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Figure 1: A long story of “snowman” visualized by our Story-Adapter from different iterations,

compared with those visualized by previous StoryDiffusion (Zhou et al., [2024) and StoryGen
2024). Notable differences are highlighted in green and red. Zoom in for a better view.

ABSTRACT

Story visualization, the task of generating coherent images based on a narrative,
has seen significant advancements with the emergence of text-to-image models,
particularly diffusion models. However, maintaining semantic consistency, gen-
erating high-quality fine-grained interactions, and ensuring computational feasi-
bility remain challenging, especially in long story visualization (i.e., up to 100
frames). In this work, we propose a training-free and computationally efficient
framework, termed Story-Adapter, to enhance the generative capability of long
stories. Specifically, we propose an iterative paradigm to refine each generated
image, leveraging both the text prompt and all generated images from the previ-
ous iteration. Central to our framework is a training-free global reference cross-
attention module, which aggregates all generated images from the previous iter-
ation to preserve semantic consistency across the entire story, while minimizing
computational costs with global embeddings. This iterative process progressively
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optimizes image generation by repeatedly incorporating text constraints, resulting
in more precise and fine-grained interactions. Extensive experiments validate the
superiority of Story-Adapter in improving both semantic consistency and genera-
tive capability for fine-grained interactions, particularly in long story scenarios.

1 INTRODUCTION

Story visualization aims to generate a sequence of coherent images from text prompts, reflecting the
narrative’s progression and enabling users, even without an artistic background, to visually present
their stories (Li et al., |2019; Maharana & Bansal, [2021}; |Chen et al., |2022)). Recent advancements
in text-to-image models, particularly diffusion models, have significantly improved the quality of
generated visuals, producing high-quality, creative, and aesthetically pleasing images (Saharia et al.,
2022;Rombach et al., 2022} | Kang et al.,[2023)). These models greatly outperform earlier approaches
such as generative adversarial networks (Brock, [2018) in terms of image quality.

However, story visualization remains challenging, particularly in maintaining semantic consistency
and capturing complex interactions as the story length increases. Two main paradigms have emerged
in this domain. The Auto-Regressive paradigm(Fig.[2]A), which generates frames sequentially (Pan
et al., 2024} |Liu et al.| [2024)), often struggles with semantic consistency due to error accumulation
and the inability to reference future frames, leading to inconsistencies in the overall narrative. Al-
though techniques like Consistent Self-Attention (CSA) (Zhou et al.,[2024) can help mitigate these
inconsistencies, their reliance on intermediate denoising features results in high memory consump-
tion, limiting scalability for longer stories. To address these challenges, [Zhou et al.| (2024)) further
propose the Reference-Image paradigm, which employs fixed reference images to guide the visu-
alization process. However, as shown in Fig. 2B, while using only the initial frames as reference
images alleviate scalability issues, it fails to provide the global semantic coherence necessary for
long-story visualization, ultimately resulting in the propagation of errors from the reference images
to subsequent frames. As such, both paradigms experience quality degradation when visualizing
long stories. Additionally, they inherit the limitations from Stable Diffusion (SD) (Rombach et al.,
2022), particularly in generating fine-grained interactions (as shown in Fig. [I).

To address these limitations, we present Story-Adapter, an iterative framework that adapts pre-
trained SD models for long story visualization. Unlike existing methods that generate images auto-
regressively or rely on static reference images (Fig. 2] A&B), our approach prioritizes semantic
consistency by incorporating all generated images from previous iterations into the current one. This
process offers two key advantages. 1) It offers a comprehensive view of the entire narrative, thereby
reducing error accumulation and mitigating the propagation of flaws from reference images. 2)
By continuously engaging with text prompts, Story-Adapter optimizes generative quality for details
based on insights from earlier iterations. As illustrated in Fig[l} our framework enhances both
semantic consistency and the quality of fine-grained interactions across iterations, resulting in more
coherent and higher-quality visualizations. For example, the image depicting complex character
interactions, such as “the snowman greeting the fox” demonstrates substantial improvement over
iterations compared to previous methods(Liu et al.| 2024; Zhou et al., 2024).

During initialization, only text prompts of the story are utilized to generate reference images. In sub-
sequent iterations, the global embeddings of all images generated in the previous round, along with
the text embeddings, collaboratively guide the image generation process. To implement the iterative
paradigm efficiently, we propose a plug-and-play Global Reference Cross-Attention (GRCA), where
all global image embeddings act as keys and values. This significantly reduces computational costs,
as global embeddings operate at a lower dimensionality than the intermediate denoising features
used in CSA. Additionally, to strike a balance between visual consistency and text controllability,
we introduce a linear weighting strategy in the iterative paradigm to fuse both modalities.

Extensive experiments demonstrate that Story-Adapter consistently outperforms existing methods
for visualizing both regular-length and long stories (up to 100 frames). Specifically, in the con-
text of regular-length story visualization using the StorySalon benchmark dataset (Liu et al.,|2024),
Story-Adapter exceeds the baseline model, StoryGen(Liu et al., [2024])), achieving a 9.4% improve-
ment in average Character-Character Similarity (aCCS)(Cheng et al. [2024) and a 21.71 reduction
in average Fréchet Inception Distance (aFID) (Cheng et al., [2024). For long story visualization,
Story-Adapter also demonstrates solid advancements, achieving gains of 3.4% in aCCS and 8.14 in
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Figure 2: Comparison of paradigms for long story visualization: (A) Auto-Regressive (AR): gener-
ates frames sequentially referencing on previous finite frames (e.g. the previous three frames); (B)
Reference-Image (RI): employs fixed reference images (e.g. the beginning four frames) as reference
images; (C) Iterative Paradigm: leverages all frames from the previous iteration as reference images.

aFID compared to StoryDiffusion (Zhou et al., 2024), demonstrating the superior generative quality
of Story-Adapter, particularly in terms of semantic consistency and fine-grained interactions.

2 RELATED WORK

2.1 DIFFUSION MODELS

Diffusion models (Ho et al, 2020} [Song et al., 2020b}; [Sohl-Dickstein et al., 2015} Nichol & Dhari-

2021) have emerged as powerful tools for data distribution modeling through iterative denois-
ing. Recent advancements in sampling techniques (Xiao et al, 2021}, [Song et al}, 2020a; [Luo et al}
[2023), backbone architectures (Peebles & Xie| 2023 |Lu et al., 2023), and latent space denois-
ing (Rombach et al] [2022; [Podell et al.| [2023) have led to their widespread adoption in various

generative tasks, including video (Esser et al., 2023} [Yang et al., [2024), 3D (Luo & Hul 2021} Xul
et all 2024), audio (Ruan et al.l 2023; [Huang et al., 2023), and human motion generation (Zhang

et al., 2022} [Karunratanakul et al., 2023). While Text-to-Image diffusion models
2022; [Zhang et al., 2023}, [Rombach et al., 2022} [Podell et al.| 2023) have gained significant atten-
tion, challenges persist in generating coherent image sequences for tasks like story visualization due
to the inherent randomness and fine-grained interaction generation.

2.2 STORY VISUALIZATION

Story visualization (Chen et al, 2022} 2022) has evolved from GAN-based approaches like
StoryGAN (Li et al.} 2019) to more advanced techniques. Recent developments leverage diffusion
models (Shen et al., [2024; 2024) and combine them with auto-regressive paradigm, as
seen in AR-LDM (Pan et al., and StoryGen 2024). These methods have improved
coherence in image sequences and extended to open-ended story visualization. However, challenges
remain in maintaining semantic consistency for the whole story and avoiding error accumulation,

especially for longer narratives (Wang et al.,[2023}; [Zhou et al.| 2024} [Liu et all,[2024).

2.3  SUBJECT-CONSISTENT IMAGE GENERATION

The consistency of the generated subjects is critical for tasks such as story visualization and video
generation. Recent advancements in subject-consistent image generation have focused on reducing
computatlonal resources while maintaining consistency. Early approaches like

Ruiz et al| (2023) require extensive fine-tuning, prompting more efficient methods (Ryul m; m

et al., 2023} [Kumari et al.,[2023};[Yuan et al.,[2023)). Notable progress includes IP-Adapter
2023) with its decoupled cross-attention design and technique like PhotoMaker (Li et al., 2024) that

accelerates generation using identity images. Recently, StoryDiffusion (Zhou et al.| [2024) intro-
duced Consistent Self-Attention (CSA) to boost the frame-wise subject consistency but still faces
limitations in long image sequences. In contrast, Story-Adapter maintains image semantic consis-
tency in long image sequences by using cross-attention on global embeddings from all generated im-
ages of the previous iteration and the corresponding text features. Along with our iteration paradigm,
the whole generations are gradually improved w.7.¢ semantic consistency and generative quality for
fine-grained interactions.
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Figure 3: Illustration of the proposed iterative paradigm, which consists of initialization, iterations
in Story-Adapter, and implementation of Global Reference Cross-Attention.

3 METHOD

Compared to regular-length stories, long stories contain more characters and more complex interac-
tions, leading to higher requirements for semantic consistency and fine-grained interaction genera-
tion. To address the above challenges, we resort to an iterative paradigm that progressively refines all
the generated images, w.7.f. semantic consistency and visual details in multiple rounds. We instanti-
ate the iterative paradigm by equipping a fixed Stable-Diffusion (SD) model with a cross-attention
mechanism, termed Story-Adapter. The pipeline is demonstrated in Fig. 3]

3.1 INITIALIZATION

To build the initialization for iteration, we only employ text prompt 7}, for the ky;, image in the
story to guide the fixed SD(z, T}) in generating the initial images, where z is the random noise. All
generated images from the initial step will be stored as reference images for the first iteration. We
denote ¢ = 0 as the initialization of Story-Adapter. Thus, the whole initialization process can be
represented as:

_O:SD(ZaTk)7k€ [LB]’ 1)
250 g = [0yl
where B denotes the length of the story. Compared to subject-consistent image generation meth-
ods (Ye et al.,[2023) that introduce reference image guidance, initialization which relies only on text
prompts more faithfully visualizes the corresponding content in the story. The following iterations
benefit from the rich visual content provided by the initialization of the reference images.

3.2 STORY-ADAPTER

This subsection demonstrates how each image is updated within an iteration in Story Adapter. For-
mally, for the iy, iteration, we use all visualizations from the previous iteration z ! _p as the ref-
erence images R to refine the generated images in the current round For the generatlon of the kyy,
image of a long story, we define a function SDgrca (2, Tk, xl ) to represent the whole denoising
process with our Global Reference Cross-Attention (Sec. |3:5[)
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Algorithm 1: Pseudo-Code of Story-Adapter.

1 # diffusion model:f, iteration epochs:L, starting weight factor:\s,
ending weight factor:Ae, 4w iteration jwy diffusion step ki

intermediate denoising features:],i’j, story length:B, diffusion
steps:J, decoder:D
# Initialize IY;, I{;~N(0, I), k~(1, B), i~(1, L), j~(0, J)
# Initialize Story-Adapter iteration
for j in reversed(range (0, J)):
# Init z~N(0, I) if 3>1 else z=0
IR ;= (1/sart (ay) ) #Ij ;= (1=a) %0 (IR ;, 3, Tk) /sqrt (1-ay) ) +o¢*z
R=concat([:c(f,...,x%,...,x%]), x(é:D(I,SYO)

O 00 3 N kW

# Insert GRCA to # and initialize weighting factor list Apse
10 Alist=linspace (As, Ae, L)
11 # Story-Adapter Iteration

12 for i1, A in enumerate (Ayst) :

13 for j in reversed(range (0, J)):

14 I ;1= (1/sart (o)) * (I ;= (1=aj) %0 (I} ;, 3, Tk, R, A) /sqrt (1-ay) ) +0i+z
15 R:concat([a:ﬁ,...,wi,...,xiB]), x};:D(I};O)

Thus the 7, iteration can be expressed as:
j i—1
), = SDcrea(z, Tk, 27 . g) k € [1, B,
i i i i i )
Ly,....B = [56'1,1'27 R T 71‘371’%3]’
As iterations proceed, the reference images evolve to be more coherent, as Story-Adapter consis-
tently improves the semantic consistency in a global view. Additionally, generative quality for fine-
grained interactions is also constantly optimized as Story-Adapter repeatedly engages text prompt
constraints during iterations.

3.3 GLOBAL REFERENCE CROSS-ATTENTION

Although incorporating image context or reference images extends text-to-image generation to
character-consistent image sequences, existing AR paradigms (Pan et al., [2024; [Liu et al., [2024)
suffer from error accumulation over long stories, while RI paradigms (Zhou et al., [2024) may prop-
agate flaws from the reference images.

In contrast, we propose an efficient plug-and-play augmentation module to equip SD models, called
Global Reference Cross-Attention (GRCA). We utilize a pre-trained CLIP (Radford et al., [2021))
image encoder to extract a global embedding c for each reference image from the previous round,
effectively preserving the semantics of reference images using only a few tokens. The token simpli-
fication allows GRCA to incorporate all reference images as guidance in the cross-attention process
without incurring significant computational overhead.

In the 44, iteration of Story-Adapter, given all the reference images in the previous round xzf ! BE

RExhxwx3 "p 4 denote reference image resolution. We define a function Attention(Q, K, V) to
indicate the attention calculation, where ), K, and V represent the query, key, and value in the
attention, respectively. GRCA in the visualization for the k;; image can be specified as:

¢i .. p=CLIP(zi} ;). . e REX
G = € s Wes We € RP,

€,..B= ﬂatten(civm73)701.”,3 € RixBrxe 3)
Qi = LWy, Kj = . Wi, Vi =i sW,,

GRCA(Iy, 2i7" ) = Attention(Q, K1, Vi),

Where W, is the projection matrix of global embeddings transformed into reference tokens. d
and e denote the embedded dimension of global embeddings and the projection dimension of the
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projection matrix, respectively. n indicates the number of reference tokens for a single reference
image, n = 4 if not specified. flatten(.) represents a flatten operation for vectors. W, is the
mapping weight matrix for the intermediate denoising feature I in SD. W}, W, are the mapping
weight matrices of the reference tokens.

Eventually, we merge the outputs from GRCA with the outputs from text cross-attention, to guide
the visualization of k), image in the story. In particular, with corresponding text prompt 7}, and all

reference images x’l_l p» the intermediate denoising feature I}, is obtained as follows:

I}, = Attention(I}, Ty, Ti.) + AGRCA(I}, 2" p). (4)

where A is a balance factor for controlling the influence of GRCA on the visualization results. We
propose a linear weighting strategy to adjust the weight factor for each iteration, where the weight
factor increases linearly with a low value to trade off visual consistency and text alignment in the
iterative paradigm. Since the existing diffusion models contain a cross-attention design associated
with the reference image, our GRCA could be directly plugged in and reuse the cross-attention
weights without training. We demonstrate the procedure of Story-Adapter, along with the linear
weighting strategy in Algo.[I]

4 EXPERIMENTS

In this section, we first introduce the datasets, the evaluation metrics, and implementation details.
Then we compare Story-Adapter with previous AR-based and RI-based methods for visualization of
both regular-length and long stories. Finally, we validate the effectiveness of the proposed iterative
paradigm and Global Reference Cross-Attention (GRCA) through extensive ablations. Additional
experimental results, comparison on subject-consistent generation, and human evaluation can be
found in the Appendix.

4.1 DATASET AND EVALUATION

We use the StorySalon dataset (Liu et al., 2024)) to benchmark performance for regular-length story
visualization. For long story visualization, we curate multiple long stories using GPT-40 (OpenAl,
2024). To evaluate the efficacy of Story-Adapter, we report CLIP text-image similarity (CLIP-
T) (Radford et al., 2021)), average Fréchet Inception Distance (aFID) (Cheng et al. [2024), and
Character-Character Similarity (aCCS) (Cheng et al.,[2024)). CLIP-T is to measure image-text align-
ment, both aFID and aCCS are used to evaluate semantic consistency among generated images.

4.2 IMPLEMENTATION DETAILS

To ensure a fair comparison, we used the weights of IP-Adapter (Ye et al., [2023) and IP-
AdapterXL (Ye et al., 2023), respectively, resulting in two models: Story-Adapter and Story-
AdapterXL. We utilized DDIM (Song et al.,|2020a)) for 50-step sampling with an unclassified clas-
sifier guidance score set to 7.5. For the hyperparameters in our iterative paradigm, we set the number
of story iterations to 10 by default. The weight factor A is set to 0.3 for the initial iteration and 0.5
for the final iteration, with linearly interpolated values for the intermediate iterations by our linear
weighting strategy.

4.3 REGULAR-LENGTH STORY VISUALIZATION

Based on the standard setup on StorySalon dataset (Liu et al.}|2024), we compare with existing story
visualization methods and Stable Diffusion Model (SDM) baselines, including StoryDiffusion (Zhou
et al.| [2024), StoryGen (Liu et al.,|2024), AR-LDM (Pan et al.|[2024), SDM (Rombach et al.||2022),
Finetuned-SDM (fine-tuned on StorySalon), and Prompt-SDM. For Prompt-SDM, we use prompts
of “cartoon-style images”. To adhere to copyright restrictions and ensure fair comparisons, we
exclusively utilize text prompts from the open-source subset of the StorySalon test set for evaluation.
This subset comprises 6,026 prompts, with an average of 14 frames per story and the longest story
containing up to 44 frames.
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Figure 4: Qualitative comparisons for regular-length story visualization. Zoom in for a better view.

Table 1: Quantitative comparison for regular- Table 2: Quantitative comparison for long

length story visualization. story visualization.
Method CLIP-T 1aCCS taFID | Method CLIP-T 1aCCS TaFID |
0.323 0.662 23.10 AR-LDM (Pan et al.}[2024 0.216 0.673 133.62
0289 0.699 18.18  StoryGen (Liu et al.][2024] 0.223  0.740 126.13
. 0309 0.639 2305  1p-Adapter (Ye et al.|[2023} 0274 0.751 93.70
AR-LDM (Pan et al.[[2024 0.237 0.683 40.25 Story-Adapter (Ours) 0.307 0.754 98.51
StoryGen (Liu et al | %QZE] 0.255 0.724 36.34  {p_AdapterXL (Ye et al.]2023 0.207 0.787 $8.69
Story-Adapter (Ours 0.305  0.760 16.52  gyoryDiffusion ( 2024) 0315 0.768 102.44
StoryDiffusion (Zhou et al. 2024} 0311 0.765 14.84 Story—AdapterX Ours 0.318  0.802 94.30
Story—AdapterXL Ours 0.310 0.818 14.63 ;

Quantitative Evaluation. CLIP-T results in Tab. [I] show that Story-Adapter and StoryDiffu-
sion 2024) visualize content more aligned to the text prompt than previous story vi-
sualization models (AR-LDM and StoryGen). Meanwhile, since neither Story-Adapter nor most
baselines are trained on the StorySalon dataset, we introduce aFID and aCCS metrics for a fair
evaluation of the character consistency among generated story images. Results of aFID and aCCS
in Tab. [T]illustrate that Story-Adapter achieves higher semantic consistency of the generated images
compared to StoryDiffusion. Such results validate the effectiveness of our design for coherent image
sequence visualization.

Qualitative Evaluation. In Fig. ] we provide the qualitative comparison results of the open-ended
story visualization. Although AR-LDM and StoryGen generate coherent image sequences based on
story prompts, the quality of the generated images degrades when story length increases due to the
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Figure 5: Qualitative comparisons for long story visualization. The image sequences in orange and
blue boxes are generated by StoryDiffusion and Story-Adapter, respectively. Story-Adapter shows
advantages in generating semantic consistency and character interactions. Zoom in for a better view.

error accumulation issue of the AR paradigm. Results of StoryDiffusion (Zhou et al. [2024) and
Story-Adapter show satisfactory story visualization performance. However, StoryDiffusion cannot
maintain consistency between certain subjects due to lacking global story comprehension (e.g., “cat”
in Fig. ). Additionally, since StoryDiffusion requires the first few generated images as references,
the visualization results are affected by the reference image flaws (e.g., “closed-eye issue” in Fig.[d)
In comparison, Story-Adapter performs better in regular-length story visualization benefited from
the global features engaged in GRCA.

4.4 LONG STORY VISUALIZATION

To better evaluate generative quality for long story visualization (i.e., up to 100 frames), we compare
to subject-consistent image generation model IP-Adapter in addition to existing
story visualization methods. SDM baselines are not included in comparison as they are not suitable
to generate long consistent content. We use GPT-4o0 2024) to generate 20 long story cases
of ten 50-sentence descriptions and ten 100-sentence descriptions.
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Figure 6: Ablation study of iterative paradigm: the effect of the iterative paradigm and the impact
of different fixing A. Zoom in for a better view. See Appendix for results with more iterations.

Quantitative Evaluation. The quantitative results in Tab. [2] show that our Story-Adapter signifi-
cantly improves the semantic consistency and the generative coherence for fine-grained interactions
for long story visualization compared to existing models. Notably, IP-Adapter employs the same
guidance image that leads to less aFID. In contrast, our method improves visual consistency without
the need to fix the same reference image.

Qualitative Evaluation. Fig.[5|shows the visualization results for long stories, indicating that Story-
Adapter can generate high-quality, thematically consistent long image sequences based on the text
prompts. In particular, StoryDiffusion cannot convey interactions between multiple characters cor-
rectly (e.g., “turtle lifting the fishbone trophy” in the 34-th frame and “rabbit running past the camel”
in the 46-th frame), whereas Story-Adapter visualizes the interactions between the characters accu-
rately while maintaining subject consistency.

Computational Cost Comparison. We evaluate the computational cost of single-image generation
using CSA in StoryDiffusion (Zhou et al.} [2024) and the proposed GRCA with varying numbers
of reference images, under the base attention setting for fair comparison. FLOPs are calculated
within the diffusion model UNet. As shown in Fig.[8] as the number of reference images increases,
StoryDiffusion experiences a significant rise in computation in terms of FLOPs, while Story-Adapter
and Story-AdapterXL are slightly affected. This demonstrates the potential of modeling on global
embeddings as in GRCA to efficiently sustain global story semantics for long story visualization.

4.5 ABLATION STUDY

Global Reference Cross-Attention. We ablate the effect of global semantics modeling by GRCA
for long story visualization. Specifically, for each image visualization in the sequence, we only
use the single reference image at the corresponding index during the iteration as guidance. By
establishing a global comprehension of the story for the diffusion model, Story-Adapter maintains
the semantic consistency in the generated image sequence (Tab. [3|and Fig.[7).

Iterative Paradigm. We conduct ablation experiments to evaluate the effect of the proposed itera-
tive paradigm for long story visualization and to validate our linear weighting strategy compared to
the fixed weight factors. As shown in Tab. [3]and Fig.[6] the iterative paradigm improves generation
quality for fine-grained interactions and semantic consistency. This is mainly because the iterative
paradigm offers a global view of the entire story, thus reducing error accumulation and alleviating
the propagation of the reference image flaws. A fixed weight factor of 0.3 minimally impacts vi-
sualization during iteration, while a fixed factor of 0.5 leads to excessive consistency in the image
sequence. This enables flexibility within the iterative paradigm.
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Table 3: Quantitative ablation studies of the
design choices of Story-Adapter.

Emperor holding

Nightingale and emperor § og
3 singiug together in the i

palace. wigtingale in his mw..l Setting ‘ CLIP-T1 aCCS?T aFID |

. w/o Initialization 0.302 0.788 90.30

w/o GRCA 0.319 0.740 97.86

£ Rt and cmperes MDA | w/o Iteration Paradigm 0.322 0.757  105.17
3 singing fogettrer-in the. [Nightingale Fecl o] BOme dav, a forcgner [yigitiugale fing bade] | Emeeror holding Iteration Paradigm, A = 0.3 0.320 0.760 101.55
and stoppe: £ brought a robot o i, Iteration Paradigm, A = 0.5 0.261 0.753 81.72

B ¢ - > GRCA 0.322 0.757 105.17

CSA 0.315 0.768 102.44

Ours 0.318 0.802 94.30

waves, clutthing a Robinson picked some Pl Rol Robinson tries +o repair
broken plank. vild froits. il ~ e wiooden boat. —e— Story-Adapter

85- Story-AdapterXL
—e— StoryDiffusion

<
S
a
T 8
H

[ To satisfiy his huuger, \
Rolsinson picked sowme Rol on tries to repair
wild fruits. > - ‘the wooden boat.

FLOPs (log(G))

W Vi
loandoued loaby.

A = 1 20 40 60 80 100 120 140 160 180 200
\ 3 - — - # reference Images
A baby was abaudoved on # crew member find +he {1900 Violding a muppet| 1900 walking on +1e@1a00 walking +o the ship
2 lnwary cruise ship. avaudoned bl y. AR caloiv v 4 Ship.

Figure 8: Computational cost of single image
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tion and GRCA. Zoom in for a better view. images.

Initialization. To ablate the effect of the proposed initialization, we use a sequence of images
consisting of the characters as reference images (i.e., w/o initialization). Tab. 3] shows that when
removing the proposed initialization, there is a significant decrease in the image-text alignment of
Story-Adapter in terms of CLIP-T. Fig. [7] illustrates that without initialization, the diffusion model
fails to generate the required objects according to text prompts, e.g., “nightingale” and “robot”.

GRCA vs CSA. We investigate GRCA and CSA in Tab. 3] and Fig. [7} using the outputs of the
first iteration from Story-Adapter and StoryDiffusion, respectively. Though GRCA generates less
visual consistency during the first iteration than CSA in terms of aCCS and aFID in Tab. 3] GRCA’s
global comprehension improves the consistency of multiple characters throughout stories shown in
Fig.[7] For example, GRCA effectively preserves the consistency of emerging characters (e.g., “the
character 1900) while CSA fails.

5 CONCLUSIONS AND DISCUSSIONS

We introduce Story-Adapter, an iterative framework that adapts pre-trained Stable Diffusion models
for long story visualization. By using the generated images from previous iterations as references,
our method maintains semantic consistency and enhances generative quality for fine-grained inter-
actions throughout the story, effectively reducing error accumulation and avoiding the propagation
of flaws. For efficiency, we propose a plug-and-play Global Reference Cross-Attention (GRCA)
module, which utilizes global image embeddings to reduce computational costs while preserving
essential image information flow. Extensive experiments demonstrate that Story-Adapter outper-
forms existing methods on the regular-length story visualization dataset, and shows strong results in
long story visualization. These findings highlight the potential of our iterative paradigm to advance
the quality and coherence of text-to-image story visualization.

Ethical Concerns. All authors of this work have read and commit to adhering to the ICLR Code of
Ethics.

Reproducibility. To ensure reproducibility, we provide pseudocode in Algo. [T]and implementation
details in Sec.[d.2] The full code can be found in the Supplementary Material.
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A PARADIGMS

Existing story visualization methods usually employ the Auto-Regressive (AR) or Reference-Image
(RI) paradigms. In this work, we propose a novel iterative paradigm for story visualization. Next,
we will discuss different story visualization paradigms in detail.

=3¢

[P || oifusion o

(A) Auto-Regressive Paradigm (B) Reference-Image Paradigm (C) lterative Paradigm

Figure 9: Different paradigms for story visualization. Zoom in for a better view.
A.l1 AUTO-REGRESSIVE PARADIGM

Setting. As shown in Fig.[9] AR paradigm-based methods typically use a limited number of previous
frames and the corresponding text prompt of the current frame to guide current image generation.
This helps the methods maintain semantic consistency between consecutive frames.

Discussion. However, the AR paradigm cannot consider future frames when synthesizing the current
image, which makes the AR paradigm only maintain semantic consistency in neighboring frames
but not throughout the story. Besides, the AR paradigm easily suffers from error accumulation.
Therefore, the image quality of the AR paradigm gets worse as the length of the story increases.

A.2 REFERENCE-IMAGE PARADIGM

Setting. RI paradigm-based methods employ the beginning visualized frames as reference images to
guide the visualization of the rest of the story when performing long story visualization (see Fig. [9).
Bootstrapping based on fixed reference images helps the methods to effectively maintain identity
consistency in long story visualizations.

Discussion. However, such a setup ignores the consistency of emerging characters in the story, and
all visualizations are affected by flaws in the reference images. Both issues affect the quality of long
story visualizations with the RI paradigm.

A.3 ITERATIVE PARADIGM

Setting. To address the aforementioned limitations, we propose an iterative paradigm in Story-
Adapter (Fig. [0). We constantly consider all generated images in the previous iteration with an
iterative mechanism and model on the global embeddings. Specifically, when generating for the &,
image, we propose to implement Global Reference Cross-Attention (GRCA) on global embeddings
from all generated images in the previous iteration.

Discussion. By using all generated images from the previous iteration as reference images to guide
the current generation, we effectively maintain semantic consistency throughout the story. More-
over, all the generated images as references are updated through each iteration. Taken together, the
iterative paradigm effectively avoids the influence of defects in some reference images.

B SUBJECT-CONSISTENT GENERATION COMPARISON

In the evaluation phase, we employ GPT-40 (OpenAl, 2024) according to the settings of StoryDiffu-
sion (Zhou et al.| 2024)) to generate 20 character descriptions and 100 specific activity descriptions,
respectively. We combine them as 2000 test descriptions, to compare Story-Adapter and subject-

14



Under review as a conference paper at ICLR 2025

An male scientist wearning white coat and mask An construction worker wearning helmet and
work clothes
uses microscope writes a paper explains concepts installs a window  operates a lays brick
look sample on whiteboard chainsaw

y I.';A

IP-Adapter

PhotoMaker

<
L2
w
3
[
b3
o
>
i 5
2
()]
o
O
=
o
(=]
o
I
>
o
o
+=
n
Text Controllability Attire Cohesion Detail Consistency Text Controllability Attire Cohesion Detail Consistency
IP-Adapter X V4 4 IP-Adapter X V4 V4
PhotoMaker I x X PhotoMaker J x x
StoryDiffusion J J X StoryDiffusion 4 7 X
Story-Adapter J 4 4 Story-Adapter 4 V4 V4

Figure 10: Qualitative comparison of subject-consistent image generation methods.

consistent image generation baselines, including IP-Adapter 2023)), PhotoMaker
2024), and StoryDiffusion (Zhou et al.,[2024).

Quantitative Evaluation. For quantitative

comparisons on subject-consistent image gen- Table 4: Quantitative comparison with subject-

eration, we employ CLIP text-to-image sim- consistent image generation methods.
ilarity (CLIP-T) and image-image similarity

(CLIP-D) to measure consistency between the oo CLIP-T+ CLIP-I{
character images and generated images. Tab.

o hat Stg d g g gs A @ IP—Adapter2023 0307 0872
shows that Story-Adapler achieves SO 1A per- Story-Adapter (Ours 0.326 0.877

foqnance in terms of both quantitative rr}gtrics, TP-AdapterXL (Ye ct al. 2023 0312 0.879
which demonstrates Story-Adapter’s ability to  PhotoMaker (Li et al.| 2024} 0.317 0.880
generate subject-consistent image sequences  StoryDiffusion (Zhouetal.[2024) 0330  0.882
based on text prompts or image prompts. Story-AdapterXL (Ours 0.332  0.884

Qualitative Evaluation. Fig. [T0] shows the

qualitative comparison results.  Story-Adapter generates higher-quality images in subject-
consistency and detailed interactions. In contrast, [P-Adapter fails to generate correctly, e.g., “pa-
per”, “whiteboard”, and “chainsaw”. PhotoMaker cannot generate images consistently, e.g., main-
taining details of the attire. Despite accurately generating content according to text prompts with
visual consistency, StoryDiffusion suffers from visualizing complex details due to lacking global
story comprehension. By incorporating a global story view in our iterative paradigm, Story-Adapter

can maintain visual consistency, especially in details throughout the story.
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Table 5: Human evaluation comparison of subject-consistent image generation, regular-length story
visualization, and long story visualization. The best is highlighted in red.

Subject-Consistent Image Generation

Model | Align.t Inter.t Cons.t Qual.t | Pref. 1
IP-Adapter (Ye et al., [2023) 2.51 3.27 4.58 4.33 4.19
IP-AdapterXL (Ye et al., [2023) 2.66 3.36 4.72 4.51 4.26
PhotoMaker (Li et al.,[2024) 3.79 4.18 4.25 4.47 4.11
StoryDiffusion (Zhou et al.,|2024) 4.15 4.28 4.50 4.54 4.48
Story-Adapter 4.02 4.20 4.41 4.39 4.33
Story-AdapterXL 4.20 4.35 4.58 4.61 4.54

Regular-Length Story Visualization

SDM (Rombach et al., [2022) 4.11 2.37 2.01 4.17 1.14
Prompt-SDM (Rombach et al.||2022) 4.03 3.49 1.99 4.40 1.26
Finetuned-SDM (Rombach et al., [2022) 3.35 3.82 2.15 3.41 1.60

AR-LDM (Pan et al.|[2024) 3.08 3.64 2.90 2.64 2.05
StoryGen (Liu et al.; 2024) 3.72 4.17 3.83 3.79 3.39
StoryDiffusion (Zhou et al.;,|2024) 3.96 4.48 4.52 4.24 4.37
Story-Adapter 3.89 4.21 4.36 4.09 4.10
Story-AdapterXL 4.06 4.60 4.74 4.53 4.62

Long Story Visualization

AR-LDM (Pan et al., [2024) 3.30 3.68 3.42 2.15 3.27
StoryGen (Liu et al.||2024) 3.51 4.06 3.88 2.72 3.51
IP-Adapter (Ye et al.,[2023) 3.79 4.27 4.30 4.19 4.06
IP-AdapterXL (Ye et al.,|2023) 3.83 4.23 4.61 4.47 4.11
StoryDiffusion (Zhou et al.,[2024) 4.16 4.30 453 4.33 435
Story-Adapter 3.97 4.15 442 4.19 4.29
Story-AdapterXL 4.35 4.47 4.70 4.62 4.65

C HUMAN EVALUATION

Setting. To complement the evaluation metrics to accurately reflect the quality of the generated
stories, we involve human evaluation to further compare Story-Adapter and baselines. Referring to
the setting in StoryGen (Liu et al. |2024), we invite participants to rate various aspects: text-image
alignment (Align.), character interaction (Inter.), content consistency (Cons.), image quality (Qual.),
and preference (Pref.) on a scale from 1 to 5. The higher the better.

Results. Tab. [5] shows that our Story-Adapter receives more preference from the participants. It
is worth noting that although IP-Adapter receives higher scores for consistency in the subject-
consistent image generation task, Story-Adapter is more favored in text-image alignment and gener-
ating character interactions. For regular-length and long story visualization, Story-Adapter is more
preferred compared to baselines in most evaluation aspects, especially visual consistency and capa-
bility to generate character interactions. This is aligned with the quantitative measurement.

D MORE ITERATIONS

Setting. In this section, we compare results on different iterations in the iterative paradigm and
investigate the impact of longer iterations on story visualization. Specifically, we study the visual-
ization results in the initialization, 1, 5¢p, 1044, and 154, iterations, respectively.

Results. Tab. [6] shows that as iteration increases, Story-Adapter achieves significant improvement
in visual consistency (aCCs and aFID) while text-image alignment (CLIP-T) drops slightly. This
further demonstrates the contribution of the iterative paradigm to the semantic consistency of the
overall story. However, we also note that a further increase in iterations harms text-image alignment,
with limited gain in visual content consistency. This indicates that while Global Reference Cross-
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@ A black german shepherd jumping out of a black SUV on the road of an abandoned city
@ A blackman in black jacket holding gasoline can near a black SUV in a abandoned tunnel

® A blackman in black jacket holding a tube in the abandoned barrack

initialization

Figure 11: Story visualization results from different iterations by Story-Adapter. Accurate interac-
tions are denoted in green, wrong or missing ones are in red.

Attention (GRCA) effectively improves the content consistency of the long story, the increasing
weighting factor of GRCA during the iterations poses a challenge to aligning the text prompts.

Fig. [IT] demonstrates a significant improve-
ment in generative quality for fine-grained in-  Taple 6: Quantitative comparison of multiple iter-
teractions as the iteration proceeds. The it- tions.

erative paradigm effectively alleviates the dif-
fusion model’s limitations on complex inter-
action generation by continuously creating in-
put channels for text prompts. But more itera-

Iteration CLIP-TT aCCS 1 aFID 1

initialization 0.330 0.502 214.94
1,4, iteration 0.322 0.757 105.17

tions wouldn’t improve the generation quality 5., iteration 0319 0783  100.81
further. Therefore, 10 iterations in the itera- 10y, iteration  0.306 0.840 91.35
tive paradigm is an optimal choice based on the 154, iteration 0297  0.848  90.62

quantitative and qualitative experiments.

E MORE VISUALIZATION RESULTS

In this section, we provide more visualization results from Story-Adapter and the baselines.

E.1 VISUAL COMPARISON

We compare the long story visualization results of representative work with AR-based, RI-based,
and iterative paradigms, respectively. Specifically, Fig.[T2] Fig.[I3] and Fig. [T4] show the generated
results of the same “Pianist” story from the proposed Story-Adapter (iterative), StoryGen

2024)) (AR-based), and StoryDiffusion (Zhou et al.l [2024) (RI-based), respectively.

Results. Fig. 12| shows that the visualization quality from StoryGen constantly gets worse as the
length of the story increases. In Fig. [I3] StoryDiffusion maintains high visual quality throughout
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Figure 12: Visualization results of StoryGen for the “Pianist” story. Zoom in for a better view.
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Figure 13: Visualization results of StoryDiffusion for the “Pianist” story. Zoom in for a better view.

the story, but it suffers from the flaw in the beginning frame that serves as the reference image, e.g.,
“closed-eye”. In addition, the subject “the character 1900” is not consistently generated as baby,
kid, and adult. In contrast, our Story-Adapter effectively achieves high-quality story visualization
and addresses the aforementioned limitations (see Fig. [T4).

E.2 LONGER STORY VISUALIZATION RESULTS

In Fig.[T3] we show the visualization results of the long story (up to 100 frames).

E.3 DIFFERENT STYLE

We provide the long story visualization results from Story-Adapter in a realistic style in Fig.[T6] The
experiment results suggest that Story-Adapter can be applied to different visual styles as well.
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Figure 15: Our long story visualization results for “Winnie the Pooh”. Zoom in for a better view.
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Figure 16: Our realistic style story visualization results for “loyal dog”. Zoom in for a better view.
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