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Abstract—This paper investigates the adaptive formation con-
trol problem for underactuation Multiply Unmanned Surface Ve-
hicles (multi-USVs) connected by the jointly connected switching
typologies. First, the distributed switching observer is devised
for each USV to estimate the trajectory signal under the jointly
connected switching typologies. Secondly, the underactuation
controllers are designed based on the estimated trajectory signal
under backstepping structure. In the form of the designed
underactuated controller, we have proven through Lyapunov
stability theory that each unmanned vessel is able to track the
predetermined trajectory. In the end, we validate the effectiveness
of the proposed method through numerical simulations.

Index Terms—switching typologies, underactuated input,
multi-USVs, adaptive control.

I. INTRODUCTION

In practical applications, communication networks often
change over time for various reasons [1]. Many discussions
have been carried out on the control problems of unmanned
USVs under switched topologies [2]-[5]. [2] develops a data-
driven neural predictor using real-time and historical data,
leading to the design of an adaptive kinematic control law
ensuring that the tracking error of each unmanned ship is
consistently ultimately bounded. [3] designs a switching dis-
tributed extended state observer to estimate the unknown
dynamics. Building upon this technique, [3] further devises
distributed controllers for USVs to cooperatively track the
target. The authors in [4], using orthonormal transformation
technique and algebraic graph theory, equivalently formulates
the formation control problem as analyzing the strictly dissi-
pative problem of a Markov jump system with model-related
time-varying delays. It proves the existence of dissipative
martingale solutions. [5] treats Gaussian noise as a Wiener
process, transforming the control problem of USV systems into
a more specific stochastic problem. By utilizing the average
dwell time method and Lyapunov stability theory, it proves that
all signals of the USV system remain bounded in mean-square
within a specified time. However, the aforementioned control
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methods for unmanned USVs under switched topologies all
necessitate each mode of the switched topology to have
a spanning tree, significantly increasing the communication
burden of the unmanned USVs under switched topologies.

In comparison to the aforementioned switched topologies
modes, jointly connected digraphs only require the set of
switched topology subsets to have a spanning tree in a certain
interval of time. Therefore, jointly connected digraphs do not
demand as many communication resources as the switching
modes in [2]-[5]. This feature has made jointly connected
digraphs a hot research area in the field of switching topologies
[6]-[17]. [6] investigates the coordinated output regulation
problem of linear multi-agent systems under undirected jointly
connected topologies. Building upon this work, [7] and [8]
further propose coordinated output regulation control methods
for linear multi-agent systems under directed jointly connected
topologies. The author in [9], by avoiding reliance on the
leader’s state, addresses the robust output regulation control
problem for nonlinear models with unknown bounded distur-
bances under jointly connected topologies.

However, currently, there have been no reported results on
jointly connected topologies for multi-USVs. This is due to the
complex nonlinear dynamic characteristics of USVs, making
it challenging to analyze their stability under jointly connected
topologies. In order to address this gap, this paper proposes a
formation control strategy for underactuated multi-USVs under
jointly connected topologies. The innovations of this paper are
as follows

• By designing a switching trajectory observer, this paper
successfully transforms the formation control problem
of multi-unmanned ships into a distributed trajectory
tracking problem. Building upon the results of [8], we
analyze the stability of trajectory observation errors under
jointly connected topologies and provide a stability proof
for the trajectory observation errors.

• Based on the trajectory estimation vector obtained from
the trajectory observer, we design a distributed controller
for underactuated unmanned ships, enabling each un-
manned ship to track the trajectory based on the relative



position in formation, thereby achieving the formation
control effect.

The rest sections of this paper are organized as follows:
Section II shows the problem formulation. In Section III,
we give the primary stability results. Section IV depicts the
simulation results. And Section V concludes the paper.

II. PROBLEM FORMULATION

A. Graph Theory

In this paper, the communication network of the N USVs
is modeled as a directed graph P = (G, C), where the edge set
is defined as C ⊆ G×G. If j-th USV can transmit information
to i-th USV, symbol aij ∈ V is defined as 1. And if j-th USV
can not transmit information to i-th USV, we define aij = 0.
The Laplacian matrixM is designed asM = [mij ] ∈ RN×N ,
where mij = −aij and mii =

∑N
j=1 aij . Furthermore, symbol

bi = 1 is defined while i-th USV can receive the trajectory
information. The matrices ∆ and B are defined as ∆ =M+B
and B = diag{bi}, respectively.

Definition 1 (jointly connected graph) [7]. There exist
an infinite sequence of nonempty and non-overlapping time
intervals [tl, tl+1) such that tl+1 − tl ≤ T for a positive
constant T , and a sequence of non-overlapping subintervals
[t0l , t

q
l ), · · · , [t

q
l , t

q+1
l ) with t0l = tl, t

q+1
l = tl+1 and T ∗ ≤

tq+1
l − tql for a positive constant T , respectively. If there exist

a time-varying switching signal σ(t) and the union of the
subgraphs

⋃q+1
p=0 Pσ(tpl ,t

p+1
l ) contains a spanning tree, then Pσ

is the jointly connected.
Assumption 1 [8]. In this paper, the directed graph Pσ is

assumed to be jointly connected by setting tql as the switching
time.

Assumption 2 [10]. The trajectory signal β0(t) = [x0, y0]T

satisfies ‖β0(t)‖ ≤ β∗
0 and

t∫
t0

∥∥∥β̇0(τ)
∥∥∥dτ ≤ β̄0 such that β∗

0

and β̄0 are positive constants.
Lemma 1 [8]. Under Assumption 1, if the system satisfies

the following dynamic

ς̇(t) = −ε(∆⊗ In)ς(t)

then we have

‖ς(t)‖ ≤ −c ‖ς(t)‖ e−c̄(t−τ),∀t > τ

where ε, c and c̄ are positive constants, ς ∈ RNn is the system
state vector.

Lemma 2 (Bellman-Gronwall Lemma) [8]. When nonneg-
ative piecewise continuous functions g1(t), g2(t), g3(t) and
g4(t) satisfy

g1(t) ≤ g2(t) + g3(t)

t∫
t0

g4(τ)g1(τ)dτ, t > t0

then the following inequality holds

g1(t) ≤ g2(t) + g3(t)

t∫
t0

g2(τ)g4(τ)e

t∫
τ

g4(s)g3(τ)dτ
dτ, t > t0

B. Problem Formulation

In this paper, the kinematics and dynamics of i-th USV is
modeled as follows [18]

ẋi =ui cos(ψi)− υi sin(ψi)

ẏi =ui sin(ψi)− υi cos(ψi)

ψ̇i =ri

u̇i =fi,1(ui) +
mi,22

mi,11
υiri +

1

mi,11
(τi,u + τi,ωu)

υ̇i =− m11

m22
ur + fi,2(υi) +

1

mi,22
τi,ωυ

ṙi =fi,3(ri) +
m11 −m22

m33
uiυi +

1

mi,33
(τi,r + τi,ωr)

(1)

where (xi, yi) is denoted by the positions of each USV, and
ψi represents the yaw angle in relation to the earth-fixed
frame. The velocities ui, υi, and ri correspond to the surge
velocity, sway velocity, and yaw rate in the vehicle body-fixed
frame, respectively. The disturbances τi,ωu, τi,ωυ, and τi,ωr are
factors representing various environmental disturbances like
wind, waves, and currents. These disturbances are assumed
to be unknown, smooth, and bounded. Control inputs τi,u
and τi,r are provided by the USV’s propeller and rudder,
respectively. They influence the motion of the vehicle. The
dynamics of the system, encapsulated by fi,1(·), fi,2(·), and
fi,3(·), encompass a range of nonlinear effects including
hydrodynamic damping forces, Coriolis centripetal forces, and
other unmodeled hydrodynamic forces. The form of them can
be found in [10].

Control Objective. The control objective of this paper is to
design a distributed observer estimating the trajectory signal
under jointly connected switching topologies. In addition,
underactuated controllers are designed for the multi-USVs to
follow the trajectory signal.

III. MAIN RESULTS

In this section, we design the distributed observer and
analysis the estimation performance. And then we design
the underactuated controllers for multi-USVs to track the
trajectory estimated signal.

A. Distributed Switching Observer

In this paper, the distributed observer is designed as

˙̂
βi,0 =− κ1β̂i,0 + κ1β̂i,1

˙̂
βi,1 =β̂i,1 − κ2

N∑
j=1

a
σ(t)
ij (β̂j,1 − β̂i,1)

− κ2b
σ(t)
i (β0 − β̂i,1)

(2)

where κ1 and κ2 are designed positive constants, β̂i,0 =
[x̂i,0, ŷi,0]T and β̂i,1 = [x̂i,1, ŷi,1]T .

Theorem 1. The states of distributed switching observer can
track the trajectory signal within a small neighborhood near
the origin.



proof. First, we prove the estimation error as β̃i,0 = β0 −
β̂i,1 is bounded under jointly connected switching topologies.
By taking the time derivative of the estimation error β̃i,0 =
β0 − β̂i,1, we have

˙̃
βi,0 =β̇0 − β̂i,1 + κ2

N∑
j=1

a
σ(t)
ij (β̂j,1 − β̂i,1)

+ κi,2b
σ(t)
i (β0 − β̂i,1)

(3)

By defining β̃0 = [β̃T1,0, · · · , β̃TN,0]T ∈ R2N and β̂0 =

[β̂T1,0, · · · , β̂TN,0]T ∈ R2N , one yields

˙̃
β0 = (β̇0 ⊗ IN )− β̂1 − κ2(∆σ(t) ⊗ I2)β̃0 (4)

On the basis of Lemma 1, we can obtain∥∥∥β̃0

∥∥∥ ≤c t∫
t0

∥∥∥β̃0(τ)
∥∥∥e−c̄(t−τ)dτ

+ c
∥∥∥β̃0(t0)

∥∥∥ e−c̄(t−t0)

+ (1 +
√
N)cβ̄0

t∫
t0

e−c̄(t−τ)dτ

(5)

According to
t∫
t0

e−c̄(t−τ)dτ = 1
c̄ e

−c̄t(ec̄t−1) ≤ 1
c̄ , it follows

∥∥∥β̃0

∥∥∥ ≤c∥∥∥β̃0(t0)
∥∥∥ e−c̄(t−t0) +

1

c̄
(1 +

√
N)cβ̄0

+ c

t∫
t0

∥∥∥β̃0(τ)
∥∥∥e−c̄(t−τ)dτ

(6)

Furthermore, by employing Lemma 2, we can yield that∥∥∥β̃0

∥∥∥ ≤c∥∥∥β̃0(t0)
∥∥∥ e−c̄(t−t0) +

1

c̄
(1 +

√
N)cβ̄0

+ c2
∥∥∥β̃0(t0)

∥∥∥ t∫
t0

e−2c̄(t−τ)e
∫ t
τ
e−c̄(t−s)dsdτ

(7)

Considering the method of integral comparison, the fact
t∫
t0

e
∫ t
τ
e−c̄(t−s)dsdτ ≤ e

1
c̄

t∫
t0

e−c̄(τ−t)dτ = 1
c̄ e
t holds. Substi-

tuting this fact into (7), one has∥∥∥β̃0

∥∥∥ ≤ ĉ∥∥∥β̃0(t0)
∥∥∥ e−(c̄−1)(t−t0) +

1

c̄
(1 +

√
N)cβ̄0 (8)

where ĉ = min{c, c
2

2c̄2 }. Thus, the estimation error β̃i,0 is
bounded for t ∈ [0,∞).

In what follows, we prove the state vector β̂i,0 can track
β̂i,1. So that the state vectors β̂i,0 and β̂i,1 can estimate the
trajectory signal β0. Design the error as β̃i,1 = β̂i,0− β̂i,1 and

Lyapunov function as Vβ =
N∑
i=1

1
2 β̃

T
i,1β̃i,1, respectively. The

time derivative of Lyapunov function Vβ can be calculated as

V̇β = β̃T1 [−κ1β̃1 − κ2∆σ(t)β̃0 + β̃0 − β0 ⊗ I2] (9)

where β̃1 = [β̃T1,1, · · · , β̃TN,1]T ∈ R2N and β̂1 =

[β̂T1,1, · · · , β̂TN,1]T ∈ R2N .
Under Assumption 1, one obtains

V̇β ≤− (κ1 − 1)β̃T1 β̃1 + (κ2

∥∥∥∆σ(t)

∥∥∥+ 1)2
∥∥∥β̃0

∥∥∥2

+Nβ∗2
0

(10)

From (10), we can conclude that the estimation error β̃i,1 is
bounded for t ∈ [0,∞). Therefore, the states of distributed
switching observer can track the trajectory signal within a
small neighborhood near the origin. The proof of Theorem
1 is completed. �

B. Distributed Underactuated Controller Design

In this subsection, the underactuated controllers for multi-
USVs are designed to track the trajectory estimated signal β̂i,0.
Define the position errors of each USV as x̃i = xi − x̂i,0 − li
and ỹi = yi−ŷi,0−l̄i, the angle error as zi,1 = ψi−ψi,d, where
(li, l̄i) is the relative position of i-th USV in the formation, and
ψi,d = arctan 2( ỹix̃i ). The concrete expression of arctan 2(·)
can be found in [18].

In what follows, we design the control input τi,r for
underactuated USV model (1).

Step 1. The time derivative of angle error zi,1 = ψi − ψi,d
satisfies

żi,1 = ψ̇i − ψ̇i,d = zi,2 + αi,r − ψ̇i,d (11)

where zi,2 = ri − αi,r, αi,r is the virtual control signal for
yaw rate ri under backstepping structure.

Design the Lyapunov function at this step as Vi,1 =
1
2 ln

z2
i,1

ν2
i,ψ−z

2
i,1

with νi,ψ < π
2 . Its time derivative follows

V̇i,1 =
zi,1

ν2
i,ψ − z2

i,1

(zi,2 + αi,r − ψ̇i,d) (12)

By applying Young’s inequality, one yields

zi,1
ν2
i,ψ − z2

i,1

zi,2 ≤
1

2

z2
i,1

(ν2
i,ψ − z2

i,1)2
+

1

2
z2
i,2 (13)

Substituting (13) into (12), we have

V̇i,1 =
zi,1

ν2
i,ψ − z2

i,1

(αi,r − ψ̇i,d) +
1

2

z2
i,1

(ν2
i,ψ − z2

i,1)2

+
1

2
z2
i,2

(14)

Design the virtual controller as

αi,r = −ci,1zi,1 + ψ̇i,d −
1

2

zi,1
ν2
i,ψ − z2

i,1
(15)

where ci,1 is a designed positive constant.
The final version of Lyapunov function Vi,1 can be ex-

pressed as

V̇i,1 ≤
−ci,1z2

i,1

ν2
i,ψ − z2

i,1

+
1

2
z2
i,2 (16)



Step 2. The time derivative of error zi,2 = ri − αi,r can be
expressed as

żi,2 =
mi,11 −mi,22

mi,33
uiυi + fi,3(ri) +

1

mi,33
τi,r

+
1

mi,33
τi,ωr − α̇i,r

(17)

By employing fuzzy logical systems (FLSs) to approximate
the unknown dynamic mi,11 −mi,22uiυi+mi,33fi,3(ri), (17)
can be rewritten as

żi,2 =
1

mi,33
θ∗Ti,1ϕi,1(ui, υi, ri) +

1

mi,33
εi,1(ui, υi, ri)

+
1

mi,33
τi,r +

1

mi,33
τi,ωr − α̇i,r

(18)

where θ∗i,1 is the ideal vector of FLSs, ϕi,1(ui, υi, ri) is fuzzy
basis function, and εi,1(ui, υi, ri) is the bounded approxima-
tion error.

Design the Lyapunov function at this step as Vi,2 = Vi,1 +
mi,33

2 z2
i,2 + 1

2 Θ̃2
i,1, where Θ̃i,1 = Θi,1 − Θ̂i,1, Θi,1 = θ∗Ti,1 θ

∗
i,1,

and Θ̂i,1 is the estimated variable of unknown product of
FLSs vector Θi,1 = θ∗Ti,1 θ

∗
i,1. The time derivative of Lyapunov

function Vi,2 can be calculated as

V̇i,2 ≤
−ci,1z2

i,1

ν2
i,ψ − z2

i,1

+
1

2
z2
i,2 + zi,2[θ∗Ti,1ϕi,1(ui, υi, ri)

+ εi,1(ui, υi, ri) + τi,r + τi,ωr −mi,33α̇i,r]

− Θ̃i,1
˙̂
Θi,1

(19)

Invoking Young’s inequality, the following inequalities hold

zi,2θ
∗T
i,1ϕi,1(ui, υi, ri) ≤

Θ∗
i,1z

2
i,2

4κϕTi,1(ri)ϕi,1(ri)
+ κ

zi,2εi,1(ui, υi, ri) ≤
1

2
z2
i,2 +

1

2
ε∗2
i,1

zi,2τi,ωr ≤
1

2
z2
i,2 +

1

2
τ∗2
i,ωr

(20)

Substituting (20) into (19), we can obtain

V̇i,2 ≤
−ci,1z2

i,1

ν2
i,ψ − z2

i,1

+ zi,2[
Θ∗
i,1zi,2

4κϕTi,1(ri)ϕi,1(ri)

+
3

2
zi,2 + τi,r −mi,33α̇i,r] + κ

+
1

2
ε∗2
i,1 +

1

2
τ∗2
i,ωr − Θ̃i,1

˙̂
Θi,1

(21)

In this step, design the controller τi,r and adaptive law ˙̂
Θi,1

as

τi,r =− (ci,2 +
3

2
)zi,2 −

Θ̂i,1zi,2
4κϕTi,1(ri)ϕi,1(ri)

+mi,33α̇i,r

˙̂
Θi,1 =

z2
i,2

4κϕTi,1(ri)ϕi,1(ri)
− γi,1Θ̂i,1

(22)

where ci,2 and γi,1 are designed positive constants.

Substituting (22) into (21), the final version of Lyapunov
function Vi,2 can be described as

V̇i,2 ≤
−ci,1z2

i,1

ν2
i,ψ − z2

i,1

− ci,2z2
i,2 −

γi,1
2

Θ̃2
i,1 + κ

+
1

2
ε∗2
i,1 +

1

2
τ∗2
i,ωr +

γi,1
2

Θ∗2
i,1

(23)

In what follows, we design the control input τi,u. To design
the surge force, define the global position errors of i-th USV
as z̃i =

√
x̃2
i + ỹ2

i .
Step 1. Recalling the definitions of x̃i, ỹi, z̃i and ψi,d, we

have x̃i = z̃i cos(ψi,d) and ỹi = z̃i sin(ψi,d). Therefore, the
time derivative of z̃i satisfies

˙̃zi =ui cos(ψ̃i)− υi sin(ψ̃i)− ˙̂xi,0 cos(ψi,d)

− ˙̂yi,0 sin(ψi,d)
(24)

where ψ̃i = zi,1.
Construct the Lyapunov function at this step as Vi,3 = 1

2 z̃
2
i .

The time derivative of it can be described as

V̇i,3 =z̃i(ui cos(ψ̃i)− υi sin(ψ̃i)

− ˙̂xi,0 cos(ψi,d)− ˙̂yi,0 sin(ψi,d))
(25)

Define the backstepping error as zi,3 = ui−αi,u, where αi,u
is the virtual control signal for surge velocity ui. Therefore,
(25) can be written as

V̇i,3 =z̃i[(zi,3 + αi,u) cos(ψ̃i)− υi sin(ψ̃i)

− ˙̂xi,0 cos(ψi,d)− ˙̂yi,0 sin(ψi,d)]
(26)

At this step, the virtual control αi,u is designed as

αi,u =
1

cos(ψ̃i)
[−(ci,3 +

1

2
)z̃i + υi sin(ψ̃i)

+ ˙̂xi,0 cos(ψi,d) + ˙̂yi,0 sin(ψi,d)]

(27)

where ci,3 is a designed positive constant.
Substituting (27) into (26), we get that

V̇i,3 = −ci,3z̃2
i +

1

2
z2
i,3 (28)

Note that cos(ψ̃i) may be equal to 0, which will result
in the singularity problem in (27). To avoid this problem,
we construct the Lyapunov function as Vi,1 = 1

2 ln
z2
i,1

ν2
i,ψ−z

2
i,1

,
which is called barrier Lyapunov function (BLF). If the BLF
is bounded and the initial value zi,1(0) satisfies |zi,1(0)| ≤
νi,ψ , it can yield that −π2 < −νi,ψ < zi,1(t) < νi,ψ <
π
2 . From ln

ν2
i,ψ

ν2
i,ψ−z

2
i,1
≤ z2

i,1

ν2
i,ψ−z

2
i,1

and (23), choosing the
positive constants as ρ = min{ci,1/2, ci,2/2, γi,1} and
ω =

∑N
i=1 (κ+ 1

2ε
∗2
i,1 + 1

2τ
∗2
i,ωr +

γi,1
2 Θ∗2

i,1), we have V2 =∑N
i=1 Vi,2 ≤ −ρV2 + ω. Based on this fact, we can conclude

that V2 is bounded and zi,1 satisfies −π2 < −νi,ψ < zi,1(t) <
νi,ψ < π

2 , ∀t ∈ [0,∞), respectively. Thus, there is no
singularity problem in (27).



Step 2. Recalling the definition of backstepping error żi,3,
the time derivative of it follows

żi,3 =
mi,22

mi,11
υiri + fi,1(ui) +

1

mi,11
τi,u

+
1

mi,11
τi,ωu − α̇i,u

(29)

Invoking FLSs approximating the uncertain dynamic
mi,22υiri +mi,11fi,1(ui), we have

żi,3 =
1

mi,11
[θ∗Ti,2ϕi,2(υi, ri, ui) + εi,2(υi, ri, ui)]

+
1

mi,11
τi,u +

1

mi,11
τi,ωu − α̇i,u

(30)

where θ∗i,2 is the ideal vector of FLSs, ϕi,2(υi, ri, ui) is fuzzy
basis function, and εi,2(υi, ri, ui) is the bounded approxima-
tion error.

Consider the Lyapunov function at this step as Vi,4 = Vi,3+
mi,11

2 z2
i,3 + 1

2 Θ̃2
i,2, the time derivative of it follows

V̇i,4 ≤− ci,3z̃2
i +

1

2
z2
i,3 + zi,3[θ∗Ti,2ϕi,2(υi, ri, ui)

+ εi,2(υi, ri, ui) + τi,u + τi,ωu −mi,11α̇i,u]

− Θ̃i,2
˙̂
Θi,2

(31)

where Θ̃i,2 = Θi,2 − Θ̂i,2, Θi,2 = θ∗Ti,2 θ
∗
i,2, and Θ̂i,2 is the

estimated variable of unknown product of FLSs vector Θi,2 =
θ∗Ti,1 θ

∗
i,1

Applying Young’s inequality, it follows

zi,3θ
∗T
i,2ϕi,2(υi, ri, ui) ≤

Θ∗
i,2z

2
i,3

4κϕTi,2(ui)ϕi,2(ui)
+ κ

zi,3εi,2(ui, υi, ri) ≤
1

2
z2
i,3 +

1

2
ε∗2
i,2

zi,3τi,ωu ≤
1

2
z2
i,3 +

1

2
τ∗2
i,ωu

(32)

Substituting (32) into (31), we obtain

V̇i,4 =− ci,3z̃2
i + zi,3[

Θ∗
i,2zi,3

4κϕTi,2(ui)ϕi,2(ui)
+

3

2
z2
i,3

+ τi,u −mi,11α̇i,u] + κ+
1

2
ε∗2
i,2 +

1

2
τ∗2
i,ωu

− Θ̃i,2
˙̂
Θi,2

(33)

In this step, design the controller τi,u and adaptive law ˙̂
Θi,2

as

τi,u =− (ci,4 +
3

2
)zi,3 −

Θ̂i,2zi,3
4κϕTi,2(ui)ϕi,2(ui)

+mi,11α̇i,u

˙̂
Θi,2 =

Θ̂i,2z
2
i,3

4κϕTi,2(ui)ϕi,2(ui)
− γi,2Θ̂i,2

(34)

where ci,4 and γi,2 are designed positive constants.

Substituting (34) into (33), the final version of Lyapunov
function Vi,4 can be described as

V̇i,4 =− ci,3z̃2
i − ci,4z2

i,3 + κ+
1

2
ε∗2
i,2 +

1

2
τ∗2
i,ωu

− γi,2
2

Θ̃2
i,2 +

γi,2
2

Θ∗2
i,2

(35)

Theorem 2. The angle tracking error zi,1 and position
tracking error z̃i can converge to a small neighborhood near
the origin.

Proof. Choosing the global Lyapunov function V =∑N
i=1 (Vi,2 + Vi,4), we can obtain

V̇ =

N∑
i=1

[−
ci,1z

2
i,1

ν2
i,ψ − z2

i,1

− ci,2z2
i,2 −

γi,1
2

Θ̃2
i,1 + κ

+
1

2
ε∗2
i,1 +

1

2
τ∗2
i,ωr +

γi,1
2

Θ∗2
i,1 − ci,3z̃2

i

− ci,4z2
i,3 + κ+

1

2
ε∗2
i,2 +

1

2
τ∗2
i,ωu −

γi,2
2

Θ̃2
i,2

+
γi,2
2

Θ∗2
i,2]

≤− CV +D

(36)

where C = min{ ci,12 ,
ci,2
2 ,

ci,3
2 ,

ci,4
2 , γi,1, γi,2} and D =∑N

i=1{2κ+ 1
2ε

∗2
i,1 + 1

2τ
∗2
i,ωr +

γi,1
2 Θ∗2

i,1 + 1
2τ

∗2
i,ωu +

γi,2
2 Θ∗2

i,2}.

IV. SIMULATION RESULTS

In this section, three USVs are considered with the kine-
matics and dynamics model (1) to prove the effectiveness of
the proposed method. Their parameters are referred [19], and
the switching typologies communication networks are depicted
in Fig. 1, respectively. The switching interval is designed to
be 0.3s. From Fig. 1, we can observe that the considered
switching typologies do not need that each switching mode
Pσ(t) involves a spanning tree, which is different from the
existing switching results on USVs [1]-[5].

Fig. 1. The considered switching typologies communication networks.

The considered trajectory is designed as β0 =
[60 cos(πt/60), 60 sin(πt/60)]T . The designed parameters of
distributed observer are chosen as κ1 = κ2 = 200. And the



other designed parameters of (15), (22), (27) and (34) are set
as ci,1 = 15, ci,2 = 20, ci,3 = 40, ci,3 = 30 and νi,ψ = π

2 .
The simulation results are shown in Figs. 2-3. Fig. 2 shows

the path trajectories of each USV. It can be seen that each
USV can follow the desired path with their own formation
position. The formation mission is achieved. Fig. 3 displays
the trajectories of angle tracking error zi,1. From Fig. 3, we
can conclude that each angle tracking error zi,1 are constrained
within the designed boundary νi,ψ , which demonstrates that
the virtual controller (27) avoids the singularity problem.

Fig. 2. The path trajectories of each USV.

Fig. 3. The trajectories of angle tracking error zi,1.

V. CONCLUSION

This paper proposes a formation control method for Un-
deractuation multi-USVs with jointly connected switching
typologies. To provide the trajectory signal for each USV,
distributed switching observer is designed. And by employing
the signal of distributed switching observer, the underactuated
inputs are devised under backstepping structure. In theory, we
prove the estimation error and formation error can converge
to a small neighborhood near the origin. Simulation results
also demonstrate the effectiveness of the proposed method. In
practice, finite-time control methods can ensure that unmanned

vessels achieve stability within a finite time frame. Therefore,
in the next phase of our research, we will extend this method
to the field of finite-time control.
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