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Abstract

Diffusion models have achieved impressive success in high-fidelity image gen-
eration but suffer from slow sampling due to their inherently iterative denoising
process. While recent one-step methods accelerate inference by learning direct
noise-to-image mappings, they sacrifice the interpretability and fine-grained con-
trol intrinsic to diffusion dynamics, key advantages that enable applications like
editable generation. To resolve this dichotomy, we introduce Hierarchical Koop-
man Diffusion, a novel framework that achieves both one-step sampling and
interpretable generative trajectories. Grounded in Koopman operator theory, our
method lifts the nonlinear diffusion dynamics into a latent space where evolution is
governed by globally linear operators, enabling closed-form trajectory solutions.
This formulation not only eliminates iterative sampling but also provides full access
to intermediate states, allowing manual intervention during generation. To model
the multi-scale nature of images, we design a hierarchical architecture that disen-
tangles generative dynamics across spatial resolutions via scale-specific Koopman
subspaces, capturing coarse-to-fine details systematically. We empirically show
that the Hierarchical Koopman Diffusion not only achieves competitive one-step
generation performance but also provides a principled mechanism for interpreting
and manipulating the generative process through spectral analysis. Our framework
bridges the gap between fast sampling and interpretability in diffusion models,
paving the way for explainable image synthesis in generative modeling.

1 Introduction

Diffusion models [29, 7, 30] have achieved remarkable success in image generative tasks [3]. How-
ever, despite producing high-fidelity samples, the sampling process of diffusion models typically
requires an expensive iterative procedure, which limits their applicability in real-world scenarios
[18]. Accelerating sampling in diffusion models thus remains a critical challenge. To overcome this
limitation, recent work has focused on efficient one-step inference for diffusion models to replace the
costly iterative sampling process.

Existing approaches toward this goal fall into several distinct paradigms. A widely adopted paradigm
is distillation-based methods [39, 42], which aim to distill pre-trained diffusion models into efficient
one-step generators. Among these, Knowledge Distillation (KD) [17], Progressive Distillation (PD)
[27], and (distilled) Rectified Flow [14, 13] are considered classical approaches, laying the foundation
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for recent advances in one-step generation. Another influential direction involves consistency models
[32, 31], which learn time-consistent mappings from noisy inputs to clean data.

Although these methods achieve strong performance in one-step image generation, they fundamentally
rely on learning direct noise-to-image mappings, bypassing the temporally coherent denoising
trajectory upon which diffusion models are built. As a result, they lack access to intermediate
generative states of the diffusion trajectory that are crucial for interpreting and controlling sample
evolution from noise to image, thus leading to limited interpretability of the generation process.
This lack of interpretability not only obscures how semantic and structural information gradually
emerges during sampling but also limits the ability to intervene at specific stages along the generative
trajectory—an ability that enables controllable image synthesis at inference time.

Our goal is to develop an explicitly interpretable one-step generation framework, which is not merely
to achieve high generation quality in a single step, but to provide a principled understanding of the
generative process and thus enable fine-grained control along the diffusion trajectory. Motivated
by Koopman operator theory [20, 24], which projects the nonlinear dynamics into an observable
space where evolution is linear via function space lifting, we propose an explicit one-step generation
paradigm that mapping the entire deterministic sampling trajectory of diffusion models into a latent
space where closed-form ODE solutions exist. This latent space, theoretically grounded in Koopman
theory, is referred to as the Koopman space. In this space, the dynamics of the diffusion process are
governed by a linear operator, thus revealing an explicit, analytically tractable form for the evolution
to enable an interpretable mapping from noise to data. We realize this framework by jointly learning
the mapping and its associated linear operator. In our explicit framework, all intermediate states along
trajectories are analytically accessible, thus naturally allowing for introducing additional supervision
on these states to guide the noise-to-image mapping more precisely and enabling fine-grained control
of the generation dynamics, a capability not afforded by implicit methods.

While the Koopman-based modeling provides a principled way to enable explicit one-step sampling,
its standard formulations operate in a single latent space, implicitly assuming uniform dynamics
across all spatial and semantic scales. However, generative processes, particularly in visual domains,
exhibit inherently multi-scale behaviors: global structures emerge early and evolve slowly, while
fine-grained textures form later with more rapid variations [34]. Ignoring this scale-specific nature
limits the model’s capacity to represent the full complexity of image generation. To address this
limitation, we reformulate a hierarchical Koopman modeling framework that explicitly decomposes
the generative dynamics across multiple spatial resolutions. Features at different scales are extracted
via a U-Net encoder and projected into separate Koopman subspaces, each governed by its own linear
operator. This design allows the model to track the evolution of visual content from coarse layout to
fine detail, aligning with the hierarchical nature of visual perception and offering improved generation
fidelity. Our key contributions are summarized as follows:

* We propose a novel interpretable one-step generation paradigm, referred to as Hierarchical Koop-
man Diffusion (HKD), via hierarchical Koopman dynamics. This paradigm uniquely integrates
explicit intermediate generative states into the process, enabling control along the diffusion tra-
jectory. Moreover, our framework provides a novel analytical aspect for diffusion models using
spectral tools in dynamical systems theory to analyze the underlying generative mechanisms.

* We provide a theoretical justification that our Koopman explicit formulation is provably more
expressive than directly learning a black-box mapping from noise to image using standard neural
networks for learning the diffusion process.

* We conduct experiments on the CIFAR-10 and FFHQ datasets to demonstrate the competitive one-
step generation performance of our proposed framework. Beyond generation quality, we interpret
the underlying generative dynamics via principled spectral analysis, revealing a quantitative
correspondence between spectral components and semantic image attributes. Moreover, we further
justify the interpretability of our framework through an image editing experiment that targets
frequency-specific intervention at the intermediate stage of the diffusion trajectory.

2Some distillation-based fast generation methods have explored multi-step editing for text-to-image, which is
beyond the scope of this work. We focus on trajectory-level intervention during one-step generation.



2 Background

Diffusion Models. We consider the continuous-time diffusion models [33], where data is generated
by reversing a stochastic process that gradually adds Gaussian noise. Let pgata(x) denote the
data distribution. The diffusion process is described by the stochastic differential equation (SDE):
dx; = p(xy, t)dt+o(t)dw,, where t € [0,T), p(-,-) and o(-) are the drift and diffusion coefficients,
respectively. {w;}c[o, 7] represents standard Brownian motion. The distribution of x; is p;(x),
with po(Z) = pdata(x). Notably, there exists an ordinary differential equation (ODE), called the
Probability Flow ODE, whose solution trajectories sampled at ¢ follow p;(x):

da, = [p(@:.1) — Lo(t)?V log pi ()] dt, (1)

where V log p;(x;) is the score function of p;(x;).

Koopman Operators. Koopman theory provides a framework for analyzing nonlinear dynamical
systems by transforming them into a linear form. The formal definition of the Koopman operator is
given below.

Definition 2.1 (Koopman Operator [21]). Consider a finite-dimensional state space X C R"™ with
state evolution described by Tiinr = P(x:),t € [to,t1], where ® : X — X is the state transition
operator. The Koopman operator K is a linear operator that acts on an infinite-dimensional space of
observable function g : R™ — R, such that

(Kog)(x) = g(®(x)). @
Instead of modeling the state x, directly, the Koopman operator captures the evolution of observables
z; = g(x) 2 [g1(x), -+, gm(x)]T in alifted space, where each g; is a component of the observable

function g. In continuous time, this yields a linear system dz;/d¢ = Az, enabling spectral analysis
of nonlinear dynamics. Formal details on approximating with finite observables are in App. A.2.

3 Hierarchical Koopman Diffusion for Fast Generation

We propose a novel denoising generative model called Hierarchical Koopman Diffusion (HKD)
that enables one-step deterministic sampling for diffusion models via Koopman operator theory. By
leveraging the Koopman operator’s ability to use tools of linear dynamics such as spectral analysis, our
formulation not only enables efficient one-step ODE sampling but also offers a principled dynamical
interpretation of generative modeling. This section is organized as follows: we first introduce the
theoretical formulation of our framework (Sec. 3.1), then describe the corresponding supervision
strategy (Sec. 3.2), and conclude with implementation details (Sec. 3.3). We subsequently present
theoretical results that justify the superiority of the proposed method under ideal conditions (Sec.
3.4).

3.1 Framework Formulation

Encoder. Given the trajectory {x; };c[c, 7] satisfing ODE in Eq. (1), we construct a hierarchical
Koopman representation by applying an encoder

Eo:x C ROXHXW {Z,El) c Rlehlxw’}lel.
£ adopts a U-Net style downsampling architecture, just as the right part of Fig. 1. Here, d; is the
number of latent channels and (h;, w;) is the image resolution at level [. The encoder approximates
independent Koopman observable functions g(*) : RE*HXW _y Rdixhixwi 3¢ each level by obtaining
zgl) ~ g (x,), where g(¥) captures the dynamics corresponding to its spatial scale.

Hierarchical Koopman Subspace. Each latent feature zgl) € Réxhixwi jq extracted at level 1,
with zgl) (i,7) € R% denoting the feature vector at spatial position (i, ). We model zgl)(i, Jj) evolves
linearly under a spatially-varying linear operator AWD (i,7) € R%*d which is specific to each spatial
location (i, j), just as the middle part of Fig. 1:

ROy o N o
dtdit(’j) = A(l)(z,j) zgl)(z,]), V(i 7), t € [e,T). 3)
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Figure 1: The framework of the proposed method. The HKD model first hierarchically extracts
different-level features from the given noisy image at any time ¢ by encoder £. Secondly, the
Koopman dynamics model is applied for each level to the skips and the bottleneck. Last, a uniform
decoder D performs the mapping from the Koopman spaces back to the image space.

The latent evolution at each position thus follows an independent linear dynamical system governed
by its local Koopman operator. Allowing A(l)(i, j) to vary across spatial locations enables the
model to capture heterogeneous temporal-frequency behaviors at different regions, thus leading to
finer-grained and spatially adaptive dynamics modeling.

Without loss of generality, AD (i, 7) could be modeled in the form of block-diagonalizable, i.e.,
AD (i, j) = diag{AL (1,7), AL (G, ), AL G d) e AL (0,)} @)
with d; even and each block A,(j)(i7 j) € R?*2 corresponding to a pair of complex conjugate
eigenvalues a,gl) + zﬂ,(j) of AW (i, ), given explicitly by A,(f)(i,j) = {_Q;C;)(zz];) ig’))((:i))] This
reduces the number of parameters compared to modeling a full matrix. The rationality of this
modeling can be guaranteed by the Prop. C.1, App. C.1. Due to the linear evolution in the Koopman

space, the mapping between latent states at time s and ¢ for level [ and location (i, j) can be explicitly
expressed as

20, j) = AV @920 (G 5. )

The explicit formulation enables the network to learn sufficient one-step mappings from z;, V¢ € [e, T)]
to z. during the training process. Consequently, it allows direct mapping from wr to w, in the
inference time, thus achieving efficient one-step sampling without the need for iterative integration.

Decoder. Finally, at the target time step e, the evolved set of evolved latent features {zg)}le is
decoded to generate the sample x.. The decoding process is performed by a decoder D¢, which
implements the mapping

Dy : {z}E, s mc € ROHXW,
At each decoding level, the decoder upsamples the latent features from the lower-resolution level

and integrates them with skip features obtained by evolving the encoder outputs through Koopman
dynamics, just as the left part of Fig. 1.

3.2 Intermediate State Supervision: Trajectory Consistency Loss

A key advantage of our explicit framework over implicit mappings is the ability to supervise inter-
mediate states during generation. Unlike conventional methods that supervise only the endpoint,
our approach explicitly constrains the trajectory from noise to image by enforcing consistency with
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Figure 2: Image reconstruction from noisy inputs at time ¢ highlights the consistency enforced by our
framework. The left-most image is obtained from a7 and the right-most is from x.

expected denoising dynamics along the path. Hence, we introduce a new trajectory consistency loss
for the supervision of intermediate states. Fig. 2 presents the reconstructed images from noisy inputs
at all time steps, showcasing the consistency properties promoted by our proposed loss function.

Definition 3.1 (Trajectory Consistency Loss). The trajectory consistency loss is defined as
AW a0
['t-consist éEtNZJ le,T) |:d (D¢[{e(€ HA gé )(wt)}lel], we)} s (6)

where the expectation is taken with respect to t ~ U [¢,T'), and x. is given by Eq. (1). Distance
d(-,-) > 0 is in the image space and equals 0 if and only if the argument variables are the same.

This trajectory consistency loss enforces that any intermediate state x,, after being encoded and
evolved through Koopman dynamics to time €, yields a decoded prediction that matches the ground
truth image x. obtained by Eq. (1). However, the most direct supervision would be to enforce
alignment between the encoder-derived Koopman representation at time ¢ and its analytically evolved
counterpart from time 7" within the Koopman space. Although conceptually straightforward, enforcing
consistency directly in the latent space may lead to suboptimal results in practice, as it reduces training
flexibility and introduces gradients that poorly reflect perceptual discrepancies. Therefore, we instead
adopt an alternative image-space formulation in Eq. (6), which enables the use of perceptually
meaningful distance metrics, such as the Learned Perceptual Image Patch Similarity (LPIPS), to
better capture semantic fidelity. Importantly, we show in App. C.2 that, under structural assumptions,
minimizing the trajectory consistency loss in image space is theoretically equivalent to minimizing
its latent-space counterpart.

3.3 Implementation

Training. We train the model using a total loss £ = L consist + Lrecon, Where L consise enforces
consistency along the diffusion trajectory, and Liecon = d (D,/,({e(e’T)A(Z) Sél) (xr)}), me) su-
pervises accurate one-step mapping from noise to clean image. The distance function is defined
as d(x,y) = M Lymse + A2Lopps, wWith Ao = 1 and A\, annealed to shift from coarse alignment to
perceptual refinement. The full model, €g, Dy, and { A®D }lel, is trained end-to-end. The training
algorithm is presented in Alg. 1. More training details are provided in App. B.1.

One-Step Sampling. At inference time, we could obtain the final generated sample &, from noise
x7 by

Dy({el DAYy (@r)}y).
Specifically, Given a noise sample, we project it into the Koopman space, perform one-step evolution
via Koopman dynamics, and decode the result back to the data space. The detailed sampling algorithm
of sampling is presented in Alg. 2.

Koopman Spectral Analysis. Our framework offers a distinct perspective on diffusion generation

through Koopman spectral analysis. Each block A,(Cl) (7,7) in Eq. (4) represents a local dynamical

mode, with eigenvalues ag)(i, j)* iﬁ,gl)(z’, Jj) encoding the growth/decay and oscillation of the

trajectory. This explicit spectral interpretability further allows for controllable image generation by
selectively modifying certain frequency components. More details of Koopman spectral analysis of
our framework can be found in App. B.2.



Algorithm 1 The training algorithm.

: Inputs: Trajectory {@: }+c[o,7) from a well-trained diffusion model; The number of samples s

. Outputs: Network parameters 6 and ¢; Koopman matrices { A }E

: Initialize 6 and ¢ by a pre-trained U-Net

. Initialize AY « 0O, 1=1,--- | L

: for 7 = 0 to num_iter—1 do

Sample Sy = {t; | t; ~U[0,T]}:Z U {T} > Uniformly sample the intermediate time
Reconstruct &. = D¢({e(‘_”Am€(§” (x¢)}f,) fort € S, > Apply the HKD model
LetL =3, [Hﬁ:s — xol| + || F (&) — ]-'(mo)H] > F is the feature extractor in LPIPS

Update 6, ¢ and A by the gradients of £
: end for
: Return 6, ¢ and {AW}E |

—So0 % N oOUh WY —

—_——

Algorithm 2 The sampling algorithm.

1: Imputs: Trained HKD including network parameters 8, ¢ and Koopman matrices {A(l)}lL:1
2: Outputs: Predicted image &. = D¢({e<€’T>Am5él)(mT)}lel)

3.4 Theoretical Results

In order to illustrate the feasibility of our proposed method, we theoretically analyze the error bounds
caused by the proposed method, namely erryxp, and by conventional one-step methods errgpe-step-
Intuitively, neural networks of the same size are faced with larger errors when estimating more
complex functions. In the proposed formulation, the encoder and decoder are commonly simple due
to the elementary observable function, hence, the HKD generation, serving as a composition of three
functions, is overall simpler than end-to-end one-step methods. Algebraically speaking, we have
ETTHKD < €TTone-step + O(k) where & is a reasonably small error caused by the Koopman process.

This inequality holds mainly because the proposed framework first transfers the complicated data
space to the simpler Koopman space at a small cost and then controls the Koopman trajectory error
by the explicit formulation in the Koopman theory. Thm. 3.1 provides an informal description of the
conclusion where k = O(N ’%) + o(m™5) is small and that substantiates the common knowledge
with NV and m being the size of the dataset and the dimension of the Koopman space respectively. A
formal description and proof of the theorem are given in App. C.3.

Theorem 3.1 (Comparison of Error Bounds for One-Step Diffusions). Let erryxp and errone.siep be
the ideal estimation errors of our proposed HKD model and an end-to-end one-step model with the
same total number of activation functions we have,

ETTHKD § errone-slep + O(H)a

where K = max{ 2v30m pew ; 230 piag + o(m™3) with N and m
¢N(%—2m7§)—ﬁam2 \/N(%—meg)-pmf—\/gtﬂrﬂ

dominating k being the size of the dataset and the dimension of the Koopman space respectively.

The parameter o is the standard deviation of the observables, ¢ is 0 when the network is perfectly

trained, ping and peyp, are the true spectral range of the Koopman operator, and r — —oo when the

m-dimensional Koopman process adequately model the Koopman space.

To formally prove the above result, we first proposed to evaluate
the network size by the number of activation functions it uses, as
they are the ones causing non-linearity of the network. Secondly,
we introduced the simplicial error as the deviation in the simplicial
complex estimation. Fig. 3 empirically shows that the metric of
same-density triangulations reveals the complexity of 2D surfaces,
demonstrating our idea. Consequently, the simplicial error quanti- Figure 3: More complex sur-
tatively evaluates the complexity of the data and noise spaces and faces need denser triangula-
the mappings between them. Finally, using the ideas above, we tion for the same error.
analytically prove Thm. 3.1.

=



4 Experiments

We conducted experiments to present the promising one-step generation capability of our framework
compared with other one-step baseline methods (Sec. 4.1). Notably, beyond generating high-quality
images, we further provide empirical insights toward understanding the underlying dynamics of
diffusion models through Koopman spectral analysis (Sec. 4.2). This analysis demonstrates the
dynamical interpretability of our approach and further enables controllable image editing (Sec. 4.3).
An ablation study was finally performed to show the key contributions of our framework (Sec.
4.4). Extensive results highlight both the generation quality and interpretability advantages of our
framework, distinguishing it from distillation- and consistency-model-based paradigms.

4.1 Compare with Prior One-step Generation Methods

In this section, we evaluated our proposed framework on the CIFAR-10 [12] and FFHQ datasets
[9], focusing exclusively on one-step generation methods within the diffusion model family. We
used the standard Fréchet Inception Distance (FID) [6] metric and report FID-50k scores, following
prior work [42]. Our model employs the U-Net [26] architecture from EDM [8] as the backbone for
both the encoder and decoder, initialized with pretrained weights. All models were trained using the
Adam optimizer [11] with a constant learning rate of 1 x 1073 and a weight decay of 0.95. App. D.4
provides additional implementation details of the experiments.

Comparison to Prior Work. We evaluated

Table 1: Sample quality on CIFAR-10 dataset. ~ our framework against two dominant one-step
generation approaches: distillation-based meth-
Methods NFE(l) FID() ods and consistency models, with comparisons
- e to multi-step diffusion baselines for context.
Multi-Step Diffusion Models The multi-step diffusion baselines include: (1)

DDPM [7] 1000 3.17 DDPM [7]: The foundational denoising diffu-
Score SDE [33] 2000 2.38 sion model; (2) Score SDE [33]: Continuous-
DDIM [30] 100 4.16 time diffusion via reverse-time SDEs; (3) DDIM
DDIM [30] 10 13.36 [30]: Efficient deterministic sampler from diffu-
EBI\I\;II % ?g ;g; sion ODEs; (4) EDM [8]: State-of-the-art diffu-
' sion backbone (used in our framework).

Diffusion Distillation For the distillation-based one-step paradigm,
KD [17] 1 9.36 the comparison extends to traditional leading
PD [27] 1 8.34 methods: (1) KD [17]: Traditional knowledge
g&%l’{gf;?) [32] } g;g distillation method with direct teacher-student
I-Rectified flow (14] 1 6:18 mimicry; (2) PD [27]: Progressive distillation
2-Rectified flow [14] 1 4.85 with step reduction through sequential student-
3-Rectified flow [14] 1 501 teacher training; (3) CD (LPIPS) [32]: Consis-
2-Rectified flow++ [13] 1 3.38 tency distillation with LPIPS loss; (4) DMD

X [39]: Distribution matching distillation with
Consistency Model the distribution-matching loss; (5) and (dis-
CT (LPIPS) [32] 1 8.70 tilled) ReFlow series: including 1-Rectified
CD (LPIPS) [32] 1 3.55 flow, 2-Rectified flow, 3-Rectified flow [14] and
iCT [31] 1 2.83 2-Rectified flow++ [13] with reflow and distilla-
iCT-deep [31] 1 251 tion. For the consistency-model-based method,
ECM [4] 1 3.60

we included: (1) CT [32]: Consistency training
HKD 1 3.30 including CT (LPIPS), iCT [31], and iCT-deep
[31], which provides a comparison to the end-
to-end traditional consistency model, and its im-
proved versions. (2) ECM [4]: Easy Consistency Models, which initializes the network weights with
the ones from a pretrained score model. More details of comparison methods are in App. D.5.

Results. While enhanced methods such as iCT-deep [31] have pushed performance boundaries,
they suffer from high sensitivity to hyperparameters. Moreover, state-of-the-art consistency training
typically requires nearly a week of training on 8 GPUs [4], and remains unstable in practice [16].
Retraining with consistency distillation (CD) even results in a degraded FID of 10.53, as reported
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Figure 4: Visualization of Spectral Contributions in Generated Images Across Koopman Modes.
(a) visualizes the contribution of Koopman spectrum with the smallest real-part magnitudes to the

reconstructed state over time. It corresponds to the noisy part of the image. (b), (c) and (d) illustrate
progressively larger spectral components and their reconstructed image components.
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in [10]. In contrast, our method achieved comparable performance within just 2-3 days on 8xV100
GPUs.

Moreover, we significantly improved the training stability
thanks to two design choices: (1) the exponential formu- Table 2: Sample quality on FFHQ.
lation in the Koopman space ensures sufficiently large
gradients for spectra with magnitudes near 1, mitigating Methods NFE(]) FID(})
the high-variance gradient issues commonly seen in con-

sistency models [28]; and (2) supervising the Koopman EDDDI{I/;/I [SO] ;8 128;1370
trajectory at multiple time points enables more stable and EDM [8] 15 985
averaged spectrum estimation, leading to more reliable ECM [4] 1 5.99
mode evolution modeling. Experimental evidence of the HKD ! 570

improved training stability on the CIFAR-10 dataset is
provided in App. D.1.

Additional experiments on FFHQ 64x64 (Tab. 2) validated the effectiveness of our method on
the high-resolution and structurally complex dataset. See App. D.1 for additional visualizations,
per-image wall-clock timings for various generation methods, and conditional generation results.

4.2 Koopman Spectral Analysis for Generative Process

We conducted an analysis of A to further investigate how individual spectral components influence
the generative trajectory. We first tracked the contribution of each Koopman spectrum (cumulative
effect, namely CE) to the reconstruction over time. Then, at each resolution level [, we sorted the
eigenvalue pairs across spatial locations by the real parts and applied spectral masking by retaining
only those within a target range (smallest, intermediate, or largest), zeroing out the rest. The masked
representations are decoded to visualize the contribution of selected spectral modes.

Fig. 4 summarizes the results of the two spectral analyses: the left shows the contribution of grouped
Koopman modes to reconstruction over time, while the right links spectral ranges to corresponding
image structures. By selectively activating spectral bands and decoding the latent representations,
we observe a clear semantic hierarchy: low-range modes capture global structure, mid-range modes
recover overall shape and pose, and high-range modes refine local details. These results demonstrate
the semantic interpretability of Koopman spectra and their potential for controllable image synthesis.
More Koopman spectral analysis results are provided in App. D.2.

4.3 One-Step Image Editing: A Case of Model Interpretability

We evaluated the interpretability of our framework through an image editing experiment that targets
frequency-specific interventions at the intermediate state of the diffusion trajectory. We performed
editing by injecting high-frequency features from a reference image into the generated image at
mixing ratios of 10%, 20%, 50%, 80%, and 90%, applied at the middle time step to demonstrate
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Figure 5: One-step image editing via frequency-aware interventions along the diffusion trajectory.
We controlled the image generation by the high-frequency features from a reference image through
injecting them into the lower-left half of the generating image at different mixing ratios (10%, 20%,
50%, 80%, 90%). The modifications were performed at the midpoint of the Koopman trajectory.
Columns 2-6 showcase the frequency-aware editing, where only high-frequency components were
mixed, preserving the low-frequency structure of the original image. Column 7 is for frequency-
agnostic editing, where all-frequency features of reference images are mixed with all frequency bands
of the original image at a mixing ratio of 90%. We exhibit the results from both datasets.

temporal editability. For comparison, frequency-agnostic editing mixes the full-spectrum content of
the reference and generated images at the same step.

As shown in Fig. 5, increasing the injection ratio of reference image features from 10% to 90%
gradually reveals more facial details from the reference, demonstrating that our frequency-aware
editing establishes meaningful correspondences through interpretable frequency decomposition. In
contrast, frequency-agnostic editing disrupts global structures, indicating a lack of disentangled
control. These results further validate the interpretability of our framework.

We further perform an image editing experiment of image recuperation in the impainting and coloring
tasks on CIFAR-10 dataset following Algorithm 4 from [32], which iteratively mixes a reference
image with the generated image along the generative trajectory by adding and removing noise at each
time step ¢. The results are presented in Fig. 6.

4.4 Ablation Study

We present an ablation study on the CIFAR-10 dataset to
evaluate the contributions of key components in our frame- Typle 3: Ablation study on CIFAR-10.
work: Koopman evolution (Koop.), the trajectory consis-
tency 10ss (L_consist), and hierarchical design (hierar.). Tab. Settings

3 shows that the one-step baseline model removing the Koop- X R FID ({)
man dynamics results in an FID of 5.72. Upon it, additional O0P- t-consist  M1CTAL
Koopman evolutions at the skips and bottleneck paths, and X X v 5.72
introducing trajectory consistency loss further improve the v X 4 5.57
results. In addition, a hierarchical Koopman dynamics de- 5 ; ')/‘ ‘3‘;3

sign also contributes to better generation quality.

5 Related Work

One-step Generation for Diffusion Models. Prior works have distilled pretrained diffusion models
into efficient one-step generators. Knowledge distillation [17] trains a student model to replicate the
denoising behavior of the teacher, rectified flows [14] reformulate diffusion as ODEs for distillation,
all considered as classical approaches. Recent works further improve distillation-based generation,
such as DMD [39], which aligns one-step generators with diffusion models via KL divergence, and
SlimFlow, which [42] enhances rectified flows through compression of model size. Consistency
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Figure 6: The visualization of image recuperation in the impainting and coloring tasks. The exper-
iment is performed by Algorithm 4 from [32], which iteratively mixes the image with a reference
image created by adding and removing noise at time ¢ with ¢ decreasing from 7" to 0.

models [32] take a different route, suffering from instability and inefficiency. Improvements include
fine-tuning from diffusion models [4] and adversarial enhancements [5]. However, these methods
prioritize performance at the cost of losing the inherent interpretability and controllability offered by
diffusion models.

Koopman Operators. Koopman operator theory has enabled advances in system analysis [19],
control [23], and optimization [25] by extracting globally linear structures from nonlinear dynamics.
Recent work extends its use to time series modeling [22, 40, 2]. In addition, many other works
have proposed approximating the Koopman operators using neural networks. For instance, KNF
[35] leverages DNNSs to learn the linear Koopman space and the coefficients of chosen measurement
functions. To our knowledge, we are the first to introduce Koopman theory into the field of image
generation. See App. A.1 for more related work.

6 Discussion

HKD is an interpretable one-step generation framework that retains access to intermediate states and
fine-grained control—while enabling one-step sampling. It is the first to introduce interpretability and
intermediate-state intervention into one-step generation. By bridging fast sampling and interpretability,
HKD opens new possibilities for explainable image synthesis. While our current formulation already
demonstrates competitive one-step generation performance and enables spectral interventions, several
directions remain open for future exploration. First, although we adopt a standard training paradigm
without relying on adversarial optimization or heavy tuning, integrating advanced training techniques
(e.g., adversarial learning) may further improve generation quality. In addition, while HKD performs
well on standard-resolution datasets, its potential for high-resolution generation, afforded by its
hierarchical design, remains underexplored. Moreover, the explicit spectral decomposition in our
framework naturally supports interpretable interventions, making it well-suited for a range of semantic
editing tasks. Beyond the frequency-aware manipulations we demonstrate, HKD opens up possibilities
for text-guided editing, attribute-specific control. While these directions are currently unexplored,
they underscore the broader applicability of our framework beyond pure generation. Our framework
provides a solid foundation for these future advancements.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: Main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: In Section 6, we discuss the limitations and possible future works for this
paper.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

 The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]
Justification: We provide proofs for every theory and proposition in the appendix.
Guidelines:

» The answer NA means that the paper does not include theoretical results.

 All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]
Justification: We provide experimental settings and training details in Appendix D.
Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: After organizing the code, we will release the code to support full reproducibil-
ity. Details for reproducing results are described in the Appendix.

Guidelines:

» The answer NA means that paper does not include experiments requiring code.

¢ Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: We provide experimental settings and training details in Appendix D.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

 The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: Statistical significance of the spectrum is analyzed and reported in the Koopman
spectral analysis section.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

e It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We provide experimental settings and training details in Appendix D. We also
give the information on computer resources in Sec. 4.1.

Guidelines:

* The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research conducted in the paper conforms, in every respect, with the
NeurIPS Code of Ethics.

Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: We provide the broader impacts in the appendix.
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.
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» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

 The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The models and datasets used are standard and pose no specific high-risk
misuse scenario. No new models with high dual-use potential are released.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: the creators or original owners of assets (e.g., code, data, models), used in

the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected.

Guidelines:
» The answer NA means that the paper does not use existing assets.

 The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.
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14.

15.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: We do not release new assets.
Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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Appendix Overview

The following lists the structure of the appendix, with links to the respective sections.

A Background Knowledge Supplement:

A.1 Related Work

A.2 Koopman Operator: From Infinite-Dimensional to Finite-Dimensional Approximation
B Framework Supplement:

B.1 Training Details

B.2 Koopman Spectral Analysis
C Theoretical Supplement:

C.1 Proposition: Rationality of the Block Diagonalization of A

C.2 Proposition: Image-Space Trajectory Consistency Loss and its Latent-Space Counter-
part

C.3 Formal Statement and Proof of Theorem 3.1
D Experimental Supplement:

D.1 Additional Experimental Results for Sec. 4.1
D.1 Conditional Generation on CIFAR-10
D.1 Visual Results
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A Background Knowledge Supplement

A.1 Related Work

One-step Generation for Diffusion Models. Several prior works have explored distilling pretrained
diffusion models into efficient one-step generators. Knowledge distillation [17] trains a student model
to mimic the full sampling trajectory of a pretrained diffusion model. Rectified flows [14] reformulate
diffusion sampling as a continuous normalizing flow, allowing distillation via ODE simulation.
Progressive distillation [27] gradually reduces the number of inference steps during training, enabling
faster sampling with minimal performance loss. Recent works further improve distillation-based
generation, such as SiD [41], which reformulates forward diffusion processes as semi-implicit
distributions, DMD [39], which enforces the one-step image generator to match the diffusion model
at the distribution level by minimizing an approximate KL divergence, and SIM [18], which computes
the gradients for a wide class of score-based divergences between a diffusion model and a generator.
In parallel, SlimFlow [42] builds on rectified flows by exploring joint compression of inference steps
and model size to enhance efficiency. Consistency models [32] offer an alternative approach, learning
to map noisy inputs directly to clean outputs. These models can either be trained end-to-end or used
as distillation students. Due to their training instability and inefficiency, various improvements have
been proposed, such as [4], which fine-tunes a consistency model starting from a pretrained diffusion
model, [28], which trains consistency models with variational noise coupling, and [5] by enhancing
consistency models via adversarialy-trained classification and energy-based discrimination. However,
most of these works ignore the interpretability of the generation process.

Koopman Operators. Over the past two decades, Koopman operator theory has attracted growing
interest, enabling progress in dynamical system analysis [36, 38, 37], control [23], optimization
[25], and forecasting [15]. These methods utilize Koopman-based representations to extract globally
linearizable structures from nonlinear dynamics, improving interpretability and control. More
recently, Koopman operators have been increasingly applied to time series modeling [22, 40]. In
addition, several works have leveraged neural networks to approximate Koopman operators. For
example, [1] proposes balanced neural ODEs to approximate Koopman operators without predefined
dimensionality, while [? ] uses DNNs to learn both the Koopman space and coefficients of selected
observables. In our work, we similarly employ neural networks to learn observable functions for
end-to-end training. To the best of our knowledge, we are the first to introduce Koopman theory into
image generation.

A.2 Koopman Operator: From Infinite-Dimensional to Finite-Dimensional Approximation

In theory, the Koopman operator K is an infinite-dimensional linear operator that governs the
evolution of observable functions under a nonlinear dynamical system. That is, for a dynamical map
® : X — X and any observable function g : X — R, the Koopman operator acts as

(Kg)(x) = g(®(z)). M
However, this operator acts on an infinite-dimensional function space, which is not directly
tractable in practice. To enable computation, the Koopman operator is commonly approximated
in a finite-dimensional subspace. This is achieved by selecting a finite set of basis functions

w = [ug,us,...,Uy,|" to represent the space of observables. We then approximate the action
of K on this basis as

Ku(z) =~ Ku(x), 8)
where K € R™*"™ is a finite-dimensional matrix known as the Koopman matrix. Given an observable
g projected onto the subspace as € £ [{g,u1), (g,u2), -, {g,um)] ", its evolution under ® can

be approximated by g(®(x)) ~ &' Ku(z). Furthermore, if we consider a vector of observables
g ~ Pu that is linearly related to the basis via some invertible matrix P, the Koopman dynamics in
this new coordinate system are given by the similarity transform:

g(®(z)) ~ PKP 'g(x). ©9)

Several numerical algorithms have been developed to compute the Koopman matrix K from data:

(1) Dynamic Mode Decomposition (DMD): DMD is a widely used data-driven technique that
approximates the Koopman operator using linear regression on snapshots of system states. It assumes
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a linear relationship between time-shifted observables and solves for the best-fit linear operator K
such that ;1 ~ K, in the observable space. Variants include Extended DMD (EDMD) and
Hankel-DMD for richer function spaces.

(2) Extended Dynamic Mode Decomposition (EDMD): EDMD generalizes DMD by applying the
method in a lifted feature space defined by nonlinear basis functions (e.g., polynomials, radial basis
functions). This corresponds to choosing a specific u and solving for the best Koopman matrix in
this subspace.

(3) Neural Approximations: More recently, neural networks have been used to learn either the Koop-
man embedding (i.e., the basis functions u) or the Neural Approximations use trainable architectures
to discover a latent space where linear evolution via a Koopman operator holds approximately. They
enable scalable and adaptive modeling of complex, high-dimensional dynamics. In our work, we
adopt this method to approximate the Koopman operators.

B Framework Supplement

B.1 Training Details

We optimize our model using a total loss that combines the trajectory consistency 10ss L consist that
supervises intermediate states along the diffusion trajectory with a reconstruction loss

—mAW ~(1 L
Lucon = d(Dy ({2 D (@r)} ), 2.
from the noise &7 to enforce the accurate one-step mapping from noise to clean image, i.e.,
L= Lt»consist + Lrecon~

Define that x! 2 Dy ({04 & (x,)},), then Lo = X,e(ryr (!, ), where the
elements of 7 are sampled from Ule, T') and d(x, y) is a metric composed of l5-distance, i.e., MSE
loss, and LPIPS loss in our model:

d(z,y) = MLyvse(x,y) + Ao Lipps(z, y).

To balance perceptual fidelity and optimization stability, we fix Ay = 1 and apply an annealing
schedule to )1, allowing the model to initially focus on coarse alignment before gradually emphasizing
perceptual refinement.

For network architecture, we adopt the mature U-Net encoder and decoder backbone used in diffusion
models for both the encoder and decoder modules in our formulation to leverage existing diffusion
models’ design efficacy. To improve training efficiency and reduce mode collapse, we further initialize
the encoder and decoder with pre-trained weights from diffusion models, which provide structured
latent-to-output mappings, and retain rich hierarchical features acquired during large-scale training.

The entire model, including &g, Dy, and {A(l)}{;l, is trained end-to-end using the 1oss L.

B.2 Koopman Spectral Analysis: A New Lens on Interpreting Diffusion Dynamics

Our framework offers a fundamentally different viewpoint on the analysis of the diffusion generation
process via Koopman spectral analysis. Beyond enabling one-step sampling, the proposed formulation
naturally provides a novel dynamical perspective of diffusion-based generative models through the
lens of Koopman spectral analysis. By explicitly modeling the latent evolution as a linear dynamical
system, our approach allows for the application of spectral tools from dynamical systems theory to
reveal the underlying spectral structure of generative dynamics and provide new theoretical tools for
analyzing and interpreting dynamical modes during sampling.

Specifically, each block Ag)

ag)(i, = iﬁ,(cl) (i,7) encoding the growth/decay rate and oscillatory frequency of the diffusion

(i, ) directly characterizes a local dynamical mode, with eigenvalues

trajectories. The eigenvalues of Koopman matrix K (l)(z', Jj) associated with each mode can be
computed as

" (Km(m)) — o)At [cos< ,(j)(i,j)At) :I:isin( ,(cl)(i,j)At)} : (10)
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providing a principled spectral description of the generative dynamics. The magnitude
A (KD (i, )] = ek (5% determines the stability of each mode, while the imaginary part of
(KW (i, §)) captures the frequency modes of oscillations. Benefiting from the block-diagonal
structure of A (4, ), our framework enables direct analysis of its spectral components to interpret
the generative behavior of the model by directly observing the values of ag)(i, j) and 6](:)(1', 7).

Specifically, the high real parts ag) (i,7) and imaginary parts B,(Cl) (i,7) and low a,(cl) (,7) and ﬁ,(f) (,7)

of each block correspond to low- and high-frequency modes in the generation process, respectively.

This explicit spectral interpretability further allows for controllable image editing by selectively
modifying certain frequency components, enabling targeted modification of structural or fine-grained
details in the generated images.

C Theoretical Supplement

C.1 Proposition: Rationality of the Block Diagonalization of A

We present the following proposition to ensure the rationality of the block diagonalization of the
linear operator A.

Proposition C.1. We define the set for the l-layer encoders Sg = {£ =& o---0Ey0& | E : f
Wl(g)f—i—bl(g)} and the set for the decoders Sp = {D = Djo---0D0D; | Dy : ¥+ W(ID);—&—bgD)}.
Then for £ € Sg, Sp € Sp and the Koopman matrix K, there exists another set of £ € Sg,D € Sp

and K € R™*" that K = I + diag {A1,As,--- , A} and A; = {_ gi], such that,

De ME-Dg — Pe=tK-Dg (11)

Proof. We assume that the eigenvalue decomposition of matrix K in the complex field is K =
PAP ! where A £ diag{ A1, A1 s A, Ay Arb 1, A2y s 0y A} With Ay A, 1 < i < 1 the
conjugated imaginary eigenvalues and \;, 7 + 1 < ¢ < m — r the real eigenvalues.

o Re )\i -1 Im )\i . _

Let A = [ “Im);, Re\ —1 1 < i < r and Ay =
A —1 0 . ~

0 A — 1 v+ 1 < ¢ < m — r, we use them to define K. Fur-

thermore, let P = [Re p1,Im py, - -+ ,Re p,, Im p,, Bt Prit o ,%,%]

where P = [p1, D1, 7p:7pr;%7r+1apr+2; e 7I;m—r] and Q =

\/Q [RCPI,—IIHPJ{, 7Rep7ta_1mp7t’p7‘%’pr%v'“ 71”m2—r7mefr]T where P_l =

pl.pl, - ,pi,ﬁi,piﬂ,pLQ, ---,pl_]T. Note that p!’s are row vectors and PQ is NOT
necessarily identity.
Last but not least, let W;S) = QWZ(S) and l;l(g) = le(g) in £ and V~V§D> = WED)I3 in D then
f)e_t(k_l)g‘(w),
Do o Dy(W e K D(WTE 0 0fi(a)+b ) +85),
—Dyo-- o Dy(W P Pe M E-DQW g 10 0 & (x) + b)) + b)),
-D [Pe*ﬂff*DQ 5(m)] :

ZDe M E-De(g),

, I
where = holds due to [\% 55] et [];%f\/fz] —e N Vppl r+1<i<m-—rand
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—ia: [ V2Re p!
[VaRep, Vamp]eits [ VR "

— B —t(a;—1) _ 4. —t(ai—1) gin(—18; T
Ai= ’+1’8"2[Rep1- Im pi] [e cos(—tf3;) e sin( tﬂz)] [Repl } E

—e~H@i=Vgin(—tB;) e M@~V cos(—tB;)| | —Imp!
: T
o—t(ai—1) ' 5 |cos(tB;) —sin(tB;)| | Rep,
e [Reps A [sinuﬁi) cos(tf) | |~1m pf]” (o
—tBii : T
_—t(ai—1) 4 Sl 1]fe™t 0 1 [1 —i] [ Rep]
= [Repz Impz] |:1 _1:| l: 0 etBii| |1 —Imp;r ) (15)
~t8i g [, —t({)‘i 9}—!) i
==V p, p {e 0 efﬂii:| []pﬂ =[pi Dile 0 A ng] 16
forl <:<r. L]

C.2 Proposition: Image-Space Trajectory Consistency Loss and its Latent-Space Counterpart

In this part, we first propose the informal version of the equivalence between image-space trajectory
consistency loss and its latent-space counterpart under specific assumptions. Then we present the
formal version.

Proposition C.2 (Equivalence of Trajectory Consistency Losses under Structural Assumptions,
Informal). Assume that the decoder H = F o Dy, VF is differentiable with respect to each Koopman

state wD, and satisfies isotropy and level disentanglement properties with respect to the Koopman
decomposition. Then, the image-space trajectory consistency loss:

_na®
Li—consist = EtNM[E,T] |:d (Dq&({e(g A E‘gl)(;ct)}lel), m5>:| s (17)
is approximately equivalent to the following latent-space loss:

OF oD 2
° H . HeftA(l) . Hgél)(mt)’e(th)A(”wg)H2 ’ (18)

L
Li—consist = EtNZ/l[QT) Z Hl
— Ow®

where d(-,-) denotes suitable distance metric such as squared Lo-norm or perceptual distances
like LPIPS with a corresponding feature extractor F, i.e., d(z,y) = || F(x) — F(y)||3. The
approximation holds up to small residual terms governed by the assumptions as detailed in the
derivation.

Proof. Our proof relies on three key assumptions. The assumptions are (1) the level-based Koopman
states wgl) are disentangled across levels labeled by [, (2) the mapping H is isotropic w.r.t. the

Koopman states, and (3) the spectrums of the Koopman observables are close to 1.

Intuitively, it requires (1) Koopman states in different levels depict different features, (2) each
Koopman state has the same unit and contributes equally to the loss function, and (3) the Koopman
space sufficiently models the latent evolution. A detailed version of the derivation, with the divergence
from the assumptions included, is

Fop[e A el @te] - Fop [t} a9)

EtNu[E:T) s &Lt~ Pdata

L

DY Ef[ptwn) - Hw )|+ ol 20)
=1

Kok 87‘[ 2

- =1 H dw® ‘ . He_tA(l)E(gl)(wt) - wél)H2 +olpte), 1)

L
= E

‘ ) Ol
. ‘59 (xy) — wy H2+o(p+€+5), (22)
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where parameters w; = {e*tA(l)Sél)(:ct)}k:l U{w (l)}k 141 and the equations = « (2), and (2"

correspond to the assumptions above respectively. The error term consists of three small-value terms
where p is the extent of entanglement among levels, ¢ is the amount of anisotropy of H, and § is the
range of Koopman spectrum.

O

Proposition C.3 (Equivalence of Trajectory Consistency Losses under Structural Assumptions, For-

mal). Under the assumptions that (1) the level-based Koopman states w( ) are strongly disentangled
across levels with an upper bound of correlations p, (2) the mapping H is zsotropic w.r.t. the Koopman
states, with a lower bound of n\) with is non-zero weights for sufficient models, and (3) the spectrums
of the Koopman observables are close to 1, which leads to the fact that the maximal spectrum o« of
matrix A has a small positive value. Following the notations w®, H, F, and d in Proposition C.2.,
we have

Lt consist :EtNM[E,T] [ <D¢({ (e t)A() l)( )}z 1) )}» (23)

p°L “ta ! _ma® (1
(1—4> e -;n<”~EII6é)(wt>—e“ DATwE )

which showcases that the minimization of Ly_ consist enforces the minimization of estimation error in
the Koopman space.

Proof. Under the given assumptions, we have

L 2
Et’Vu[E,T)athpdala H]:OD["UL] ]:ODWO H2—]E Z wl 1)] ) (25)
=1 2
L
= E|[H(w;) — H(wi1)|l5 + Z H(wi_1)] T [H(wi) — H(wr—1)], (26)
=1 k=1
£k
() 27\ &
( '04)21[5||7-L wy) — H(wi—1)|[3, 27)
=1
(%) 2L L AW () 0
- <14)Z”<”~Elet Ep’ (xe) —wy |13, (28)
=1
(k) 2L B o
- <1_) - Zn(” Bll&g” (@) — =4 w3, (29)

()
where parameters w; 2 {e7*A" &5 ()} _, U {w{’}£_,, . In addition, the inequality > holds
under the assumption (1) where the maximal entanglement of Koopman observables at different

levels p = , Jnax ‘Corr [H(w;) — H(wi—1), H(wy) — H(wg—1)] | is small. On the other hand,

sokok )

(%)
the inequality > and > holds When 70 2 infag |[H(w® + Aw) — H(wD)|2 / [[Aw]|3 is
the minimal spectrum of H, and a £ r(A(l)) is the spectral radius of matrix A

Under the assumptions, there holds p — 0 and o — 0T. Consequently, minimizing the left-hand
side (as in the proposed algorithm) is equivalent to the minimization of Koopman observables to the
right-hand side. O

C.3 Formal Statement and Proof of Theorem 3.1

In this section, we provide the formal statement and proof of Theorem 3.1. Before that, we first give
Definition C.1, Proposition C.3, and Lemma C.1 to introduce Theorem 3.1.

In order to illustrate the feasibility of our proposed method, we propose to measure the complexity of
functions by the estimation accuracy using the simplicial complex created by Delaunay triangulation.
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Def. C.1 first introduces the simplicial error, which reflects the complexity of the subset 2 as
en(Q2) = 0if and only if dim © = m and {2 is convex.

Definition C.1 (The Simplicial Error). For a compact subset of an m-dimensional manifold Q) C
M™ C RY, the simplicial error of it is e (Q) £ infzcq, 1S (E)|=N €=(Q2) where = is a set of N
generic point samples in Q, €=(Q) £ sup,cq mingeg, (=) d(z, s) is the error of the m-dimensional
Delaunay triangulation S,,(Z) of the point set =, and d(x,s) £ inf,cs ||z — y|| is the minimal
distance from x to simplex s. The norm || - || is commonly La-norm.

We then propose to measure the theoretical error bounds for network estimation by the error between
its graph and a closest simplicial complex. Firstly, Prop. C.4 defines the function complexity, which
is intuitively influenced by the complexity of its domain and range sets. The conclusion in Lem. C.1
further shows a bound for the estimation error of the function by a network using ReLU activations.
The error is closely related to the function complexity we defined, which is coherent with the common
knowledge, as the network creates a simplicial complex with each activation creating a surface
between simplicials.
A

Proposition C.4. The function simplicial error is en(f) = en({(z, f(x))|x € Q}) for f : Q@ = T.
We then have max{en(Q2),en(I')} < en(f) <infzcq, s, @)=~ ll[e2(),e=(D)]].

Proof. We first prove the left side.

en(f) = mf {sup min_ d(0, s)] > mf {Sup min_ d(Po0, PQS)] ,
9€0 sE€Sm(E) 9€0 sE€ESm(Z)

[Sm ( )| N |Sm ( )I N
= inf { sup min d(Pqb, PQS):| =en(Pa®) =en(Q),
PoECPo® | p,oecPo0 Pas€Sm(PaE)

[Sm (PoE)|=N
where P, is the projector to €. Similarly,

en(f) = 1nf {sup min_ d(6, s)] > inf [sup min d(PpH,Pps)},

s€ESm O SESH(E
\S()I 0cO sE€ESm(E) \S()|N9€Oe()
= Ping [ sup smmp d[PpH,Pps}],
=C S m
\Sm(%QEH:N ProePrO Prs€Sm[f(PaE)]
= iinf gr) ) 2 en(T).
Ele9)
|Sm (E)|=N
On the other hand, the right-hand side holds due to,
en(f)= _nf [Sup min_ inf ] 1P = @)1 1706 = )] H]
=ECO 9cO s€ESm (B
[Sm (E)|=N
< inf sup min inf ||[e=(Pa®© :P@H,
- co Legsesm(E)WES [e=(Pa®), e=(Fr )]}

ISm( )I

2 b 2,2, @]
=laty)
|Sm(E)|:N

where = holds as the norm inside inf is a constant w.r.t. 6, ¢ and s. O

Lemma C.1. The estimation of function f : Q™ — T' by a network F with n, ReLU activations
satisfies P (|| F(z) — f(x)|| < €r2n, j(m+1)1(f)) = 1— & where § indicates the amount undertrained.

Proof. With reference to the universal approximation theorem, each (m — 1)- dimensional face of
the simplex matches a cuspidal point of a ReL.U activation. For a network with n, activations, the
maximal number of faces is n, which means there are at most [ -2 Jr‘ﬂ simplices in the simplicial
complex, as each simplex has m + 1 faces and all faces are clamped between (exactly) two simplices.

For activations other than ReLU, one may use intrinsic Delaunay triangulation to replace the Delaunay
triangulation. O
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Theorem C.1 (Formal Statement of Theorem 3.1). If the noise space xp € = C R™*™ and the
Koopman space UV C RP are compact, the ideal estimation error of our proposed HKD model with
encoder € and decoder D networks of n, /2 activation functions is smaller than that of an end-to-end
one-step model F with n, activation functions, i.e., erTugp < €TTope-siep + O(k) holds for any
one-step diffusion where

ETTHKD = €[n, /(n2+1)] E)+r+ €na/(D+1)] (D) and ETTone-step = E[2n4 /(n2+1)] (F)

for the one-step mapping F, the encoder € and decoder D in the proposed framework. The additional
Koopman error k is

2v/3om?pg 25, _r
% £ max V3o poup 2v/30m pine +o(m™5),
\/N(%—2m_§)—\/§am2 \/N(§—2m‘§)~pmf—x/§om2

which is small when the Koopman dimension m is sufficient and the dataset size N is large enough.
Here, parameter o is the standard deviation of the observables, § is 0 when the network is perfectly
trained, (pint, Psup) iS the true spectral range of the Koopman operator and r — —oo when the
m-dimensional Koopman process adequately model the Koopman space.

Proof. Under the assumption of AE-based data compression methods, we assume that the data are
approximately on an m-dimensional manifold M™ C R"™*" defined by a bijection § : M <> R™,
and that the projection of the dataset on the manifold is 2 C M. Let ¥ = F(£2) be a compact subset
of R™ that encodes the dataset.

We consider x;(p) as a function w.r.t. spatial position p and define operators F; : @.(-) — f(x.(-),t),
Gi (1) = g2(t) - Vog pi(x4(+)), hence we have,

§(xs) = [FFixs — FGis] 6t = F(Fi — Go)F ()t
which satisfies the definition of a Koopman process where the operator is K; = Z + F(F; — G1)T .
Letting £ = (K, — K )y, for the observables. We have the bound that

P (10— Koyl < mellyill) =135,

where k; = 2v/3 om?r(K;) /[ N(6—2m~%) min{l,r(K:)} — V3 amQ} +o(m™%).

Here, the bound factor ; is related to time ¢ while it has a uniform bound factor,

2v30m?peu 2, _r
/’\:(6) 2 Sup #; = max fngp b ’ 2\/§<’7r'm Dinf +0(m g)’
t€[0,T] \/N(5—2m*§)—\/§am2 \/N(5—2m*§)-pinf—\/§om2

where pin¢ £ inf, 7(K;) and peup = sup; r(Ky).

The estimated Koopman model with an encoder £ estimating mapping § and a decoder D estimating
&1 (with each of them having n, /2 activations) has a probabilistic error bound,

t

P(||Dzo — xo|| <€), where z; = z7 —I—/ (K, — Iz, ds, zp = E(xp),
T
t

and g = Silym yt = yT +/ (’Cs 7I)ys dsa yT = 8‘va7
T

>P(|Dzo — § 2ol + 57 20 = § 'yl <€)
>P(|[Dz0 — 20l < e a1 (31)) - Blllzo —yoll < £/ ~1)/p)

P(llzr —yrl|l < 5(713;'—11}(5)),
>(1-6/3>>1—6.

Here, § holds due to Lemma 1 and § holds when

€= EF%T(%A) +r(F Y- m(‘s/g’)g‘(epT —D/p+rE Y -eT. er—na_1(F),

D+1 241
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where r(F 1) is the spectrum radius of ! and the bound for || zg — || is given by

t t
||zt—yt|<||zT—yT|+H [ == yas| + [ 10— Kozl
T T

T
<llzr -zl + p/ 2 — g, llds + RC(T — 1),
t

where p £ max{1 — pinf, psup — 1} and ( is a bound of ||z, ||. Let D, satisfies Dy = ||z7 — y||
and 45t = —pD; — k¢ which leads to dy £ ||z, — %|| < D, as they are positive trajectories. The

solution to D, is D; = %( [eP(T*t) 1]+ DyerT=1),

For ideal K; and §, ¢ is dominated by e[ _na_1(F ) + €3] (F) as pis small and 7(F~1) ~ 1.

D+1
On the other hand, the one-step methods aim at estimating o = F (1) = x1 + fﬁ(]—'t — Gz dt
by a network F with n, activation functions. The error satisfies, according to Lemma 1,
P (| F(xr) — 2ol < er2n, j(n241)7(F)) =1 —6.

Note that ideally, zp € = C R™*", &y € Q@ C M"™ and §xo € ¥ C R™, where = and A are
compact, hence

er2pa (F); (30)
> max {5[%] (E),e[% (Q)} , < Proposition 1 31
=€[2pa (Q), < () is compact (32)

n<41
=[lleza)(¥),ea(@]]l + ll[e-(E), 5¢) (VI < Eand ¥ are compact  (33)
where A satisfies e (€2) = €[ 2. 1(€), e(BE)=¢e(¥)=0 (34)
n<+41
Zar;il FH+ e (%) < Proposition 1 (35)
(36)

Using Lem. C.1, we may reach the conclusion in Thm. C.1, which shows that if the neural network
models are trained properly, the theoretical error bound of the proposed method is smaller than that
of any other end-to-end one-step method. O

D Experimental Supplement

D.1 Additional Experimental Results for Sec. 4.1

Conditional Generation on CIFAR-10. In  Tapje 4: Class-conditional sample quality on
this part, we provide the conditional generation [FAR-10 dataset.

results on CIFAR-10 to show the generalization

ability of our framework on class-conditional Methods NFE(]) FID(})
tasks. The results are provided in Tab. 4.

Score SDE 2000 2.20
Visual Results. In this section, we provide ad- ED];,[I\]/; (wlo REG) 315 ;gg
ditional qualitative results on CIFAR-10 (uncon- DMD (w/o KL) 1 3.82
ditional), FFHQ (unconditional), and CIFAR- DMD 1 2.66
10 (conditional) to further demonstrate the vi-

HKD 1 2.77

sual quality and effectiveness of our proposed
method. The results are presented in Fig. 7, Fig.
8, Fig. 9, respectively.

Training Stability Results. We include the results of training HKD five times independently on
the CIFAR-10 dataset in Tab. 5. The FID scores and their standard deviation are reported in the
table below. We summarize the FID results over every 10 epochs during training across the five runs,
demonstrating stable convergence behavior.
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Figure 7: The additional visualization of image generations from HKD trained by the CIFAR10
dataset.

Figure 8: The additional visualization of image generations from HKD trained by the FFHQ dataset.

The Wall-clock Time Per Image for Generation Methods. We provide the wall-clock time per
image for different generation methods in Tab. 6, measured on an NVIDIA V100 GPU. These
methods were trained on the CIFAR-10 dataset.

D.2 Additional Experimental Results for Sec. 4.2

We provide additional visualization results of image models on the CIFAR-10 dataset in Fig. 10, and
on the FFHQ dataset in Fig. 11. As shown in Fig. 11, the reconstructed images using low-frequency
components primarily capture the semantic structure of the face. The mid-frequency components
contribute to the overall contour and shape details of the face, while the high-frequency components
are responsible for fine-grained details such as facial hair.
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Figure 9: The additional visualization of conditional image generations from HKD trained by the
CIFAR10 dataset.

Figure 10: The additional visualization of image modes for the CIFAR10 dataset. The rows correspond
to those in the manuscript.

D.3 Additional Experimental Results for Sec. 4.3

Additional Results on One-step Image Editing via Frequency-aware Interventions. We provide
the additional results on the one-step image editing experiment via frequency-aware interventions
along the diffusion trajectory. The results are provided in Fig. 12, 13.

D.4 More Implementation Details about Experiments for Sec. 4.1

Network Architecture. In our experiment, both the encoder and decoder are designed to follow
the architecture of the EDM [8] encoder and decoder, leveraging the proven effectiveness of existing
diffusion model designs, similar to consistency models [32]. Inspired by ECM [4], we utilize EDM’s
pre-trained weights for our encoder and decoder modules to provide structured latent-to-output
mappings and prevent mode collapse, retaining rich hierarchical features acquired during large-scale
training. For each linear operator AWY (i,7), which adopts a block-diagonal structure, we perform
vectorization by concatenating the real and imaginary parts—placing the real components in the
first half of the vector and the imaginary components in the second half. The optimization is then
conducted over the elements of this vectorized form. We train our model end-to-end.
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Table 5: FID scores (mean #+ standard deviation) during training across epochs.
Epoch 0 Epoch 10 Epoch 20

FID (Mean + Std) 11.82+0.29 5.70+0.21 4.71+£0.17
Epoch 30  Epoch 40 Epoch 50
FID (Mean + Std)  4.09+0.18  3.52+0.11 3.31+£0.03
Epoch 52  Epoch 53 Before Training
FID (Mean + Std)  3.31£0.02  3.30+0.02 447.13

Table 6: NFE and per-image latency across different generation methods.
DDPM Score SDE DDIM DDIM

NFE 1000 2000 10 100
Latency 15.32s 45.89s 0.51s 2.35s
EDM EDM KD PD
NFE 35 15 1 1
Latency 0.69s 0.30s 0.26s 0.28s
CD (LPIPS) DMD RF-1 RF-2
NFE 1 1 1 1
Latency 0.02s 0.03s 0.03s 0.03s
RF-3 RF-2++ CT (LPIPS) iCT
NFE 1 1 1 1
Latency 0.03s 0.03s 0.02s 0.02s
iCT-deep ECM HKD —
NFE 1 1 1 —
Latency 0.02s 0.02s 0.03s —

Compared to conventional diffusion models, our framework introduces only one additional parameter
component, the linear operator A. However, due to the structured block-diagonal assumption imposed
on A, the overall increase in parameter count is minimal.

In addition, the EDM U-Net architecture supports augment_label as an input, which we set to
None. Additionally, as in EDM, the U-Net receives the noise scale ¢ as an input. Although the
observable functions in our model are inherently time-independent, we follow the EDM convention
and feed the time-dependent o (t) into the encoder to maintain architectural compatibility and enhance
representational capacity. In contrast, our decoder only operates on the final timestep; therefore,
it consistently receives o(t = 1) as input. The EDM architecture also allows for class_labels as
input. For unconditional generation tasks on CIFAR-10 and FFHQ, we set class_labels = None. For
conditional generation on CIFAR-10, we adopt the same label configuration as in EDM.

Hyperparameter Setting. We conduct experiments using 8 NVIDIA V100 GPUs, with a batch
size of 256 for the CIFAR-10 dataset and 64 for the FFHQ dataset. The loss function weights are
setas Ao = 1 and \; = 1O’3(Cmm’epmh/Ovmn’epmh), where \; decays exponentially over the course
of training. For the implementation of the trajectory consistency loss, we employ a Monte Carlo
sampling strategy: in each training iteration, four intermediate timesteps are randomly sampled
uniformly, and the loss is computed as the average over these sampled time points.

D.5 More Details about Comparison Methods
To provide a comprehensive comparison, we categorize the baseline methods into three groups: multi-

step diffusion models, distillation-based one-step models, and consistency-based models. Below, we
summarize the key characteristics and mechanisms of each method.

Multi-step Diffusion Baselines. 1. DDPM (Denoising Diffusion Probabilistic Models) [7] A
foundational diffusion model that learns to reverse a fixed Markovian noising process via iterative
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Figure 11: The visualization of image modes for the FFHQ dataset. The rows correspond to those in
the manuscript. The third row, indicating the low-frequency semantics, underwent a downsampling
to avoid the uncanny valley effect.

Figure 12: The visualization of frequency-aware interventions of images from CIFAR10. The rows
correspond to the columns in the manuscript, meaning the original image for row 1, frequency-aware
editing at factors of 10%, 20%, 50%, 80%, and 90%, frequency-agnostic editing at a factor of 90%,
and the reference image, respectively.

denoising. The model is trained using a mean squared error (MSE) loss between predicted and actual
noise. Sampling typically requires hundreds to thousands of steps.

2. Score SDE (Score-based Generative Modeling via Stochastic Differential Equations) [33] A
Generalization towards continuous time via stochastic differential equations (SDEs). The model is
trained via score matching and enables sampling using reverse-time SDE or ODE solvers, improving
sample quality and flexibility.

3. DDIM (Denoising Diffusion Implicit Models) [30] A non-Markovian and deterministic variant of
DDPM that introduces a sampling ODE, enabling fast sampling with fewer steps while preserving
high visual fidelity. It is compatible with pre-trained DDPM models without requiring retraining.
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Figure 13: The visualization of frequency-aware interventions of images from FFHQ. The rows
correspond to the columns in the manuscript.

4. EDM (Elucidating the Design Space of Diffusion Models) [8] A state-of-the-art diffusion frame-
work with improved noise scheduling (log-normal distribution) and score network preconditioning. It
achieves superior performance across datasets and serves as the backbone in our proposed framework.

Distillation-based One-step Models. 1. KD (Knowledge Distillation) [17] A straightforward
distillation approach where a student model learns to replicate the output of a pre-trained diffusion
teacher via MSE loss. While efficient, performance can degrade with large step-size reductions.

2. PD (Progressive Distillation) [27] Gradually distills a high-step teacher into a low-step student via
intermediate models, reducing the number of steps incrementally. This approach improves stability
and fidelity over direct distillation.

3. CD (LPIPS) (Consistency Distillation with Perceptual Loss) [32] Extends distillation by employ-
ing perceptual similarity metrics (LPIPS) as the training objective. It improves visual quality by
preserving perceptual features across time steps.

4. DMD (Distribution Matching Distillation) [39] Aims to directly match the student’s output
distribution to that of the teacher using divergence-based objectives (e.g., KL divergence). This
results in more accurate distribution alignment and improved sample diversity.

5. ReFlow Series (Rectified Flow and Distilled Variants) [14, 13] Utilizes a rectified flow framework
to optimize ODE trajectories for efficient sampling. Variants such as 1-, 2-, and 3-Rectified Flow, and
2-Rectified Flow++ offer different trade-offs between speed and quality. Distilled versions further
reduce sampling cost to 1 step with minimal performance loss.

Consistency-based Models. 1. CT/iCT /iCT-deep (Consistency Training) [32, 31] CT models
are trained to produce consistent outputs when given different noise levels. Improved variants (iCT
and iCT-deep) enforce deeper consistency across time steps, using perceptual and cosine similarity
losses to enhance training stability and sample quality.

2. ECM (Easy Consistency Models) [4] Simplifies consistency training by initializing model parame-
ters with those from a pretrained score-based model. This reduces training complexity and improves
convergence without requiring complex schedule tuning.
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E Broader Impact

The proposed Hierarchical Koopman Diffusion (HKD) framework introduces a novel approach
to balancing sampling efficiency and interpretability in generative modeling, which may have a
significant and multifaceted societal impact. By enabling one-step image synthesis with transparent
generative dynamics, HKD has the potential to make image generation systems more accessible,
controllable, and explainable — attributes that are essential for responsible deployment in sensitive
domains such as design, and scientific simulation.

The explicit modeling of generative trajectories and access to intermediate states could enhance
human-AI collaboration, enabling users to guide or edit synthetic content with semantic intent, thus
reducing risks of undesired generation and improving user trust. Furthermore, the spectral inter-
pretability introduced by our framework can offer insights into the internal mechanics of generative
models, fostering research in model debugging, safety validation, and fairness auditing.

In the broader landscape, our work contributes to the growing field of explainable generative Al,
reinforcing the possibility of building models that are not only performant but also transparent
and controllable. We hope this inspires further research toward interpretable, reliable, and socially
responsible generative systems.
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