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Einstein–Roscoe regression 
for the slag viscosity prediction 
problem in steelmaking
Hiroto Saigo1*, Dukka B. KC2 & Noritaka Saito3

In classical machine learning, regressors are trained without attempting to gain insight into the 
mechanism connecting inputs and outputs. Natural sciences, however, are interested in finding a 
robust interpretable function for the target phenomenon, that can return predictions even outside of 
the training domains. This paper focuses on viscosity prediction problem in steelmaking, and proposes 
Einstein–Roscoe regression (ERR), which learns the coefficients of the Einstein–Roscoe equation, 
and is able to extrapolate to unseen domains. Besides, it is often the case in the natural sciences 
that some measurements are unavailable or expensive than the others due to physical constraints. 
To this end, we employ a transfer learning framework based on Gaussian process, which allows us 
to estimate the regression parameters using the auxiliary measurements available in a reasonable 
cost. In experiments using the viscosity measurements in high temperature slag suspension system, 
ERR is compared favorably with various machine learning approaches in interpolation settings, while 
outperformed all of them in extrapolation settings. Furthermore, after estimating parameters using 
the auxiliary dataset obtained at room temperature, an increase in accuracy is observed in the high 
temperature dataset, which corroborates the effectiveness of the proposed approach.

In classical machine learning, regressors are trained with a training dataset, and the generalization performances 
are measured using a test set. If the dataset at hand is dense enough, then the problem boils down to an inter-
polation problem. However, it is often the case that the measurements are available in a limited domain due to 
the constraints imposed by the physical environment. In natural sciences, still regressors are desired to return 
robust and accurate predictions even outside of the training domain, since they can help researchers formulating 
hypotheses about the observed phenomenon. We call this situation as extrapolation, and aim at building robust 
and accurate regressors both in the interpolation and extrapolation domains.

We are particularly interested in the slag viscosity prediction problem in steelmaking industry. The slag 
viscosity is known to be a key parameter in controlling and understanding industrial process, but no existing 
approach can measure it directly in the working blast furnace. To this end, in the real operation scene, slag is 
usually treated simply as pure liquid. However, the real slag is considered to be a multiphase fluid consisting of 
solid and  liquid1,2. Thereby based on this idea, we attempt to model the slag viscosity as a function of the frac-
tion of solid and liquid phases, shape and size of the solid phase particles. The validity of the obtained model is 
to be verified using our in-house data obtained in the high temperature slag suspension system. In this system, 
we are able to measure the viscosity using the rotation method (Please refer to “Methods” section for more 
details). Provided that we could have built an accurate prediction model with our high temperature slag data, 
then it would support our hypothesis that the slag in high temperature exists not simple in a liquid phase, but in 
multiphase consisting of liquid and solid.

In the field of chemical engineering, numerous viscosity models including Einstein–Roscoe3, Krieger-Dough-
erty4 have been developed. However, there exists no universally valid model primarily due to an over simpli-
fication of the model despite the complicated target  system5, which applies to our case as well. For a specific 
example, we showcase the fitting of the Einstein–Roscoe equation to our in-house dataset measured in a high 
temperature (1773 K) experimental system in Fig. 1. It is observed that the fitting of the Einstein–Roscoe equa-
tion consistently underestimated the true measurements. In order to overcome this situation, we propose a novel 
regression algorithms specifically designed for the slag viscosity prediction problem in steelmaking.
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In this paper we also address another important problem in experimental science and industry; supplement-
ing the number of high-cost experiments using dataset measured in a reasonable cost. In our specific case, the 
measurements of viscosity in the high temperature slag suspension system are quite expensive. However, a room 
temperature experimental system has been designed to mimic the behavior in the high temperature system such 
that the number of measurements can be  compensated6. Then we desire to estimate important parameters for the 
prediction model in the high temperature system using the auxiliary measurements from the room temperature 
system. The corresponding problem is known as transfer learning in machine learning. We employ Gaussian 
 process7 for this task, and attempt to estimate its parameters in the direction of maximizing the marginal likeli-
hood using the auxiliary dataset.

We make two main contributions in this paper: (1) proposal of the Einstein–Roscoe Regression (ERR), a 
model based on the Einstein–Roscoe equation, and (2) the development of the parameter selection strategy 
using the auxiliary dataset.

This paper is organized as follows. In the next section, we describe the main results including the main con-
tributions. In “Discussion” section, we argue the limitation and the possible extension of the proposed approach. 
“Methods” section describes the procedures of the computational experiments and the physical experiments.

Results
In this section, we first illustrate the problem, introduce the proposed model, and evaluate it both in the simulated 
datasets and the high temperature slag suspension datasets. We then extend the proposed method such that it 
can make use of the auxiliary dataset measured at room temperature.

Einstein–Roscoe regression (ERR) in the simulated datasets. For simplicity, we begin by estimat-
ing the viscosity solely based on the fraction of the solid phase, and ignore the other parameters for the moment. 
The simulation dataset is generated based on the Einstein–Roscoe  equation3, a popular equation for modeling 
the viscosity of heterogeneous silicate melts;

where ηr stands for relative viscosity and φ stands for the fraction of solid phase. n is typically determined by 
the particle size, shear rate, and kinetic viscosity of the liquid phase.  In8, n is determined using the Reynolds 
number such that n = 0.362Re−0.189 , where Re is determined by (d/2)

2γρ
ηL

 , and d, ρ and ηL are the diameter of 
the particle, shear rate and the viscosity of the liquid phase, respectively. The coefficients 0.362 and −0.189 are 
obtained by non-linear regression to the  measurements6. It is based on a system of physical models, and allows 
us to understand the reason of the viscosity, but did not reproduce the viscosity in the high temperature system 
as shown in Fig. 1. To this end, we attempt a data science approach; estimate the coefficients n of Einstein–Roscoe 
equation by least squares, that is, we solve

for ñ . This approach is completely data-driven, and different from any physical model proposed in the  literature5. 
We call this approach as Einstein–Roscoe Regression (ERR) below.

The results of fitting ERR and various machine learning algorithms to the simulated datasets are shown in 
Fig. 2. In this simulation experiment, we first fixed n, generated data points according to Einstein–Roscoe equa-
tion, and added Gaussian noise. Then we trained ERR and the baseline methods using the data points whose 
domain are limited to φ = {0.1, 0.125, 0.15, 0.175, 0.2} for simulating the extrapolation settings. The gray band 
in the middle of each figure corresponds to the training domain, and the neighboring left and right domains 
correspond to the test domains. The baseline methods we tested includes Ordinary Least Squares (OLS),  Lasso9, 
Random Forest (RF)10, Support Vector Regression (SVR)11 and Multi Layer Perceptron (MLP)12. It is clear from 
Fig. 2 that baseline approaches perform well in interpolation settings, but are quite erroneous in extrapolation set-
tings. Our proposed method ERR, on the other hand, correctly captures the smooth and nondecreasing properties 

(1)ηr = (1− φ)−n,

(2)log(1− φ) ñ = − log(ηr),

Figure 1.  Underestimation results of the viscosity by an Einstein–Roscoe equation. The measurements are 
obtained in a matrix of CaO− Al2O3 − SiO2 −MgO slag at 1773 K. Each plot corresponds to a different shear 
rate. The details regarding the experimental system is described in the “Methods” section.
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of the viscosity with respect to the solid phase rate. The resulting good performance in both the interpolation and 
extrapolation problems is due to the usage of the Einstein–Roscoe equation as a prior knowledge.

Fitting ERR to the high temperature slag suspension data. We demonstrate the effectiveness of the 
proposed approach using the dataset measured in high temperature slag suspension system. The procedure for 
the measurements are described in “Methods” section. Figure 3 shows the results of fitting ERR to the meas-

Figure 2.  Prediction results of the regressors in the simulated datasets. Each plot corresponds to a different 
coefficient, and they are n = 3(left), n = 6(center), and n = 9(right). All the regressors except for ERR show 
poor extrapolation abilities.

Figure 3.  Least squares fitting by ERR to the high temperature slag suspension data. In each subplot, x and y 
axes correspond to the fraction of solid phase rate (%) and the viscosity, respectively. The fitting performance in 
terms of r2 was as high as between 0.88 and 0.98 across different bead sizes and shear rates. Notice that there are 
linear relationships (shown as an arrow) between n and the bead size, and between n and the shear rate.
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urements across different shear rates and bead (particle) sizes. The resulting r2 was between 0.878 and 0.982, 
indicating the good fitting performance. Moreover, we have two interesting observations from the estimated 
coefficients n; (1) n increases with the decreasing bead size, and (2) n increases with the decreasing shear rate. 
Both facts are consistent with the previous  observation6. We can see in Fig. 3 that we have obtained 9 estimates of 
the coefficient n of Einstein–Roscoe equation. In our ERR framework below, we use these estimated coefficients 
n as true response label, and attempt to estimate them from the other experimental parameters such that;

where d denotes bead size, and γ denotes shear rate. Notice that once n is determined, then the viscosity ηr can 
be obtained by Eq. (1).

Extrapolation experiments using the high temperature slag suspension data. We investigate the 
effectiveness of ERR compared with the baseline ER equation and various machine learning algorithms in Fig. 4. 
The experimentally measured data points are denoted as True (black circles), and the prediction result of each 
method is displayed in a line. In this dataset, we have only four data points along the x axis; x = {0, 0.1, 0.2, 0.3} , 
but we have reserved 0 and 0.3 for the extrapolation settings, and used only 0.1 and 0.2 for training. The resulting 
problem is quite hard, since we have only two points for estimating a non-linear curve.

As expected, all the existing regressors performed well inside of the training domain, but poorly outside (See 
Fig. 4). The ER equation underestimated the viscosity for most of the situations. In contrast to that, our proposed 
method ERR performed well in both interpolation and extrapolation settings. In order to make a detailed com-
parison, we summarized the errors in terms of mean squares of each regressor in Table 1. In the interpolation 
settlings, there was no statistically significant difference by a one-sided two sample t-test with 5% significance 
level (except for OLS whose fitting line passes directly on the training data points, resulting in zero error). In the 

(3)n = f (d, γ ),

Figure 4.  The prediction results in different shear rates and bead sizes. The measurements in the gray band 
are used for training, and the measurements in the neighboring regions are used only for the testing. The ER 
equation underestimated the viscosity for most of the cases. All the other baseline machine learning methods 
returned flat prediction that goes through the training data points. The proposed method ERR, on the other 
hand, correctly reproduced the smooth and nondecreasing characteristic due to the usage of Einstein–Roscoe 
model as a prior knowledge.
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extrapolation settings, the differences between ERR and all the others were statistically significant by a one-sided 
two sample t-test with 5% significance level (highlighted in a bold font).

Extension of the basis model and the estimation of model parameters using the auxiliary 
data. Thus far, we had only 9 data points for the prediction of the coefficient n in the high temperature slag 
suspension dataset due to the high cost required for the measurements. On the other hand, we have established 
a room temperature experimental system using polyethylene beads and silicon  oil6. With this system, we have 
collected 80 auxiliary data points, and attempt to improve the prediction performance in the high temperature 
dataset by correctly estimating the common underlying parameters. First, we consider employing a flexible basis 
model to ERR. We consider n as a function of γ and d, and employ Gaussian  process7. As a result the prediction 
model can be represented as a weighted sum of kernels.

where x corresponds to the measurements with different γ , d and, i runs through the number of measurements, 
and α represents the weights learned by Gaussian process. An advantage of Gaussian process is its ability to 
tune parameters using the training dataset only. Since we already know that a linear model was successful in the 
previous experiment (Fig. 3), we consider mixing a linear kernel with a Gaussian  kernel13 such that an overall 
trend is captured by a linear model, and small fluctuations are captured by a Gaussian model. The procedure for 
this experiment is as follows. First we have split the room temperature data into training sets and test sets. Then 
we have estimated parameters θ in the direction of maximizing marginal likelihood using the conjugate gradient 
descent. Finally we have run leave-one-out cross-validation in the high temperature dataset using the learned 
parameters. In oder to highlight the effectiveness of the parameter selection, we compare the kernel before and 
after optimizing parameters. A kernel before the parameter optimization is given in the following form;

We also compare a kernel with only a linear term;

In Table 2, we compare different kernels in terms of root mean squared errors. The errors are measured by 
leave-one-out cross-validation in the high temperature dataset. We can observe that the amount of errors in 
the optimized kernels have decreased to almost half after parameter selection using the auxiliary dataset. The 
results of predicted n are plotted in Fig. 5, where we can confirm that the predicted points after the parameter 
estimation lie closer to the diagonal, indicating improved correlation with the true label. We can also observe 
the smaller prediction intervals after parameter selection, which corresponds to the increase of the confidence 
in the prediction. Our kernel with optimized parameters are as follows;

A large coefficient to the linear term (4.90) relative to the non-linear model (0.105) indicates inherent linearity 
over non-linearity. Also a large coefficient to the noise term (2.92) suggests the existence of a relatively large 
noise in the measurements.

Discussion
A strong linearity in viscosity with respect to the solid phase rate is observed in the two experiments; (1) fitting 
of ERR to the high temperature dataset and (2) optimization of the kernel parameters. However, an improved 
prediction performance is obtained by consideration of nonlinear effect into the model, which confirm the 
validness in the choice of our kernels. In order to achieve robust regression model, we estimated the coefficient 

(4)n(x) =
∑

i

αik(xi , x),

(5)kCustomized(x, x
′ | θ) = �x, x′� + exp

(

−|x − x′|2
)

+ δ(x, x′).

(6)kLinear(x, x
′ | θ) = �x, x′�.

(7)kOptimized(x, x
′ | θ) = 4.90�x, x′� + 0.105 exp

(

−
|x − x′|2

0.99

)

+ 2.92δ(x, x′).

Table 1.  Prediction errors in terms of mean squares in both interpolation and extrapolation settings in the 
high temperature viscosity prediction problem. Statistically significant results are highlighted in a bold font.

Domain ERR ER equation OLS LASSO RF SVR MLP

Interpol. (train) 0.075 ± 0.065 0.60 ± 0.29 0.00 ± 0.00 0.037 ± 0.0087 0.13 ± 0.22 0.18 ± 0.12 0.32 ± 0.19

Extrapol. (test) 3.2 ± 4.1 13 ± 9.2 301 ± 630 10 ± 5.5 12 ± 7.0 14 ± 8.6 15 ± 8.7

Table 2.  Errors in terms of mean squares by different kernels in the high temperature dataset.

Kernel type Linear Customized Customized with opt. parameters

MSE 0.147 0.0347 0.0176
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n of Einstein–Roscoe regression through Eq. (3). It worked successfully in our case at the cost of decreasing the 
number of data points in high temperature experiments. In practice, we obtained 9 coefficient ns, at the cost of 
the 36 measurements. Generally in machine learning and statistics, a better prediction model comes with more 
measurements, so one of the future direction would be building a robust and accurate prediction model without 
decreasing the measurements towards improved prediction performance.

We employed Gaussian process as a regressor to predict the coefficient n of the Einstein–Roscoe model. In 
practice, we can employ any nonlinear regressor such as Multiple Layer Perceptron or Random Forest instead of 
Gaussian process. However, the properties of the Gaussian process such as the parameter selection ability using 
the training dataset and the availability of the prediction interval, are unique, and we have successfully made 
full advantage of them in the experiments.

Methods
Einstein–Roscoe regression (ERR). Einstein–Roscoe3, Krieger-Dougherty4 and many other models can 
be described in the common form as;

where φ is the fraction of the solid phase particle, and a and n have been calculated from the shape and size of 
the solid phase particle in various  ways5. In this study, we fix a = 1 , and aim at estimating n from the training 
dataset, since n is the most important factor that determines the shape of the curve. Figure 6 illustrates that ER 
equation with various n is flexible enough to represent various curves with smooth and nondecreasing property. 
Thus we fix our basis model to Eq. (8), and aim at predicting the coefficient n from the available measurements.

Gaussian process and the kernel parameter estimation. Suppose that we are given d dimensional 
feature x ∈ Rd and the corresponding response y ∈ R , then the training dataset with n examples is represented 

(8)ηr = (1− aφ)−n,
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as (x1, y1), (x2, y2), . . . (xn, yn) . Suppose also that our test set is given as x∗ , and we aim at predicting the function 
outputs f (x∗) . Let our kernel function be k(., .), and the element of the kernel matrix computed from the training 
dataset be Ki,j = k(xi , xj) , and those computed using the training dataset and test dataset be (k∗)i = k(x∗, xi) . 
The predictive distribution of Gaussian Process is given as

where the mean and the covariance of the Gaussian distribution is given as µ∗ = k⊤∗ K
−1y and 

�∗ = k(x∗, x∗)− k⊤∗ K
−1k∗ , respectively. As a kernel function, we employ a mixture of linear and Gaussian 

kernels in the following form;

Our high temperature dataset is as small as 9 data points, so we consider using the room temperature dataset for 
the estimation of the parameters. Since the objective function of the Gaussian process is given as log marginal 
likelihood

we consider taking the gradient with respect to its parameters;

With our kernel represented by Eq. (9), we can assume that all the parameters are nonnegative. Such constraints 
can be incorporated by rewriting the parameters as θ ′i = eθi . Then our kernel can be rewritten as

Then the gradient with respect to each parameter can be obtained as follows.

Given the gradient, we can employ any gradient based optimization method to update the parameters such that;

In this work, we employed Conjugate Gradient descent  optimizer14.

Experimental settings of baseline methods. In this subsection, we describe the parameters used for 
the baseline methods. The coefficients of Einstein–Roscoe (ER) equation is obtained based on the experimental 
condition as described in “Results” section. The model is fully described, and there is no parameter to tune.

The baseline machine learning methods has more than or equal to 1 parameter to tune, which is found by 
cross validation with grid search in the training dataset. In Random Forest (RF), we chose the number of trees 
from {1,10,100,1000}. In Lasso, regularization parameter is chose from {0.01,0.1,1,10,100}. In SVR, regulariza-
tion parameter is chose from {0.01,0.1,10,100}, tube size ǫ is chosen from {0.01,0.05,1.0,1.5,2}, kernel is chosen 
from either ’linear’ or ’RBF’, and the width parameter of RBF kernel is chosen from {0.01,0.1,1,10,100}. In MLP, 
the number of hidden layers is chosen from {1,2,3}, and the number of nodes are chosen from {1,3,5,10,20,30}, 
and the regularization parameter is chosen from {0.0001,0.05}. The max iteration is set to 100, and the SGD 
optimizer is employed.

Viscosity measurement of suspensions at room temperature. The viscosity measurement system 
consists of a rotational viscometer (DVII+ or DV2T, AMETEK Brookfield) and a suspension in a 300 ml beaker. 
Apparent viscosities were systematically measured for suspensions with different bead volume fractions, average 
diameters, shear rates, and liquid matrix viscosities. The shear rate was calculated from the rotational speed and 
the dimensions of the beaker (inner diameter 73 mm) and spindle (outer diameter 3.2 mm) using the following 
equation

p(f (x∗) | X, y, x∗) = N (f (x∗) | µ∗,�∗),

(9)k(x, x′ | θ) = θ1�x, x
′� + θ2 exp

(

−
|x − x′|2

θ3

)

+ θ4δ(x, x
′).

log p(y | θ) = −
1

2
log |K | −

1

2
y⊤K−1y −

n

2
log(2π),

∂ log p(y | θ)

∂θ
= −

1

2
Tr

(

K−1 ∂K

∂θ

)

−
1

2
y⊤K−1 ∂K

∂θ
K−1y

(10)k(x, x′ | θ) = eθ
′
1�x, x′� + eθ

′
2 exp

(

−
|x − x′|2

eθ
′
3

)

+ eθ
′
4δ(x, x′).


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where γ ,ω, ro, ri are the shear rate, angular velocity, inner radius of the outer cylinder (beaker), and radius of the 
inner cylinder (spindle), respectively. The apparent viscosity of the suspension was calculated from the torque 
generated in the spindle by rotation. The variation of the apparent viscosity was about 10%. Silicone oil (KF-96, 
Shin-Etsu Chemical) with viscosities of 0.5, 1.0, 2.0, and 3.0 Pa-s at 24 ◦ C was used as the low polarity liquid 
matrix, and the relative permittivity ranged from 2.7 to 2.8, depending on the viscosity. Polyethylene beads (LE-
1080, Sumitomo Seika) with average diameters of 9.35, 162.5, 340.0, and 602.5 µm were selected as dispersed solid 
particles, whose sphericity and particle distribution were confirmed to be relevant by using scanning electron 
microscopy (SEM) imaging. Please refer  to6 for more details.

Viscosity measurement of slag suspensions at high temperature. Calcined CaO and MgO pow-
ders were added to CaO and MgO saturated slag, respectively, to prepare a suspension of CaO and MgO parti-
cles dispersed in the slag. According to the phase diagram, the chemical composition of a quasi-ternary system 
53CaO–35Al2O3–3SiO2-8MgO (mass %), has the eutectic temperature of lime (CaO) and periclase (MgO) at 
1773 K, suggesting that CaO and MgO do not chemically dissolve at the selected composition and at 1773 K. As 
reagents, powders of CaCO3, Al2O3, SiO2, and MgO (Sigma-Aldrich Japan) were carefully weighed to achieve 
the specified composition and thoroughly mixed in an alumina mortar. The powder batches were pre-melted in 
a resistance furnace using a platinum crucible for 1 h at 1873 K in air and quenched on a water-cooled copper 
plate. The respective reagent powders were calcined at 1473 K for 30 min to prepare CaO and MgO particles for 
dispersion. The calcined and sieved CaO and MgO particles were mixed with a pre-melted 53CaO–35Al2O3–
3SiO2–8MgO (mass%) slag to a predetermined composition before the viscosity measurement. Viscosity meas-
urements were performed using the rotating crucible viscometer apparatus as described in the previous section. 
A Pt-20mass%Rh crucible filled with the mixed slag and CaO or MgO particles was placed in the crucible sup-
porter in the furnace, heated to 1773 K, and then the viscosity of the CaO or MgO slag dispersion was measured 
at the same temperature. Please refer  to6 for more details.
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