Proceedings of Machine Learning Research — 057:1-14, 2024 Full Paper — MIDL 2024

ThickV-Stain: Unprocessed Thick Tissues Virtual Staining
for Rapid Intraoperative Histology

Lulin Shi*! LSHIAO@QCONNECT.UST.HK
Xingzhong Hou*? HOUXINGZHONG@ICT.AC.CN
Ivy H. M. Wong' HMWONGAL@CONNECT.UST.HK
Simon C. K. Chan! CKCHANBQ@CONNECT.UST.HK
Zhenghui Chen! ZCHENEFQCONNECT.UST.HK
Claudia T. K. Lo! KETKLOAEQUST.HK
Terence T. W. Wong'! TTWWONG@QUST.HK

L Translational and Advanced Bioimaging Laboratory, Department of Chemical and Biological En-
gineering, The Hong Kong University of Science and Technology, Hong Kong, China

2 State Key Laboratory of Computer Architecture, Institute of Computing Technology, Chinese
Academy of Sciences, Beijing, China

Editors: Accepted for publication at MIDL 2024

Abstract

Virtual staining has shown great promise in realizing a rapid and low-cost clinical alterna-
tive for pathological examinations, eliminating the need for chemical reagents and laborious
staining procedures. However, most of the previous studies mainly focus on thin slice sam-
ples, which still require tissue sectioning and are unsuitable for intraoperative use. In this
paper, we propose a multi-scale model to virtually stain label-free and slide-free biological
tissues, allowing hematoxylin- and eosin- (H&E) staining generation in less than a minute
for an image with 100 million pixels. We name this ThickV-Stain model, specifically devel-
oped to virtually stain intricated and unprocessed thick tissues. We harness the ability of
a multi-scale network to encourage the model to capture multiple-level micromorphological
characteristics from low-resolution images. Experimental results highlight the advantages
of our method for virtual staining on unprocessed thick samples. We also show the effec-
tiveness of ThickV-Stain on thin sections, showing generalizability to other clinical work-
flows. The proposed method enables us to obtain virtually stained images from unstained
samples within minutes and can be seamlessly integrated with downstream pathological
analysis tasks, providing an efficient alternative scheme for intraoperative assessment as
well as general pathological examination.

Keywords: Virtual staining, deep learning, label-free imaging, unprocessed biological
tissues

1. Introduction

Histological examination is regarded as the gold standard for cancer diagnoses, which aims
to determine whether there are any lesions or analyze the tissue microenvironment (Gur-
can et al., 2009). However, routine histological staining is chemical reagent-dependent and
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Figure 1: Histological examination workflow comparison.

usually takes several days for sample preparation, heavily limiting their applications on
rapid histopathology, especially intraoperative tissue examination (Maloney et al., 2018).
Although the frozen section has been considered as an alternative for rapid pathological di-
agnosis to guide tumor resection in surgery, frozen samples are unstable and easily introduce
some artifacts during rapid freezing, making diagnosis difficult or even misdiagnosed (Taxy,
2009). With the development of section-free imaging techniques, unprocessed thick tissue
samples can be visualized in grayscale images without sectioning procedures (Fereidouni
et al., 2017; Glaser et al., 2017). The use of label-free or stain-free microscopes is not a
routine diagnostic workflow for pathologists, and it is difficult for pathologists to interpret
the biological changes with the grayscale images acquired through this method.

The emergence of virtual staining has provided a novel solution for achieving rapid
histology. It refers to the digital transformation or generation of histological stains through
computer algorithms (Bai et al., 2023). There are some studies on the image transformation
from H&E staining to special or immunohistochemistry (IHC) staining (Liu et al., 2021;
de Haan et al., 2021; Lahiani et al., 2019; Vasiljevi¢ et al., 2021; Lahiani et al., 2020; Xu
et al., 2020) and image generation from unstained thin sections (Rivenson et al., 2019b,a;
Zhang et al., 2020; Li et al., 2020, 2021; Meng et al., 2021; Shi et al., 2023). Although
the existing virtual staining studies have achieved impressive performance, they mainly
rely on well-prepared thin slices, and the acquisition and preparation of these thin slices
are still cumbersome and time-consuming (as shown in Figure 1a), which is unsuitable for
intraoperative tissue diagnosis. Therefore, this paper does not focus on image translation
from the existing staining or unstained thin sections but focuses on virtual H&FE staining
from sectioning-free and label-free tissues.

In this paper, we investigate directly using autofluorescence (AF) microscopy (Zhang
et al., 2022), to obtain AF images of unprocessed thick samples, which does not necessitate
tissue embedding, sectioning, and dewaxing (Figure 1c). Our objective is to convert the
acquired grayscale images into pathologist-interpretable images. Additionally, we evaluated
that the virtually stained images can further be used for automatic tumor diagnosis. The
whole procedure of the proposed pipeline can be completed within several minutes with
minimal tissue preparation. In comparison to the frozen section (Figure 1b), our method
is faster and non-destructive to tissues. In brief, the key contributions of this paper are as
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Figure 2: Comparison between thick samples and thin sections. (a) The multi-layer infor-
mation due to the deeper imaging depth inevitably degrade the image quality.
(b) Morphological differences between AF of thick tissue and H&E-stained image.

follows: 1). We propose a ThickV-Stain model ! for complicated unprocessed bio-samples.
2). The first proposal to use a multi-scale generator for virtual staining from low-quality
input images. 3). SOTA performance on both thick tissue and thin section data.

2. Method
2.1. Research Problem

The research problem is the automatic translation from grayscale AF images of thick samples
to histologically stained images, which can be easily integrated with other downstream tasks
(e.g., tumor detection, and report generation), enabling rapid intraoperative diagnosis.
The first challenge here is the low image quality of AF input. In slide-free microscopy,
AF images from thick specimens suffer lower molecular contrast and are blurrier. This is
due to the lack of optical sectioning capability in the slide-free imaging system and multi-
layer information would be captured at the same time. From Figure 2a, we can see that the
image quality and resolution of the thick samples are relatively poor when compared with
that of thin tissue slices. Therefore, it is much more challenging to recognize and transform
those indistinguishable components from images of unprocessed thick specimens. As shown
in Figure 2a, cell nuclei arranged in adenocarcinoma acinar structure can be observed in
the AF of the thin section while no obvious related features are shown in the AF of thick
tissues. Hence, it poses a huge challenge to learn the correct mapping between two domains.
Another barrier is that it is not possible to obtain aligned chemically stained images
with unstained images for model training as histological staining will only be carried out on
a thin slide. In this situation, after acquiring scanned images of unprocessed and unstained
thick samples, only the scanned surface would be sectioned and stained for reference. Since
AF images of thick samples contain multiple-layer information, there will be a considerable
morphological difference between the AF images and the chemically stained versions (Figure
2b). Unsupervised learning is required when there is no paired ground truth. Current
unsupervised virtual staining methods mainly exploit cycleGAN as the basic architecture
(Zhu et al., 2017). (Li et al., 2021) shows that the cycleGAN can hardly distinguish the
background and tissue context towards the virtual staining of complicated human samples.

1. Code and model are available at https://github.com/TABLAB-HKUST/ThickV-Stain.
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Figure 3: Overview of the proposed ThickV-Stain Generator. The multi-scale U-Nets share
the same parameters.

This is because the cycle-consistency loss cannot guarantee semantic rationality. Even
though the semantic change on the model output image is incorrect, the reconstructed one
can be recovered perfectly due to the loss. Some work also reported that cycle consistency
loss plays an indispensable role in key structure preservation of input images (Pumarola
et al., 2018), but weak constraints between the translated output and ground truth (Liu
et al., 2021). To resolve this ambiguity, some researchers have tried to use saliency mask (Li
et al., 2021) and region labels (Shi et al., 2022) as semantic guidance for virtual staining.
In our case, it is quite challenging to extract the consistent saliency mask or region
label due to the limited image contrast. We address the above challenges with the multi-
scale generator. We claim to use a multi-scale model to explore sufficient information for
a better understanding of the complex data, which does not require additional supervision
or manual annotations. We aim to use different scales focusing on different histological
patterns according to the receptive field size and capturing multi-level representations.

2.2. ThickV-Stain: Thick Biological Tissues Virtual Staining

To have special attention to learning multi-structural features, we propose a novel multi-
scale generator as shown in Figure 3. It consists of three U-Net modules with the same
convolution kernel size (4 x 4) but with different receptive fields due to different input
image resolutions. The top branch in Figure 3 captures more detailed histological features,
such as cell nuclei. This is because the convolution kernel of this module will perceive small
objects in the input resolution. Conversely, the bottom one can perceive a large field as the
original image is scaled down, such as global information of edges and background.

The U-Net architecture used in this paper consists of an encoder and a decoder network.
The encoder involves 5 convolution layers and the decoder consists of 5 fractionally-strided
convolution layers that upsample the feature maps to the original spatial dimensions. The
feature maps from the encoder with the corresponding ones from the decoder are connected
by skip connections to preserve the spatial information from the input. Following the U-Net,
the outputs from the two additional scales are resized to the original size of the input image
and then concatenated to get the final output. The form of the output can be expressed as:

G(x) = conv([Ur(z), R(Us(x)), R(Us(x)))) (1)
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where [-] refers to the concatenation operator, U; represents the i-th branch. R(-) denotes
the bicubic interpolation function to change the size of images. We use 2 resize blocks here
to achieve the increase of two additional scales (H/2, W/2) and (H/4, W/4).

To avoid mode collapse caused by the imbalance design between the generator and
discriminator, we also use a multi-scale discriminator (Wang et al., 2018b). The input
image is processed at three scales, with each scale being processed by a separate network.
Those three discriminator networks have an identical structure but operate at different
image scales. The output of each network is then combined to produce a final score.

Besides GAN loss (Goodfellow et al., 2020), we further use identity loss (Taigman et al.,
2017) for better structure preserving. The overall loss functions are shown below:

L3y, = —Ey[logD(G(x))]

adv

Loy, = EillogD(G(x))] + Eyllog(1 — D(y))]
Ligr = By |y — G(?/)Hl
L= Lagy + ACias

3. Experiments and results

3.1. Dataset

The data used in this paper were collected from 14 patients and involved various lung
adenocarcinoma subtypes. The H&E-stained slices used for training were cut from the
imaged thick sample surface. Due to the megapixels of whole slide images (WSIs, ~20,000
x ~20,000), we randomly sampled 10,000 small image patches per epoch with the size of
256 x 256 from seven patients for training. During testing, each WSI of the remaining seven
patients’ data was split into 256 x 256 images with 16-pixel overlap to avoid artifacts, and
the test cohort included 31,317 image patches (thick sample data used in section 3.3) and
22,283 image patches (thin section data used in section 3.4).

3.2. Implementation Details

The overall network was implemented in PyTorch on a single NVIDIA GeForce RTX 3090
GPU. We used the architecture of U-Net in each scale forming our generator and multi-
scale discriminator based on the pix2pixHD. We trained our model with the Adam optimizer
(with 81 = 0.5, B2 = 0.999). The initial learning rate was set to 2 x 10~ for the generator,
and 1 x 107* for the discriminator with a linear decay scheduled after 15,000 iterations.
The different learning rate was designed to avoid mode collapse due to the fast convergence
of the discriminator. The batch size was set to 16. The A in 5 is set to 5.

3.3. Experiment on Thick Tissue Data

In this paper, we chose the commonly used unsupervised 121 architectures, including cycle-
GAN, CUT, and a seminal virtual staining model (UTOM), as the baseline models. The
visual comparison is shown in Figure 4. Compared to the AF image, the H&E staining (1%
column) can only visualize some surface structure of the sample, providing a basic reference
rather than an exact ground truth.
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Figure 4: Comparison results on thick tissues. The 1%¢ column is traditional H&E staining
of a thin slice sectioned from the imaged surface of thick tissue (2" column).

Table 1: Quantitative evaluation with different methods.

CycleGAN CcuT UTOM ThickV-Stain

Thick FIDJ] 97.24 + 5.88 | 97.26 £ 24.37 | 62.00 + 6.88 | 36.71 + 3.27
KID| 0.06 £ 0.01 0.06 £+ 0.02 0.03 £ 0.01 0.01 + 0.01
T-MSE] 1.00 £ 0.05 | 0.92 + 0.04 1.06 £ 0.19 0.95 4+ 0.02

Thin FID] 45.21 +4.37 | 61.12 + 1.39 | 95.13 £ 31.00 | 19.28 + 1.57
KID| 0.02 £+ 0.00 0.05 £+ 0.01 0.05 + 0.02 0.01 + 0.00

SSIM T 0.54 4+ 0.07 0.29 4+ 0.00 0.46 + 0.07 0.61 + 0.02

PSNR? 14.33 £ 0.07 | 13.53 £0.04 | 15.74 £ 1.70 | 17.82 £ 0.07

MSE] (x10?) | 24.17 £ 0.35 | 29.03 + 0.31 | 19.05 &+ 8.11 | 11.05 + 0.13

Table 2: Professional assessment average score on test slides from two pathologists. The
result is rated from 0-5. Higher scores represent better quality.

Visual quality Pathological features
Fidelity | Accuracy | Nuclei | Extracellular fibrosis | Overall
CycleGAN 2.07 1.54 2.39 1.36 1.57
cuT 2.79 2.79 2.36 2.11 2.54
UTOM 4.11 2.86 2.29 2.43 3.00
ThickV-stain 4.61 3.43 2.79 3.18 3.82

In the 2"¢ row (marked with blue arrow), there are obvious pathological features of
fibrosis in our results. From the 3"¢ row, the major tumor component consisting of solid
sheets can be observed in our results (marked with yellow dashed lines). The same structure
can also be observed in H&E-stained reference image. Even though UTOM also draws
a correct outline, it misses cell nuclear information within the outline. Both CUT and
cycleGAN mistranslate the background areas, which is consistent with (Li et al., 2021).
To evaluate the image quality quantitatively, we calculate the Fréchet Inception Distance
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(FID) (Heusel et al., 2017) and Kernel Inception Distance (KID) (Binkowski et al., 2018).
The results are shown in Table 1, where ThickV-Stain achieves the best FID score (36.71).
UTOM and cycleGAN are better than CUT, showing the same trend with visual analysis.

To explore whether our virtual staining meets clinical needs, we invited two patholo-
gists to score our virtually stained images. The evaluation metrics are from two aspects: the
pathological properties and visual quality. We followed the setting from (Rivenson et al.,
2019b) to evaluate nuclei details, extracellular fibrosis, and overall staining quality. Re-
garding the visual quality, fidelity refers to whether any artifacts in the stained image can
affect the image quality and accuracy refers to whether the pathological diagnosis (e.g., the
location of the tumor region) from virtually stained images is consistent with the real stain-
ing. The evaluation results in Table 2 show that our model significantly outperforms other
baseline models. The results of cycleGAN and CUT provide limited useful information to
the pathologist, which is consistent with our analysis of visual results.

Moreover, we apply a lung adenocarcinoma detection model for automatic tumor region
detection with our virtually stained results. (Wang et al., 2018a) use human lung adenocar-
cinoma cancer data, which is consistent with our case. Here, we apply the trained model on
both generated images and real H&FE images to see if our virtual stained results can show
consistent diagnostic conclusions with real staining. In addition, the MSE between the two
tumor probability maps, noted T-MSE, can be used to evaluate the potential of virtually
stained results in real clinical practice. The comparative results can be found in Table 1,
and a visual example can be found in Appendix Figure 7.

3.4. Experiment on Thin Slice Data

We also validate the extensibility of the proposed method on other clinical workflows. More-
over, the ground truth is accessible for the virtual staining of thin sections, which can
provide an accurate evaluation of the model performance. It can be observed that ThickV-
Stain (Figure 5¢) outperforms other baseline models on unstained thin slices compared with
ground truth (Figure 5b). As for quantitative measures, we chose the structural similarity
index measure (SSIM), peak signal-to-noise ratio (PSNR), and MSE, as metrics because
ground truth can be obtained for thin-section virtual staining. The numerical results are
shown in Table 1. Regarding PSNR and MSE, ThickV-Stain and UTOM are relatively
close, and CUT are inferior to the other models. As for the FID and KID scores computed
on the test set, ThickV-Stain significantly outperforms other models.

3.5. Ablation Study

In this paper, we claim that the virtual staining performance on complicated dataset, es-
pecially unprocessed thick tissue, is limited if the model cannot represent complex features
adequately. To explore the importance of the multi-scale model for virtual staining of
complicated thick samples, we carried out an ablation study on multi-scale generator.
From Figure 6, we can see that for virtual staining of thin section data, even a single-scale
generator can also perform well. It achieves correct translation where the same cancerous
patterns and fibrosis can be observed, with only slight degradation in image quality com-
pared with the multi-scale generator. And there is no significant difference in the FID
results (20.29 and 21.74). We analyze this because the AF of thin sections are of such high
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Figure 5: Virtual staining results on thin sections. (a) Input AF. (b) Real H&E staining.
(c) ThickV-Stain. (d) UTOM. (e) CUT. (f) CycleGAN.
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Figure 6: Ablation study. The tumor regions are marked manually with purple lines.

quality that even a single scale model is sufficient to correctly transform the image features.
In this case, multi-scale does not have obvious advantages when dealing with simple data.
Secondly, for thick tissues, the single-scale generator cannot recover the fibrosis and
quantitative results are also far from satisfactory compared with the multi-scale generator,
which shows the importance of the multi-scale model for handling complicated data.
Additionally, the single-scale generator on thin sections even achieves better FID than
the multi-scale generator on thick tissues (21.74 vs 42.39). That means even increasing the
complexity of the model cannot completely offset the impact of data complexity. Virtual
staining on thick tissue is still difficult to achieve comparable results on thin slice data.

4. Conclusion

In this paper, we present ThickV-Stain for virtual histological staining on unprocessed thick
tissues. Specifically, we design a multi-scale generator to fuse large receptive field image
features to achieve virtual staining on complex data. We also use a well-trained lung ade-
nocarcinoma detection model to demonstrate the potential of our generated staining to be
integrated with other downstream pathological image analyses tasks. With our proposed
ThickV-Stain, the staining task of thick samples can be implemented, allowing patholo-
gists to identify pathological features on unprocessed samples directly, thus providing an
alternative to rapid pathology.
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Figure 7: Comparison between pathologist’s annotation and artificial intelligence (AI)-
based tumor detection. The left column is tumor region annotation from pathol-
ogists for comparison, where the red lines highlight the tumor region and green
areas indicate the normal region. The right part is Al-based tumor prediction
results on both virtual staining and actual H&E staining, in which areas in red
and blue mean a higher and lower probability of tumor, respectively.
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Table 3: Raw data of score table from pathologists. a) UTOM, b) CUT, c) ThickV-Stain,
d) CycleGAN

Tissue Pathologist 1 Pathologist 1 Average

No. |FD AC ND EF OS |FD AC ND EF OS| FD AC ND EF OS

w

3.5 25 3 35 3 4.25 275 25 225 25
1.5 35 3 3 35|27 325 25 2 2.75
3.5 4 45| 4.5 4 3.256 3.5 4.25
1.5 1.5 2 2.25 2 225 125 1.5

o T o

1.5 25 35 4 25 125 1.7 275
35 35 3 275 3.5 275 2.75 25
4 3.5 25 3 4 4.5 325 275 25 3.5
3 3.5 3.5 2 25 2 225 3.75 15 1.75

B O = s s ot
w
(@3

Ol O

2 4 351 35 2.5 2 25 325
2 3.5 2.75 25 1.5 275 25

[
Ut
— W NN

1.5 1.5 1.5 1 1.75 125 1.5

3

3 3.5 4 | 4.25 25 25 3.25 3.5
2
4

4 3.5 3 4.5 4.5  3.25 3 2.75 4

3.5 2.5 | 2.7 2 2.5 275 275
4 3.5 45 5 3.5 3.25 3.75 4.5
1.5 2 2 1.25 1.5 1.5 1.5

5
2 2
2 2 3 3 4 2.5 2 2 2.5
1 2
3.5 3 4 4.5 3.75 2.5 2.5 3.5
1 1.5 1 1.5 | 25 1 1.75 1 1.25

5
3
3
2 2.5 1.5 35 27 15 125 2
4
3
4

3.5 3 35 3 45 3.25 3 2.75 25

1.5 3.5 4 25 35|27 375 3.5 1.7 275

4 3.5 3 3.5 45 325 25 3.265 3.5
3 2.5 2.25 2 3 1.75 2

1.5 15 1.5 225 1.7 225 15 2.5
5 3.5 25 4 5 3.7 275 3.5 4
3 1.5 15 1.5 2 1.25 275 125 1.5

[N}

~N D0 0 OOt ot O U R R REW W W WY NN N e e
P gl - Py Al Gy PN S gy
QO TOIA0 TOIA0TIAO TDIAO TDIA0 T DA
o N e [ S e e S e [ S e e S e [ N e e S e
RN R W W R W W W WD W W WWWN W
0 W W W N W WNNDNDNDIF WDRN WRNDND DN WND FHWWN DN
— W WR WRNRNR R WN R WD RRFRNDND PR WR R
o W R WN N WNNRF R WERFEWN W WN N NN

—

<t

[\]

w

=0T W RN O O N O O O = O s O = O s Ot = Ot

4
3
4 25 1.5 3 3 4 3.25 225 3 3.5
2
4
2
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