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ABSTRACT

Autoencoders are frequently used for anomaly detection, both in the unsupervised
and semi-supervised settings. They rely on the assumption that when trained us-
ing the reconstruction loss, they will be able to reconstruct normal data more ac-
curately than anomalous data. Some recent works have posited that this assump-
tion may not always hold, but little has been done to study the validity of the
assumption in theory. In this work we show that this assumption indeed does not
hold, and illustrate that anomalies, lying far away from normal data, can be per-
fectly reconstructed in practice. We extend the understanding of autoencoders for
anomaly detection by showing how they can perfectly reconstruct out of bounds,
or extrapolate undesirably, and note how this can be dangerous in safety critical
applications. We connect theory to practice by showing that the proven behav-
ior in linear autoencoders also occurs when applying non-linear autoencoders on
both tabular data and real-world image data, the two primary application areas of
autoencoders for anomaly detection.

1 INTRODUCTION

Autoencoders are one of the most popular architectures within anomaly detection, either directly, or
as a scaffold or integral part in larger pipelines or architectures. They are commonly used across a
variety of domains, such as predictive maintenance (Kamat & Sugandhi, 2020), network anomaly
detction (Said Elsayed et al., 2020), and intrusion detection (Farahnakian & Heikkonen, 2018),
but find much contemporary use in computer vision anomaly detection, with applications such as
industrial inspection (Tsai & Jen, 2021), medical imaging (Wei et al., 2018), structural health mon-
itoring (Chow et al., 2020) and video surveillance (Zhao et al., 2017; Cruz-Esquivel & Guzman-
Zavaleta, 2022). Many of these applications are safety critical, meaning that the reliability of these
algorithms is of utmost importance in order to prevent catastrophic failure and associated dangers
and consequences.

Anomaly detection using autoencoders typically relies on using the reconstruction loss, often the
mean squared error (MSE), as a proxy for “anomalousness”. The underlying assumption is that
anomalies are harder to reconstruct, and will therefore have a higher reconstruction loss. How-
ever, the validity of this assumption has been questioned in recent years. Merrill & Eskandarian
(2020) and Beggel et al. (2020) for example state that anomalies in the training data might lead to
reconstruction of anomalies, leading to unreliable detectors. Some researchers have noted that re-
construction of unseen anomalies might also occur in the semi-supervised setting, where the training
data is assumed to contain no anomalies (Astrid et al., 2021; 2024; Gong et al., 2019; Zong et al.,
2018). Yet, little work has been done on the nature of failure and reliability of autoencoders beyond
experimental evaluation, leaving a gap in theoretical rigor.

In this work we provide valuable insights into the reliability of autoencoders for anomaly detec-
tion. Following the seminal works of Bourlard & Kamp (1988) and Baldi & Hornik (1989) we
develop a theory on autoencoder failure modes, whilst briefly examining how various activation
functions influence these failures. We show that this theory is not just a rarely occurring edge case,
but also show failure cases on tabular data and on real-world image data commonly used in anomaly
detection benchmarks. By doing this we provide a foundation for future research in solving the
demonstrated unreliability of autoencoders for anomaly detection and furthering our understand-
ing of autoencoders. We how that for different architectures and activations functions, even with
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sufficiently constrained latent spaces, these problems persist. To ensure reproducibility of all exper-
iments we use only open-source data and provide code for all experiments1.

2 RELATED WORK

This work is not the first to recognize that autoencoders have several issues as anomaly detectors.
The most discussed type of failure is the unwanted reconstruction of anomalies, which is also the
focus of this work. Several causes of this unwanted behavior have been proposed.

Many works focus on the unsupervised setting, and observe that contrary to prior belief, autoen-
coders will fairly easily reconstruct any anomalies present in the training data, leading to an unusable
detector (Merrill & Eskandarian, 2020; Beggel et al., 2020; Cheng et al., 2021; Tong et al., 2022).

Several works cover the anomaly reconstruction problem within the semi-supervised setting. Most
commonly, it is only experimentally observed that anomalies are well reconstructed (Gong et al.,
2019; Zong et al., 2018; Cheng et al., 2021; Astrid et al., 2021; 2024; Salehi et al., 2021; Nalisnick
et al., 2019; Lyudchik, 2016). Based on these experimental results, some solutions have been pro-
posed. Gong et al. (2019) mention that out-of-bounds reconstruction can occur and propose adding a
memory module to the autoencoder to alleviate the issue. While the addition of the memory module
can aid in limiting out-of-bounds reconstruction, it also leads to a severely decreased reconstruc-
tion ability and substantial added complexity in training and optimizing the network. Zong et al.
(2018) note that while some anomalies have a high reconstruction loss, some occupy the region of
normal reconstruction loss, and add a Gaussian mixture model to the latent space to aid in detection
of anomalies under the assumption that anomalies occupy a low-density region in the latent space.
Similarly, Cheng et al. (2021) aim to detect anomalies in the latent space by looking at the distance
to the centroid. From our experiments we can glean that relying on distances or densities in the
latent space does not always work in practice. Astrid et al. (2021; 2024) make use of constructed
pseudo anomalies in training the autoencoder. They add adaptive noise to normal samples to gen-
erate pseudo anomalies. In the reconstruction, they then optimize the reconstruction loss between
the pseudo anomaly and the normal sample used to generate it. While they show promising results
and greater discriminative power on benchmark datasets, they do not quantify to which degree their
performance gains can be attributed to the reduction of the out-of-bounds reconstruction. Salehi
et al. (2021) aim to limit the reconstruction of anomalies by generating adversarial samples. The ad-
versarial examples are generated by perturbing the normal samples, and minimizing the effect those
perturbations have in the latent space. This is similar to the concept of denoising autoencoders.
Based on our experiments, we do not think this results in a reliable autoencoder, as often adversarial
anomalies can occupy the latent space close to normal data.

Some authors have moved beyond the experimental, and propose explanations for the anomaly re-
construction problem. For example You et al. (2022), Lu et al. (2023) and Bercea et al. (2023)
propose that anomaly reconstruction can happen because an autoencoder can learn an “identical
shortcut”, where both normal data and anomalous data is effectively reconstructed using an identity
mapping. This point has however been countered by Cai et al. (2024) who show that by constraining
the latent space to be sufficiently low dimensional, this problem can be avoided.

The second line of thought follows from VAE anomaly detection, where Havtorn et al. (2021) theo-
rize that in out-of-distribution detection, unwanted reconstruction can happen due to a high correla-
tion between learned low-level features for in- and out-of-distribution data.

A third line of thought is proposed by Zhou (2022) who propose that reconstruction of out-of-
distribution samples can happen due to out-of-distribution data having smaller neural activations
than in-distribution data.

Finally, some works theorize that autoencoders can perfectly reconstruct data due to the anomalies
occupying the reconstruction hyperplane, or latent space manifold. Denouden et al. (2018) for
example note this phenomenon, and aim to solve it by adding the Mahalanobis distance in the latent
space to the loss. The most detailed work is that of Yoon et al. (2021) who provide an example of
the hyperplane interpolating between clusters of data. They solve this by introducing a normalized

1Link to GitHub page: (Removed during review, copy of anonymized repo has been added as supplementary
material.
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autoencoder which reinterprets the autoencoder as a likelihood-based energy model. We specifically
follow up on this line of reasoning, and provide mathematical proofs and experimental evidence of
anomaly reconstruction due to both unwanted extrapolation and inter-class interpolation.

3 BACKGROUND

3.1 ANOMALY DETECTION

In practical anomaly detection, we attribute a score si = fanomaly score(xi) for each sample xi ∈ X =
Rn, i.e. the i-th row of dataset X with size m-by-n. The score should then be higher for anomalous
samples than for normal data. When applied to some dataset consisting of both normal data and
anomalies, i.e. X = {Xnormal,Xanomalous}, a perfect anomaly detector will assign higher scores to
anomalies than to normal data: mini(fanomaly score(x

anomalous
i )) > maxi(fanomaly score(x

normal
i )).

The two most common anomaly detection settings are unsupervised and semi-supervised. Un-
supervised anomaly detection is characterized by having no discernible “train” and “test” splits.
Instead, we only consider a single dataset X = {Xnormal,Xanomalous}, where we are uncer-
tain which samples are anomalous and which are not. In the semi-supervised setting we instead
have a conventional “train” and “test” set. The train set consists out of only normal samples:
X train = {X train, normal}, while the test set is unknown, and can contain both normal and anoma-
lous samples: X test = {X test, normal,X test, anomalous}. In this paper we will only consider the semi-
supervised case, and simplify the notation with X = X train and xi referring to an individual training
data point, which in the semi-supervised case by definition is not an anomaly. We then consider a
new data point a to determine whether this is an anomaly or not. In older literature, semi-supervised
anomaly detection is often called one-class classification.

4 OUT-OF-BOUNDS RECONSTRUCTION

In this section we will show that autoencoders can yield zero-loss reconstruction far away from all
training data, and that these autoencoders will then fail to detect certain anomalies. We will build our
theory following the results of Bourlard & Kamp (1988), moving from PCA to linear autoencoders
to non-linear autoencoders.

Out-of-bounds reconstruction is unwanted within the application of anomaly detection, as it leads
to a low reconstruction loss for data that can be considered anomalous, thereby leading to false neg-
atives. These regions of out-of-bounds reconstruction can also be exploited by targeted adversarial
evasion attacks.

In the worst case, unwanted perfect reconstruction causes an anomaly a ∈ Rn far from all training
data to be ranked as being less anomalous than or equally anomalous as all training data, that is:
fanomaly score(a) ≤ mini(fanomaly score(xi)).

4.1 ANOMALY DETECTION USING THE RECONSTRUCTION LOSS

Both PCA and autoencoders are dimensionality reduction techniques that can be used to detect
anomalies using their reconstruction loss, commonly known as the mean squared error, or MSE.
We can calculate the reconstruction loss by comparing a sample xi to its reconstruction x̂i:
LR(xi, x̂i) = 1

n

∑n
j=1 (xi,j − x̂i,j)

2, for each sample vector xi. This reconstruction loss often
serves as a proxy for detecting anomalies, with the underlying assumption that a higher reconstruc-
tion loss indicates a higher likelihood of the sample being an anomaly.

For both PCA and autoencoders we want to find a lower-dimensional encoding Y , e.g. d < n, in the
encoding space Y = Rd by applying the function g : X → Y . We then decode Y by transforming
it back into the space X through the decoder h : Y → X , yielding the reconstructed data X̂ .
Summarizing, we learn the concrete transformations X

g−→ Y
h−→ X̂ .

We can then formulate the anomaly scoring function in terms of the reconstruction loss, encoder,
and decoder: fanomaly score(xi) = LR(xi, h(g(xi))). The worst case can then be formulated as: there
exists an a far from all training data such that LR(a, â) ≤ mini(LR(xi, x̂i)).

3
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4.2 PCA

In PCA, we factorize X as X = UΣV T using singular value decomposition (SVD), where U and
V are orthonormal matrices containing the left- and right-singular vectors of X , respectively, and
Σ is a diagonal scaling matrix. The encoding, or latent, space is then obtained by projecting onto
the first d right-singular vectors: Y = g(X) = XVd, where Vd contains the first d columns of V .
The transformation back into X is given by X̂ = h(Y ) = Y V T

d .

We will show that there exist some a ∈ Rn for which the reconstruction loss is zero, but that are
far away from the normal data, i.e. mini(dist(xi,a)) > δ, for any arbitrary choice of δ. Hereby
we prove that it is possible to find anomalous, adversarial, examples with perfect out-of-bounds
reconstruction. We can prove this even in the semi-supervised setting, where we guarantee that the
model was not exposed to anomalous data at training time. Due to the semi-supervised setting being
more restrictive, the proofs also apply to the unsupervised case.

Lemma 1. Let a ∈ Rn. If a lies in the column space of Vd, then the reconstruction loss
LR(a, h(g(a))) = 0.

Proof. To prove this, we need to show that there exists some a such that h(g(a)) = a. For PCA,
this condition can be written as:

aVdV
T
d = a.

Assume a is in the row space of V T
d . Then a can be expressed as a linear combination of the rows

in V T
d . Let c ∈ Rd be such that:

a = cV T
d .

Substitute a into the left-hand side of the reconstruction equation:

aVdV
T
d = cV T

d VdV
T
d .

Since Vd is composed of orthonormal columns, V T
d Vd = Id, where Id is the d-by-d identity matrix.

Therefore:
cV T

d VdV
T
d = cV T

d = a.

Thus, a satisfies the condition h(g(a)) = a, implying that the reconstruction loss
LR(a, g(h(a))) = 0.

Theorem 2. There exists some adversarial example a ∈ Rn that is far from all normal data,
i.e. mini(dist(xi,a)) > δ, for an arbitrary δ and the Euclidean distance metric, but still has a
reconstruction loss LR(a, g(h(a))) = 0.

Proof. The lemma demonstrates that any a in the column space of Vd will have zero reconstruction
loss.

If we then define a = xiVdV
T
d + cV T

d , a will still have zero reconstruction loss.

Then for the Euclidean distance it follows that:

dist(xi,a)
2 = ∥xi − xiVdV

T
d ∥2 + ∥a− xiVdV

T
d ∥2,

or the squared Euclidean distance is equal to the distance from xi to its projection onto the hyper-
plane xiVdV

T
d plus the distance from that projection xiVdV

T
d to a.

It then follows that:

dist(xi,a)
2 ≥ ∥a− xiVdV

T
d ∥2 = ∥xiVdV

T
d + cV T

d − xiVdV
T
d ∥2 = ∥cV T

d ∥2,

which we can increase to arbitrary length. This can be intuited as moving the projection of xi along
the hyperplane.

To ensure that we increase the distance to all points xi rather than just a single one, we need to move
outward starting from a sample on the convex hull enclosing XVd. Any point in this convex set,
that is the set of points occupying the convex hull, can be moved along the hyperplane to increase
the distance to all points xiVd, and therefore to all points xi as long as c lies in the direction from
xiVd to the exterior of the convex hull.

4
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We can thus always find a a = xiVdV
T
d + cV T

d , for some xiVd in the convex set of XVd and
choose c so that it points from xiVd to the exterior of the convex hull and is of sufficient length such
that mini(dist(xi,a)) > δ, for an arbitrary δ.

Hence, all vectors a ∈ Rn found in this way are constructed anomalies, or adversarial examples,
that are far from all normal data, but still have zero reconstruction loss.

We posit that the same principle applies to other distance metrics, and the intuition is that this follows
the same line of reasoning as presented here for the Euclidean distance.

4.3 LINEAR AUTOENCODERS

Linear neural networks, like PCA, can also exhibit out-of-bounds reconstruction for certain anoma-
lous data points.

Linear autoencoders consist of a single linear encoding layer and a single linear decoding layer.
Given a mean-centered dataset X , the encoding and decoding transformations can be represented
as follows:

Y = g(X) = XWenc,

X̂ = h(Y ) = Y W T
dec = XWencW

T
dec

where Wenc is the n-by-d weight matrix of the encoder, and W T
dec is the d-by-n weight matrix of

the decoder. We assume the autoencoder to have converged to the global optimum. Note that we
define W T

dec in its transposed form to illustrate its relation to V T
d . Due to the full linearity of the

model, even multiple layer networks can be simplified to a single multiplication. It is known that
a well-converged linear autoencoder finds an encoding in the space spanned by the first d principal
components (Baldi & Hornik, 1989). In other words, the encoding weight matrix can be expressed
in terms of the first d principal components and some invertible matrix C:

Wenc = VdC.

At the global optimum W T
dec can be expressed as the inverse of Wenc :

W T
dec = W−1

enc = (VdC)−1 = C−1V −1
d = C−1V T

d .

To show that linear autoencoders can exhibit perfect out-of-bounds reconstruction, we then prove
the same lemma as for PCA.

Lemma 3. Let a ∈ Rn. If a lies in the column space of Vd, then the reconstruction loss
LR(a, h(g(a))) = 0.

Proof. We need to show that there exists some a such that h(g(a)) = a. For linear autoencoders,
this condition can be written as:

aWencW
T
dec = a.

Assume a is in the row space of V T
d . Then a can be expressed as a linear combination of the rows

in Vd. Let c ∈ Rd be such that:
a = cV T

d .

Then it follows that:

aWencW
T
dec = cV T

d WencW
T
dec = cV T

d VdCC−1V T
d = cV T

d VdV
T
d = cV T

d = a,

indicating that a satisfies the condition h(g(a)) = a, implying that the reconstruction loss
LR(a, g(h(a))) = 0.

After proving this lemma, the case of the linear autoencoder reduces to that of PCA, with the
same proof that adversarial examples satisfying mini(dist(xi,a)) > δ, with a reconstruction loss
LR(a, g(h(a))) = 0, exist.

An extension of this proof to the case of linear networks with bias terms applied on non-centered
data can be found in Appendix A.1.
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4.4 NON-LINEAR AUTOENCODERS

In this section we show that datasets exist for which we can prove that non-linear neural networks
perform the same unwanted out-of-bounds reconstruction. Then we experimentally show that this
behavior indeed occurs in more complex real-world examples.

4.4.1 FAILURE OF A NON-LINEAR NETWORK WITH RELU ACTIVATIONS

We can show on a simple dataset that unwanted reconstruction behavior can occur in non-linear
autoencoders. We consider a two-dimensional dataset X consisting out of normal samples xi =
αi(1, 1), where αi is some scalar. Simply put, every normal sample xi occupies the diagonal. This
dataset can be perfectly reconstructed by a linear autoencoder with Wenc = β(1, 1)T , where β is
some scalar. The simplest non-linear autoencoder with ReLU activation will find the same weights,
but with a bias such that xiWenc + benc > 0 for all xi ∈ X , i.e. benc ≥ mini(xiWenc). This will
then lead to a perfect reconstruction for all xi. Adversarial anomalies a can also be easily found as
a = c(1, 1), where c ≫ maxi(xi)

(1,1) is some sufficiently large scalar such that mini(dist(xi,a)) > δ

is satisfied. We theorize that even beyond this simple case, similar linear behavior can occur beyond
the convex hull that the normal data occupies. We experimentally show this anomaly reconstruction
behavior in later sections.

4.4.2 TABULAR DATA

On more complex datasets, we observe similar behaviour. We have synthesized several two-
dimensional datasets to show how non-linear autoencoders behave when used for anomaly detec-
tion. These datasets, as well as contours of the MSE of autoencoders trained on these datasets,
are visualized in Figure 1. In each of these cases, we have synthesized a dataset by sampling 100
points per distribution, either from a single or from two Gaussians as in 1a, 1b, 1e, and 1f, or from
x2 = x2

1 with added Gaussian noise in 1c and 1d. In all cases we use an autoencoder with layer
sizes [2,5,1,5,2], except for 1d, where we use layer sizes of [2,100,20,1,20,100,2] to better model
the non-linearity of the data. All layers have ReLU (Subfigures 1a, 1b, 1c, and 1d ), or sigmoid
(Subfigures 1e and 1f) activations, except for the last layer, which has a linear activation. In these
figures the color red is used to highlight those areas where the autoencoder is able to nearly perfectly
reconstruct the data, i.e. MSE < ϵ = 0.1.

ReLU Activation Failure on Tabular Data We can readily observe some of the problematic
behavior of autoencoders as anomaly detectors. Firstly, in Figure 1a we observe that well outside
the bounds of the training data there is an area with a near-perfect reconstruction. Worryingly, the
reconstruction loss is lower than for a large part of the area which the normal data occupies. If we
move in the (−1,−1) direction, the encoder and decoder will no longer match perfectly. Even so,
problematically low reconstruction losses can be found in this direction. In Figures 1c and 1d we
see the same linear out-of-bounds behavior. In each of these cases, the mismatch between encoder
and decoder in the linear domain is less noticeable, leading to even larger areas of near-perfect
reconstruction. Lastly, in Figure 1b that there is an area between the two clusters with a good
reconstruction. Likely the units responsible for this area are still close to their initialization, and due
to the simple shallow network architecture can not meaningfully contribute to the reconstruction of
any samples.

Our intuition of this behavior directly relates to the proof of out-of-bounds reconstruction we have
provided for linear autoencoders. At the edge of the data space, only a few of the ReLU neurons
activate. Beyond this edge, no new neurons will activate, nor will any of the activated ones deacti-
vate. This can lead to linear behavior on some edge of the data space, i.e., in this area the network
reduces to a linear transformation Wenc. If we now synthesize some a such that it lies in the column
space of Wenc, we can again find some adversarial anomalies a = cW T

enc. Like we have observed
in Figure 1a, there may be a mismatch between the encoder and decoder, even at the global opti-
mum, so we might not be able to increase c towards infinity and still find adversarial examples with
LR(a, g(h(a))) < ϵ.

Sigmoid Activation Autoencoders Nowadays, full sigmoid networks have mostly fallen out of
favor in deeper networks due to their vanishing gradients (Hochreiter, 1991; Glorot et al., 2011).
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Figure 1: Plots of the contours of the reconstruction loss of non-linear autoencoders when applied
to 3 distinct datasets. The datasets consist out of a 100 samples from a 2D Gaussian (a, e), 100
samples for each of 2 different 2D Gaussians (b, f), and a 100 samples from a classic banana shaped
function with Gaussian noise (c, d). In (a,b,c,e,f) a [2,5,1,5,2] autoencoder is used, while for (d)
a deeper [2,100,20,1,20,100,2] autoencoder is used. The contourplot is colored red whenever the
MSE is below a set threshold ϵ < 0.1 to indicate a near-perfect reconstruction. Note that the color
scaling is exponential to better visualize the MSE loss.

However, sigmoids are more attractive to use in anomaly detection because they lead to networks
that do not exhibit the hyperplane issues that the ReLU suffers from. While sigmoids have the more
desirable property of tapering off at high or low input, making it hard to perfectly reconstruct data
far away from normal data, autoencoders with just sigmoid activation can still behave unexpectedly,
albeit less so than those with ReLU activation.

We can see in Figure 1e that the data is nicely approximated by a sigmoid autoencoder. It extends
nicely to the first and last samples on the direction of the first principal component, and does not
extend beyond that. When we extend this example to multimodal data, as in Figure 1f, we can see
different undesirable behavior arising. There exists an area where the sigmoids reconstructing both
clusters intersect. Due to the two distinct sigmoids mixing, we can find a hyperplane orthogonal to
the first principal component where the reconstruction loss is much lower than would be expected.
While in this case there are no points on the hyperplane which would have a lower reconstruction
loss than all normal data, there is still a substantial area where the reconstruction loss is lower than
for many of the normal data points.

Other Activation Functions While we have explicitly discussed the ReLU and sigmoid activation
functions, the behavior shown is similar for other activation functions. Effectively, we can categorize
most activation functions as those having an order of continuity of C0 like the ReLU, or C∞ like the
sigmoid. In summary, activation functions with an order of continuity of C0 suffer most from out-
of-bounds reconstruction, but allow for more easily trainable deep networks. In contrast, activation
functions with an order of continuity of C∞ generally have more desirable properties for anomaly
detection, but are harder to use in deep networks due to the vanishing gradient.

4.5 CONVOLUTIONAL AUTOENCODERS

All the previous examples clearly illustrate autoencoders’ possible failure and unreliability when
used for anomaly detection on tabular data. Yet, many applications of anomaly detection are in

7
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computer vision, where anomaly detection can be used to detect foreign objects. Typical examples
of computer vision anomaly detection are surveillance, where videos are analyzed to find possible
security threats (Nayak et al., 2021; Sultani et al., 2018), structural health monitoring (Bao et al.,
2019), and industrial inspection (Bergmann et al., 2021).

For most applications of autoencoders on image data, the architecture is fairly straightforward.
ReLU activation functions are most commonly used throughout the network, with a sigmoid ac-
tivation at the final layer. Connections to and from the bottleneck layer are often chosen to be just
linear, to allow for a richer internal representation. As most layers have ReLU activation functions,
these networks do not suffer from the vanishing gradient. Yet, due to using a sigmoid at the last
layer, these networks suffer less from the issues encountered in full ReLU/linear networks as dis-
cussed in Section 4.4.2. Nonetheless, we will show that even on more complex real-world problems,
autoencoders remain unreliable and are often able to reconstruct out-of-bounds.

4.5.1 FAILURE ON REAL-WORLD DATA: MNIST

To show that deeper non-linear networks trained on real-world image data can still undesirably re-
construct anomalies we will study an autoencoder for anomaly detection that was trained on the
well-known MNIST dataset (LeCun, 1998). Benchmarking computer vision anomaly detection al-
gorithms is not as standardized as classification benchmarking, as datasets with “true” anomalies are
exceedingly rare. The common method for benchmarking these algorithms is to take a classification
dataset and select a subset of classes as “normal” data and another distinct subset as “anomalies”.
This is analogous to other, more-developed, fields such as tabular anomaly detection (Bouman et al.,
2024). There is no general consensus on which digits are taken as the normal data, and how many.
In our experiments, both shown and non-shown, we have tried several different combinations and
observe that in some cases out-of-bounds reconstruction occurs.

The 2D convolutional autoencoder we will discuss has a 2-layer encoder and 2-layer decoder. Down-
and upsampling to and from the latent space is done using a fully connected linear layer. The con-
volutional layers all use ReLU activations, except for the last one, which is a sigmoid to bound the
data to the original 0-1 range. In these experiments, the latent space is set to be two dimensional,
far below the maximum to avoid the ”identical shortcut” as noted by Cai et al. (2024). This serves
as proof that the ”identical shortcut” is not the cause of anomaly reconstruction. In Figures 2a and
2b we show how the reconstruction loss behaves in the latent space when we apply this autoencoder
on a train set consisting out of a subset of digits. These contourplots are constructed by sampling
each point in the latent space, decoding it to get an artificial sample, and then calculating the recon-
struction loss between the artificial sample and its reconstruction loss. We subsequently show the
latent representations of all normal data in the same space. We should note that as the encoder is
a many-to-one mapping, the reconstruction loss in the grid does not necessarily correspond to the
reconstruction loss of a real sample occupying the same point in that grid.

Looking at Figure 2a we see that a 2D latent space is able to separate the digits 4 and 5, with 7
occupying the middle between the two classes. As expected, the reconstruction loss grows the larger
the distribution shift becomes. However, the reconstruction loss landscape is fairly skewed, with the
MSE starkly increasing towards the right, and slowly towards any other direction, indicating model
bias. Most notably, around (−4.2,−5.2) we observe an out-of-bounds area of low reconstruction
loss. Due to this type of visualization, we can easily generate an adversarial anomaly by simply
decoding the latent space sample: a = h((−4.2,−5.2)). This leads to the adversarial anomaly
shown in Figure 2c. The adversarial anomaly shares some features with the digits used for training,
but does not resemble any of them specifically, making it a clear false negative. Indeed, this sample
fulfills our earlier criterion of LR(ai, âi) ≤ mini(LR(xi, x̂i)), as for this example LR(ai, âi) =
0.014, and mini(LR(xi, x̂i)) = 8.47.

We also looked at a simpler example, where we train on the digits 0 and 1 to get a clearer separation
of the two classes. In our previous experiments with sigmoid activation functions in Section 4.4.2
we observed that at the intersection of the two modalities some unwanted interpolation can occur. In
Figure 2b we can observe the same thing, where at the intersection of the two classes we have a very
small area in the latent space with a very low reconstruction loss. The normal data close to this area
is however not well reconstructed. By generating an artificial sample from the lowest MSE in this
latent space, at (0.535,−0.353), we can find an adversarial anomaly a = h((0.535,−0.353)) with
LR(ai, âi) = 0.022, substantially lower than mini(LR(xi, x̂i)) = 1.61. This adversarial anomaly

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Y1

Y 2

Normal 4
Normal 5
Normal 7
MSE < 0.10

0.0

0.2

0.6

2.3

8.9

34.1

130.0

Re
co

ns
tru

ct
io

n 
lo

ss
 (M

SE
)

(a)

Y1

Y 2

Normal 0
Normal 1
MSE < 0.10

0.00

0.19

0.82

3.60

15.77

69.06

Re
co

ns
tru

ct
io

n 
lo

ss
 (M

SE
)

(b)

(c) (d) (e)

Figure 2: Plots of the contours of the reconstruction loss in the 2D latent space of a convolutional
autoencoder when applied on subset of MNIST (a, b), plots of constructed adversarial anomalies
(c, d), and a plot of non-problematic out-of-bounds reconstruction (e). Subplots (a, c) show the
results for an autoencoder trained on digits 4, 5, and 7, and Subplots (b, d, e) show the results for an
autoencoder trained on digits 0, and 1. The visualized samples, i.e. the points in (a, b) are the latent
representations of the training data. The shown digits are constructed by sampling from the ϵ < 0.1
zone within the marked area, and correspond to these from left to right. The contourplot is colored
red whenever the MSE is below a set threshold ϵ < 0.1 to indicate a near-perfect reconstruction.
Note that the color scaling is exponential to better visualize the MSE loss.

is visualized in Figure 2d. We find, unsurprisingly, that the adversarial anomaly here is a mix of the
features of the 0 and 1 class.

Similar to our experiments on the digits 4, 5, and 7 autoencoder, we identified an area at the edge of
the 1 class where the reconstruction loss is low, but where few normal data points can be found. In
contrast to our previous experiment, this area corresponds to a more uncommon diagonally drawn
1, as shown in Figure 2e, which is still within the bounds of what we can consider normal data.
From this we can conclude that although out-of-bounds reconstruction can be unwanted, in some
cases it aligns with the expectations of an anomaly detector. More generally speaking we observe
that some generalization of the autoencoder can align with the expectation of a user. In some cases,
generalization can lead to unwanted inter- or extrapolation. This unwanted generalization can cause
anomalous data to stay fully undetected. This is similar to the phenomena observed by Nalisnick
et al. (2019) for variational autoencoders, who observe some out-of-distribution samples to remain
fully undetected.

While conducting the experiments on the MNIST data, we found that the problems shown above do
not seem to arise in every case. We observe that depending on the random seed used for initialization
and the digits selected as normal data, the out-of-bounds reconstruction may or may not be easily
detected. In some cases, the out-of-bounds behavior seems very non-monotonous, meaning that the
regions of reconstruction disappear one epoch, and reappear the next. This solidifies our belief that
autoencoders may fail, but in many cases outwardly seem to work well. The crux lies in the fact
that in a semi-supervised or unsupervised setting, it is not possible to accurately judge whether a
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network will fail on future data. This is further complicated by the fact that due to the heterogeneity
of anomalies, some may be detected while others go unnoticed.

5 CONCLUSION

In this work we provide a theoretical basis of the unwanted reconstruction of anomalies that autoen-
coders can exhibit when used for anomaly detection. We move beyond existing theories of unwanted
reconstruction happening in interpolation and show how unwanted out-of-bounds reconstruction can
occur when extrapolating as well, and how this can lead to anomalies staying fully undetected. We
show through several experiments that these issues can arise in real-world data and not just in theory.
This leads us to some safety concerns, where autoencoders can catastrophically fail to detect obvi-
ous anomalies. This unreliability can have major consequences when trust is put into the anomaly
detector in safety-critical applications.

In general, we solidify the growing belief that the reconstruction loss is not a reliable proxy for
anomaly detection, especially when the network is explicitly trained to lower the reconstruction
loss for normal data without constraining the reconstruction capability beyond the bounds of the
normal training data such as has been done by Yoon et al. (2021). We find that this issue is most
prevalent for (conditionally) linear units such as the ReLU, but similar issues exist for sigmoid
networks, albeit to a lesser degree. The reconstruction issue is mostly caused by the fact that a point
in the lower-dimensional latent space corresponds to a hyperplane in the original space that the data
occupies. Next to interpolation and out-of-bounds reconstruction, we find that anomalies can remain
undetected when they occupy the latent space where normal classes border.

Users of autoencoders for anomaly detection should be aware of these issues. Good practice would
be to at least check whether a trained non-linear autoencoder exhibits the undesirable out-of-bounds
reconstruction. In this paper’s illustrative examples, we checked for this by searching for adversar-
ial anomalies. This was relatively easy, as it could be done either visually in the latent space, or
through a simple 2D grid search. For more complex datasets, requiring larger latent spaces, a feasi-
ble strategy might be to again synthesize samples from the latent space and formulate the search for
adversarial anomalies as an optimization in terms of projected gradient descent (Madry et al., 2017).

By describing exactly how autoencoders are unreliable anomaly detectors by describing anomaly re-
construction, we hope to provide a scaffold for future research into fixing and avoiding the identified
issues in a targeted manner.
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A APPENDIX

A.1 LINEAR NETWORKS WITH BIAS TERMS

Linear neural networks with a bias term, similar to those without a bias term, still exhibit out-of-
bounds reconstruction that leads to zero reconstruction loss for certain anomalous data points.

Linear autoencoders with bias terms consist of a single linear encoding layer and a single linear
decoding layer, each with an added bias term. Like for linear networks without a bias, all multi-
layer networks can be reduced to a single layer autoencoder. At the global optimum the bias terms
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will recover the process of mean-centering. Note that a simplified version of this proof was presented
by Bourlard & Kamp (1988).

Theorem 4. Let x̄ = 1
m1mX , so the vector of length n where each element contains the corre-

sponding column-wise mean of X . The reconstruction loss LR(benc, bdec;X, X̂) for fixed Wenc,
W T

dec is minimized by benc = −x̄Wenc, and bdec = x̄.

Proof. First let us acknowledge that

x̄ =
1

m

m∑
i=1

xi,

and thus
m∑
i=1

(xi − x̄) = 0.

We can then express the average reconstruction loss over the entire dataset as:

LR(benc, bdec;X, X̂) =
1

mn

m∑
i=1

|xi − x̂i|2

=
1

mn

m∑
i=1

|xi − h(g(xi))|2

=
1

mn

m∑
i=1

|xi − ((xiWenc + benc)W
T
dec + bdec)|2

=
1

mn

m∑
i=1

|xi − xiWencW
T
dec − bencW

T
dec − bdec|2

=
1

mn

m∑
i=1

|xi(1−WencW
T
dec)− bencW

T
dec − bdec|2

=
1

mn

m∑
i=1

|(xi − x̄)(1−WencW
T
dec) + (x̄− x̄WencW

T
dec)− bencW

T
dec − bdec|2

=
1

mn

m∑
i=1

|(xi − x̄)(1−WencW
T
dec)|2

+
1

mn

m∑
i=1

|(x̄− x̄WencW
T
dec)− bencW

T
dec − bdec|2

+
1

mn

m∑
i=1

((xi − x̄)(1−WencW
T
dec))((x̄− x̄WencW

T
dec)− bencW

T
dec − bdec)

+
1

mn

m∑
i=1

((x̄− x̄WencWdec)− bencW
T
dec − bdec)((xi − x̄)(1−WencW

T
dec))

=
1

mn

m∑
i=1

|(xi − x̄)(1−WencW
T
dec)|2

+
1

mn

m∑
i=1

|(x̄− x̄WencW
T
dec)− bencW

T
dec − bdec|2.

Notice that the left term is constant with respect to bdec and benc, and the right term is minimized
when 1

mn

∑m
i=1 |(x̄− x̄WencW

T
dec)− bencW

T
dec − bdec|2 = 0. If we now substitute benc = −x̄Wenc,
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and bdec = x̄:

1

mn

m∑
i=1

|(x̄− x̄WencW
T
dec)− bencW

T
dec − bdec|2 =

1

mn

m∑
i=1

|(x̄− x̄WencW
T
dec) + x̄WencW

T
dec − x̄|2 = 0

thereby showing that the optimal solution for the biases indeed recovers the process of mean center-
ing.

Also note that the other term now mimics the reconstruction loss on the mean-centered data. This
means that we find Vd by performing PCA not on X , but on (X − X̄). Again, we can use the same
strategy a = cV T

d to find adversarial anomalies.
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