
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

REVISIT NON-PARAMETRIC TWO-SAMPLE TESTING AS
A SEMI-SUPERVISED LEARNING PROBLEM

Anonymous authors
Paper under double-blind review

ABSTRACT

Learning effective data representations is crucial in answering if two samples X
and Y are from the same distribution (a.k.a. the non-parametric two-sample testing
problem), which can be categorized into: i) learning discriminative representations
(DRs) that distinguish between two samples in a supervised-learning paradigm, and
ii) learning inherent representations (IRs) focusing on data’s inherent features in an
unsupervised-learning paradigm. However, both paradigms have issues: learning
DRs reduces the data points available for the two-sample testing phase, and learning
purely IRs misses discriminative cues. To mitigate both issues, we propose a novel
perspective to consider non-parametric two-sample testing as a semi-supervised
learning (SSL) problem, introducing the SSL-based Classifier Two-Sample Test
(SSL-C2ST) framework. While a straightforward implementation of SSL-C2ST
might directly use existing state-of-the-art (SOTA) SSL methods to train a classifier
with labeled data (with sample indexes X or Y) and unlabeled data (the remaining
ones in the two samples), conventional two-sample testing data often exhibits
substantial overlap between samples and violates SSL methods’ assumptions,
resulting in low test power. Therefore, we propose a two-step approach: first, learn
IRs using all data, then fine-tune IRs with only labelled data to learn DRs, which
can both utilize information from whole dataset and adapt the discriminative power
to the given data. Extensive experiments and theoretical analysis demonstrate that
SSL-C2ST outperforms traditional C2ST by effectively leveraging unlabeled data.
We also offer a stronger empirically designed test achieving the SOTA performance
in many two-sample testing datasets.

1 INTRODUCTION

Two-sample tests aim to solve the problem of “Whether two samples are drawn from the same
distribution?”. Classical two-sample tests, including t-tests which test the empirical mean differences
between two samples, often need to assume that samples are drawn from specific distributions (e.g.,
Gaussian distributions with the same variance). To alleviate the strict assumptions, non-parametric
two-sample tests are proposed to solve the problem only based on observed data (Gretton et al.,
2012a;b; Heller & Heller, 2016; Székely & Rizzo, 2013; Jitkrittum et al., 2016; Chen & Friedman,
2017; Ghoshdastidar et al., 2017; Lopez-Paz & Oquab, 2018b; Ramdas et al., 2017; Sutherland et al.,
2017; Gao et al., 2018; Ghoshdastidar & von Luxburg, 2018; Lerasle et al., 2019; Liu et al., 2020;
Kirchler et al., 2020; Kübler et al., 2020; Cheng & Xie, 2021; Kübler et al., 2022; Kübler et al., 2022;
Liu et al., 2021; Deka & Sutherland, 2023; Bonnier et al., 2023).

For example, the Kolmogorov-Smirnov (K-S) test is designed to compare the cumulative distribution
functions derived from two samples, but it can only be effective in extremely low-dimensional data
(Kolmogorov, 1933; Smirnov, 1948). The maximum mean discrepancy (MMD) test adopts the kernel
mean embedding of distribution and uses it to measure the discrepancy between two distributions
Gretton et al. (2012a). The statistics used in these non-parametric two-sample tests are also widely
adopted in many other fields, such as domain adaptation, causal discovery, generative modeling,
adversarial learning, and more (Gong et al., 2016; Bińkowski et al., 2018; Stojanov et al., 2019; Cano
& Krawczyk, 2020; Oneto et al., 2020; Gao et al., 2021; Fang et al., 2021b; Zhong et al., 2021; Fang
et al., 2021a; Song et al., 2021a; Tahmasbi et al., 2021; Taskesen et al., 2021; Bergamin et al., 2022).
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To improve the test power of non-parametric two-sample tests in practical applications, recent studies
have shown that learning good data representations is crucial before performing two-sample testing
(Kirchler et al., 2020; Liu et al., 2020; 2021; Gao et al., 2021; Bergamin et al., 2022). For example,
Kirchler et al. (2020) directly use a pre-trained feature extractor to extract features of two samples
and find it is useful to increase the test power during the testing. Meanwhile, Liu et al. (2020) propose
a unified learning paradigm to learn deep-net representations of data via maximizing the test power of
MMD and show that the learned representations can help capture the difference between two samples.
Recently, Biggs et al. (2023) point out that, after discarding the sample information (namely, we do
not know which sample the data belongs to), learning representations from whole samples will not
influence the type I error of permutation-based testing methods, which further justifies the correctness
of learning good representations for testing.

unsupervised
model

supervised
model

remove
labels

permutation
test

permutation
test

(b) supervised paradigm    

train test
split

(a) unsupervised paradigm    

training

supervised
model

testing
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     = Index Y
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Figure 1: Visualisation of two learning paradigms. Blue color
represents data with sample index X, red color represents
data with sample index Y, and transparent represents data
without sample index information. The square represents
original input samples, the circle represents the inherent
representations (IRs) learned from unsupervised model, and
the triangle represents the discriminative representations
(DRs) learned from supervised model.

Two learning paradigms and their
issues. There are two main data rep-
resentation learning paradigms in the
two-sample testing field: 1) the su-
pervised paradigm; and 2) the unsu-
pervised paradigm (see Figure 1). In
paradigm 1), we first split samples
into training and testing sets, then
learn a representation extractor to ob-
tain two samples’ discriminative rep-
resentations (DRs) (Sutherland et al.,
2017; Lopez-Paz & Oquab, 2018b;
Liu et al., 2020; 2021). In paradigm
2), we can learn a representation ex-
tractor based on data from the whole
samples after discarding the sample
information (Biggs et al., 2023). For
example, unsupervised learning can
be used to learn inherent representa-
tions (IRs) of samples (Biggs et al.,
2023).

Although the supervised paradigm has obtained success in many fields (Gao et al., 2021; Bergamin
et al., 2022), we have to use part of samples to train a good classifier (Lopez-Paz & Oquab, 2018b)
or a kernel function (Liu et al., 2020), which will cause fewer samples are used in the final testing
procedure. Namely, the procedure of splitting samples into training and testing sets will naturally
lower the test power. There has to be a trade-off between the extra power provided by the learned
functions/kernels and the sacrificed power due to the sample-splitting procedure. For example, Biggs
et al. (2023) recently reveal that combining several pre-defined kernels on the whole samples can
provide higher test power compared to deep-kernel MMD test (Liu et al., 2020) on some datasets,
indicating that, in some cases, the sacrificed power might be higher than the extra power provided by
learned functions or kernels.

In the unsupervised paradigm, researchers try to develop testing methods that do not need the data-
splitting procedure. To avoid sacrificing power from the data-splitting procedure, Kübler et al. (2020)
propose a new testing method based on the linear-time estimator of MMD and the selective inference
framework. Because Kübler et al. (2020) use a linear-time estimator of MMD, there is a test-power
reduction compared to the U-statistic or V-statistic of MMD. Then, Schrab et al. (2023) and Biggs
et al. (2023) propose new ways to combine several kernels in a given candidate set and perform the
two-sample testing directly on the whole samples. Empirical experiments support that their newly
proposed statistic, MMD-FUSE, enjoys even higher test power than the most effective method in the
first paradigm given a good candidate set. However, there is still an open question in this paradigm:
can we always expect a relatively good kernel in the candidate set for any given two samples?

Motivation. Based on the development of the two-sample testing methods reviewed above, it can
be seen that both the supervised paradigm and unsupervised paradigm have their own issues. For
the supervised paradigm, we have to use a relatively large amount of data to ensure that we can
learn a good function or kernel, resulting in a possibly higher sacrificed power. For the unsupervised
paradigm, a good candidate set is key but we do not have supervision to find such a candidate set.
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Figure 2: Visualisation of first two dimensions of samples for different levels of the HDGM dataset
whose dimension is 10. For the HDGM-Easy and HDGM-Medium, the cluster mean difference ∆µ

within the same distribution is 10, while for the HDGM-Hard, ∆µ is 0.5. For the HDGM-Easy, the
distribution mean difference ∆q between P and Q is 5, while for HDGM-Medium and HDGM-Hard,
∆q is 0. Other setting of how to generate HDGM dataset is described in Appendix C.4

Thus, to obtain a better two-sample testing method, we might aim to reduce the requirement of a
large training set in the supervised paradigm or to provide supervision to find a good kernel in the
unsupervised paradigm. The first aim is quite similar to the advantage that semi-supervised learning
(SSL) can bring in classification: Given many unlabeled data, SSL methods can help us obtain a good
classifier even the training set is small (Balcan & Blum, 2010).

Our contributions. In this paper, we revisit the non-parametric two-sample testing as an SSL
problem and propose an SSL-based classifier two-sample test (SSL-C2ST). SSL-C2ST extends the
state-of-the-art (SOTA) two-sample testing method C2ST by incorporating SSL methods.

In our experiments, we firstly implemented several SOTA SSL methods, depending on different SSL
frameworks, such as consistency regularization (CR) (Xie et al., 2020), pseudo labeling (PL) (Lee
et al., 2013), generative models (GM) (Kingma & Welling, 2013), and hybrid methods (HB) (Sohn
et al., 2020), within the C2ST framework. However, the result was not satisfactory (see Table 1),
because two-sample testing fundamentally differs from typical classification tasks; it is a problem
of distinguishing between two distributions (or saying two samples) rather than an instance-level
classification. Furthermore, the high degree of overlap between the two samples in testing dataset
challenges the basic assumptions of these SSL methods, such as HDGM in Figure 2b and Figure 2c,
where two distributions are largely overlapped, violating the assumptions of many SSL methods.

This violation of assumptions leads SSL methods to have low test power in two-sample testing. Our
method, SSL-C2ST, is implemented in two phases. At first, we learn the IRs from whole dataset in
an unsupervised autoencoder-based representation learning (Tschannen et al., 2018a). Following this,
we apply the C2ST framework, not by training an randomly initialized classifier, but by fine-tuning
the pre-trained encoder with an added classification layer in order to learn the DRs.

We provide the first theoretical analysis to show that, with a high probability, involving a larger testing
set (without sample information) in the training process will lead to a higher lower bound of the test
power of SSL-C2ST, verifying the effectiveness of SSL-C2ST in theory. Besides, the empirical test
power on three benchmark datasets also shows that SSL-C2ST clearly outperforms C2ST.

On the empirical side, we are also interested in the data representations extracted by the trained
classifier in SSL-C2ST. We perform MMD tests (with a linear kernel) on the different-level data rep-
resentations of the testing set, called SSL-C2ST-M. These tests clearly outperforms the corresponding
baselines empirically. Notably, SSL-C2ST-M outperforms the MMD with the deep kernel (MMD-D
(Liu et al., 2020)) and MMD-FUSE (Biggs et al., 2023) on the MNIST and ImageNet dataset.

Impact of our study in the field. The success of SSL-C2ST(-M) might provide evidence that
SSL-based testing methods have the potential to overcome the key issues of both paradigms. For the
supervised paradigm, SSL-based testing methods can leverage the useful information in the testing set
(without sample information), thus we can expect either to use a smaller training set (sacrificing less
power) or to learn a better function/kernel (more extra power) with the help of the useful information
in the testing set. For the unsupervised paradigm, SSL-based testing methods might provide some
supervision to guide the learning process of unsupervised learning or to form a better candidate set
that contains a function/kernel that can help distinguish between two samples better.
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Table 1: Result of C2ST test power on HDGM-Easy, HDGM-Medium and HDGM-Hard (d=10), on
different total size of two samples N inputed in 100 trials. Compared to other application of SOTA
SSL methods on C2ST, where C2ST-CR, C2ST-PL, C2ST-GM, and C2ST-HB represent that we
learn the classifier of C2ST using consistency-regularisation, pseudo-labelling, generative-model,
and hybrid SSL frameworks, respectively, and SSL-C2ST is our method. 2

Method HDGM-Easy HDGM-Medium HDGM-Hard

N=60 N=80 N=100 N=2000 N=3000 N=4000 N=4000 N=6000 N=8000

C2ST 0.64 0.91 0.99 0.44 0.82 0.97 0.29 0.49 0.78
C2ST-CR 0.65 0.92 1.00 0.40 0.84 0.97 0.32 0.42 0.75
C2ST-PL 0.72 0.96 0.99 0.40 0.76 0.93 0.36 0.45 0.77
C2ST-GM 0.64 0.92 1.00 0.43 0.85 0.97 0.22 0.40 0.72
C2ST-HB 0.99 1.00 1.00 0.25 0.43 0.58 0.28 0.43 0.65

SSL-C2ST 0.97 0.99 1.00 0.58 0.97 1.00 0.50 0.81 0.99

2 PRELIMINARY

Two-sample Test. Two-sample test is one of the statistical hypothesis tests that aims to assess
whether two independent identically distributed i.i.d. samples, denoted by SP = {xi}ni=1 ∼ Pn

and SQ = {yj}mj=1 ∼ Qm, where xi, yj ∈ X , are drawn from the same distribution (Lehmann &
Romano, 2005). In two-sample testing, the null hypothesis H0 refers to two samples sourcing from
the same distribution, which stands for P = Q. The alternative hypothesis H1 indicates that two
samples are drawn from different distributions, meaning P ̸= Q. Whether we should accept or reject
H0 depends on the test statistic t̂, which represents the differences between two samples.

Classifier Two-sample Test (C2ST). The idea of C2ST is to use a supervised classification algorithm
to distinguish between the two samples. If the classifier performs significantly better than random
guessing, it suggests that two samples come from different distributions (Lopez-Paz & Oquab, 2018b):

Problem Setting. In our problem setting, we assume the total number of two samples are fixed
and given, and we are trying to distinguish whether these two given samples are from the same
distribution or not. No more extra data is provided for testing data and the test data is known, so it can
be regarded as a transductive learning problem. Thus, the C2ST is conducted in the following steps:

Firstly, construct the dataset S = {(xi, 0)|xi ∈ SP }ni=1∪{(yj , 1) ∈ SQ}mj=1 := {(zk, lk)}m+n
k=1 ∼ D,

where m = n; then shuffle and split S into Str and Ste, where S = Str ∪ Ste. Let f∗ : X → {0, 1}
be a binary classifier that is trained on Str from a concept class C and pk = p(lk = 1|zk), where

f∗ = argmin
f∈C

∑
(zk,lk)∈S

− [lk log pk + (1− lk) log (1− pk)] ,

and f∗(zk) be the estimate of the conditional probability distribution I
(
p(lk = 1|zk) > 1

2

)
, the

statistic or the accuracy of the classifier f∗ on Ste can be written as:

t̂ =
1

nte

∑
(zk,lk)∈Ste

I [f∗(zk) = lk] , (1)

where nte = |Ste| and I is the indicator function. Finally, we compute the p-value to determine if the
test statistic is significantly greater than the random guessing accuracy, utilizing the approximate null
distribution of C2ST outlined in Appendix D.1 and the permutation test discussed next.

Testing with t̂. According to the standard central limit theorem (Serfling, 2009), the test statistic t̂
in Eq. (1) converges to normal distributions under both the null or alternative hypothesis. Although it
is viable for us to derive the threshold tα of the null hypothesis distribution and perform a traditional
Z-Test, it is simpler and faster to instead implement a permutation test (Sutherland et al., 2017). We
will permute and randomly assign samples to new Ste′

P and Ste′

Q for n times. Under H0, the samples
from P and Q should be interchangeable, implying that the test statistic t̂ should exhibit minimal
variation between its value based on the original sequence of samples and its computation from
several randomly permuted sequences. Thus, if the original test statistic is large enough than most of
the statistic derived from the randomly permuted sequences, we can conclude that we reject H0.
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C2ST-based MMD (C2ST-M). Moreover, we can also consider using a trained classifier in C2ST to
extract representations of two samples, and then regard representations of two samples as the new
two samples. For these new two samples, we can use MMD (with a linear kernel) to compute the
difference between two samples. Let Ste

P and Ste
Q be the splitting samples of SP and SQ in the testing

set Ste and ntex and ntey be the sample size of Ste
P and Ste

Q . In general, the statistic used in C2ST-M is

t̂M =

∥∥∥∥∥∥ 1

ntex

∑
xi∈Ste

P

h(xi)−
1

ntey

∑
yi∈Ste

Q

h(yi)

∥∥∥∥∥∥
2

2

, (2)

where h is the feature extractor (could be the model’s output, i.e., logit), or the model’s hidden-layer
output, and ∥ · ∥2 is the L2 norm. When h is logits, C2ST-M is known as C2ST-L in (Liu et al., 2020).

3 REVISIT NON-PARAMETRIC TWO-SAMPLE TEST AS A SEMI-SUPERVISED
LEARNING PROBLEM

This section presents two research questions that we will address in the paper. As both existing
two-sample testing paradigms have their own limitations, our first research question comes out

3.1 IS IT POSSIBLE TO BOTH ELIMINATE THE SIDE-EFFECT OF DATA SPLITTING AND OBTAIN
THE HIGH DISCRIMINATIVE POWER?

Except the supervised paradigm and unsupervised paradigm, the semi-supervised one is another
well-known paradigm. According to the definition of SSL, SSL can leverage the information P (x)
from unlabeled data to help the inference of P (y|x) (Chapelle et al., 2006). If the unlabeled data
degrades prediction accuracy by misguiding the inference (e.g., due to violating the assumptions of
SSL techniques), then that cannot be classified as effective SSL method. As we attempt to utilize the
information from the unlabeled testing data to increase the test power of the supervised two-sample
testing methods, SSL techniques seem to be reliable to solve that research question. However, since
we are the first to frame two-sample testing as a SSL problem, we have to be responsible to evaluate
whether current SSL techniques can be directly applied on the supervised two-sample testing methods.

3.2 CAN SOTA SSL TECHNIQUES BE SUCCESSFULLY APPLIED ON SUPERVISED TWO-SAMPLE
TESTING METHODS?

This question is worthy to investigate, since in the definition of SSL, the consequence of failure in
applying SSL techniques is highlighted, which can lead to a worse performance than the original
supervised method. Thus, we will firstly conduct motivation experiments to directly apply the main
SOTA SSL techniques on the SOTA supervised two-sample testing method C2ST to examine the
fitness of SSL assumptions on the two-sample testing data. If it fails, we will propose a viable method
that can utilize the information from the unlabeled testing dada, which can pave the way for the
further advanced techniques to be applied.

4 CAN WE DIRECTLY APPLY SSL METHODS IN TWO-SAMPLE TESTING?

In this section, we will discuss the key assumptions of traditional SSL methods. Then, we will
analyze whether we can directly apply those methods in our two-sample testing scenarios.

Assumptions of SSL methods. In principle, incorporating unsupervised information from unlabeled
data has the potential to enhance the predictions made by purely supervised learning models. However,
the efficacy of SSL is often relied on some assumptions below (Chapelle et al., 2006).

• Smoothness assumption: If points x1 and x2 are close, then so should be their labels y1, y2.
• Cluster assumption: If points are in the same cluster, they are likely to be of the same class.
• Manifold assumption: The (high-dimensional) data lie (roughly) on a low-dimensional manifold.

2The result does not include standard deviation, since each trial we are testing whether two groups of drawn
sample are from same distribution, and the result of each trial is either 0 or 1.
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Based on those assumptions, there are five representative SSL frameworks (Yang et al., 2023):
consistency-regularisation (Xie et al., 2020), pseudo-labelling (Lee et al., 2013), graph-based (Song
et al., 2021b), generative-models (Kingma & Welling, 2013) and hybrid (Sohn et al., 2020) SSL
methods. The details of SSL methods are demonstrated in Appendix B.

Testing data might not satisfy the assumptions made by many SSL methods. In the traditional
two-sample testing problem settings, there are normally overlapping between two samples. As we
can see in Figure 2b and Figure 2c, for the HDGM-Medium and HDGM-Hard datasets, there are
high-overlapping areas between two distributions. This will highly violate the first two assumptions
of SSL mentioned above. For the smoothness assumption, our dataset will have exactly the same data
point in two samples, but allocated with different labels, this will notably influence the SSL methods
that based on such assumption. For cluster assumptions, we can see in HDGM-Medium, although
there are two obvious clusters, they are not have same labels within the same cluster.

Empirical result for validity of SOTA SSL methods on two-sample testing. The empirical
results, presented in Table 13, show that the application of SOTA SSL methods on C2ST not only
underperforms our proposed method but also often yields poorer results compared to the original
C2ST on HDGM-Medium and HDGM-Hard datasets, which are the common overlapping distribution
data in the context of two-sample testing. This underperformance can be attributed to the fundamental
nature of the two-sample testing problem, which is distinct from typical classification tasks. In
two-sample testing, the two input samples should not inherently possess class labels. During training,
we manually assign labels to facilitate distinction by the classifier, whereas in testing, we consider
the two samples holistically rather than focusing on individual instance accuracy. Furthermore,
standard SSL methods, which primarily enhance classification through data augmentation based on
smoothness assumptions or infer pseudo labels based on clustering assumptions, aim to generate
high-confidence training data. However, in two-sample testing, these approaches are flawed; data
augmentation may alter the samples’ distributions, and pseudo label inference often proves inaccurate.
These discrepancies lead to the ineffectiveness of these SSL methods in two-sample testing contexts.
Therefore, we propose a two-sample test through a two-phase SSL approach, shown below.

5 HOW TO UTILIZE UNLABELLED DATA INCREASING TEST POWER?

In this section, we introduce the structure design and the algorithm of our SSL-C2ST, and then we
offer theoretical analysis to validate the effectiveness of our method.

5.1 OUR PROPOSAL: SSL-C2ST

As the two-sample testing problem violates the native assumptions of SOTA SSL methods, we
propose a pipeline that follows the definition of SSL, which utilizes the unlabelled samples and
labelled samples in two phases. The first phase is an unsupervised auto-encoder-based (AE-based)
representation learning, which learns a feature extractor that captures the inherent features for both
samples. The next phase is the same as the C2ST pipeline, where the feature encoder in the model is
not randomly initialized, but extracted from the representation learning in the previous phase. The
ablated part of this approach compared to the C2ST is the AE-based representation learning, so its
effectiveness will be aligned with AE-based representation learning, which relies on the manifold
assumption, and that is particularly well-suited for two-sample testing scenarios The paradigm of
SSL-C2ST is shown in Figure 3, consisting of three steps: 1) learning IRs; 2) learning DRs; and 3)
performing two-sample testing.

Since SSL-C2ST has the same classifier architecture as C2ST but with different training objectives,
we need to decompose the classifier model f into two parts: a feature extractor ϕ ∈ F : X → Rk

that used to learn IRs and followed by a classifier g ∈ G : Rk → {0, 1} that used to learn DRs.
We denote by ϕf and gf the feature extractor and the classifier of a specified model f . Then, let
f ′ ∈ Cϕ : X → {0, 1} be the SSL-C2ST classifier model, where Cϕ = {f ′|f ′ = g ◦ ϕ, g ∈ G} ⊆ C
and C =

⋃
ϕ∈F Cϕ. Given two available samples SP and SQ, and construct a dataset S referred to

the problem setting in Section 2.

3The experimental details of this table can be found in Appendix B, where all SSL methods and how to use
these methods in testing are introduced.
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SSL-C2ST Pipeline

Original C2ST Pipeline
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Figure 3: Overview of the SSL-C2ST paradigm compared to original C2ST paradigm. Firstly, an
encoder was learned from unsupervised AutoEncoder-Based representation learning on whole data.
Secondly, fine-tune the learned encoder followed by the supervised learning in C2ST. At last, perform
the permutation test based on the model and the output statistics.

Learning IRs. The first step is to train a representation learning model on the whole unlabelled
dataset Sunl, using the mean squared error (MSE) as the loss function to compare the differences
between input and reconstructed output. Specifically, we aim to learn a function ϕ∗ such that

ϕ∗ = argmin
ϕ

1

|Sunl|
∑

zi∼Sunl

∥ψ(ϕ(zi))− zi∥22 , (3)

where ψ : Rk → X is the decoder, and ϕ∗(zi) is called the IR of zi.

Learning DRs. Then, utilize the featurizer from the representation learning model and concatenate
with a classification layer to form a binary classifier model. The combined model is fine-tuned on
Str, applying a cross-entropy (CE) loss function to compare the output of SSL-C2ST with the label
of samples. Specifically, we aim to learn a function g∗ such that Pr(zi,li)∼S [g ◦ ϕ∗(zi) ̸= li] can be
minimized on S, which can be implemented by the following surrogate objective.

g∗ = argmin
g
L(g ◦ ϕ∗) = argmin

g

1

|Str|
∑

(zi,li)∼Str

−[li log pi + (1− li)(1− log pi)], (4)

where pi is defined in the problem setting in Section 2. In this paper, g∗ is a neural network consisting
of multiple layers, so g∗ can be expressed by g∗ = h∗ ◦ h∗rep where h∗rep ∈ {hrep : Rk → Rdrep} and
h∗ ∈ {h : Rdrep → {0, 1}}. Normally, we call h∗ as a classification head and h∗rep as a representation
function. Thus, a DR of zi is h∗rep ◦ ϕ∗(zi).

Testing. In the end, compute the test statistic in Eq. (1) (by setting f ′∗ as g∗ ◦ ϕ∗) based on the
original sequence of samples and the r times permuted samples, reject H0 if original statistic is larger
than the threshold derived from permuted statistics.

Overall algorithm. The procedure of how to implement SSL-C2ST is summarised in Algorithm 1 of
the Appendix A. Note that, in Eq. (4), we can also consider continuing optimizing ϕ∗, which can
increase the complexity of trainable classifiers, if the data is very complex.

5.2 THEORETICAL ANALYSIS OF SSL-C2ST

In this section, we discuss what the approximated power of our SSL-C2ST test is and how the size of
unlabelled data mu helps to improve test power.

Test Power. Test power is the probability that a test will correctly reject H0, when H1 holds. It
represents the ability of the test to detect the difference between P and Q, so analyzing this power is
essential for evaluating the performance of one two-sample testing method.

7
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Theorem 5.1. (Lopez-Paz & Oquab, 2018b) Let f ′ ∈ Cϕ : X → {0, 1} be the SSL-C2ST classifier
model. Let H0 : t = 1

2 and H1 : t = 1− ϵ(P,Q; f ′), where t is the test accuracy and ϵ(P,Q; f ′) =

Pr(zi,li)∼D [f ′(zi) ̸= li] /2 ∈
(
0, 12

)
represents the inability of f ′ to distinguish between P and Q.

The test power of t̂ is:

PrH1

(
t̂H0

> tα
)
= Φ

((
1
2 − ϵ(P,Q; f ′)

)√
nte − Φ−1(1− α)/2√

ϵ(P,Q; f ′)− ϵ(P,Q; f ′)2

)
, (5)

where α ∈ (0, 1) is the significance level, tα is the (1− α) quantile and Φ is the CDF of standard
normal distribution. The Type-I error of t̂ is also controlled no more than α, which ensures that the
test will not always reject H0, when H0 is true.

Understand SSL-C2ST via Theorem 5.1. In hypothesis testing, our primary aim is to maximize test
power while maintaining control over the Type-I error rate. While we know that via Theorem 5.1,
Φ−1(1− α)/2 is a constant, for a reasonably fixed large nte, the first term ( 12 − ϵ(P,Q; f ′)) in the
numerator dominates the test power. In fact, to ensure that the model can achieve the optimal test
power on a fixed test dataset, it is equivalent to minimize

J (P,Q; f ′) := ϵ(P,Q; f ′)
/
(1− ϵ(P,Q; f ′)), (6)

where we estimate it with

Ĵ (SP , SQ; f
′) := ϵ̂(SP , SQ; f

′)
/
(1− ϵ̂(SP , SQ; f

′)), and ϵ̂(SP , SQ; f
′) ∈

(
0,

1

2

)
, (7)

where ϵ̂(SP , SQ; f
′) = 1

2 êrr(f
′) = 1

2|S|
∑

(xi,li)∼S I[f ′(xi) ̸= li]. The proof of above can be found
in Appendix D.1. From Eq. (7), we can find that if we learn a classifier f ′ from Eq. (4) that has a
smaller ϵ̂(SP , SQ; f

′), we can minimize the Ĵ , leading to maxmizing the test power. Thus, we will
analyze how the use of unlabelled data and the size of unlabelled data mu helps to learn a classifier
model f ′ that have a smaller ϵ̂(SP , SQ; f

′) in the semi-supervised learning.

We first give a definition of compatibility, an important measurement when analyzing SSL methods.
Definition 5.2 (Compatibility). The compatibility of classifier model f is defined as χ : C × X →
[0, 1], and χ(f,S) = Ex∼S [χ(f, x)] estimates how “compatible” the feature extractor of f is
with fixed dataset S. Thus, the incompatibility of f with S is 1 − χ(f,S). We can also call it
unlabelled error rate errunl(ϕf ), where errunl(ϕf ) = 1− χ(f,S). Thus, given value ξ, we define
CS,χ(ξ) = {f ∈ C : errunl(ϕf ) ≤ ξ}.

Then, the following theorem shows our main theoretical result, based on the compatibility.
Theorem 5.3. Let f ′∗ = argminf ′∈Cϕ

[ϵ(P,Q; f ′)|errunl(ϕf ′) ≤ ξ]. The following holds with
probability at least 1− δ, for any arbitrarily small ∆mu,ml

> 0,

ϵ̂(SP , SQ; f
′) ≤ ϵ(P,Q; f ′∗) +

∆mu,ml

2
+

√
ln
(
4
δ

)
8mu

, (8)

with the unlabelled sample size

mu = O
(
∆−2 log∆−1 max [V Cdim (Cϕ) , V Cdim (χ(Cϕ))] + ∆−2 log(2/δ)

)
,

and the labelled sample size

ml =
8

∆2

[
log
(
2Cϕ,S,χ(ξ + 2∆) [2ml,S]

)
+ log(4/δ)

]
.

Here, χ(Cϕ) = {χf ′ : f ′ ∈ Cϕ} is assumed to have a finite VC dimension, χf ′(·) = χ(f ′, ·), and
Cϕ,S,χ(ξ + 2∆) [2ml,S] is the expected split number for 2ml points drawn from S using functions
in Cϕ ∩ CS,χ(ξ + 2∆).

The proof of Theorem 5.3 is presented in the Appendix D.2. Theorem 5.3 indicates that when we
are training model f ′, the increment in the size of unlabelled data mu can reduce the upper bound

8
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Figure 4: Test power of SSL-C2ST and C2ST. Barplot to show how SSL-C2ST outperforms C2ST in
the MNIST dataset (a), HDGM-D when d = 2 (b) and HDGM-D when d = 10 (c).

of the empirical error rate of f ′. Thus, the upper bound of the empirical inability ϵ̂(SP , SQ; f
′) will

decrease as well, leading to a direct increase on the lower bound of the approximate test power as
shown in Eq. (7). In other words, this theorem ensures the effectiveness of unlabelled data in the
improvement of SSL-C2ST test power.

6 EXPERIMENTS

In this section, we will analyze the experiment result of SSL-C2ST on two commonly used benchmark
datasets and one advanced ImageNet dataset. Also, we will discuss the empirical extensions based on
SSL-C2ST (i.e., SSL-C2ST-M), and present the comparative analysis of experimental results across
three benchmarks. The overview information of three datasets and experimental implementation
details of proposed method and other two-sample testing methods can be found in Appendix C.

Datasets. We conducted experiments on five different datasets to thoroughly evaluate our methods.
To assess the performance of current SSL methods applied to two-sample testing, we utilized three
synthetic datasets: HDGM-Easy, HDGM-Medium, and HDGM-Hard. Moreover, we conduct the
experiments of our proposed methods against other SOTA two-sample testing methods to evaluate
the effectiveness of semi-supervised paradigm on three datasets: MNIST, ImageNet, and HDGM.
Detailed descriptions of these datasets are provided in Appendix C.1.

Baselines. We evaluate the performance of our proposed methods SSL-C2ST and SSL-C2ST-M
against several SOTA baseline methods in two-sample testing, specifically C2ST, C2ST-M, MMD-D,
and MMD-FUSE. These baselines serve as competitive references to highlight the improvements
achieved by our approach. For comprehensive details on each baseline method, including their
implementations and parameter settings, please refer to Appendix C.2 and C.3.

Ablation Study: Verification of SSL-C2ST over C2ST. We first verify the effectiveness of SSL-
C2ST via comparing SSL-C2ST and C2ST, which provides empirical evidence for Theorem 5.3. The
implementation details of SSL-C2ST and C2ST can be found in Appendix C.2.

The visualized result of how our SSL-C2ST outperforms C2ST is displayed in Figure 4. In both
dataset MNIST and HDGM-Hard, we can see that the test power of SSL-C2ST is higher than that of
C2ST no matter how many numbers of two samples are drawn from the distribution. Although the
differences between two methods are little when N is small, the test power of SSL-C2ST has a huge
gap over C2ST whenN is large enough and converges to 1 with a relative smallerN compare to C2ST.
This also verifies our theoretical analysis that our model is more likely to have large improvement of
test power if the number of unlabelled samples in the semi-supervised learning is sufficiently large.

Compared to C2ST, SSL-C2ST learns a compact and potentially more informative representation
of the whole data, which makes efficient use of the unlabelled test data. This can not only discover
underlying patterns or features that might not directly related to the labels but to the data distribution
itself, but also provide a regularizing effect to prevent the model being more likely to overfit the
training data. Such featurizer in the SSL-C2ST can result in a better generalization from the learned
representations and improve the classifier’s performance on the testing set predictions.

Test-power Results of SSL-C2ST-M. After we validate the effectiveness of SSL-C2ST, we will also
introduce an advanced empirical testing method based on our SSL-C2ST: SSL-C2ST-M and how they

3The result does not include standard deviation, since each trial we are testing whether two groups of drawn
sample are from same distribution, and the result of each trial is either 0 or 1.
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Figure 5: Results on HDGM-D and HDGM-S for α = 0.05. Left: average test power (a) and average
type-I error (b) when increasing total two sample size N from N = 1000 to N = 10000, keeping
d = 10 in 100 trials. Right: average test power (c) and average type-I error (d) when increasing N
from N = 1000 to N = 10000, keeping d = 2 in 100 trials.

Table 2: MNIST and ImageNet (α = 0.05). Average test power for comparing M real MNIST
images to M DCGAN-generated MNIST images, and Average test power for comparing M real
ImageNet images to M StyleGAN-XL-generated ImageNet images. 5

Method MNIST ImageNet

M=200 M=400 M=600 M=800 M=1000 Avg. M=200 M=400 M=600 M=800 M=1000 Avg.

C2ST 0.180 0.720 0.980 1.000 1.000 0.776 0.150 0.300 0.350 0.600 0.850 0.450
C2ST-M 0.250 0.730 0.990 1.000 1.000 0.794 0.150 0.350 0.450 0.700 0.850 0.500
MMD-D 0.290 0.996 1.000 1.000 1.000 0.857 0.210 0.400 0.570 0.780 1.000 0.592
MMD-FUSE 0.320 0.870 1.000 1.000 1.000 0.838 0.230 0.450 0.610 0.790 1.000 0.616

SSL-C2ST 0.260 0.950 1.000 1.000 1.000 0.842 0.200 0.400 0.500 0.650 0.950 0.540
SSL-C2ST-M 0.491 0.985 1.000 1.000 1.000 0.895 0.400 0.500 0.650 0.750 1.000 0.660

outperform state-of-the-art testing methods from the supervised paradigm (MMD with deep kernel)
and the unsupervised paradigm (MMD-FUSE). The implementation details of these MMD-based
methods can be found in Appendix C.3.

The overall result of all testing methods for the HDGM dataset is shown in Figure 5. We can see
that SSL-C2ST-M method has the highest test power in both the 2-dimensional HDGM-D and 10-
dimensional HDGM-D, no matter how we choose N , while all type-I errors are reasonably controlled
around α = 0.05. For MNIST and ImageNet datasets, the results of all methods are shown in Table 2,
although SSL-C2ST-M does not outperform MMD-D and MMD-FUSE in MNIST when N = 400
and in ImageNet when N = 600, it has a clear increase in the test power when N is small, leading to
a powerful average test power performance across two image datasets.

Discussion of Sequential Two-sample Testing. Moreover, sequential two-sample testing methods
also utilize information from the test data but is a different problem setting from ours. We provide de-
tailed descriptions of sequential two-sample testing in Appendix C.6, along with experimental results
C.7 demonstrating that our methods outperform these approaches within our setting. Additionally, we
discuss how our proposed paradigm can be applied to other supervised two-sample testing methods,
potentially enhancing their performance in two-sample testing.

7 CONCLUSION

Non-parametric two-sample testing is an important problem in both statistics and machine learning
fields. This paper presents a new paradigm, semi-supervised learning-based classifier two-sample test
(SSL-C2ST), to learn better data representations for addressing this problem and gives a theoretical
analysis of why the proposed paradigm can have a higher test power compared to two representative
paradigms in the field. In the end, an advanced empirical testing method, SSL-C2ST with MMD (SSL-
C2ST-M), is presented in the experiments and shows superior performance compared to previous
testing methods. Both theoretical analysis and empirical evidence show that the proposed new
paradigm might be a cure for key issues of the existing two paradigms in the two-sample testing field,
paving a new road to revisit and address the two-sample testing problem.
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A ALGORITHM

We present the complete algorithm for SSL-C2ST in Algorithm 1.

Algorithm 1 paradigm of testing with SSL-C2ST
Input: SP , SQ, S, significance level α, latent feature vector size H , an autoencoder fa consist
of a featurizer ϕ and a decoder ϕ−1 parameterized by θϕ, a binary classifier g concatenated after
featurizer parameterized by θg, SSL-C2ST model f = g ◦ ϕ, learning rate ηϕ, ηg, MSE loss
function LMSE, CE loss function LCE, total epoch for representation learning Trl, total epoch for
training classifier Tcl.
1: Derive the unlabelled data Sunl = shuffle(SP ∪ SQ)
# Phase 1: train the Featurizer ϕ from fa on Sunl
for t = 1, 2, . . . , Trl do

2: Xt ← minibatch from Sunl;
3: X ′

t ← fa(Xt);
4: θϕ ← θϕ − ηϕ∇AdamLMSE(Xt, X

′
t) based on Eq. (3);

end for
# Phase 2: train a Classifier f (consist of ϕ and g) on Str = (Str

P ,0) ∪ (Str
Q ,1)

for t = 1, 2, . . . , Tcl do
5: (Xt, lt)← minibatch from Str;
6: l̂t ← g ◦ ϕ(Xt);

7: θg ← θg − ηg∇AdamLCE(l̂t, lt) based on Eq. (4);
end for
# Phase 3: permutation test with f on Ste = Ste

P ∪ Ste
Q

8: est← t̂(Ste
P , S

te
Q ; f) based on Eq. (1);

for i = 1, 2, . . . , nperm do
9: Shuffle Ste into X and Y ;
10: permi ← t̂M(X,Y ; f)

end for
Output: I

[
1

nperm

∑nperm

i=1 I(est < permi) ≤ α
]

B OVERVIEW OF MAJOR CATEGORIES OF SOTA SSL METHODS

Building on the SSL assumptions, we will recap how contemporary SOTA SSL methods incorporate
these principles and assumptions, setting the stage for an analysis of their applicability to the specific
challenges presented by our problem setting.

Transductive vs Inductive learning. Classification tasks within machine learning can typically
be categorized within two distinct problem settings: transductive and inductive learning (Chapelle
et al., 2006). Transductive learning is concerned with predicting the labels of the specific unlabeled
data that was present during the training process, emphasizing a tailored fit to this data. Inductive
learning, on the other hand, focuses on the generalization of the learned classifier to new, unseen
data. In learnable two-sample testing, the goal is to test whether the given two samples are drawn
from same distributions. To make it, we firstly split samples into labelled set and unlabelled set,
then find out that whether it is possible to learn a classifier that can distinguish two samples from
the mixed unlabelled set. It becomes apparent that applying SSL methodologies to the two-sample
testing problem inherently requires a transductive learning approach. This conceptual groundwork
necessitates a detailed examination of current SSL methods to identify their foundational assumptions
and evaluate their performance in two-sample test scenarios.

Major categories. Currently, we identify that there are five main categories of SOTA SSL methods:
consistency regularisation, pseudo-labelling, graph-based, generative models and hybrid (often
a combination of consistency regularisation and pseudo-labelling) (Yang et al., 2023). We will
succinctly explicate how they work, and how they are applied for our downstream two-sample testing
tasks in the experiments of various levels of HDGM.
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• Consistency Regularisation: Based on the manifold assumption or the smoothness assump-
tion, the consistency regularisation methods apply consistency constraints to the final loss
function, where the intuition is that if the data follows the smoothness assumption or man-
ifold assumption, even though we construct some perturbations in the inputs, it will not
influence the output of classification (Xie et al., 2020).

• Pseudo-Labelling: Pseudo-labelling uses its own predictions to generate labels for unlabeled
data, which are then used to further train the model. It relies on the assumptions that
model’s high-confidence predictions are accurate. This assumption is based on the cluster
assumption for the validity and efficacy of propagating labels to unlabelled data based on
model predictions (Lee et al., 2013).

• Graph-Based: Graph-based methods will construct a similarity graph based on the raw
dataset, where each node represents a data instance, and weighted-edge represents the
similarity between two data instances. Based on the smoothness assumption, the label
information can be propagated from labelled nodes to unlabelled nodes, if two nodes are
closely connected in the constructed graph (Song et al., 2021b).

• Generative Models: Generative methods learn to model the underlying distribution of both
labelled data and unlabelled data, using this learned representation to generate new data
points and infer missing labels. Based on the manifold assumption, the generative models
aim to learn the underlying low-dimensional manifold and generate data points that adhere
to the same manifold, used for further model training (Kingma & Welling, 2013).

• Hybrid: Hybrid methods are just combination of multiple methods, such as consistency
regularisation, pseudo-labelling, and sometimes generative approaches. These models
typically rely on the smoothness assumption and cluster assumption, in order to infer the
labels of unlabelled data (Sohn et al., 2020).

C EXPERIMENTAL DETAILS

C.1 OVERVIEW OF DATASETS

High-Dimensional Gaussian mixtures. The high dimensional Gaussian mixtures (HDGM) bench-
mark is a synthetic dataset that is composed of multiple Gaussian distributions, each representing
a cluster, which is proposed by Liu et al. (2020). In our experiments, we are considering bimodal
Gaussian mixtures, which means the number of clusters remains 2 irrelevant to the dimension of
the multivariate Gaussian distributions. In Section 4, we consider there are three levels of HDGM,
which are HDGM-Easy, HDGM-Medium and HDGM-Hard in order to specify that most SOTA SSL
methods are not suitable for two-sample testing problems. In other places rather than Section 4, we
regard HDGM as HDGM-Hard. Under H0, P and Q are the same, which denoted as HDGM-S; and
under H1, we slightly modify a mild covariance ±0.5 between first two dimensions in the covariance
matrix of Q and other setups are the same as HDGM-S, which is referred to as HDGM-D. Thus,
HDGM-S and HDGM-D are both noted by hard-level HDGM. The details of how to synthesize P and
Q to derive HDGM-Easy, HDGM-Medium, HDGM-Hard, HDGM-S and HDGM-D are described
in Table 3. We regard n as the number of samples drawn from each cluster in each distribution and
N as the number of total samples drawn from both P and Q, where N = n × c × 2. We conduct
two experiments on HDGM-D, increasing the N from N = 1000 to N = 10000 when keeping the
dimension d remain the same. One experiment is a low-dimensional HDGM-D with d = 2 and
another is a high-dimensional HDGM-D with d = 10. Moreover, we conduct both low-dimensional
and high-dimensional HDGM-S to show that the type-I error is controlled. The result is shown in
Figure 5, which will be analyzed in the section 6.

MNIST vs MNIST-Fake. The MNIST datasets is a collection of 70,000 grayscale images of
handwritten digits, ranging from 0 to 9, divided into a training set of 60,000 images and a test of
10,000 images (LeCun et al., 1998). The MNIST-Fake is the a set of 10,000 images generated by
a pretrained deep convolutional generative adversarial network (DCGAN) (Radford et al., 2016).
The MNIST benchmark (MNIST vs MNIST-Fake) is also proposed by Liu et al. (2020), aiming
to test the performance of testing methods in the image space. Under H0, we draw samples both
from the MNIST-Fake. Under H1, we compare the samples from real MNIST, P, and samples from
MNIST-Fake, Q. We regard N as the number of samples each drawn from P and Q, where we
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increase N from N = 200 to N = 1000. The result of the average test power of all methods is
displayed in the Table 2. All methods are tested with a reasonable type-I error rate.

ImageNet vs ImageNet-Fake. The ImageNet dataset is a comprehensive collection of over 14
million labeled high-resolution images belonging to roughly 22,000 categories (Deng et al., 2009).
The ImageNet-Fake dataset comprises 10,000 high-quality images generated using the advanced
StyleGAN-XL model, a state-of-the-art generative adversarial network designed for large and diverse
datasets (Sauer et al., 2022). This benchmark (ImageNet vs ImageNet-Fake) extends the framework
established by Liu et al. (2020) to a more complex and diverse image domain, testing the robustness
of two-sample testing methods at a larger scale. Under the null hypothesis H0, samples are drawn
from ImageNet-Fake, while under the alternative hypothesis H1, we compare samples from the real
ImageNet dataset, P, with those from ImageNet-Fake, Q. We vary the number of samples drawn
from each, P and Q, from N = 200 to N = 1000 to examine the scalability of the test methods. The
outcomes in terms of average test power across various methodologies are summarized in Table 2,
with all tests maintaining a reasonable type-I error rate.

C.2 IMPLEMENTATION DETAILS OF C2ST AND SSL-C2ST

• C2ST: a C2ST uses statistic in Eq. (1) to measure the difference of two samples. Rather
than 3 phases described in the Algorithm 1, C2ST-based methods is purely supervised with
only 2 phases. Implementation of C2ST paradigm is to only take Phase 2 and Phase 3 from
Algorithm 1. Most of the implementation details are referenced from Lopez-Paz & Oquab
(2018a) and Liu et al. (2020). The splitting portion of training and testing is always half to
half, and the model architecture is the same for C2ST and SSL-C2ST, where first few layers
are feature extractor and followed by a classification layer. Moreover, in the first step of
Phase 3, we do not utilize the the softmax probability of the first value of the logits returned
by the classifier to calculate the statistic of two samples, we apply Eq. (1) which directly
derive the mean of the classification prediction accuracy of two samples.

• SSL-C2ST: a SSL version of C2ST. Most of the implementation details are described in the
Algorithm 1, except we replace the way of calculating a statistic from Eq. (2) to Eq. (1).

In C2ST, we have a classifier f consisting of a randomly initialized feature extractor ϕθ(x) followed
by a logistic regression layer with parameters w and b, where

f(x) = ϕθ(x)×w + b.

As the f is a binary classifier, f(x) = [z0, z1] and softmax(f(x)) = [p0, p1], where p0 + p1 = 1. All
parameters θ,w and b are updated through the supervised learning on the training set, which aims to
minimize the occurrence of incorrect predictions. Then, use the empirical probability of the correct
predictions on an unseen testing set to measure the difference between two samples.

However, in SSL-C2ST, we have g consisting of a feature extractor ϕa(x) trained on Str
P ∪Ste

P ∪Str
Q ∪

Ste
Q without labels via unsupervised learning and a logistic regression layer for subsequent supervised

training purpose. In the unsupervised learning step, we use ϕa(x) to extract a latent feature vector z
from the input x, and then use a decoder ϕ−1

a (x) to reconstruct z to a reconstructed x′. We update the
parameters of ϕa by minimizing the difference between the reconstructed input x′ and the original
input x. After the unsupervised training procedure, we add a classification layer after ϕa to form a
classifier g, and train the classification layer in the same way as the C2ST.

C.3 DETAILS OF SSL-C2ST-M AND OTHER MMD BASED METHODS

We first introduce SSL-C2ST-M and compare the following state-of-the-art testing methods on two
benchmark datasets:

• SSL-C2ST-M: An advanced SSL-C2ST-based method. Rather than using the prediction
labels (0 or 1) to measure the test accuracy, we utilize MMD to calculate the differences
between output features extracted from the SSL-C2ST. The output features could be the
output of the hidden layer or the logits output of the classifier trained by the SSL-C2ST, as
we discuss in Section 5.1.
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• C2ST-M: a C2ST-based method that is the same as C2ST, except it uses the statistic in
Eq. (2) to measure the absolute mean differences between the probability of the logits of
two samples, as we discuss in the Section 2. In Liu et al. (2020), this method is also called
C2ST-L where L refers to logit.

• MMD-D: MMD with a deep kernel (Liu et al., 2020); a state-of-the-art testing method in the
supervised paradigm. MMD-D learns a deep kernel by directly maximizing the test power
of MMD, leading to an increase in test power on the testing set.

• MMD-FUSE: a state-of-the-art testing method in the unsupervised paradigm. It fuses several
MMD statistics based on the simple kernel of different combinations of hyperparameters
into a new powerful statistic, then conducts a permutation test based on the fused statistic
(Biggs et al., 2023).

C.3.1 IMPLEMENTATION DETAILS OF SSL-C2ST-M

In the implementation of SSL-C2ST-M, the classifier is trained with the same way as how we do in the
SSL-C2ST. However, SSL-C2ST-M is more flexible in the procedures of testing. For datasets whose
input vector size is small in SSL-C2ST, such as HDGM, we use the absolute value of differences
between the mean of p0 of samples from P and that of samples from Q. It measures the mean
probability that samples will be classified label 0 by SSL-C2ST. For image datasets that have large
input vector size, such as MNIST, we use the hidden-layer output of the classifier trained by the
SSL-C2ST, whose input vector size is 100, to compute the MMD between the features extracted from
two samples. For high-dimensional image datasets, the latent vector with a larger size can contain
more useful information to measure the difference between two extracted features.

C.4 DETAILS OF HDGM DATASETS

Table 3 displays the details of how HDGM datasets are generated (Liu et al., 2020). Different levels
of HDGM datasets are first proposed in this paper, in order to show why SOTA SSL methods cannot
be directly applied in the two-sample testing problem. The level of HDGM is differed from whether
the data points are highly overlapping or whether the clusters within the same distribution are isolated.
For the HDGM-Easy, ∆µ = 10 and ∆q = 5. For the HDGM-Medium, ∆µ = 10 and ∆q = 0. For
the HDGM-Hard, ∆µ = 0.5 and ∆q = 0.

Table 3: Details of how to synthesize P and Q in the experiments. Let c = 2 be the number of the
clusters in each distribution, d > 2 be the dimension of multivariate normal distribution of each
cluster. (µ1, . . . ,µc) is a set of d-dimensional mean vector µi that specifies that mean of each
dimension in the distribution, where µ1 = 0d,µi = µi−1 +∆µ×1d. Id is the d× d identity matrix,
∆µ is the cluster mean difference within the same distribution, and ∆q is the mean difference between

P and Q. ∆1 = 0.5, ∆2 = −0.5, and Σi =

 1 ∆i 0d−2

∆i 1 0d−2

0T
d−2 0T

d−2 Id−2

.

Datasets P Q
HDGM-S

∑c
i=1N (µi, Id)

∑c
i=1N (µi, Id)

HDGM-D
∑c

i=1N (µi, Id)
∑c

i=1N (µi +∆q,Σi)

C.5 DETAILS OF COMPUTING RESOURCES

The experiments of the work are conducted on three platforms. One platform is a Nvidia-4090 GPU
PC with Pytorch framework. The second platform is a High-performance Computer cluster with lots
of Nvidia-A100 GPU with Pytorch framework. The last platform is a Nvidia-4090 GPU Window
Subsystem for Linux with Jax framework. The memory of three platforms are all over 16 GB. The
storage of disk of three platforms are all over 512 GB.
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C.6 A DISCUSSION ABOUT SUPERVISED SEQUENTIAL TWO-SAMPLE TESTING AND
APPLICABILITY OF SSL-C2ST

Supervised sequential two-sample testing represents another approach to utilizing testing data (Pan-
deva et al., 2022). In this framework, a classifier is trained to determine whether two samples from
a single batch originate from the same distribution. Initially, batches are split and fed sequentially
into the classifier as testing data. Batches that do not reject the null hypothesis are concatenated with
previous batches and used as training data for the classifier, continuing until all batches are exhausted
or a single batch rejects the null hypothesis. The sequential nature of the test emerges from the use of
e-values, which are updated as more data becomes available, allowing for a dynamic assessment of
the testing hypothesis. However, this method should not be directly compared to our method due to
different problem settings and designs. Firstly, in sequential two-sample testing, data are split into
several batches and tests are conducted on single, small batches. Conversely, in other supervised
two-sample testing approaches, data are only split into two halves, creating a trade-off between the
number of training and testing samples.

Furthermore, the design of our SSL-C2ST method is compatible with any other supervised two-
sample testing framework, including sequential two-sample testing. As long as a proportion of data is
used for testing, we can remove the labels from this testing data and concatenate it into the training
data. This allows us to learn IRs through representation learning, followed by the original supervised
two-sample testing framework.

C.7 EXPERIMENT RESULT OF SEQUENTIAL TWO-SAMPLE TESTING

In this part, we will display the result of supervised sequential two-sample test that proposed by
Pandeva et al. (2022) on the HDGM-Hard dataset, and compared the result with original C2ST
and SSL-C2ST in our problem setting. We can find that even though this method can have a small
increase on the test power over the original C2ST method, but have a large decrease to our method.
The number of batches we choose is five, if we choose the number of batches to two, it is exactly
similar as C2ST; if we choose the number of batches to a large number like ten, the test power will
drop down, since the test data size will be too small. Thus, we decide five as the number of batches,
and C2ST-Sequential(5) in the Table 4 represent the supervised sequential two-sample testing with
the number of batches equal to five.

Table 4: Experiment results of test power of sequential two-sample testing with Batch5 over original
C2ST and our propose SSL-C2ST on HDGM-hard dataset. N is the total size of two samples inputed
in 100 trials.

Method N=4000 N=6000 N=8000 Avg.

C2ST-Sequential (5) 0.32 0.57 0.79 0.56
C2ST 0.29 0.49 0.78 0.52
SSL-C2ST 0.50 0.81 0.99 0.77

C.8 FUTURE WORK

Autoencoder is the basic representation learning algorithm we introduce to enhance our SSL-C2ST, we
can also replace it to more advanced representation algorithms, such as semi-supervised variational
autoencoder (VAE) (Kingma et al., 2014), β-VAE (Higgins et al., 2016), or other autoencoder-based
representation learning algorithms (Tschannen et al., 2018b).

C.9 REPRODUCIBILITY

All the reproducible code can be found in the anonymous link.
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D THEORETICAL ANALYSIS

D.1 PROOF OF THEOREM 5.1

Proof. Let f ′ ∈ Cϕ : X → {0, 1} be the SSL-C2ST classifier model which has the same model
architecture as C2ST. Recall from Eq. (1), the accuracy of f ′ on the testing set Ste is

t̂ =
1

nte

∑
(zk,lk)∈Ste

I [f ′(zk) = lk] ,

where nte = |Ste|, then we have that

Pr (I [f ′ (z) = l] = τ) =

{
p if τ = 1,

1− p if τ = 0.

Lemma D.1. Under null hypothesis H0 : P = Q, samples SP and SQ follows the same distribution,
so ntet̂ is the sum of identically distributed Bernoulli random variables with a probability of random-
guessing pH0

= 1
2 , which follows a Binomial(nte, pH0

). For a large nte and using the central limit

theorem, t̂ will converge to a N
(

1
2 ,

1
4nte

)
.

Lemma D.2. Under H1 : P ̸= Q, ntet̂ is the sum of Bernoulli random variables that may not
be identically distributed. In that way, ntet̂ follows a Poisson Binomial distribution, which can be
approximated by a Binomial(ntep̄, ntep̄(1− p̄)), where p̄ = n−1

∑m+n
k=1 pk (Ehm, 1991). For a large

nte, a central limit theorem holds that t̂ will converge to a N
(
p̄, p̄(1−p̄)

nte

)
. Let p̄ = 1− ϵ(P,Q; f ′),

where ϵ(P,Q; f ′) ∈
(
0, 12

)
represent the inability of f ′ on distinguishing between P and Q, then

t̂ ∼ N
(
1− ϵ, n−1

te (ϵ− ϵ2)
)
.

Thus, the Type-II error is defined as the probability of failing to reject H0, while H1 is actually true.
This occurs when the test statistic t̂, which follows the distribution under H1, does not exceed the
critical threshold determined by the null distribution H0 at a specified significance level α. According
to Lemma D.1, the threshold value tα can be calculated as

tα = µ+ zα × σ =
1

2
+ Φ−1(1− α)× 1√

4nte
,

combined with Lemma D.2, so the Type-II error is

β = PrT∼N(1−ϵ,n−1
te (ϵ−ϵ2)) (T < tα) = PrT∼N(1−ϵ,n−1

te (ϵ−ϵ2))

(
T <

1

2
+

Φ−1(1− α)√
4nte

)
= PrT ′∼N(0,n−1

te (ϵ−ϵ2))

(
T ′ <

Φ−1(1− α)√
4nte

+ ϵ− 1

2

)
= PrZ∼N (0,1)

(
Z <

√
nte
ϵ− ϵ2

(
Φ−1(1− α)√

4nte
+ ϵ− 1

2

))
= Φ

(√
nte
ϵ− ϵ2

(
Φ−1(1− α)√

4nte
+ ϵ− 1

2

))
= Φ

(
Φ−1(1− α)/2 +

(
ϵ− 1

2

)√
nte√

ϵ− ϵ2

)
.

Thus, the test power is

π(α, nte, ϵ) = 1−β = 1−Φ

(
Φ−1(1− α)/2 +

(
ϵ− 1

2

)√
nte√

ϵ− ϵ2

)
= Φ

((
1
2 − ϵ

)√
nte − Φ−1(1− α)/2
√
ϵ− ϵ2

)
.

As we know Φ−1(1 − α)/2 is a constant, for a reasonably fixed large nte, if we are trying to
maximizing the test power, we are actually maximize the first term of numerator, which is

J (P,Q; f ′) = max
ϵ

(
1
2 − ϵ(P,Q; f ′)

)√
ϵ(P,Q; f ′)− ϵ(P,Q; f ′)2

, where ϵ(P,Q; f ′) ∈
(
0,

1

2

)
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This is equivalent to

J (P,Q; f ′) = min
ϵ

ϵ(P,Q; f ′)√
ϵ(P,Q; f ′)− ϵ(P,Q; f ′)2

= min
ϵ

√
ϵ(P,Q; f ′)√

1− ϵ(P,Q; f ′)

= min
ϵ

ϵ(P,Q; f ′)

1− ϵ(P,Q; f ′)

The proof of equivalence can be found at the end of the proof. Since ϵ(P,Q; f ′) ∈
(
0, 12

)
, it is clear

to see that directly minimizing the ϵ(P,Q; f ′) will optimize the objectives of maximizing the test
power.

Moreover, we will show that the Type-I error is also controlled, which is the probability of reject H0,
while H0 is true:

PrT∼N( 1
2 ,

1
4nte

) (T > tα) = PrT∼N( 1
2 ,(4nte)−1)

(
T >

1

2
+

Φ−1(1− α)√
4nte

)
= PrT ′∼N (0,(4nte)−1)

(
T ′ >

Φ−1(1− α)√
4nte

)
= PrZ∼N (0,1)

(
Z > Φ−1(1− α)

)
= 1− PrZ∼N (0,1)

(
Z < Φ−1(1− α)

)
= 1− Φ

(
Φ−1(1− α)

)
= α,

Proof of equivalence.

If we define f(ϵ) = 1/2−ϵ√
ϵ−ϵ2

, g(ϵ) = ϵ√
ϵ−ϵ2

and D(ϵ) =
√
ϵ− ϵ2, where ϵ ∈ (0, 12 ). The equation

maxϵ f(ϵ) = maxϵ

(
1/2
D(ϵ) − g(ϵ)

)
holds. It is clear to find that f(ϵ) and 1/2

D(ϵ) are monotonically
decreasing over the domain of ϵ. Thus, only if g(ϵ) is monotonically increasing over the domain of ϵ,
the equation maxϵ

(
1/2
D(ϵ) − g(ϵ)

)
= maxϵ

(
1/2
D(ϵ)

)
−minϵ (g(ϵ)) holds. Firstly, let us calculate the

derivative of D(ϵ) =
(
ϵ− ϵ2

)1/2
w.r.t ϵ,

D′(ϵ) =
1

2(ϵ− ϵ2)1/2
· (1− ϵ+ (−ϵ))

=
1− 2ϵ

2D(ϵ)
,

then, we take the derivative of g(ϵ) = ϵ
D(ϵ) w.r.t ϵ,

g′(ϵ) =
1 ·D(ϵ)− ϵ ·D′(ϵ)

D(ϵ)2
=

1

D(ϵ)2
· 2D(ϵ)2 − ϵ(1− 2ϵ)

2D(ϵ)

=
1

ϵ(1− ϵ)
· 2(ϵ− ϵ

2)− ϵ(1− 2ϵ)

2D(ϵ)

=
ϵ

ϵ(1− ϵ) · 2
√
ϵ(1− ϵ)

=
1

2(1− ϵ)
√
ϵ(1− ϵ)

.

We can find that over the domain of ϵ ∈ (0, 12 ), g
′(ϵ) > 0, which concludes the proof. The reason

why deriving the objective to be equivalent to minϵ
ϵ√
ϵ−ϵ2

is we can simplify it to minϵ
√

ϵ
(1−ϵ) =

minϵ
ϵ

(1−ϵ) , where ϵ ∈ (0, 12 ). In that way, it is quite straightforward to understand how minimizing ϵ
can help to improve test power.
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D.2 PROOF OF THEOREM 5.3

Let ϵ(P,Q; f) ∈
(
0, 12

)
be the inability of f to distinguish between distribution P and Q. Then we

define the errte(f) = 2ϵ(P,Q; f) ∈ (0, 1) to be the error rate of f on distribution P and Q.
Theorem D.3. (Boucheron et al., 2000) Suppose function space C : {f |f : X → {0, 1}} has finite
VC-dimension for V ≥ 1. For any sample S, any function f , we have

Pr

[
sup
f∈C
|errte(f)− êrrte(f)| ≥ ∆

]
≤ 8C[2ml,S]e−m∆2/8.

So for any ∆, δ > 0, if we draw from S a sample satisfying

ml ≥
8

∆

(
ln(C[ml,S]) + ln

(
8

δ

))
,

then, with probability at least 1− δ, all functions f satify |errte(f)− êrrte(f)| ≤ ∆.

Proof. The given unlabelled sample size implies that with probability 1− δ/2, all f ′ ∈ C have

|êrrunl(ϕf ′)− errunl(ϕf ′)| ≤

√
ln
(
4s
δ

)
2mu

≤ ∆,

which also implies that

êrrunl(ϕf ′∗) ≤ errunl(ϕf ′) +

√
ln
(
4s
δ

)
2mu

≤ ξ +

√
ln
(
4s
δ

)
2mu

≤ ξ +∆.

Using the standard VC bounds (e.g., Theorem D.3), the labelled sample size ml implies that with
probability at least 1 − δ/4, all f ′ ∈ Cϕ,S,χ(ξ + 2∆) have |errte(f) − êrrte(f)| ≤ ∆. Then, by
Hoeffding bounds, with probability at least 1− δ/4 we have

êrrte(f
′∗) ≤ errte(f ′∗) +

√
log(4/δ)/2ml ≤ errte(f ′∗) + ∆.

Therefore, with probability at least 1 − δ, the f ′ ∈ Cϕ that optimizes êrrte(f ′) subject to
êrrunl(ϕf ′) ≤ ξ +∆ has

êrrte(f
′) ≤ errte(f ′∗) +

√
ln
(
4s
δ

)
2mu

+
√

log(4/δ)/2ml ≤ errte(f ′∗) +

√
ln
(
4s
δ

)
2mu

+∆.

Moreover, since we have êrrte(f ′) = Pr(zi,li)∼S [f ′(zi) ̸= li] ∈ (0, 1) which is proportional to the
empirical inability ϵ̂(SP , SQ; f

′) ∈
(
0, 12

)
. Thus, we can conclude the following inequality

2ϵ̂(SP , SQ; f
′) ≤ errte(f ′∗) + ∆ +

√
ln
(
4s
δ

)
2mu

,

since errte(f ′∗) = 2ϵ(P,Q; f ′∗),

ϵ̂(SP , SQ; f
′) ≤ ϵ(P,Q; f ′∗) +

∆

2
+

√
ln
(
4s
δ

)
8mu

,

which concludes the proof.
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