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ABSTRACT

Recent text-to-3D methods have marked significant progress in 3D human gen-
eration. However, these methods struggle with high-quality generation, result-
ing in smooth geometry and cartoon-like appearances. In this paper, we found
that by fine-tuning the text-to-image diffusion model with normal maps, it can be
adapted to a text-to-normal diffusion model, while preserving part of the genera-
tion priors learned from large-scale datasets. Therefore, we propose HumanNorm,
a novel approach for high-quality and realistic 3D human generation by integrat-
ing normal maps into diffusion models. We employ two integration strategies and
propose a normal-adapted diffusion model as well as a normal-aligned diffusion
model. The normal-adapted diffusion model can generate high-fidelity normal
maps corresponding to prompts with view-dependent text. The normal-aligned
diffusion model learns to generate color images aligned with the normal maps,
thereby transforming physical geometry details into realistic appearance. Lever-
aging the proposed normal diffusion model, we devise a progressive geometry
generation strategy and coarse-to-fine texture generation strategy to enhance the
efficiency and robustness of 3D human generation. Comprehensive experiments
substantiate our method’s ability to generate 3D humans with intricate geometry
and realistic appearances, significantly outperforming existing text-to-3D methods
in both geometry and texture quality.

1 INTRODUCTION

Large-scale generative models have achieved significant breakthroughs in diverse domains, includ-
ing motion (Tevet et al., 2023), audio (Oord et al., 2018; Agostinelli et al., 2023), and 2D image
generation (Rombach et al., 2022; Nichol et al., 2021; Ramesh et al., 2022; 2021; Saharia et al.,
2022). However, the pursuit of high-quality 3D content generation following the success of 2D gen-
eration poses a novel and meaningful challenge. Within the broader scope of 3D content creation, 3D
human generation holds particular significance, given its pivotal role in applications such as AR/VR,
holographic communication, and the metaverse. Moreover, it contributes to the advancement of 3D
visual perception, understanding, and reconstruction.

To achieve 3D content generation, a straightforward approach is to train generative models like
GANs or diffusion models to generate 3D objects using representations such as voxels (Wu et al.,
2015) or tri-planes (Chan et al., 2022; An et al., 2023; Wang et al., 2023a). However, these ap-
proaches face challenges due to the scarcity of current 3D datasets, resulting in restricted diversity
and suboptimal generalization. In the context of 3D human generation, the demands are more strict
in terms of diversity and generation quality. Although existing 3D human datasets encompass high-
precision scan models, they suffer from limitations in quantity and lack diversity in clothing, poses,
head types, and hair variations. This inherent constraint poses a substantial obstacle to the direct
generation of high-quality 3D humans.

To overcome these challenges, recent methods (Poole et al., 2023; Lin et al., 2023; Metzer et al.,
2023) adopt a 2D-guided approach rather than a direct one to achieve 3D generation. Their core
framework builds upon pre-trained text-to-image diffusion models and distills 3D contents from 2D
generated images through Score Distillation Sampling (SDS) loss (Poole et al., 2023) and differ-
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Figure 1: 3D humans generated by HumanNorm from text prompts. A single view and the
corresponding normal map are rendered. See supplementary for video results.
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Figure 2: 2D results by normal-adapted and depth-adapted diffusion model. The view-
dependent texts like “front view” are utilized to control the view direction. The texts like “upper
body” are employed to manage the body parts generated by the diffusion models.

entiable rendering. Leveraging the image generation priors learned from large-scale datasets, this
framework enables more diverse 3D generation. However, current text-to-image diffusion models
primarily emphasize the generation of natural RGB images, which results in a limited perception
of 3D geometry structure and view direction. This limitation can result in Janus (multi-faced) arti-
facts and smooth geometry. Although 3D human generation methods (Cao et al., 2023; Kolotouros
et al., 2023; Liao et al., 2023) introduce human body models such as SMPL (Loper et al., 2023)
and imGHUM (Alldieck et al., 2021) to enhance the quality of human generation, they still fail to
address the fundamental limitation of text-to-image diffusion models. This results in sub-optimal
geometry with cartoon-like appearances, particularly in areas such as clothing wrinkles.

In this paper, we discovered that the text-to-image diffusion model can be transformed into a text-
to-normal diffusion model by fine-tuning it with a small amount of normal maps. Importantly, this
process retains a portion of the generation priors learned from large-scale natural images. Building
on this, we present HumanNorm, a novel approach for generating high-quality and realistic 3D
human models. Specifically, we train a normal-adapted diffusion model using multi-view normal
maps rendered from 3D human scans and prompts with view-dependent text. Compared with text-
to-image diffusion models, the normal-adapted diffusion model filters out the influence of texture
and can directly generate high-fidelity surface normal maps corresponding to prompts with view-
dependent text. This ensures the generation of 3D geometric details and avoids Janus artifacts.
Since normal maps lack depth information, we also learn a depth-adapted diffusion model to further
enhance the perception of 3D geometry. The 2D results generated by these diffusion models are
presented in Fig. 2. Furthermore, for texture generation, we learn a normal-aligned diffusion model
from normal-image pairs. This model efficiently integrates human geometric information into the
texture generation process. It accounts for elements such as shading caused by geometric folds and
aligns the generated texture with surface normal.

Building on the normal diffusion model, we decompose our 3D human generation framework into
two components. Initially, we concentrate on generating high-quality geometry by utilizing a pro-
gressive optimization approach. Subsequently, guided by the generated geometry, we employ a
coarse-to-fine strategy to create realistic textures. The results by HumanNorm are presented in
Fig. 1. The key contributions of this paper are: 1) We introduce normal-adapted diffusion model that
can generate normal maps from prompts with view-dependent text, which improves the fundamental
ability of 2D diffusion model for 3D human generation. 2) We learn normal-aligned diffusion model
to align the generated texture with surface normal, which transforms physical geometry details into
realistic appearances. 3) We propose a progressive geometry generation strategy for high-quality
geometry and a coarse-to-fine texture generation approach for realistic texture.

2 RELATED WORK

Text-to-3D content generation. Early methods, such as CLIP-Forge (Sanghi et al., 2022), Dream-
Fields (Jain et al., 2022), and CLIP-Mesh (Mohammad Khalid et al., 2022), combine a pre-trained
CLIP (Radford et al., 2021) model with 3D representations, and generate 3D content under the su-
pervision of CLIP loss. DreamFusion (Poole et al., 2023), a more recent development, builds upon
these CLIP-based methods. It introduces the SDS loss and generates NeRF under the supervision of
a text-to-image diffusion model. Following this, Magic3D (Lin et al., 2023) proposes a two-stage
method that employs both NeRF and mesh representation for high-resolution 3D content genera-
tion. Latent-NeRF (Metzer et al., 2023) optimizes NeRF in the latent space using a latent diffusion
model to avoided the burden of encoding images. TEXTure (Richardson et al., 2023) introduces a
method for texture generation, transfer, and editing. Fantasia3D (Chen et al., 2023a) decomposes
the generation process into geometry generation and texture generation to enhance the performance
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Figure 3: Overview of HumanNorm. Our method is designed for high-quality and realistic 3D
human generation from given prompts. The whole framework consists of geometry and texture
generation. We first propose the normal-adapted and depth-adapted diffusion model for the geometry
generation. These two models can guide the rendered normal and depth maps to approach the
learned distribution of high-fidelity normal and depth maps through the SDS loss, thereby achieving
high-quality geometry generation. In terms of texture generation, we introduce the normal-aligned
diffusion model and employ a coarse-to-fine strategy. The normal-aligned diffusion model leverages
normal maps as guiding cues to ensure the alignment of the generated texture with geometry. At
the coarse level, we exclusively employ the SDS loss, while at the fine level we incorporate the
multi-step SDS and perceptual loss to achieve realistic texture generation.

of 3D generation. To address the over-saturated issue, ProlificDreamer (Wang et al., 2023b) pro-
poses a Variational Score Distillation (VSD) loss and produces high-quality and high-fidelity NeRF.
IT3D (Chen et al., 2023b) introduces GAN loss and leverages explicitly generated 2D images to
enhance the quality of 3D contents. MVDream (Shi et al., 2023) proposes a multi-view diffusion
model to generate consistent multi-views for 3D generation. However, all these methods are unable
to generate high-quality 3D humans, leading to Janus artifacts and unreasonable body proportions.
Although Fantasia3D optimizes geometry and textures separately, it generates geometry using a
text-to-image diffusion model, resulting distorted and noisy geometry in some cases.

Text-to-3D human generation. AvatarCLIP (Hong et al., 2022) integrates SMPL and Neus (Wang
et al., 2021) to create 3D human representations, leveraging CLIP for the supervision of geome-
try, texture, and animation generation. EVA3D (Hong et al., 2023) introduces a part-based NeRF
representation within a GAN-based framework to generate 3D humans. DreamAvatar (Cao et al.,
2023) utilizes the pose and shape of the parametric SMPL model as a prior, guiding the generation
of humans. In a similar vein, AvatarCraft (Jiang et al., 2023) employs an implicit neural repre-
sentation with parameterized shape and pose control to generate 3D humans. DreamWaltz (Huang
et al., 2023) creates 3D humans using a parametric human body prior, incorporating 3D-consistent
occlusion-aware SDS and 3D-aware skeleton conditioning. DreamHuman (Kolotouros et al., 2023)
generates animatable 3D humans by introducing a pose-conditioned NeRF model that is learned
using imGHUM. AvatarBooth (Zeng et al., 2023) uses dual fine-tuned diffusion models separately
for the human face and body, enabling the creation of personalized humans from casually captured
face or body images. The most recent model, AvatarVerse (Zhang et al., 2023a), trains a Control-
Net with DensePose (Güler et al., 2018) as the control signal to enhance the view consistency of
3D human generation. TADA (Liao et al., 2023) derives a SMPL-X (Pavlakos et al., 2019) body
model with a displacement layer and a texture map, using hierarchical rendering with SDS loss to
produce 3D humans. While these methods reduce Janus artifacts and unreasonable body shapes by
introducing human body models, they still produce 3D humans with cartoon-like appearances and
smooth geometry. In contrast, our method is capable of generating intricate geometry and realistic
appearances. Additionally, our approach could potentially be applied to other tasks, such as text-to-
3D objects since our method does not rely on SMPL or imGHUM models. Finally, several methods,
such as DreamFace (Zhang et al., 2023b) and HeadSculpt (Han et al., 2023), primarily focus on 3D
head generation. Therefore, they encounter difficulties when generating full-body humans.

3 PRELIMINARY

We employ the 2D diffusion-guided approach to achieve high-quality and realistic 3D human gen-
eration. In this section, we will introduce the diffusion-guided 3D generation framework and the
guidance loss of the diffusion model.
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3.1 DIFFUSION-GUIDED 3D GENERATION FRAMEWORK

Figure 4: Problems of existing methods.

When provided with text y as the generation
target, the core of the diffusion-guided 3D gen-
eration framework aims to align the images x0

rendered from the 3D representation θ with the
generated image distribution p(x0|y) of the dif-
fusion model. Specifically, during the 3D gen-
eration process, the rendered images x0 are ob-
tained by randomly sampling cameras c and rendering through a differentiable rendering func-
tion g(θ, c). Suppose the rendered images from various angles are distributed as qθ(x0|y) =∫
qθ(x0|y, c)p(c)dc, the optimization objective of diffusion-guided 3D generation framework can

be represented as follows:
min
θ

DKL(q
θ(x0|y) ∥ p(x0|y)). (1)

Directly optimizing this objective is highly challenging, and recent methods have proposed losses
such as SDS (Poole et al., 2023) and VSD (Wang et al., 2023b) to solve it. To further enhance the
quality of geometry, Fantasia3D (Chen et al., 2023a) proposes to disentangle the geometry θg and
appearance θc in the 3D representation θ. In the geometry stage, it utilizes the rendering function
g(θg, c) to render normal maps zn0 and align the distribution of the rendered normal maps qθg (zn0 |y)
with p(x0|y):

min
θg

DKL(q
θg (zn0 |y) ∥ p(x0|y)). (2)

In the texture stage, Fantasia3D optimizes the texture of 3D objects through Eqn. 1.

The bottleneck of the diffusion-guided 3D generation. The bottleneck of the diffusion-guided 3D
generation lies in the T2I (text-to-image) diffusion model, which confines itself to parameterizing the
probability distribution of natural RGB images, denoted as p(x0|y). Therefore, current T2I diffusion
model lack the understanding of both view direction and geometry. Consequently, 3D generation
directly guided by the T2I diffusion model (Eqn.1) leads to Janus artifacts and low-quality geometry
as shown in Fig. 4 (c-d). Although Fantasia3D disentangles geometry and texture, it still encounters
issues originating from the T2I diffusion model in both geometry and texture stages. In the geometry
stage, directly aligning the rendered normal maps distribution qθg (zn0 |y) with the natural images
distribution p(x0|y) is inappropriate since normal maps significantly differ from RGB images. This
alignment results in geometry distortions and artifacts, as depicted in Fig. 4 (a). In the texture stage,
minimizing the divergence between qθc(x0|y) and p(x0|y) leads to the misaligned texture with the
geometry as presented in Fig. 4 (b).

3.2 GUIDANCE LOSS OF DIFFUSION MODELS

SDS loss. SDS loss is widely employed in various diffusion-guided 3D generation frameworks. It
translates the optimization objective in Eqn. 1 into the optimization of the divergence between two
distributions with diffusion noise, thereby achieving 3D generation:

min
θ

LSDS(θ) = Ec,t

[
(σt/αt)ω(t)DKL(q

θ
t (xt|c, y) ∥ pt(xt|y))

]
, (3)

where t represents the timestep during the diffusion process, and xt corresponds to the rendered
image x0 with the noise ϵ at timestep t. σt, αt, ω(t) are the parameters of the diffusion scheduler.
Denote ϵp(·) as the pre-trained diffusion model. The gradient of the SDS loss can be computed as
follows:

∇LSDS(θ) ≈ Ec,t,ϵ

[
ω(t)(ϵp(xt, t, y)− ϵ)

∂g(θ, c)

∂θ

]
(4)

Multi-step SDS and perceptual loss. Multi-step SDS and perceptual loss are primarily employed
for 3D editing and mitigating over-saturation issues in texture generation (Haque et al., 2023; Zhu &
Zhuang, 2023). Different from SDS loss, it needs multiple diffusion steps to recover the distribution
of RGB images pt(x0|xt, y) given xt and minimizes the following objective:

min
θ

LmultiSDS(θ) = Et,c

[
(σt/αt)ω(t)DKL(q

θ
t (x0|c, y) ∥ pt(x0|xt, y))

]
. (5)
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Multi-step SDS loss promotes stability during optimization and avoids getting trapped in local op-
tima. To further prevent over-saturation effects, the perceptual loss is also applied to keep the natural
style of the rendering images x0 from g(θ, c) with the generated images x̂0 from pt(x0|xt, y):

Lp = Ex̂0∼pt(x0|xt,y)

(
∥V (x0)− V (x̂0)∥22

)
, (6)

where V is the first k layers of the VGG network (Simonyan & Zisserman, 2015). Denote the multi-
step image generation function of the diffusion model as h(xt, t, y), the gradient of the multi-step
SDS and perceptual loss can be formalized as follows:

∇Lmultistep(θ) ≈ Ec,t,ϵ

[
ω(t)(h(xt, t, y)− x0)

∂g(θ, c)

∂θ

]
+ λp∇Lp. (7)

4 METHOD

We propose HumanNorm to achieve high-quality and realistic 3D human generation. The whole
generation framework of our method has the geometry stage and texture stage, as shown in Fig. 3.
We first introduce our normal diffusion model, which consists of the normal-adapted diffusion model
and the normal-aligned diffusion model (Sec. 4.1). Then in the geometry stage, based on the normal-
adapted diffusion model, we utilize the DMTET as the 3D representation and propose the progres-
sive generation strategy to achieve high-quality geometry generation (Sec. 4.2). In texture stage,
building upon the normal-aligned diffusion model, we propose the coarse-to-fine strategy for high-
fidelity and realistic appearance generation (Sec. 4.3).

4.1 NORMAL DIFFUSION MODEL

In the pursuit of generating a high-quality and realistic 3D human from a given text target y, the first
challenge lies in achieving precise geometry generation. This entails aligning the distributions of
rendered normal maps qθg (zn0 |c, y) from multiple viewports c with an ideal normal maps distribution
p̂(zn0 |c, y). The next challenge is to generate the realistic texture θc while ensuring its coherence
with the established geometry θg . Therefore, minimizing the divergence between the distribution
of rendered images qθc(x0|c, y) and an ideal geometry-aligned images distribution p̂(x0|c, θg, y)
becomes essential. The ideal optimization objective is formulated as follows:

min
θg,θc

DKL(q
θg (zn0 |c, y) ∥ p̂(zn0 |c, y))︸ ︷︷ ︸

geometry generation objective

+DKL(q
θc(x0|c, y) ∥ p̂(x0|c, θg, y))︸ ︷︷ ︸

texture generation objective

. (8)

However, as discussed in Sec. 3.1, the existing T2I (text-to-image) diffusion model is limited to
parameterizing the distribution of natural RGB images, denoted as p(x0|y), which deviates signif-
icantly from the ideal distributions p̂(zn0 |c, y) and p̂(x0|c, θg, y). To bridge this gap, we propose
the incorporation of normal maps, representing the 2D perception of human geometry, into the T2I
diffusion model to approximate p̂(zn0 |c, y) and p̂(x0|c, θg, y). For the geometry component, we pro-
pose to fine-tune the diffusion model, adapting it to generate the distribution of normal map p(zn0 |y).
In the context of texturing, we utilize ControlNet with normal maps zn0 as conditions to guide the
diffusion model p(x0|zn0 , y) in generating normal-aligned images, which ensures that the generated
texture aligns with the geometry. The optimization objective incorporating normal maps is defined
as follows:

min
θg,θc

DKL(q
θg (zn0 |y) ∥ p(zn0 |y)) +DKL(q

θc(x0|y) ∥ p(x0|zn0 , y)). (9)

In addition, we further translate the camera parameters c into the view-dependent text yc, serving as
an additional condition for the diffusion model. This translation ensures that the generated images
align with the view direction, as depicted in Fig. 2. the optimization objective of our method is:

min
θg,θc

DKL(q
θg (zn0 |c, y) ∥ p(zn0 |yc, y)) +DKL(q

θc(x0|c, y) ∥ p(x0|zn0 ,yc, y)). (10)

Next, we will introduce our 3D human generation framework and construction of the normal-
adapted diffusion model and normal-aligned diffusion model used to parameterize p(zn0 |yc, y) and
p(x0|zn0 ,yc, y) for geometry and texture generation.
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Figure 5: Comparison with text-to-3D content methods and text-to-3D human methods. The
results of DreamFusion are generated by unofficial code. The results of TADA, DreamHuman and
AvatarVerse are from their papers and project pages.

4.2 NORMAL-ADAPTED DIFFUSION MODEL FOR GEOMETRY GENERATION

Constructing the normal-adapted diffusion model for high-quality geometry generation faces several
challenges. First, existing 3D human datasets are scarce, leading to a limited number of normal maps
for training. Therefore, we employ a fine-tuning strategy to adapt the text-to-image diffusion mod-
els into text-to-normal diffusion model. Then we find the rendered normal maps undergo dramatic
changes with variations in viewing angles, which results in potential overfitting or underfitting is-
sues. To mitigate this effects and encourage the diffusion model to focus on perceiving the details of
geometry, we transform the normal maps zn0 by the rotation R of the camera parameters. The trans-
formed normal maps z̃n0 are used for training of the normal-adapted diffusion model. Furthermore,
we also add the view-dependent text yc and normal-aware text yn (“normal map”) as conditions
into the diffusion model. The fine-tuning process employs the same optimization objective with the
original diffusion model:

min
ϕg

Ec∼p(c),t∼U(0,1),ϵ∼N (0,1)

[
∥ϵϕg

(αtz̃
n
0 + σt,y

c,yn, t)− ϵ∥22
]
. (11)

The trained normal-adapted diffusion model can guide the geometry generation by normal SDS loss:

∇LSDS(θg) = Ec,t,ϵ

[
ω(t)ϵϕg

(z̃nt ,y
c,yn, t)− ϵ)

∂g(θg, c)

∂θg

]
. (12)

In addition to normal SDS loss, we employ several strategies to augment the efficiency and robust-
ness of 3D human generation, outlined as follows:

Depth SDS loss by depth-adapted diffusion model. We also finetune a depth-adapted diffusion
model by simply changing normal maps to depth maps to calculate depth SDS loss. We found the
depth SDS loss can reduce geometry distortion and artifacts in geometry generation.

DMTET representation and initialization. We adopt an efficient 3D representation DMTET and
initialize it based on a natural body mesh to augment the robustness of 3D human generation. The
SDF function in DMTET is further accelerated by the hash encoding of Instant-NGP.

Progressive Geometry Generation. We propose a progressive strategy including progressive hash
encoding and progressive SDF loss to mitigate geometric noise and enhance the overall quality of
geometry generation. The progressive hash encoding employ a mask to suppress high-frequency
components of hash encoding for SDF function in DMTET during the initial stage. This allows the
network to focus on low-frequency components of geometry and improving the training stability at
beginning. As training progresses, we gradually reduce the mask for high-frequency components.
Thereby enhancing the details such as clothes wrinkle. For progressive SDF loss, we first record
the SDF functions s(x) before reducing the high-frequency mask. Then as training progresses, we
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Figure 6: Ablation studies. (a-b) Using the text-to-image diffusion model instead of the normal-
adapted and depth-adapted diffusion model. (c) Removing the multi-step SDS and perceptual loss.

add the SDF loss to mitigate high-frequency noises or strange geometry deformation: LSDF (θg) =∑
x∈P ∥s̃θg (x)− s(x)∥22, where s̃θg (x) is the SDF function in DMTET and P is the set of random

sampling points.

4.3 NORMAL-ALIGNED DIFFUSION MODEL FOR TEXTURE GENERATION

In texture generation, we fix the geometry parameters θg and introduce the normal-aligned diffusion
model as guidance. The normal-aligned diffusion model can translate physical geometry details into
realistic appearance and ensure the generated texture is aligned with the geometry. Specifically, we
employ a ControlNet (Zhang & Agrawala, 2023) to incorporate transformed normal maps z̃n0 as the
guided condition of the T2I diffusion model. The training objective of the normal-aligned diffusion
model is as follows:

min
ϕc

Ec∼p(c),t∼U(0,1),ϵ∼N (0,1),

[
∥ϵϕc(αtx0 + σt, z̃

n
0 ,y

c, t, y)− ϵ∥22
]

(13)

Then We propose a coarse-to-fine strategy based on the normal-aligned diffusion model.

Coarse-to-fine Texture Generation. At the coarse level, we utilize the SDS loss of the normal-
aligned diffusion model ϵϕc for texture generation:

∇LSDS(θc) = Ec,t,ϵ

[
ω(t)ϵϕc(xt, z̃

n
0 ,y

c, t, y)− ϵ)
∂g(θc, c)

∂θc

]
. (14)

While SDS loss can lead to over-saturated styles and appear less natural as shown in Fig. 6 (c),
it efficiently optimizes a reasonable texture as an initial value. We subsequently refine the texture
through multi-step SDS and perceptual loss:

∇Lmultistep(θc) ≈ Ec,t,ϵ

[
ω(t)(h(xt, z̃

n
0 ,y

c, t, y)− x0)
∂g(θc, c)

∂θ

]
+ λpEc,t,ϵ

[
(V (h(xt, z̃

n
0 ,y

c, t, y)− V (x0))
∂V (x0)

∂x0

∂g(θc, c)

∂θc

]
.

(15)

Since the normal-aligned diffusion model executes a complete multi-step diffusion process, the gen-
erated images appear more natural and are less prone to oversaturation effects.

5 EXPERIMENT

5.1 IMPLEMENTATION DETAILS

For each text prompt, our method needs 15K iterations for geometry generation and 10K iterations
for texture generation. The entire generation process takes about 2 hours on a single NVIDIA
RTX 3090 GPU with 24 GB memory. The final rendered images and videos have a resolution of
1024×1024. More details including dataset, training settings, and others are present in Appendix.

5.2 QUALITATIVE EVALUATION
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Figure 7: Importance of depth SDS.

We present qualitative comparisons with text-to-3D con-
tent methods (DreamFusion (Poole et al., 2023), La-
tentNeRF (Metzer et al., 2023), TEXTure (Richardson
et al., 2023), and Fantasia3D (Chen et al., 2023a)) and
text-to-3D human methods (DreamHuman (Kolotouros
et al., 2023), AvatarVerse (Zhang et al., 2023a), and
TADA (Liao et al., 2023)).

Comparison with text-to-3D content methods. As illustrated in Fig. 5, the results produced by
text-to-3D content methods present a few challenges. The proportions of the generated 3D humans
tend to be distorted, and the texture appears to be over-saturated and noisy. DreamFusion struggles
to generate full-body humans, often missing the feet, even given a prompt like “the full body of...”.
In contrast, our method delivers superior results with more accurate geometry and realistic textures.

Comparison with text-to-3D human methods. As shown in Fig. 5, text-to-3D human methods
yield outcomes with enhanced geometry due to the integration of SMPL and imGHUM human body
models. In contrast to these methods, our approach is capable of creating 3D humans with a higher
level of geometric detail, such as wrinkles in clothing and distinct facial features. Furthermore, text-
to-3D human methods also encounter issues with over-saturation, while our method can generate
more realistic colors thanks to our coarse-to-fine texture generation strategy.

5.3 ABLATION STUDY

Effectiveness of normal-adapted and depth-adapted diffusion models. In Fig. 6 (a), we show
the geometry generated by a text-to-image diffusion model instead of our normal-adapted and depth-
adapted diffusion models. One can see that the method struggles to generate facial geometry, and
holes appear on ears. Additionally, the results display smoother clothing wrinkles and rougher
surface. The experiment demonstrates that our normal-adapted and depth-adapted diffusion models
are beneficial in generating high-quality geometry.

Effectiveness of depth SDS. Existing methods, such as Fanasia3D and TADA, optimize geometry
by calculating normal SDS loss. However, we found that only use normal maps as supervision may
lead to failed geometry in some regions. As shown in Fig. 7 (a), the ear exhibits artifacts when only
using normal SDS loss. This is because the normal of the artifacts is similar to the normal of the
head, making it non-salient for the diffusion model. In contrast, we can clearly see the artifacts in
the depth map. In Fig. 7 (b), it’s evident that the artifacts is reduced when adding depth SDS loss
based on our depth-adapted diffusion model, which demonstrates the effectiveness of depth SDS.

Effectiveness of normal-aligned diffusion model. In Fig. 6 (b), we experiment with the removal of
the normal-aligned diffusion model, opting instead for a text-to-image diffusion model for texture
generation. The resulting texture, as can be observed, is somewhat blurry and fails to accurately
display geometric details. This is because the text-to-image diffusion model struggle to align the
generated texture with geometry. However, using the normal-aligned diffusion model, our method
manages to overcome these limitations. It achieves more precise and intricate details, leading to a
significant enhancement for the appearance of the 3D humans.

Effectiveness of coarse-to-fine texture generation. In Fig. 6 (c), we present coarse stage results
with only SDS loss. The generated texture is noticeably over-saturated. However, as shown in
Fig. 6 (d). the texture generated through coarse-to-fine strategy exhibits a more realistic and natural
color, which underscores the effectiveness of our coarse-to-fine texture generation strategy.

6 CONCLUSION

We presented HumanNorm, a novel method for high-quality and realistic 3D human generation by
learning the normal diffusion model, which improve the capabilities of 2D diffusion models for
3D human generation. Based on the normal diffusion model, we introduced a diffusion-guided 3D
generation framework. Leveraging the proposed normal diffusion model, we devise a progressive
geometry and coarse-to-fine texture generation strategy to enhance the efficiency and robustness of
3D human generation. We demonstrated that HumanNorm can generate 3D humans with intricate
geometric details and realistic appearances, outperforming existing methods.

9



Under review as a conference paper at ICLR 2024

REFERENCES

Andrea Agostinelli, Timo I Denk, Zalán Borsos, Jesse Engel, Mauro Verzetti, Antoine Caillon,
Qingqing Huang, Aren Jansen, Adam Roberts, Marco Tagliasacchi, et al. Musiclm: Generating
music from text. arXiv preprint arXiv:2301.11325, 2023.

Thiemo Alldieck, Hongyi Xu, and Cristian Sminchisescu. imghum: Implicit generative models of
3d human shape and articulated pose. In Proceedings of the IEEE/CVF International Conference
on Computer Vision, pp. 5461–5470, 2021.

Sizhe An, Hongyi Xu, Yichun Shi, Guoxian Song, Umit Ogras, and Linjie Luo. Panohead:
Geometry-aware 3d full-head synthesis in 360◦. CVPR, 2023.

Yukang Cao, Yan-Pei Cao, Kai Han, Ying Shan, and Kwan-Yee K Wong. Dreamavatar: Text-and-
shape guided 3d human avatar generation via diffusion models. arXiv preprint arXiv:2304.00916,
2023.

Eric R Chan, Connor Z Lin, Matthew A Chan, Koki Nagano, Boxiao Pan, Shalini De Mello, Orazio
Gallo, Leonidas J Guibas, Jonathan Tremblay, Sameh Khamis, et al. Efficient geometry-aware
3d generative adversarial networks. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 16123–16133, 2022.

Rui Chen, Yongwei Chen, Ningxin Jiao, and Kui Jia. Fantasia3d: Disentangling geometry and
appearance for high-quality text-to-3d content creation. arXiv preprint arXiv:2303.13873, 2023a.

Yiwen Chen, Chi Zhang, Xiaofeng Yang, Zhongang Cai, Gang Yu, Lei Yang, and Guosheng
Lin. It3d: Improved text-to-3d generation with explicit view synthesis. arXiv preprint
arXiv:2308.11473, 2023b.
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APPENDIX

A 3D REPRESENTATIONS

SDF representation. Signed Distance Fields (SDF) is a 3D used to describe the geometry surface
of an object. It is expressed implicitly through neural networks like MLP. For a sampling point x,
everything satisfying f(x) = 0 is considered to be part of the object’s surface, while the region
where f(x) < 0 represents the object’s interior, and f(x) > 0 indicates the object’s exterior. SDF
can be employed in the synthesis of images from arbitrary viewpoints through methods such as
differentiable volume rendering or differentiable Marching Cubes for geometry extraction and re-
rendering.

DMTET representation. DMTET (Shen et al., 2021) is a hybrid 3D representation that combines
explicit and implicit forms. It divides 3D space into dense tetrahedra, which is an explicit partition.
Simultaneously, the vertices of these tetrahedra record properties of the 3D object, including SDF,
deformation, color, etc. These properties are expressed through the implicit functions of neural
networks. By combining explicit and implicit representations, DMTET can be optimized more
efficiently and easily transformed into explicit structures like mesh representations. During the
generation process, DMTET can be converted into a mesh in a differentiable manner, enabling rapid
high-resolution multi-view rendering. We utilize DMTET as the three-dimensional representation
in both the geometry generation and texture generation phases.

B IMPLEMENTATION DETAILS

Dataset. Our dataset comprises 2952 3D human body models. These include 526 models from
the THuman2.0 dataset (Yu et al., 2021), 1779 models from the Twindom dataset (TwinDom), and
647 models from the CustomHumans dataset (Ho et al., 2023). We use these models to generate
depth maps, normal maps, and color maps. To augment the dataset, we divide the human body
into four distinct sections: the head, the upper body, the lower body, and the full body. For each
model, we render a set of 120 images, each set comprising depth maps, normal maps, and color
maps. The normal maps and depth maps are transformed by the rotation of the camera parameter.
We utilize CLIP to generate prompts for the images, supplementing them with additional text to
label various data types such as “depth map” and “normal map”. We also include descriptors for the
view direction, such as “front view”, “back view”, “left side view”, and “right side view”, as well as
labels for specific regions of the human body, including “head only”, “upper body”, “lower body”,
and “full body”.

Training of normal-adapted and depth-adapted diffusion models. The base stable diffusion
model used in our method is SD 1.5. We fine-tune the stable diffusion model using our depth
pairs and normal pairs for 15k iterations. The learning rate is set to 1 × 10−5 and the batch size
is set to 4. Exponential Moving Average (EMA) is used during the training. After fine-tuning,
we obtain a normal-adapted diffusion model and a depth-adapted diffusion model. The fine-tuning
code is from Diffusers (https://huggingface.co/docs/diffusers/index), a library
for state-of-the-art pretrained diffusion models for generating images, audio, and even 3D structures
of molecules

Training of normal-aligned diffusion model. To guide the generation of stable diffusion using
a normal map, we load the pre-trained ControlNet based on Stable Diffusion 1.5. We fine-tune
the ControlNet for 30K iterations using our image-prompt pairs and take normal maps as control
conditions. The learning rate is set to 1 × 10−5 and the batch size is set to 4. The fine-tuning code
is also from Diffusers.

Details of progressive hash encoding. In progressive geometry generation, we employ progressive
hash encoding. Specifically, the position encoding for signed distance function (SDF) features has
a total of 32 dimensions, where the lower dimensions represent lower-frequency features, higher
dimensions represent higher-frequency features. Initially, we utilize a 32-dimensional mask with
the first 16 dimensions set to 1 and the latter 16 dimensions set to 0. We multiply this mask with
the SDF’s position encoding to remove the high-frequency components. During training, every 500
iterations, we convert 2 of the 0 positions in the mask to 1, gradually enabling the network to learn
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high-frequency components. After 4,000 iterations, all positions in the mask become 1, resulting in
the position encoding encompassing both low-frequency and high-frequency components.

Details of progressive resolution of marching cube. We similarly adopt a progressive approach
to gradually increase the geometric resolution. Initially, the resolution of the marching cube in 3D
space is set to 1283. As training proceeds, we incrementally double this resolution every 3,000
iterations. So at 3,000 iterations, the resolution is set to 2563, and it will eventually reach 5123 at
6,000 iterations. In the early training stages, this results in fewer generated geometry facets, with
each facet occupying more pixels in the rendered images. Consequently, the gradients produced by
the loss are more evenly distributed across the points of each facet, leading to more stable geometry
generation. As the geometric resolution increases, the number of geometry facets also increases,
allowing for the representation of more intricate details, including features like hair and clothing
folds.

Details of progressive SDF loss. During the training process, at the 3,000 iterations, we extract
the current geometry to form a coarse mesh. This coarse mesh exhibits the reasonable shape and
features a relatively smooth surface. We utilize it to compute the SDF loss for subsequent stages.
Specifically, within the bounding box of the 3D generation, we randomly sample 100,000 points at
each iteration. Then we calculate the SDF loss by comparing the SDF values of these points in the
coarse mesh with the SDF values predicted by the network. The weight of the SDF loss among all
the losses is set to 1500 and is only computed after the 3,000 iterations.

Details of coarse-to-fine strategy. In the coarse-to-fine strategy for texture generation, the initial
2,000 iterations are utilized as coarse-level optimization and employ SDS loss, while the subse-
quent 8,000 iterations serve as fine-level optimization, using the multi-step SDS and perceptual loss.
For the multi-step loss, the diffusion model performs varying numbers of iterations based on the
timestep t with added noise. Specifically, The total timestep of our diffusion model is 1000, when
the timestep is t, the diffusion model iterates (t/25+1) times. We employ the DPM++ solver as our
diffusion scheduler. To enhance training stability, we also incorporate a DU(Dataset Update) strat-
egy similar to what was proposed in instructnerf2nerf. During computation for the multi-step loss at
each iteration, we save the image results of multi-step diffusion denoising in a cached dataset, which
are reused in subsequent training processes. Every 10 iterations, we will use multi-step diffusion
denoising to update the images in the cached dataset.

Noises and guidance scales of the diffusion model. In the geometry stage, our text-to-normal
diffusion model has a guidance scale of 50, and the text-to-depth diffusion model also has a guidance
scale of 50. Similar to the strategy employed in progressive geometry generation, we introduce noise
progressively during the geometry stage. In the first 5,000 steps, the timestep t of noise follows
the distribution U(0.02, 0.8). Between 5,000 and 8,000 steps, the timestep t of noise follows the
distribution U(0.02, k) with parameter k = 0.2 + (0.8 − 0.2) 8000−step

8000−5000 . After 8,000 steps, the
timestep t of noise follows the distribution U(0.02, 0.2). In the texture stage, our geometry-guided
diffusion model has a guidance scale of 7.5, and the controlled condition scale is set to 1.0. During
the coarse level of texture generation, the timestep t of noise follows the distribution U(0.02, 0.98).
In the fine level, the timestep t of noise follows the distribution U(0.02, 0.5).
Learning rate and the weight of losses in 3D generation. We adopt the AdamW optimizer in 3D
generation. The learning rate of θg is set to 2×10−5 and the learning rate of θc is set to 1×10−3. In
the geometry generation, the weight of the normal SDS loss is set to 1.0 and the weight of the depth
SDS loss is 1.0. In the texture generation, the weight of the color SDS loss is 1.0 and the weight of
the multi-step SDS and perceptual loss are set to 1.0.

Part-based optimization. We primarily divide the human body into four parts for generation: head,
upper body, lower body, and the full body. To ensure that the rendered images cover each of these
four parts separately, we predefine the camera positions and focal lengths accordingly. During the
generation process, the probability of sampling from these four camera positions varies based on
the optimization objective. When generating only the head, we sample from the camera capturing
the head alone. When generating the upper body of the human, we assign a sampling probability of
0.7 to the upper body and 0.3 to the head. When generating the entire human body, we adjust the
sampling strategy progressively. In the first 10,000 iterations, we assign a sampling probability of
0.7 to the entire body and 0.1 to each of the head, upper body, and lower body. In the subsequent
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Table 1: Results of user study. The table reports the user preference percentages in detail.

Q1 (%) Q2 (%) Q3 (%)

Best Second best Best Second best Most Second most

DreamFusion 5.36 22.27 4.73 20.55 9.27 22.55
LatentNeRF 3.09 11.82 6.64 8.45 8.45 12.91
TEXTure 3.64 10.27 3.91 6.64 4.91 9.09
Fantasia3D 9.91 41.45 10.45 50.55 12.64 39.00
Ours 78.00 14.18 74.27 13.82 64.73 16.45

Q1 (%) Q2 (%) Q3 (%)

DreamHuman 23.75% 16.75% 38.75%
Ours 76.25% 83.25% 61.25%

5,000 iterations, we assign a sampling probability of 0.1 to the entire body and 0.3 to each of the
head, upper body, and lower body.

C USER STUDY

Following AvatarVerse (Zhang et al., 2023a), TADA (Liao et al., 2023) and DreamHuman (Kolo-
touros et al., 2023), we conducted a user study to further assess the quality of the 3D human models
generated by our method. Our approach was compared with five state-of-the-art methods across 30
prompts. For each prompt, 50 volunteers (comprising 40 students specializing in computer vision
and graphics, and 10 members of the general public) evaluated the color and normal map videos
rendered from the generated 3D humans. They voted on three questions:

• Q1: Which 3D human model exhibits the best (and second best) texture quality?

• Q2: Which 3D human model displays the best (and second best) geometric quality?

• Q3: Which 3D human model aligns most closely (and second most closely) with the given
prompt?

Since DreamHuman’s source code is not publicly accessible, we sourced its results from the project
page for a standalone comparison. The results of LatentNeRF, TEXTure, and Fantasia3D are pro-
duced using their official code with default settings. Meanwhile, DreamFusion’s results were gen-
erated using an unofficial implementation in ThreeStudio, a unified framework for 3D content cre-
ation (https://github.com/threestudio-project/threestudio). We all collect
1500 pairwise comparisons. The results are shown in Tab. 1. One can see that our method surpasses
the performance of the four text-to-3D content methods and DreamHuman, particularly in terms of
geometry and texture quality. These results underscore the superior performance of our approach.

D MORE COMPARISON

We offer further qualitative comparisons between our method and four existing text-to-3D content
methods as well as DreamHuman. As depicted in Fig. 11 and Fig. 12, Fantasia3D may generate
textures that are not aligned with the geometry (as seen in the second row of Fig. 11). However,
the textures produced by our method are accurately aligned with the generated geometry. When
compared to the four text-to-3D content methods, our method can generate head-only and upper-
body 3D humans with more detailed geometry and a more realistic appearance. In Fig. 13, we
present full-body results in comparison with DreamHuman. It is evident that the results produced
by DreamHuman contain over-saturated textures and smooth geometry, whereas our method yields
a more natural appearance and geometric details.
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E MORE ABLATION STUDY

Effectiveness of SDF loss. In Fig. 8 (a), we display the results obtained in the absence of SDF
loss. It is evident that the avatar exhibits a distorted body shape, a consequence of the part-based
optimization. However, the introduction of SDF loss effectively constrains the wrong growth of the
human body, thereby preventing the formation of such unreasonable body shapes.

Effectiveness of progressive hash encoding. In Fig. 8 (b), we conduct an experiment where the
frequency of hash encoding is fixed. The results reveal extensive noise on the surface of the geom-
etry, which can be attributed to the high-frequency content learned during the initial training phase.
A contrasting case is presented in Figure 8 (c) when a progressive hash encoding approach is em-
ployed. Our method significantly reduces the learning of high-frequency information during the
initial training phase, resulting in a stable geometry devoid of geometric noise.

F EDITING APPLICATIONS

Text-based Editing. Our method offers the capability to edit both the texture and geometry of the
generated 3D humans by adjusting the input prompt. As demonstrated in Figure 9, we modify the
color and style of Messi’s clothing, as well as his hairstyle, all while maintaining his identity. While
geometry editing poses a greater challenge than texture editing, our method exhibits precise control
over geometry generation, even allowing us to generate Messi wearing a hat. Furthermore, the edited
geometry is rich in detail, as evidenced by the intricate details in the sweater.

Pose Editing. Our method also provides the ability to editing the pose of the generated avatars by
adjusting the pose of the initialization mesh and modifying the prompts. The results of pose editing
are displayed in Fig 10.

G LIMITATIONS

Since we do not utilize human body models such as SMPL and imGHUM, the 3D humans generated
by our method are static. Consequently, we are unable to facilitate body and expressive animation
using pose and shape parameters. To overcome this limitation, one potential solution could be to
integrate the 3D representations with human body models and incorporate pose and shape param-
eters as additional inputs. This is an avenue we plan to explore in our future work. Furthermore,
our method is dependent on the initial geometry. This makes it challenging for us to generate cloth-
ing with excessive volume, such as a wedding dress. This is due to the fact that we initialize the
geometry with a natural body, devoid of clothing and hair. Lastly, due to the limited size of our
training dataset, the training of the geometry-aware diffusion model can be unstable. This may lead
to a higher likelihood of overfitting. A potential solution to mitigate this issue is using large model
fine-tuning strategies.

H ETHICS STATEMENT

The objective of HumanNorm is to equip users with a powerful tool for creating realistic 3D Human
models. Our method allows users to generate 3D Humans based on their specific prompts. However,
there is a potential risk that these generated models could be misused to deceive viewers. This
problem is not unique to our approach but is prevalent in other generative model methodologies.
Moreover, it is of paramount importance to give precedence to diversity in terms of gender, race, and
culture. As such, it is absolutely essential for current and future research in the field of generative
modeling to consistently address and reassess these considerations.
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Figure 8: Importance of SDF loss and progressive hash encoding.

Figure 9: Text-based editing. Our method provides the ability to modify both the texture and
geometry of the generated 3D humans by simply altering the input prompt.

Figure 10: Pose editing. Our method offers the capability to generate 3D humans in various poses
by initializing geometry representation with distinct poses.
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Figure 11: Comparison with text-to-3D content generation methods on the head-only 3D human
generation.
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Figure 12: Comparison with text-to-3D content generation methods on the upper-body 3D human
generation.
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Figure 13: Comparison with DreamHuman on the full-body 3D human generation.
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