
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054

Causal Discovery over High-Dimensional Structured
Hypothesis Spaces with Causal Graph Partitioning

Anonymous Authors1

Abstract
The aim in many sciences is to understand the
mechanisms that underlie the observed distribu-
tion of variables, starting from a set of initial
hypotheses. Causal discovery allows us to infer
mechanisms as sets of cause and effect relation-
ships in a generalized way—without necessarily
tailoring to a specific domain. Causal discov-
ery algorithms search over a structured hypothe-
sis space, defined by the set of directed acyclic
graphs, to find the graph that best explains the
data. For high-dimensional problems, however,
this search becomes intractable and scalable algo-
rithms for causal discovery are needed to bridge
the gap. In this paper, we define a novel causal
graph partition that allows for divide-and-conquer
causal discovery with theoretical guarantees. We
leverage the idea of a superstructure—a set of
learned or existing candidate hypotheses—to par-
tition the search space. We prove under certain
assumptions that learning with a causal graph par-
tition always yields the Markov Equivalence Class
of the true causal graph. We show our algorithm
achieves comparable accuracy and a faster time to
solution for biologically-tuned synthetic networks
and networks up to 104 variables. This makes our
method applicable to gene regulatory network in-
ference and other domains with high-dimensional
structured hypothesis spaces.

1. Introduction
Causal discovery aims to find meaningful causal relation-
ships using large-scale observational data. Causal relation-
ships are often represented as a graph, where nodes are
random variables and directed edges are cause-effect rela-
tionships between random variables (Spirtes et al., 2000b).

1Anonymous Institution, Anonymous City, Anonymous Region,
Anonymous Country. Correspondence to: Anonymous Author
<anon.email@domain.com>.

Preliminary work. Under review by the International Conference
on Machine Learning (ICML). Do not distribute.

Causal graphs have high expressive power as they allow us
to investigate complex relationships between many variables
simultaneously—making them relevant for many problems
in science, economics, and decision systems (Pearl, 1995).

Exploring the graph search space to find the causal graph
is an NP-hard problem. Causal discovery algorithms have
benefited from some performance enhancements and paral-
lel strategies (Ramsey, 2015; Laborda et al., 2023; Lee &
Kim, 2019). Recent work explores a distributed divide-and-
conquer version of causal discovery by partitioning variables
into subsets, locally estimating graphs, and merging graphs
to resolve a causal graph. Existing divide-and-conquer meth-
ods do not provide theoretical guarantees for consistency;
meaning in the infinite data limit they do not necessarily find
the Markov Equivalence Class of the true causal graph. Ex-
isting algorithms also rely on an extra learning step to merge
graphs which can be computationally expensive. Finally,
these algorithms ignore the violations to causal assumptions
when learning on subsets of variables (Spirtes et al., 2000b;
Eberhardt, 2017).

To address these limitations in literature, we propose a
causal partition. A causal partition is a graph partition
of the hypothesis space, defined by a superstructure, into
overlapping variable sets. A causal partition allows for merg-
ing locally estimated graphs without an additional learning
step. We can efficiently create a causal partition from any
disjoint partition. This means that a causal partition can be
an extension to any graph partitioning algorithm.

We are interested in causal discovery for high-dimensional
scientific problems; in particular, biological network infer-
ence. Biological networks are organized into hierarchical
scale-free sub-modules (Albert, 2005; Wuchty et al., 2006;
Ravasz, 2009). The causal partition allows us to leverage
the inherent, interpretable communities in these networks
for scaling.

Our contributions are as follows: (A) We define a novel
causal partition which leverages a superstructure and ex-
tends any disjoint partition. (B) We prove, under certain
assumptions, that learning with a causal partition is consis-
tent without an additional learning procedure. (C) We show
the efficacy of our algorithm on synthetic biologically-tuned

055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109

networks up to 10k nodes.

2. Related Work
Causal discovery algorithms are categorized into two types:
(i) Constraint-based algorithms use conditional indepen-
dence tests to determine dependence between nodes Spirtes
et al. (2000b;a), and (ii) Score-based algorithms greedily
optimize a score function over the space of potential graphs
(Chickering, 2002; Hauser & Bühlmann, 2012). To address
the intractable search space for causal discovery, many “hy-
brid” methods have been developed that work by first con-
straining the search space with a constraint-based method
and then greedily optimizing the subspace using a score-
based method (Tsamardinos et al., 2006; Nandy et al., 2018).
Perrier et al. (2008) formalize this approach by defining
the superstructure G = (V,E) where for a true causal
graph G∗ = (V,E∗), E∗ ⊆ E. The superstructure can
be found using a constraint-based method like the PC algo-
rithm, which is sound and complete. The superstructure can
also be informed by domain knowledge e.g., for gene reg-
ulatory networks genes that are functionally related likely
constrain underlying regulatory relationships (Cera et al.,
2019). Incorporating prior knowledge into causal discovery
allows us to infer which hypotheses or known relationships
are best supported by data.

Another approach to scaling causal discovery algorithms is
the divide-and-conquer approach. In this approach, random
variables are partitioned into subsets. Causal discovery is
run on each subset in parallel, before a final merge to resolve
a graph over the full variable set. Huang & Zhou (2022)
and Gu & Zhou (2020) use hierarchical clustering of the
data to obtain a disjoint partition of variables. Similarly, Li
et al. (2014) partition the node set using the Girvan-Newman
community detection algorithm. Alternatively, Zeng & Poh
(2004) use an overlapping partition, however, they do not
provide any theoretical guarantees for learning. Tan et al.
(2022) use an ancestral partition to restrict candidate par-
ents for exact causal discovery using dynamic programming.
Laborda et al. (2023) employ ring-based distributed par-
allelism and the solutions iteratively in the ring until the
learned graph converges.

Our work differs from these because we use a superstruc-
ture G to partition nodes into overlapping subsets using
a novel causal graph partition with theoretical guarantees.
The causal partition avoids any additional learning step to
combine subsets. We show that a causal partition can be
an extension to any disjoint partition, allowing us to learn
effectively on graphs of varying topologies.

3. Background
3.1. Causal Discovery

Causal discovery considers a set of data sampled from the
joint distribution of random variables X ≜ (X1, . . . , Xp)
where p is the number of random variables in the system.
Each random variable Xi ∈ Rn is defined as a real-valued
column vector where each value is an individual observation
for random variable Xi. We assume these relationships can
be represented by a Directed Acyclic Graph (DAG). This
DAG is a tuple G∗ = (V,E∗) where V is the node (or
vertex) set made up of p nodes corresponding to the random
variables, and E∗ ⊂ V × V is the set of directed edges
between nodes. For each directed edge (Xi, Xj) ∈ E∗, we
refer to the source node of the edge (Xi) as the “cause” and
the target node of the edge (Xj) as the “effect”. The joint
distribution of random variables is given by a probability
density function that factorizes as:

P (X1...Xp) =

p∏
i

P
(
Xi|PaG

∗
(Xi)

)
(1)

Where PaG
∗
(Xi) is the set of parents of node i in G∗.

Nodes that are d-separated in G∗ imply a conditional in-
dependence in P . Let X,Y ∈ V and Z ⊆ V/ {X,Y }.
If Z d-separates X from Y in DAG G∗, then the random
variables X and Y are conditionally independent given Z.
We assume access to only observational data. In this setting,
causal discovery algorithms only estimate a graph within
the Markov Equivalence Class (MEC) of G∗. The MEC
of a causal graph G consists of the set of DAGs that share
the same conditional independence relationships and there-
fore d-separation criteria. A Completed Partially Directed
Acyclic Graph (CPDAG) is the graph class that represents
the MEC of a DAG. In this paper we denote the MEC of
the true DAG G∗ as the CPDAG H∗. In particular H∗ has
the same adjacencies and unshielded colliders (triples with
the following structure i → j ← k where i and k are not
adjacent) as G∗ (Zhang, 2008a).

3.2. Graph Classes for Latent Variables

While the causal graph can be represented by a DAG, we
consider alternative graphical representations that consider
latent (unobserved) variables. Namely, we consider two
graph classes: (i) Maximal Ancestral Graphs (MAGs) and
(ii) Partial Ancestral Graphs (PAG).

Definition 3.1 (mixed graph, MAG). A mixed graph G
consists of a set of nodes V and a set of directed edges
E ⊂ V × V and a set of bi-directed edges B ⊂ V × V .
If (Xi, Xj) ∈ E we say there is a directed edge between
Xi and Xj and we write Xi → Xj . If {Xi, Xj} ∈ B
we say there is a bi-directed edge and write Xi ↔ Xj . A

110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164

mixed graph is called a maximal ancestral graph (MAG) if it
contains no almost directed cycles and there is no inducing
path between non-adjacent nodes.

An almost directed cycle is a cycle that contains both di-
rected and bi-directed edges. An inducing path is defined as
follows:
Definition 3.2 (Inducing path). Given L ⊂ V , an inducing
path relative to L between vertices u and v is a path Π =
{u, q1, . . . , qk, v} such that every non-endpoint node in Π∩
{V \ L} is a collider on Π and an ancestor of at least one
of u or v.

Some examples of inducing paths are illustrated in Fig-
ure 1. We can extend the idea of d-separation in DAGs to
m-separation in mixed graphs. The graph class that charac-
terizes the Markov Equivalence Class of MAGs, governed
by m-separation, is the partial ancestral graph:
Definition 3.3 (partial mixed graph, PAG). A partial mixed
graph can contain four kinds of edges: →, ◦−◦,−, and
◦→ and therefore has three kinds of end marks for edges:
arrowhead (>), tail (-) and circle (◦) 1. Let [M] be the
Markov equivalence class of an arbitrary MAG M . The
partial ancestral graph (PAG) for [M], P[M], is a partial
mixed graph such that (i) P[M] has the same adjacencies as
M (and any member of [M]) does; (ii) A mark of arrowhead
is in P[M] if and only if it is shared by all MAGs in [M];
and (iii) A mark of tail is in P[M] if and only if it is shared
by all MAGs in [M].

We will prove, that under certain assumptions, we can recon-
struct the CPDAG representing the MEC (H∗) of a the true
DAG (G∗) from PAGs estimated on subsets of variables.

3.3. Causal Discovery on Subsets of Variables

We now describe the problem setup for learning over sub-
sets of variables. Column-wise subsets of X are marked
with a subscript: e.g., for a subset of nodes S, the corre-
sponding subset of data is XS = {Xn

i }i∈S . The presence of
latent variables outside the subset S complicates our learn-
ing procedure. We must use MAGs rather than DAGs to
represent graphs estimated on subsets of variables to ensure
consistency of our algorithm. To this end we define a latent
projection, as used by Zhang (2008a), of the true graph G∗

onto a subset of nodes S. An example is shown in Fig. 1.
Definition 3.4 (Latent MAG). Let G be a DAG with vari-
ables V and S ⊂ V , where V contains no selection vari-
ables 2. The latent MAG LMAG(G,S) is the MAG that con-
tains all nodes in S and satisfies:

1Additionally, we will use ∗ as a “wild card” end mark. For
example u ∗→ v means that the end mark at u can be any of three
outlined in the Defn. 3.3.

2There is no selection bias in our setting, since data is sampled
from the full vertex set V which retains causal sufficiency.

X1

Nodes in subset

Latent projection

X2

Projected edges in

Edges in

X1

X5

X2

X3

X4

(a) (b)

X3

X1 X5

X2
X4

(c)

Edges in
inducing

path

Examples of Latent MAGS and Inducing Paths

Figure 1. Examples of latent MAGS LMAG(G∗, S). Inducing paths
Π relative to V \ S are highlighted in green. (a) For x1, x2 ∈ S,
any edge (x1, x2) in G∗ is an inducing path relative to V \ S
between x1 and x2. (b) Π is an inducing path relative to V \ S
between x1 and x5 because all non-endpoint nodes on the path
are in V \ S. (c) Π is an inducing path relative to V \ S between
x1 and x5 because every non-endpoint is either in V \ S (nodes
x2, x4), or is in S and is a collider on the path and is an ancestor
of at least one of x1 or x5 (node x3).

1. u, v ∈ S and u→ v ∈ G⇒ u→ v ∈ LMAG(G,S)

2. (projected edge) ∈ LMAG(G,S) if there is an inducing
path between u and v relative to V \S in G∗. The edge
is directed u → v if u is an ancestor to v in G∗. The
edge is directed v → u if v is an ancestor to u in G∗.
Otherwise the edge is bi-directed u↔ v.

Latent projections are well-studied objects in the causal
discovery literature, see (Verma & Pearl, 2022; Faller et al.,
2023; Richardson et al., 2023; Zhang, 2008a) for further
definitions. A ground-truth DAG G∗ induces a latent MAG
LMAG(G∗, S) on a subset S. The Markov equivalence class
of this MAG is denoted [LMAG(G∗, S)].

Next, we assume that the structure learner employed on each
subset is a complete and consistent PAG learner, even in
the presence of confounder variables. Algorithms known to
satisfy these assumptions include the seminal FCI algorithm
(Zhang, 2008b).

Assumption 1. We have a consistent structure learning
algorithm A that operates on data matrix XS for a subset
of random variables S ⊆ V . When the distribution P
satisfies faithfullness, then in the infinite data limit

A (XS) = P [LMAG(G∗, S)]

In particular, by definition of the latent MAG and latent PAG
operators, Assumption 1 implies the output of A satisfies
several properties.

165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219

Lemma 1. Given A satisfying Assumption 1,

1. For any xi, xj ∈ S, the output A (XS) has an edge
between xi and xj if and only if there is an inducing
path in G∗ relative to V \ S between them.

2. For any triple xi, xj , xk ∈ S that form an unshielded
collider in G∗ as xi → xj ← xk, the output A (XS)
will have an edge between xi and xj as well as xj and
xk, and both of these edges will have an arrowhead at
xj .

3. For any u, v ∈ S such that u ∼G∗ v, if u ∼A (S) v
with an arrowhead at v in A (XS), then u→ v in G∗.

The proofs for Lemma 1 are deferred to Appendix B. These
properties, at a high level, allow us to determine the align-
ment of the adjacencies and the unshielded colliders in
locally estimated graphs A (XS) to the underlying DAG
G∗. These will eventually prove important for resolving the
CPDAG H∗ using locally estimated graphs.

3.4. Defining a Causal Partition

Here, we outline the properties of our novel causal partition,
which admits a divide-and-conquer algorithm to estimate
H∗ a CPDAG corresponding to G∗ by learning over subsets.
Since learning on the entire variable set with A (XV) can
be computationally intractable, we use an initial structure
over the entire variable set to help partition V into subsets.
We first assume access to an initial superstructure G.

Assumption 2. We have access to superstructure G =
(V,E), an undirected graph, that constrains the true graph
G∗. This means all edges in G∗ are in G, but not all edges
in G are necessarily in G∗ 3

Now we consider some overlapping partition {S1, . . . , SN}
of V , and the output {A (XSi

)}Ni=1. Using Assumption 1,
we show that given a partition with a particular structure
defined below, one can recover H∗ from {A (XSi)}Ni=1.

Definition 3.5 (Causal Partition). We say an overlapping
partition {S1, . . . , SN} is causal with respect to superstruc-
ture G and ground-truth DAG G∗ if, given any learner A
satisfying Assumption 1, all of the following hold:

(i) The partition is edge-covering with respect to the su-
perstructure G.

(ii) For any vertices u, v such that u ̸∼G∗ v and u ∼G v,
there exists some subset Si such that u, v ∈ Si and
A (XSi

) does not contain an edge between u and v.

3This assumption is not required to prove identifiability of
H∗, rather it allows us to define the causal partition when the
superstructure is not fully connected, and therefore, when we can
exploit the communities in the superstructure to enable scaling.

Algorithm 1 Screen(G, {Hi}Ni=1)

Input: a superstructure G, a set of PAGS {Hi = (Si, Ei)}Ni=1

Result: H∗ = (V,E∗) a PAG
1 Initialize V = ∪N

i=1Si; Ecandidates ← ∪N
i=1Ei; E∗ ← ∅

// Discard edges not in superstructure.
2 Ecandidates ← Ecandidates ∩ {u ∗−∗ v | u ∼G v}

foreach u, v such that {u ∗−∗ v} ∈ Ecandidates do
3 if ∀i s.t. Si ⊇ {u, v}, u ∼A(Si) v then

// If an edge between u and v appears
in the output on all subsets, add
undirected edge to output graph.

4 E∗ ← E∗ ∪ {u− v}

// Orient unshielded colliders
5 foreach i ∈ [N] do
6 foreach Unshielded u ∗→ v←∗ w in Hi do
7 if u− v and v − w in E∗ then
8 discard← {u− v, v − w}}

orient← {u→ v, v ← w}
E∗ ← {E∗ \ discard} ∪ orient

9 return H∗ = (V,E∗)

(iii) For any unshielded collider u→ v ← w in G∗, there
exists some subset Si such that {u, v, w} ⊆ Si.

In particular, property (ii) in Definition 3.5 is crucial to the
divide-and-conquer strategy proposed in this work, as it
allows the algorithm to identify and discard projected edges
learned on a subset Si (as in Defn 3.4) by comparing the
output A (XSi

) to results on other subsets. In Section 5.1,
we show that given a superstructure satisfying Assumption 2,
a simple and computationally tractable procedure yields a
causal partition satisfying all above properties.

4. Guarantees in the Infinite Data Limit
Now we prove that given any causal partition {S1, . . . , SN}
with respect to DAG G∗ and superstructure G, one can
recover H∗ a CPDAG corresponding to G∗. Our main
theorem states that Algorithm 1 recovers H∗ from local
output {A (XSi

)}Ni=1.

Theorem 1. Given superstructure G satisfying Assump-
tion 2, a learner A satisfying Assumption 1, and
{S1, . . . , SN} a causal partition with respect to G and G∗,
let H∗ denote the output of Algorithm 1

H∗ = Screen(G, {A (XSi)}Ni=1).

Then H∗ satisfies the following properties: (i) ∀u, v ∈ V ,
u ∼H∗ v if and only if u ∼G∗ v; (ii) For any unshielded
collider u → v ← w in H∗, it holds that u → v ← w
in G∗; and (iii) For any unshielded collider u → v ← w
in G∗, u ∼H∗ v and v ∼H∗ w and both edges have an
arrowhead at v in H∗.

Property (i) in Theorem 1 states that H∗ contains the same

220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274

adjacencies as G∗. Properties (ii) and (iii) combine to
imply that an unshielded collider u → v ← w appears
oriented in H∗ if and only if that unshielded collider exists
in G∗. All three properties combined ensure that H∗ is the
CPDAG that represents the MEC of G∗.

The proof of Theorem 1, included in Appendix B, relies
on the fact that by definition of a causal partition, for any
u, v not adjacent in G∗, there must be a subset Si such that
u, v ∈ Si and the local output A (Si) does not contain an
edge between u and v. This allows us to “screen” projected
edges from true edges as edges that are not consistent across
all locally estimated graphs.

We note that Screen is computationally lightweight. The
dominant cost is O(N ·m′ · d), for N the number of par-
titions, m′ the total number of learned edges, and d the
maximum degree in the learned graph. Of note, m′ ≤ p2

for p the number of random variables, and in real-world
applications learned graphs tend to be sparse so typical
instances have m′ ≪ p2 (Barabási, 2013).

5. A Practical Algorithm for Causal Discovery
with a Causal Partition

Here, we describe a practical procedure for causal discovery
motivated by the idealized results studied in Section 4. We
discuss how partitions satisfying Defn. 3.5 can be efficiently
constructed, and detail a full end-to-end algorithm for causal
discovery.

5.1. Efficient Creation of a Causal Partition

The causal partition structure, described in Defn. 3.5, is
crucial to the guarantees of Theorem 1 in the infinite data
limit. While the first property of a causal partition—edge
coverage with respect to superstructure G—is easy to en-
sure, it is not obvious how to satisfy properties (ii) and (iii)
without knowledge of the ground truth G∗. Here we present
a simple and intuitive method for constructing causal parti-
tions. This construction is efficient and adapts to arbitrary
superstructure topologies.

Given a graph G = (V,E) and S ⊆ V , let ∂out(S) denote
the outer vertex boundary of set S in G:

∂out(S) ≡ {v ∈ V (G) \ S : ∃u ∈ S such that v ∼G u}

where v ∼G u if any of (u, v), (v, u) or {u, v} ∈ E.

Given any initial vertex-covering partition of the superstruc-
ture G, we consider the overlapping partition formed by
expanding subsets via the addition of vertices from the outer
boundary.
Definition 5.1. Let {S1, . . . , SN} be a vertex-covering par-
tition of graph G. The causal expansion of {S1, . . . , SN}
with respect to G is defined as {S′

1, . . . , S
′
N} with subsets

B

A

G

C

F

E

D

Subsets in initial
(disjoint) partition

Subsets in
expansive causal

partition

Figure 2. An illustration of an expansive causal partition {S′
1, S

′
2}

constructed from initial disjoint partition {S1, S2}.

S′
i = Si ∪ ∂out(Si).

As the name suggests, we show that a causal expansion
satisfies the properties of a causal partition. The proof is
deferred to Appendix B.

Lemma 2. Given G a superstructure satisfying Assump-
tion 2, {S1, . . . , SN} a vertex-covering partition of G. Then
the causal expansion {S′

1, . . . , S
′
N} is a causal partition

with respect to G and G∗.

This simple construction, illustrated in Fig. 2, offers several
advantages. Firstly, this method can be run on any vertex-
covering initial partition {S1, . . . , SN}. Graph partition-
ing algorithms form an extensive field (Girvan & Newman,
2002; Clauset et al., 2004; Schaeffer, 2007; Malliaros &
Vazirgiannis, 2013; Harenberg et al., 2014), and depending
on the topology of G different partitioning may be more ap-
propriate to a specific superstructure. The causal expansion
allows a user to first partition the superstructure G using
whatever method is most appropriate to the application, and
then easily derive a corresponding causal partition.

The causal expansion is computationally efficient, both to
construct and in its incorporation into the full causal discov-
ery procedure, described in Algorithm 2. Given an initial
partition {S1, . . . , SN}, constructing its causal expansion
takes time linear in the size of the superstructure G. In
Appendix E, we discuss how connectivity properties of the
initial partition {S1, . . . , SN} dictate the size of the largest
subset produced by a causal expansion.

Now, we describe our divide-and-conquer causal discovery
algorithm with an expansive causal partition as described
in Section 5.1. Algorithm 2 requires a set of variables V ,
a data matrix X and a superstructure G. In Section 6.3 we
also study the case where G is derived from data using the
PC algorithm. Any causal learner can be plugged into A ,
but for consistent learning we require that the assumptions
for A allow for causal insufficiency (confounders may be
present) and causal faithfulness. Any graph partitioning al-
gorithm can be plugged into disjoint partition. In
the next sections we show the use of this practical algorithm
on biologically-tuned, synthetic networks and datasets.

275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329

Algorithm 2 causal discovery(V,X,G)

Input: a set of variables V , a matrix of observations X , super-
structure G

Result: Gout = (V ∗, E∗) a DAG
10 G← PC(X)
11 {D1, . . . , DN} ← disjoint partition(G)
/* construct causal expansion */

12 Si ← Di ∪ ∂out(Di)(∀1 ≤ i ≤ N)

13 {GSi = A (XSi)}Ni=1

14 return G′ ← Screen(G, {GSi})

6. Empirical Results on Random Networks
We describe experiments for evaluating Algorithm 2 on syn-
thetic random networks with finite data. We are especially
interested in the effects of the superstructure, as this is novel
to our algorithm.

For causal discovery on subsets (i.e., A) we evaluate with
four different algorithms: (1) Peters-Clark (PC) (Spirtes
et al., 2000b), (2) Greedy Equivalence Search (GES)
(Hauser & Bühlmann, 2012), (3) Really Fast Causal In-
ference (RFCI) (Colombo et al., 2012), and (4) NOTEARS
(Zheng et al., 2018). Note that only RFCI is a PAG learner
that satisfies Assumption 1. The other algorithms are DAG
learners that assume causal sufficiency; still we include them
in this evaluation because (a) they are popular causal discov-
ery benchmarks, and (b) even with the violation to causal
sufficiency, we observe good performance with the causal
partition. For disjoint partition in Algorithm 2 we
use greedy modularity based community detection (Clauset
et al., 2004). We benchmark our algorithm with another
divide-and-conquer method PEF (Gu & Zhou, 2020).

Ground truth DAGs, G∗, are synthetically created using a
Barabasi-Albert scale-free model (Barabási & Bonabeau,
2003). A random topological ordering is imposed on
the nodes so that the graph is acyclic. Data is gener-
ated assuming a Gaussian noise model: (X1, ..., Xp)

T =
((X1, ..., Xp)W)T + ϵ where ϵ ∼ N (0, σ2

p). W is an upper-
triangular matrix of edge weights where wij ̸= 0 if and only
if i → j is an edge in G∗. The variance σ2 is uniformly
sampled from (0, 1]. Each column vector Xi represents the
data distribution for a variable corresponding to a node i
in G∗. For our experiments we create graphs (p=50) with
two communities, where each community has a scale-free
topology and communities are connected using preferen-
tial attachment. Any cycles created by this are removed to
ensure the graph is a DAG.

For evaluation, we use two metrics: (1) True Positive
Rate (TPR) of correct edges in the estimated graph, Ĝ,
compared to the edges in G∗; and (2) Structural Hamming
Distance (SHD), which is the number of incorrect edges.
An incorrect edge is any edge in G∗ that is missing in Ĝ or
any edge in Ĝ that is not in G∗.

Default parameters: We use the following parameters by
default unless stated otherwise. The graph topology is scale-
free with k = 2 communities (m1 = 1 and m2 = 2), and
with p = 50 nodes. We use n = 100, 000 samples. The
fraction of extraneous edges in a perfect superstructure G is
0.1. We set ρ = 0.01 which controls the number of edges
between communities. For causal discovery on subsets
we set A to PC, GES, RFCI or NOTEARS. Finally, for
disjoint partition in Algorithm 2 we use greedy
modularity (Clauset et al., 2004).

6.1. Number of samples

In this experiment, we test the consistency of Algorithm 2
with increasing samples n. We use a perfect superstructure
and add a fraction 10% extra extraneous edges to G that
are not in G∗. Results are shown in Fig. 3. As the sam-
ple size increases, we see the convergence of No Partition
with the MEC of G∗, and the convergence of our causal
partition with No Partition. This empirically supports our
theoretical result that Algorithm 2 is consistent in the in-
finite data limit. Interestingly, even when the A does not
permit latent variables (as in PC, GES, NOTEARS), we
still see convergence of No Partition with Expansive Causal.
We also show results for an Edge Cover partition – this
partition only accounts for edge coverage of G ((i) in Defn
3.5). We see the Edge Cover partition performs compara-
bly to the Expansive Causal partition. This implies that of
the properties of a causal partition described in Defn. 3.5,
edge coverage appears to be the most important. We also
outperform benchmark PEF significantly.

6.2. Density of superstructure G

This experiment assumes a perfect superstructure G. We
increase the fraction of extraneous edges in G and not in
G∗. In Fig. 4, we see comparable learning of Edge Cover,
Expansive Causal, and No Partition. This means that al-
though G∗ is increasingly obscured by G, and even though
partitioning is done on G, we can still estimate close to the
MEC H∗.

6.3. Imperfect superstructure G

In this experiment we use the PC algorithm to estimate the
superstructure G. Since the superstructure now relies on the
data, it is imperfect and does not include all edges in G∗.
We vary the “perfection” of the superstructure by increasing
the the significance level α of the PC algorithm. A larger α
means a denser superstructure and a structure that is more
likely to include more edges in G∗. Results are shown in
Fig. 5. We turn off the superstructure screening step, as in
Screen, for this experiment. When G is imperfect we ob-
serve more variation in the efficacy of all causal algorithms
– although notably GES and NOTEARS (score-based) are

330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384

10
2

10
4

10
6

0.0

0.5TP
R

PC

10
2

10
4

10
6

0.5

1.0
GES

10
2

10
4

10
6

0.00

0.25

0.50

0.75

RFCI

10
2

10
4

10
6

0.0

0.5

1.0
NOTEARS

10
2

10
4

10
6

Samples

10

20

30

SH
D

PC

10
2

10
4

10
6

Samples

10

20

30

GES

10
2

10
4

10
6

Samples

10

20

30

RFCI

10
2

10
4

10
6

Samples

0

10

20

30

NOTEARS

No Partition Disjoint Edge Cover Expansive Causal PEF

Figure 3. Experiment increasing the number of samples n. Error bars are 95% confidence intervals.

0 1 2 3

0.4

0.6

0.8

TP
R

PC

0 1 2 3

0.4

0.6

0.8

1.0
GES

0 1 2 3

0.4

0.6

0.8
RFCI

0 1 2 3

0.4

0.6

0.8

1.0
NOTEARS

0 1 2 3
Fraction of Extraneous Edges

10

20

30

SH
D

PC

0 1 2 3
Fraction of Extraneous Edges

0

10

20

30

GES

0 1 2 3
Fraction of Extraneous Edges

10

20

30

RFCI

0 1 2 3
Fraction of Extraneous Edges

0

10

20

30

NOTEARS

No Partition Disjoint Edge Cover Expansive Causal PEF

Figure 4. Experiment increasing fraction of extraneous edges in a perfect superstructure.

Table 1. Average time and accuracy results on 10k node graphs
with 10k edges. Note that PEF did not converge in 72 hours. We
show results only for A = GES, as other results are ongoing.

Algorithm Avg. Time (hrs.) ↓ Avg. TPR ↑
No Partition 25.468 0.976

Expansive Causal 11.959 0.928
Edge Cover 1.840 0.913

Exp-Causal (Fixed Comm) 1.972 0.821
Edge Cover (Fixed Comm) 0.042 0.752

more robust. For these two causal learning algorithms, Ex-
pansive Causal outperforms Edge Cover slightly – unlike
in previous experiments. The edge coverage property of
the causal expansion accounts for most of the improvement
in accuracy compared to a disjoint partition. But here the
causal partition may provide additional benefits to learning
when the superstructure G is imperfect.

6.4. Number of Nodes

In this experiment we highlight the scalability of our algo-
rithm. We use hierarchical scale-free graphs for this study;
these are characterized by highly connected hub nodes that
are preferentially attached to other hubs. This is similar to

gene regulatory networks (Yu & Gerstein, 2006), but these
structures are more sparse than typical biological networks.
Time to solution for the divide-and-conquer methods (Dis-
joint, Expansive Causal, Edge Cover, and PEF) includes
partitioning into subsets. Our Expansive Causal achieves a
faster time to solution compared to No Partition while main-
taining accuracy (See Table. 1). Compared to No Partition,
Expansive Causal provides 2.13x speedup and Edge Cover
provides 13.8x speedup.

For the results discussed so far, partitioning is based com-
pletely on the community structure of the graph. In Expan-
sive Causal fixed # comms and Edge Cover fixed # comms
we set the number of subsets to one hundred for 10,000
node graphs. We see significant speedup (12.9x for Ex-
pansive Causal fixed # comms and 606x for Edge Cover
fixed # comms) compared to No Partition. However, this
comes at a cost to accuracy as seen in Table 1. We present a
study of the subset size, speedup, and accuracy trade off in
Appendix D, however an understanding of the full scaling
benefits of our divide-and conquer strategy are left to future
work. We conclude that our methods Expansive Causal and
Edge Cover provide a faster time to solution on large graphs,
are relatively robust to dense and imperfect superstructures,
and provide comparable accuracy compared to No Partition.

385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439

0.2 0.4 0.6 0.8

0.2

0.4

0.6

TP
R

PC

0.2 0.4 0.6 0.8

0.25

0.50

0.75

1.00
GES

0.2 0.4 0.6 0.8

0.1

0.2

0.3

0.4

RFCI

0.2 0.4 0.6 0.8

0.25

0.50

0.75

1.00
NOTEARS

0.2 0.4 0.6 0.8
Significance ()

20

30

SH
D

PC

0.2 0.4 0.6 0.8
Significance ()

0

20

GES

0.2 0.4 0.6 0.8
Significance ()

20

25

30

35
RFCI

0.2 0.4 0.6 0.8
Significance ()

0

10

20

30
NOTEARS

No Partition Disjoint Edge Cover Expansive Causal PEF

Figure 5. Increase in density of the imperfect superstructure by increasing the significant level α of the PC algorithm.

7. Empirical Results on Synthetically Tuned
E.coli Networks

This section contains results for biological networks. We
use the topologies of E. coli biological networks due to
their availability and popularity. To better benchmark the
algorithms, we leverage a proximity-based topology genera-
tive model from the literature proposed by Hufbauer et al.
(2020). The model was designed with the goal of generating
structures with the following properties: (i) small-world
(ii) exponential degree distribution (i.e., scale-free), and
(iii) presence of inherit community structures. Coinciden-
tally, these properties are also relevant for real-world bio-
logical networks (Barabasi & Oltvai, 2004; Koutrouli et al.,
2020), thus we take advantage of this generative method.
We seed this tuning algorithm with the known E. coli regula-
tory network reconstructed from experimental data in Fang
et al. (2017) to generate synthetic networks with E. coli-like
topology. See Fig. 9 in Appendix F for a visualization of the
highly connected hub nodes of an example tuned network.
We impose a random causal ordering on the topology and
generate data from the DAG using the multivariate Gaussian
distribution described in Section 6.

A comparison of all algorithms is shown in Table 2—this ex-
periment was run with an Intel(R) Xeon(R) Gold 6242 CPU
@ 2.80GHz with 64 cores and 192 GB of RAM. Expansive
Causal provides 1.7x speedup compared to No Partition.

While there is a significant speedup, we note the decrease
in accuracy for all divide-and-conquer algorithms. Still
compared to other methods based on partitioning shown
here, using a causal partition accelerates causal discovery
and provides the best trade off in accuracy. We expect
that scaling up to larger gene set sizes (e.g, 104 genes for
eukaryotic cells) will be severely expensive for methods
without partitioning since these networks are more dense
and complex than the ones evaluated in Section 6.4.

Although not shown here, the causal partition can also be
used with neural network based approaches to causal dis-

Table 2. Results for a synthetically-tuned E.coli network made up
of 2,332 nodes and 5,691 edges. n = 10,000. We show results
only for A = GES, as other results are ongoing.

Algorithm SHD ↓ TPR ↑ FPR ↓ Time (hrs) ↓
No Partition 805 0.859 8.5e-5 11.8

PEF 1,766 0.692 8.3e-5 22.3
Disjoint 3,903 0.479 1.2e-4 23.9

Edge Cover 1,791 0.698 1.1e-4 7.1
Expansive Causal 1,717 0.701 6.4e-5 6.9

covery. Typically these are graph neural networks (Yu et al.,
2019), or transformers with equivariant properties (Lorch
et al., 2022). For these models, the scaling challenge is due
to the memory footprint needed to resolve an adjacency ma-
trix of dimension N ×N . The causal partition may be used
as an alternative or in conjunction with model parallelism
strategies to scale these models for real-world networks.

8. Conclusions & Future Directions
We propose a divide-and-conquer causal discovery algo-
rithm based on a novel causal partition. Our algorithm lever-
ages a superstructure—i.e., a known or inferred structured
hypothesis space. We prove the consistency of our algo-
rithm under assumptions for the causal learner and in the
infinite data limit. Unlike existing works, our algorithm al-
lows for the merging of locally estimated graphs without an
additional learning step. Motivated by a complex scientific
application space, we also show an example for gene regu-
latory network inference for a small organism (E.coli). This
example shows the applicability of our work to real-world
networks, but we leave evaluation of our method on larger
organisms (e.g, eukaryotes) to future work. We believe this
work provides an meaningful contribution to causal discov-
ery at scale, and to knowledge discovery for domains with
high-dimensional structured hypothesis spaces.

440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494

Acknowledgements
Do not include acknowledgements in the initial version of
the paper submitted for blind review.

If a paper is accepted, the final camera-ready version can
(and probably should) include acknowledgements. In this
case, please place such acknowledgements in an unnum-
bered section at the end of the paper. Typically, this will
include thanks to reviewers who gave useful comments,
to colleagues who contributed to the ideas, and to fund-
ing agencies and corporate sponsors that provided financial
support.

References
Albert, R. Scale-free networks in cell biology. Journal of

cell science, 118(21):4947–4957, 2005.

Barabási, A.-L. Network science. Philosophical Transac-
tions of the Royal Society A: Mathematical, Physical and
Engineering Sciences, 371(1987):20120375, 2013.

Barabási, A.-L. and Bonabeau, E. Scale-free networks.
Scientific american, 288(5):60–69, 2003.

Barabasi, A.-L. and Oltvai, Z. N. Network biology: un-
derstanding the cell’s functional organization. Nature
reviews genetics, 5(2):101–113, 2004.

Cera, A., Holganza, M. K., Hardan, A. A., Gamarra, I.,
Eldabagh, R. S., Deschaine, M., Elkamhawy, S., Sisso,
E. M., Foley IV, J. J., and Arnone, J. T. Functionally
related genes cluster into genomic regions that coordinate
transcription at a distance in saccharomyces cerevisiae.
Msphere, 4(2):10–1128, 2019.

Chickering, D. M. Optimal structure identification with
greedy search. Journal of machine learning research, 3
(Nov):507–554, 2002.

Clauset, A., Newman, M. E., and Moore, C. Finding com-
munity structure in very large networks. Physical review
E, 70(6):066111, 2004.

Colombo, D., Maathuis, M. H., Kalisch, M., and Richard-
son, T. S. Learning high-dimensional directed acyclic
graphs with latent and selection variables. The Annals of
Statistics, pp. 294–321, 2012.

Constantinou, A. C., Guo, Z., and Kitson, N. K. The impact
of prior knowledge on causal structure learning. Knowl-
edge and Information Systems, pp. 1–50, 2023.

Eberhardt, F. Introduction to the foundations of causal
discovery. International Journal of Data Science and
Analytics, 3:81–91, 2017.

Faller, P. M., Vankadara, L. C., Mastakouri, A. A., Lo-
catello, F., and Janzing, D. Self-compatibility: Evaluat-
ing causal discovery without ground truth. arXiv preprint
arXiv:2307.09552, 2023.

Fang, X., Sastry, A., Mih, N., Kim, D., Tan, J., Yurkovich,
J. T., Lloyd, C. J., Gao, Y., Yang, L., and Palsson, B. O.
Global transcriptional regulatory network for escherichia
coli robustly connects gene expression to transcription
factor activities. Proceedings of the National Academy of
Sciences, 114(38):10286–10291, 2017.

Girvan, M. and Newman, M. E. Community structure in so-
cial and biological networks. Proceedings of the national
academy of sciences, 99(12):7821–7826, 2002.

Gu, J. and Zhou, Q. Learning big Gaussian Bayesian net-
works: Partition, estimation and fusion. The Journal of
Machine Learning Research, 21(1):6340–6370, 2020.

Harenberg, S., Bello, G., Gjeltema, L., Ranshous, S., Har-
lalka, J., Seay, R., Padmanabhan, K., and Samatova, N.
Community detection in large-scale networks: a survey
and empirical evaluation. Wiley Interdisciplinary Reviews:
Computational Statistics, 6(6):426–439, 2014.

Hauser, A. and Bühlmann, P. Characterization and greedy
learning of interventional Markov equivalence classes of
directed acyclic graphs. The Journal of Machine Learning
Research, 13(1):2409–2464, 2012.

Huang, J. and Zhou, Q. Partitioned hybrid learning of
Bayesian network structures. Machine Learning, 111(5):
1695–1738, 2022.

Hufbauer, E., Hudson, N., and Khamfroush, H. A proximity-
based generative model for online social network topolo-
gies. In 2020 International Conference on Computing,
Networking and Communications (ICNC), pp. 648–653.
IEEE, 2020.

Koutrouli, M., Karatzas, E., Paez-Espino, D., and Pavlopou-
los, G. A. A guide to conquer the biological network
era using graph theory. Frontiers in bioengineering and
biotechnology, 8:34, 2020.

Laborda, J. D., Torrijos, P., Puerta, J. M., and Gámez,
J. A. A ring-based distributed algorithm for learning
high-dimensional bayesian networks. In European Con-
ference on Symbolic and Quantitative Approaches with
Uncertainty, pp. 123–135. Springer, 2023.

Le, T. D., Hoang, T., Li, J., Liu, L., Liu, H., and Hu, S. A
fast pc algorithm for high dimensional causal discovery
with multi-core pcs. IEEE/ACM transactions on compu-
tational biology and bioinformatics, 16(5):1483–1495,
2016.

495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549

Lee, S. and Kim, S. B. Parallel simulated annealing with a
greedy algorithm for bayesian network structure learning.
IEEE Transactions on Knowledge and Data Engineering,
32(6):1157–1166, 2019.

Li, S., Zhang, J., Huang, K., and Gao, C. A graph partition-
ing approach for bayesian network structure learning. In
Proceedings of the 33rd Chinese Control Conference, pp.
2887–2892. IEEE, 2014.

Lorch, L., Sussex, S., Rothfuss, J., Krause, A., and
Schölkopf, B. Amortized inference for causal structure
learning. Advances in Neural Information Processing
Systems, 35:13104–13118, 2022.

Malliaros, F. D. and Vazirgiannis, M. Clustering and com-
munity detection in directed networks: A survey. Physics
reports, 533(4):95–142, 2013.

Nandy, P., Hauser, A., and Maathuis, M. H. High-
dimensional consistency in score-based and hybrid struc-
ture learning. The Annals of Statistics, 46(6A):3151–
3183, 2018.

Pearl, J. Causal diagrams for empirical research. Biometrika,
82(4):669–688, 1995.

Perrier, E., Imoto, S., and Miyano, S. Finding optimal
Bayesian network given a super-structure. Journal of
Machine Learning Research, 9(10), 2008.

Ramsey, J. D. Scaling up greedy causal search for continu-
ous variables. arXiv preprint arXiv:1507.07749, 2015.

Ravasz, E. Detecting hierarchical modularity in biological
networks. Computational Systems Biology, pp. 145–160,
2009.

Richardson, T. S., Evans, R. J., Robins, J. M., and Shpitser,
I. Nested markov properties for acyclic directed mixed
graphs. The Annals of Statistics, 51(1):334–361, 2023.

Schaeffer, S. E. Graph clustering. Computer science review,
1(1):27–64, 2007.

Spirtes, P., Glymour, C., Scheines, R., Kauffman, S.,
Aimale, V., and Wimberly, F. Constructing bayesian
network models of gene expression networks from mi-
croarray data. 2000a.

Spirtes, P., Glymour, C. N., and Scheines, R. Causation,
Prediction, and Search. MIT press, 2000b.

Tan, X., Gao, X., Wang, Z., Han, H., Liu, X., and Chen,
D. Learning the structure of bayesian networks with
ancestral and/or heuristic partition. Information Sciences,
584:719–751, 2022.

Tsamardinos, I., Brown, L. E., and Aliferis, C. F. The max-
min hill-climbing bayesian network structure learning
algorithm. Machine learning, 65:31–78, 2006.

Verma, T. S. and Pearl, J. Equivalence and synthesis of
causal models. In Probabilistic and causal inference:
The works of Judea Pearl, pp. 221–236. 2022.

Wuchty, S., Ravasz, E., and Barabási, A.-L. The architec-
ture of biological networks. Complex systems science in
biomedicine, pp. 165–181, 2006.

Yu, H. and Gerstein, M. Genomic analysis of the hierarchi-
cal structure of regulatory networks. Proceedings of the
National Academy of Sciences, 103(40):14724–14731,
2006.

Yu, Y., Chen, J., Gao, T., and Yu, M. DAG-GNN: DAG
structure learning with graph neural networks. In Interna-
tional Conference on Machine Learning, pp. 7154–7163.
PMLR, 2019.

Zarebavani, B., Jafarinejad, F., Hashemi, M., and Salehka-
leybar, S. cuPC: CUDA-based parallel PC algorithm for
causal structure learning on GPU. IEEE Transactions on
Parallel and Distributed Systems, 31(3):530–542, 2019.

Zeng, Y.-f. and Poh, K.-l. Block learning bayesian network
structure from data. In Fourth International Conference
on Hybrid Intelligent Systems (HIS’04), pp. 14–19. IEEE,
2004.

Zhang, J. Causal reasoning with ancestral graphs. Journal
of Machine Learning Research, 9(7), 2008a.

Zhang, J. On the completeness of orientation rules for
causal discovery in the presence of latent confounders
and selection bias. Artificial Intelligence, 172(16-17):
1873–1896, 2008b.

Zheng, X., Aragam, B., Ravikumar, P. K., and Xing, E. P.
DAGs with no tears: Continuous optimization for struc-
ture learning. Advances in neural information processing
systems, 31, 2018.

A. Definitions
Definition A.1 (Collider on a path). Given a path P =
(X1, . . . , Xk) on a mixed graph G, a non-endpoint vertex
Xi is a collider on path P if both edges adjacent to Xi

on the path have a directed or bi-directed edge pointing
to Xi. Examples include Xi−1 → Xi, Xi ← Xi+1 and
Xi−1 → Xi, Xi ↔ Xi+1. A non-endpoint vertex which is
not a collider is said to be a non-collider on that path.

550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604

Table 3. Table of Relevant Notation
Symbol Description

G∗ Underlying true causal graph repre-
sented by a DAG.

H∗ CPDAG representing MEC of G∗

G Superstructure.
X The complete observed data matrix (of

dimensionality n× p).
Xi ∈ X Observational data for the ith random

variable; also used to denote nodes in
graphical models.

(Xi, Xj) Directed edge from random variables
(nodes) Xi to Xj .

{Xi, Xj} Bi-directed edge between random vari-
ables (nodes) Xi and Xj .

A Consistent causal learner that outputs an
PAG on subsets S.

{S1, . . . , SN} Partition over node set V , where S ⊂
V .

∂out(S) The outer vertex boundary of a set of
nodes S

B. Deferred Proofs
B.1. Deferred Proofs from Section 3.3

Here we prove the properties in Lemma 1.

1. For any xi, xj ∈ S, the output A (XS) has an edge
between xi and xj if and only if there is an inducing
path in G∗ relative to V \ S between them.

Proof. We begin by noting that by definition, xi and
xj are adjacent in LMAG(G∗, S) if and only if there
is an inducing path in G∗ relative to V \ S between
them (Zhang, 2008a). Moreover, by definition the PAG
A (XS) = P [LMAG(G∗, S)] has the same adjacen-
cies as any member of [LMAG(G∗, S)], and therefore
the same adjacencies as LMAG(G∗, S). Thus xi and
xj are adjacent in A (XS) if and only if there is an in-
ducing path in G∗ relative to V \S between them.

2. For any triple xi, xj , xk ∈ S that form an unshielded
collider in G∗ as xi → xj ← xk, the output A (XS)
will have an edge between xi and xj as well as xj and
xk, and both of these edges will have an arrowhead at
xj .

Proof. We first note that for {xi, xj , xk} ⊆ S, the
edges xi → xj and xk → xj are inducing paths in G∗

relative to V \ S and thus the pairs xi, xj and xk, xj

are adjacent in both LMAG(G∗, S) and A (XS). To
show that both edges will have an arrowhead at xj

in A (XS), it thus remains to show the edges have
arrowheads at xk in every [LMAG(G∗, S)].

By definition of an unshielded collider, xi and xk are
d-separated by xj in G∗. Thus given {xi, xj , xk} ⊆ S,
xi and xk are m-separated by xj in LMAG(G∗, S)
so the collider is oriented in LMAG(G∗, S) (Zhang,
2008a). By definition of the MEC of a MAG, ev-
ery element in [LMAG(G∗, S)] has the same un-
shielded colliders, every element in [LMAG(G∗, S)]
has arrowheads at xk(Zhang, 2008b). Thus the PAG
A (XS) = P [LMAG(G∗, S)] has arrowheads at xk on
both edges.

3. For any u, v ∈ S such that u ∼G∗ v, if u ∼A (S) v
with an arrowhead at v in A (XS), then u→ v in G∗.

Proof. Given u ∼G∗ v for G∗ a DAG, either u →
v in G∗ or v → u in G∗. Assume for the sake of
contradiction that v → u in G∗.

By the definition of P [LMAG(G∗, S)], given u ∼A (XS)

v with an arrowhead at v in A (XS), it holds that u
and v are adjacent with an arrowhead at v for every
element of [LMAG(G∗, S)] (Zhang, 2008a). In partic-
ular, u and v are adjacent with an arrowhead at v in
LMAG(G∗, S). By definition of the latent MAG, u and
v are adjacent with an arrowhead at v in LMAG(G∗, S)
implies that one of the following hold: (1) u → v
in G∗, (2) u ∈ ancG∗(v) and there is an inducing
path in G∗ between u and v relative to V \ S, or (3)
there is some other inducing path between u and v but
u ̸∈ ancG∗(v) and v ̸∈ ancG∗(u). If either (1) or (2)
hold, then v → u in G∗ would imply the existence of
a cycle in G∗, contradicting the assumption that G∗ is
a DAG. Moreover (3) cannot hold, as given u ∼G∗ v
it must be that either u ∈ ancG∗(v) or v ∈ ancG∗(u).
Thus in all three cases we arrive at a contradiction, and
so we conclude that v ̸→ u in G∗, and thus that u→ v
in G∗.

B.2. Deferred Proofs from Section 4

In this section, we consider superstructure G satisfy-
ing Assumption 2, a learner A satisfying Assumption 1,
{S1, . . . , SN} a causal partition with respect to G and G∗,
and H∗ the output of Algorithm 1 on G, {A (XSi)}Ni=1. We
begin by proving property (i) in Theorem 1.

Lemma 3. For any ∀ ∈ V , u ∼H∗ v if and only if u ∼G∗ v.

Proof. Consider any u, v ∈ V such that u ∼G∗ v. Because
G satisfies Assumption 2, u ∼G v. By the definition of
a causal partition, {S1, . . . , SN} is edge-covering with re-
spect to G and thus ∃i ∈ [N] such that u, v ∈ Si. Moreover,
given u, v ∈ Si, the edge between the two nodes in G∗ is an
inducing path with respect to V \Si and so by statement (1)
in Lemma 1, u ∼A (XSi

) v. Thus u ∼G v and u ∼A (XSi
) v

so u ∗−∗ v ∈ Ecandidates. Moreover, for any subset Sj ∋ u, v,

605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659

the edge between u and v in G∗ is an inducing path with
respect to V \ Sj , so u ∗−∗ v ∈ Ej for all j such that
u, v ∈ Sj . Thus an edge between u and v will be added to
E∗, so u ∼H∗ v.

Conversely, consider any u, v,∈ V such that u ̸∼G∗ v.
If u ̸∼G v, or ̸ ∃i ∈ [N] such that u ∼A (XSi

) v, then
Ecandidates will not contain an edge between u and v and
thus neither will E∗. If u ∼G v and ∃i ∈ [N] such that
u ∼A (XSi

) v, then Ecandidates will contain an edge between
u and v. However because {S1, . . . , SN} is a causal par-
tition, by property (ii) of Definition 3.5 there exists some
j ∈ [N] such that u, v ∈ Sj and u and v do not have an
edge between them in Ei the edges of output A (Sj). Thus
no edge between u and v will be added to E∗. We thus
conclude that u ∼H∗ v if and only if u ∼G∗ v.

In order to prove property (ii) of Theorem 1, we will use the
following lemma:
Lemma 4. For all u, v ∈ V such that u → v in H∗, it
holds that u→ v in G∗.

Proof. If the output H∗ contains directed edge u→ v, then
Lemma 3 implies u ∼G∗ v and the definition of Algorithm 1
implies ∃i ∈ [N] such that u→ v is part of an unshielded
collider u ∗→ v ←∗ w in A (XSi). Given u ∼G∗ v, by
statement (3) of Lemma 1 the fact that u ∼A (XSi

) v and
A (XSi

) contains an arrowhead at v implies that u→ v in
G∗.

We now prove property (ii) of Theorem 1.
Lemma 5. For any unshielded collider u→ v ← w in H∗,
it holds that u→ v ← w in G∗.

The proof follows directly from application of Lemma 4.

We conclude with the proof of property (iii):
Lemma 6. For any unshielded collider u→ v ← w in G∗,
u ∼H∗ v and v ∼H∗ w and both edges have an arrowhead
at v in H∗.

Proof. Given any unshielded collider u → v ← w in G∗,
Lemma 3 implies that u ∼H∗ v, v ∼H∗ w, and u ̸∼H∗ w. It
thus remains to show that the v-structure edges are oriented
correctly in H∗. By the definition of a causal partition,
∃i such that {u, v, w} ⊆ Si. Thus by statement (2) in
Lemma 1, u ∗→ v and w ∗→ v in A (XSi). Thus the
condition in Line 18 is satisfied so both u→ v and w → v
will be added to E∗, and thus the edges are oriented correctly
in H∗.

B.3. Deferred Proofs from Section 5.1

Throughout this section, we assume superstructure G sat-
isfies Assumption 2. Consider {S1, . . . , SN} be a vertex-

covering partition of G and denote by {S′
1, . . . , S

′
N} the

causal expansion of {S1, . . . , SN} with respect to G.

In order to prove Lemma 2, we introduce several auxiliary
lemmas. Proving that the causal expansion satisfies proper-
ties (i) and (iii) of Definition 3.5 is straightforward. These
arguments are contained in Lemmas 7 and 8 respectively:

Lemma 7. The overlapping partition {S′
1, . . . , S

′
N} is edge-

covering with respect to superstructure G.

Proof of Lemma 7. Consider any u, v such that u ∼G v.
Because the original partition {S1, . . . , SN} is vertex-
covering, ∃i ∈ [N] such that u ∈ Si. Moreover, u ∼G v so
v ∈ neighbors(u) ⊆ Si ∪ ∂outSi = S′

i.

Lemma 8. Given any unshielded collider in G∗, u→ v ←
w, there exists i ∈ [N] such that {u, v, w} ⊆ S′

i.

Proof of Lemma 8. As the original partition {S1, . . . , SN}
is vertex-covering, ∃i ∈ [N] such that v ∈ Si. Moreover
as G satisfies Assumption 2, u ∼G v and w ∼G v. Thus
by definition of the expansive causal partition, {u, v, w} ⊆
S′
i.

Proving that the causal expansion satisfies property (ii) of
Definition 3.5 is more involved. We first establish the fol-
lowing helper lemma:

Lemma 9. Consider any S ⊆ V and any u, v ∈ S such
that u ̸∼G∗ v in DAG G∗. Then any path Π ⊆ S such
that length(Π) > 1 is not an inducing path between u
and v in G∗ relative to V \ S. Moreover, any path Π =
(u, q1, q2, . . . , qk−1, qk, v) such that either {u, q1, q2} ⊆ S
or {qk−1, qk, v} ⊆ S is not an inducing path between u and
v in G∗ relative to V \ S.

Proof of Lemma 9. Both conditions on Π imply the exis-
tence of non-endpoints q, q′ ∈ S adjacent along path Π. By
definition of an inducing path, q and q′ must both therefore
be colliders on Π. This implies that the edge between q and
q′ in path Π must have an arrowhead at both q and q′ in G∗.
However G∗ is a DAG and cannot contain bidirected edges,
so q and q′ cannot both be colliders on Π, and Π is therefore
not an inducing path.

We now use Lemma 9 to prove that the causal expansion
satisfies property (ii) of Definition 3.5:

Lemma 10. Given any u ̸∼G∗ v, there exists i ∈ [N] such
that such that u, v ∈ S′

i and u ̸∼A (S′
i)
v.

Proof of Lemma 10. Consider some u, v ∈ V such that
u ̸∼G∗ v and u ̸∼G v. Recall that by Assumption 1, for any
subset S′

i, u ∼A(S′
i)

if and only if there is an inducing path
between u and v in G∗ relative to V \ S′

i. Thus to prove

660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714

Nodes in subset

Ancestral
relationships in

Edges in

(a) (b)

Edges in
non-inducing

path

Examples of Non-Inducing Paths

q1
u

q2
v

q1
u

q4v

q2

q3

Nodes in

Figure 6. Examples of non-inducing paths. The example in (a)
illustrates the case described in Lemma 9. This path is not inducing
because q1, q2 are non-endpoint paths in S, but they are not both
colliders on the path. The example in (b) illustrates Case 2 in the
proof of Lemma 10. The definition of an inducing path requires
that q1 be an ancestor of u and q4 be an ancestor of u, but this
implies the existence of a cycle in G∗ contains u, q1, v, and q4.
Thus this path cannot exist.

Lemma 10, it suffices to show that ∃i ∈ [N] such that no
inducing path exists between u and v in G∗ relative to V \S′

i.
By Lemma 9, any path Π in G∗ of length greater than 1 such
that Π ⊆ S′

i cannot be such an inducing path. As u ̸∼G∗ v,
all paths between u and v in G∗ have length at least 1. Thus
to prove Lemma 10, it suffices to show that ∃i ∈ [N] such
that no inducing path Π with Π ∩ {V \ S′

i} ≠ ∅ exists
between u and v in G∗ relative to V \ S′

i.

By Lemma 7, ∃i ∈ [N] such that u, v ∈ S′
i. For any

u ∈ S ⊆ V , denote by distG∗(u, ∂outS) the shortest-path
distance from u to any node v ∈ ∂out(S). In other words,
distG∗(u, ∂outS) is the minimum number of edges between
a node u and any node w ̸∈ S. Note that for any u ∈ S,
distG∗(u, ∂outS) ≥ 1.

We consider four cases, parameterized by the distance from
the endpoints u, v to ∂outS

′
i. Note that these four cases

cover all possible positionings of u and v within S′
i. Thus

to prove Lemma 10, we must show that each case implies
the existence of some S′ ∈ {S′

1, . . . , S
′
N}, not necessarily

equal to S′
ii, such that u ̸∼A (S′) v.

Case 1. max{distG∗(u, ∂outS
′
i), distG∗(v, ∂outS

′
i)} > 2

Case 2. distG∗(u, ∂outS
′
i) = distG∗(v, ∂outS

′
i) = 2.

Case 3. distG∗(u, ∂outS
′
i) = 2, and distG∗(v, ∂outS

′
i) = 1.

Case 4. distG∗(u, ∂outS
′
i) = distG∗(v, ∂outS

′
i) = 1.

We now show that in each case, there exists some S′ ∈
{S′

1, . . . , S
′
N} such that u ̸∼A (S′) v.

Case 1. max{distG∗(u, ∂outS
′
i), distG∗(v, ∂outS

′
i)} > 2

implies that for any path Π between u, v, either Π ⊆ S′
i, or

that Π contains a prefix {u, q1, q2} ⊆ S′
i, or that Π contains

a suffix {qk−1, qk, v} ⊆ S′
i. In all of these cases, Lemma 9

implies that Π is not an inducing path between u and v in
G∗ relative to V \ S′

i. Thus u ̸∼A (S′
i)
v.

Case 2. distG∗(u, ∂outS) = distG∗(v, ∂outS) = 2 implies
that for any path Π between u, v, either Π ⊆ S′

i or that Π
contains a prefix {u, q1} ⊆ S′

i and suffix {qk, v} ⊆ S′
i. If

Π ⊆ S′
i, then it is not an inducing path.

Consider the case when Π contains a prefix {u, q1} ⊆ S′
i

and suffix {qk, v} ⊆ S′
i and assume for the sake of contra-

diction that Π is an inducing path between u and v in G∗

relative to V \ S′
i. Both q1 and qk are non-endpoint vertices

on Π∩ S′
i. They must therefore be colliders on Π as well as

ancestors of at least one of u or v. Since q1 be a collider on
Π, it must be that u→ q1 so u ∈ ancG∗(q1), where

ancG∗(x) ≡ {z ∈ V : z is an ancestor of x in G∗}.

Moreover, q1 must be an ancestor of either u or v, and
because u ∈ ancG∗(q1) it cannot be that q1 is an ancestor
of u as this would imply the existence of a cycle in G∗.
Thus it must be that q1 ∈ ancG∗(v). However, we similarly
conclude that as qk be a collider on Π, it must be that qk ←
vso v ∈ ancG∗(qk). Moreover qk must be an ancestor of
either u or v, and qk cannot be an ancestor of v as G∗ is
acyclic, so qk ∈ ancG∗(u).

However we have thus concluded that u ∈ ancG∗(q1),
q1 ∈ ancG∗(v), v ∈ ancG∗(qk), and qk ∈ ancG∗(u). This
implies the existence of a cycle in G∗, and thus cannot
occur. Thus we conclude that no such path Π can be an
inducing path between u and v in G∗ relative to V \ S′

i.
Thus u ̸∼A (S′

i)
v.

Case 3. Recall that by definition of the expansive causal
partition, S′

i = Si ∪ ∂out(Si) for original vertex-covering
partition {S1, . . . , SN}, where the outer boundary ∂out(Si)
is defined by the edges in superstructure G. Given
distG∗(v, ∂outS

′
i) = 1, ∃z ̸∈ S′

i such that v ∼G∗ z. More-
over, as G satisfies Assumption 2, this implies v ∼G z.
Thus by definition of the expansive causal partition it must
be that v ∈ S′

i \ Si. As the original partition {S1, . . . , SN}
is vertex-covering, this implies ∃j ∈ [N] \ {i} such that
v ∈ Sj . Moreover, as u ∼G v, this implies u, v ∈ S′

j and
that in S′

j , dist(v, ∂out(S
′
j)) ≥ 2 and dist(u, ∂out(S

′
j)) ≥ 1.

If dist(v, ∂out(S
′
j)) > 2 or dist(u, ∂out(S

′
j)) > 1, then either

Case 1 or Case 2 respectively imply that u ̸∼A (S′
j)

v, which
would conclude the proof. It thus remains to consider the
case where dist(v, ∂out(S

′
j)) = 2 and dist(u, ∂out(S

′
j)) = 1.

We thus have the following setup: by assumption of Case
3, distG∗(u, ∂outS

′
i) = 2 and distG∗(v, ∂outS

′
i) = 1. Then

715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769

by the above arguments, we have shown j ̸= i such that
distG∗(v, ∂outS

′
j) = 2 and distG∗(u, ∂outS

′
j) = 1. Assume

by way of contradiction that u ∼A (S′
i
v and u ∼A (S′

j
v.

Thus by Assumption 1, there must exist Πi and inducing
path between u and v with respect to V \ S′

i and Πj an
inducing path between u and v with respect to V \ S′

j .

As distG∗(u, ∂outS
′
i) = 2, Πi must contain a prefix

{u, qi} ⊆ Πi ∩ S′
i where qi ̸= v. By definition of an induc-

ing path qi must be a collider on Πi in G∗, so u ∈ ancG∗(qi),
and qi must be an ancestor of either v or u. As G∗ is acyclic
and u ∈ ancG∗(qi), qi cannot be an ancestor of u and must
therefore be an ancestor of v: qi ∈ ancG∗(v).

Similarly, as distG∗(v, ∂outS
′
j) = 2, Πj must contain a suffix

{qj , v} ⊆ Πj ∩ S′
j such that qj ̸= u. Moreover by an

analogous argument to the above, v ∈ ancG∗(qj) and qj ∈
ancG∗u.

We have therefore concluded the following: ∃qi, qj ∈ V
such that u ∈ ancG∗(qi), qi ∈ ancG∗(v), v ∈ ancG∗(qj),
and qj ∈ ancG∗(u). However this implies the existence of
a cycle in G∗, which contradicts the assumption that G∗

is a DAG. Thus it cannot hold that both u ∼A (S′
i)

v and
u ∼A (S′

j)
v, so we conclude ∃S′ ∈ {S′

1, . . . , S
′
N} such that

u ̸∼A (S′) v.

Case 4. Given distG∗(u, ∂outS
′
i) = distG∗(v, ∂outS

′
i) = 1,

∃z ̸∈ S′
i such that u ∼G∗ z. As superstructure G satisfies

Assumption 2 this implies u ∼G z and thus by definition of
the expansive causal partition, implies u ∈ S′

i \ Si. As the
original partition was vertex-covering, this implies ∃j ̸= i
such that u ∈ Sj . Thus by definition of the expansive causal
partition, u ∈ S′

j and distG∗(u, ∂outS
′
j) ≥ 2. Moreover as

u ∼G v, v ∈ S′
j as well.

If distG∗(u, ∂outS
′
j) > 2, then Case 1 implies u ̸∼A (S′

j)
v.

If distG∗(u, ∂outS
′
j) = 2 and distG∗(v, ∂outS

′
j) = 2, then

Case 2 implies u ̸∼A (S′
j)

v. If distG∗(u, ∂outS
′
j) = 2 and

distG∗(v, ∂outS
′
j) = 1, then the argument in Case 3 implies

the existence of k ̸= j such that either u ̸∼A (S′
j)

v or
u ̸∼A (S′

k)
v.

We have thus concluded in each case that ∃S′ ∈
{S′

1, . . . , S
′
N} such that u ̸∼A (S′) v, and so the statement

of Lemma 10 holds.

Lemma 2 follows directly from Lemmas 7, 8, and 10.

C. Finite Sample Effects
While the theoretical results in Section 4 only apply to the
infinite data regime, in this section we discuss heuristics for
addressing the effects of learning with finite samples and de-
scribe a practical algorithm for real-world causal discovery
problems. In the finite data setting, there two key ways that

Algorithm 3 Screen Finite Data(G, {Hi}Ni=1, X)

Input: a superstructure G, a set of PAGS {Hi = (Si, Ei)}Ni=1, a
matrix of observations X .

Result: H∗ = (V,E∗) a PAG
15 Initialize V = ∪N

i=1Si; Ecandidates ← ∪N
i=1Ei; E∗ ← ∅

foreach u, v such that {u ∗−∗ v} ∈ Ecandidates do
// If an edge between u and v appears in

the learned output on all subsets
containing u and v, add edge to
output graph.

16 if ∀i s.t. Si ⊇ {u, v}, u ∼A(Si) v then
// If edge appears oriented in output,

add oriented edge to E∗.
17 if ∃i such that Ei ∋ {u ∗→ v} then
18 E∗ ← E∗ ∪ {u→ v}
19 else
20 E∗ ← E∗ ∪ {u ◦−◦ v}

21 H∗ ← (V,E∗)
while H∗ contains cycle C do

22 H∗ ← score and discard(H∗, C, {S1, . . . , SN}, X)

23 return H∗ = (V,E∗)

finite samples cause divergence from the idealized assump-
tions studied in Section 4: (1) the superstructure may be im-
perfect and (2) the result of learning over a local subset may
not be a latent projection and therefore the merged graph
may contain cycles. We describe our finite sample screening
procedure in Algorithm 3. In score and discard, we
resolve cycles by discarding the edge corresponding to a the
lowest score, where the score is related to the log-likelihood
of the data with and without each edge in the cycle.

Imperfect Superstructure : In real-world causal discovery
applications, one may wish to learn a superstructure G from
data (Constantinou et al., 2023). Several algorithms for
learning a superstructure from data exist; many, including
the PC algorithm, are more easily parallelized than greedy
score-based learners and thus can be run on the global vari-
able set in reasonable time (Zarebavani et al., 2019; Le et al.,
2016) . However, when the superstructure G is learned from
data, it may be imperfect, i.e. there may exist edges in G∗

which are not in G. If the superstructure is missing a large
fraction of the ground-truth edges, the step in Screen,
which discards edges not in the superstructure may signifi-
cantly reduce the rate of true positive edges returned by the
algorithm, with the effect growing more severe with more
imperfect superstructures. Thus in the finite sample limit,
if working with a superstructure which is suspected to be
highly imperfect, one option is to simply omit the step in
Screen, which discards edges not in the superstructure. In
Section 6.3, we examine the impact of learning imperfect
superstructures from data, and show while imperfect super-
structures do impact learning significantly, the expansive
causal partition is most effective out of all partition schemes.

770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824

Potential cycles: When the result of learning over a sub-
set is not a latent projection, the algorithm presented in
Section 4 may fail to return a DAG. In particular, even
if the output A (XSi

) is a DAG on every subset Si, the
output of Screen may contain cycles. However, it is
possible to localize these cycles; if the output A (XSi

)
is a DAG on every subset Si, then any cycle in the out-
put of Screen(G, {A (XSi)}Ni=1) will have some edge
(u, v) such that one of the two endpoints lies in the over-
lap of partition {S1, . . . , SN}, i.e. ∃i ̸= j such that
{u, v} ∩ {Si ∩ Sj} ≠ ∅.

Using this observation about the location of all cycles in
the output of Screen, adopt the following procedure. If
the output of Screen contains a cycle, we find all edges
in that cycle which intersect with the overlap of partition
{S1, . . . , SN}. We then rank these edges using a scoring
function and discard the lowest-ranked edge. While a variety
of edge scoring functions may be deployed for this step, in
this work we assess edges using the log-likelihood induced
by the linear structural equation

Xj =

p∑
i=1

W
(G)
ij Xi + εj (2)

where W
(G)
ij denotes the weighted adjacency matrix of a

DAG G and εj ∼ N (0, σ2
j) denotes additive Gaussian

noise. Then joint distribution of (X1 . . . Xp) is a multi-
variate Gaussian distribution N (0,Σ) where Σ = WWT .
The log-likelihood under this model is

l(W,Σ) =

p∑
j=1

[
− n

2
log(σj)

2− 1

2σ2
j

||Xj−XWj ||2
]

(3)

In order to score an edge (i, j), we compare the log-
likelihood at the least squares estimates (LSE) of the re-
gression coefficients (Ŵij) in Eq. 2 of two different DAGs:
Gi,j which contains edge (i, j), and G0,j in which we re-
move edge (i, j) so that i is no longer a parent of j. Edge
(i, j) is then scored by how much including i as a parent of j
increases the log-likelihood of Xj under the linear structural
equation. The likelihood based score is outlined in Algo-
rithm 5. The full procedure for cycle resolution is outlined
in Algorithm 4.

In the case when the detected cycle has length two, i.e.
there exist edges (i, j) and (j, i), we adopt the methodology
of Gu & Zhou (2020) and use the risk inflation criterion
(RIC) to determine whether to discard one or both of the
edges forming the cycle. In this setting we compare three
models: Gi,j in which i is a parent of j, Gj,i in which j is a
parent of i, and G0 in which neither edge appears. We then
compute the RIC score for each model, which balances the
log-likelihood with a sparsity-promoting term penalizing
the total edges in the graph. If the model G0 out-performs

Algorithm 4 score and discard

Input: a graph G, C a list of edges comprising a cycle in G,
{Si}Ni=1 a partition of the nodes of G, a matrix of
observations X

Result: a modified copy of G which does not contain cycle
C

24 V̂ ←
⋃N

i,j=1{Si ∩ Sj} ; // overlapping nodes

25 Ê ← {} ; // overlapping edges
26 foreach (u, v) ∈ C do
27 if u ∈ V̂ or v ∈ V̂ then Ê ← Ê ∪ {(u, v)} ;

28 ê← argmin(u,v)∈Ê loglikelihood score(u, v,G,X)

G.removeEdge(ê) return G

Algorithm 5 loglikelihood score(i, j, G,X)

Input: a node i, a node j, a graph G, a matrix of observa-
tions X

Result: a score based on the likelihood of graph given the
data in the presence and absence of edge (i, j)

// least squares estimates of Eq. 2

29 Ŵ (Gi,j) ← LSE(Xj , G
i,j)

Ŵ (G0,j) ← LSE(Xj , G
0,j)

Σ← cov(X) // covariance matrix of X
// log-likelihoods from Eq. 3

30 lij ← l(Ŵ (Gi,j),Σ)

l0 ← l(Ŵ (G0,j),Σ)
score← lij − l0
return score

both Gi,j and Gj,i, then both edges are removed from the
graph. If at least one of the models Gi,j , Gj,i out-performs
G0, then the better-performing edge is retained and the other
edge is discarded. For further details on using the RIC score
to assess edges, we direct readers to Gu & Zhou (2020).

D. Time and Accuracy trade offs
The computational bottleneck for divide-and-conquer al-
gorithms is the size of the largest subset: maxi |Si| for a
partition {S1 . . . SN}. This is because we expect causal dis-
covery algorithms to converge to an estimated graph faster
for smaller variables sets (the graph space defined by a
smaller variable set is smaller). However, we observe that
the convergence of GES appears to be a function of both
size of the subset, and the topology of G∗. Fig. 7 shows the
time to solution and TPR as the size of the biggest subset
increases. For this study, we use a 1,000 node hierarchical
scale-free graph. This is equivalent to the types of graphs
in Section 6.4. To control the size of the subsets we fix
the number of communities and resolution for the greedy
modularity disjoint partition – we sweep through five differ-
ent disjoint partitions, increasing size of the largest subset.

825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879

0

20

40

60

R
un

tim
e

(s
ec

.)

Algorithm
No Partition
Expansive Causal
Edge Cover
Disjoint

200 400 600 800 1000
Size of Largest Subset

0.4

0.6

0.8

TP
R

Figure 7. Accuracy and time trade-off for 1,000 node hierarchical
scale-free graphs with 1,000 samples

0

250

500

750

1000

R
un

tim
e

(s
ec

.)

Algorithm
No Partition
Expansive Causal
Edge Cover
Disjoint

200 400 600 800 1000
Size of Largest Subset

0.4

0.6

0.8

TP
R

Figure 8. Accuracy and time trade-off for 1,000 graph with ten
communities of size 100 with scale-free topology with 1,000 sam-
ples. We see that certain subset sizes take unexpectedly long for
GES learner.

Here, we see expected scaling behavior – as the size of
the largest subset increases so does the time solution. The
largest time to solution is for the non-partitioned method on
the entire 1,000 node graph. This means that partitioning the
graph always enables some scaling. The Expansive Causal
and Edge Cover partitions are extensions of each Disjoint
partition. We observe that for our partition methods we (1)
do not increase the size of the largest subset significantly,
this aligns with notes in Appendix E (2) benefit from a sig-
nificant boost in accuracy. In Fig. 8 we run the same study
but with a 1,000 node graph with 10 communities, each
with size of 100 and scale-free topology. This is equivalent
to the types of graphs in Section 6.1 through Section 6.3,
but with more communities. Here, we observe good scaling
when the size of the largest partition is small and close to
the size of the natural communities. However beyond this,
the time to solution increases to be even larger than the non-
partitioned method. This suggest that certain ‘bad’ subsets
incur a longer convergence time for the GES causal discov-
ery algorithm. We hypothesize this is related to violation
of causal sufficiency of these subsets – subsets that contain
more confounders (unobserved common causes) outside
may result in sub-optimal convergence in the GES learner.
Note that this result is not due to our causal partition or the
divide-and-conquer methodology, but rather because of the
use of the GES learner in this setting. Since this framework
allows us to use any algorithm for A , in the future we will
evaluate the trade off of our method with RFCI. Still, since
we can control the size of the subsets with the disjoint par-
tition we can still achieve accuracy and time benefits with
GES as shown in our empirical results.

E. Controlling Maximum Subset Size
A key factor in accuracy-timing trade-offs is controlling the
size of the largest subset in the partition. Here we observe
that the largest subset produced by the causal expansion in
Section 3.4 is governed by specific connectivity properties
of the initial partition on which it is built. In particular,
for graphs with strong community structure, if the initial
partition is strongly correlated with community structure,
then the resultant subsets in the causal expansion will not
be much larger than any of the subsets in the input.

For the causal expansion defined in Section 3.4, the max-
imum size of any subset is controlled by the sizes of the
subsets in the input partition and their corresponding vertex
expansion values. For any set S such that |S| ≤ |V |/2, the
vertex expansion of S in graph G is defined as

h(S) ≡ ∂out(S)

|S|
.

If the input expansion {S1, . . . , SN} satisfies |Si| ≤ |V |/2
for all i ∈ [N], then the size of subsets {S′

1, . . . , S
′
N} in the

880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934

causal expansion is controlled as

max
i∈[N]

|S′
i| ≤ max

j∈[N]
(1 + h(Sj))|Sj |.

In particular, if the superstructure G has strong commu-
nity structure and the initial partition {S1, . . . , SN} is con-
structed appropriately, then the subsets of the causal expan-
sion will not be dramatically larger than those in the initial
partition. See Appendix D.

F. Synthetically tuned E. coli networks

Figure 9. Top 5 hubs of synthetically tuned E.coli network with
the proximity-based model and Girvan-Newman partition.

