This
algorithm uses both HandPredict and LatencyPredict to select

the cellular network over which the next video packets are
transmitted. It first predicts the handover probability for each
cellular network, using the unified trained ML model of
HandPredict. This step is conducted concurrently across each
of the cellular networks. Then, it predicts the latency using La-
tencyPredict, concurrently for each cellular network. All these
predictions are conducted with a one-second time horizon, ten
time steps ahead. It then considers only the cellular networks
whose handover probability does not exceed a predetermined
threshold. From these cellular networks, it chooses the one for
which the predicted latency is the minimum; see Algorithm 1
for more details.

ANS prioritizes latency over packet loss because, as we
discover, only 3% of the samples have handovers. Therefore,
most of the time, the cellular network with the lowest predicted
latency is chosen. However, if this cellular network has a high
handover probability, we choose the cellular network with the
second minimum latency. If all the cellular networks have a
high handover probability, the algorithm chooses one of them
randomly.

The runtime complexity of ANS includes running two ML
models and a constant overhead. We assume a fixed input
size of 9 × 64, for the 9 features and 64 window slots. For
the convolutional layers, the complexity is 𝑂 (𝐶𝑖𝑛 × 𝐶𝑜𝑢𝑡 ×
𝐾 × 𝐿), where 𝐶𝑖𝑛 and 𝐶𝑜𝑢𝑡 are the number of input and
output channels, respectively. In our case, 𝐶𝑖𝑛 = 9 for the
9 input features and 𝐶𝑜𝑢𝑡 = 64 for the 64 output neurons
selected for the convolution layers. 𝐾 is the kernel size, which
is 3, and 𝐿 is the sequence length, which is the number of
window slots (64). The complexity of the LSTM layers is
𝑂 (𝑁 × 𝑇 × (𝐷 × 𝐻 + 𝐻2)), where 𝑁 is the batch size (512),
𝑇 is the number of time steps (64), 𝐻 is the length of the
hidden layers (128), and 𝐷 is the output channels from the
last convolutional layer (128). The complexity of each fully
connected layer that follows the LSTM layers is 𝑂 (𝑁 ×𝐷𝑖𝑛 ×
𝐷𝑜𝑢𝑡 ), where 𝐷𝑖𝑛 and 𝐷𝑜𝑢𝑡 represent the input and output
dimensions respectively, and 𝑁 is the batch size. The average
running time of LatencyPredict and HandPredict on the 20
test drives was 9ms. Thus, if LatencyPredict and HandPredict
are executed sequentially by the algorithm, as in Algorithm 1,
the total running time is 18ms, which is much lower than the
100ms latency constraint.

We compare ANS to the current baseline algorithm used by
DriveU, which sends 30 video frames per second across three
cellular networks simultaneously in the following way. Each
video frame, which originally consists of 24 video packets, is
encoded with a FEC scheme. This FEC increases the length
of each video frame by 50%: from 24 to 36 packets. These 36
packets are then evenly distributed across the three networks
and any 24 packets are sufficient for reconstructing the original
video frame. For the comparison with ANS, the 9-feature
model with a 64-second window is used for both HandPredict
and LatencyPredict, and both are trained on a dataset of 80
drives.

Figure 12 compares the packet loss rate of Baseline and
ANS across 20 different test drives, held in the same location



Figure 13: The average latency of each video packet for each
test drive

and the same fixed route with challenging cellular commu-
nication conditions. We did not use these test drives during
training. The x-axis represents these 20 test drives. Each test
drive lasts between 900 to 1,200 seconds. Thus, ANS makes
between 900 and 1,200 decisions during each drive. The y-
axis represents the 25th, 50th, and 75th percentile distributions
of the packet loss rate per second across these test drives. For
example, the blue rectangle for the first test drive indicates
that during 25% of the seconds of the first drive, ANS had a
loss rate of at most 8%; during 75% of the seconds of this
drive, ANS had a loss rate of at most 20%; and during 50% of
the seconds of this drive, ANS had a loss rate of at most 14%.
Note that in some cases, the median (50th percentile) is very
close to the 25th percentile or to the 75th percentile. Thus, it
is represented by a slightly longer line. For example, in the
third test drive, in the orange rectangle (for Baseline), the 50th

is very close to the top of the rectangle (75th percentile). It is
evident from this graph that ANS performs significantly better
than Baseline for all test drives.

Figure 13 compares the average latency per second of the
video packets transmitted by the two algorithms. As in Figure
12, this figure also shows the 25th, 50th and 75th percentiles.
We can see that, with respect to latency, ANS outperforms
Baseline on all the test drives in terms of both the variance
and the average latency.

VII. CONCLUSIONS

We defined a new problem, called MPR, for selecting
the cellular network over which the next video packets will
be transmitted by an AV. To address this problem, a new
algorithm, which we called ANS, was presented. ANS aims to
minimize the packet loss rate and packet latency, with no prior
knowledge of the geographical area, the AV mobility pattern,
or the cellular network coverage. It has two ML components:
HandPredict for handover prediction and LatencyPredict for
packet latency prediction. Using 100 test drives, of which 80
are used for learning and 20 are unseen for testing, we showed
that ANS performs much better than a commercial baseline
non-learning algorithm.
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