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Abstract

Recently, numerous studies have demonstrated the effectiveness of contrastive
learning (CL), which learns feature representations by pulling in positive samples
while pushing away negative samples. Many successes of CL lie in that there exists
semantic consistency between data augmentations of the same instance. In multi-
view scenarios, however, CL might cause representation degeneration when the
collected multiple views inherently have inconsistent semantic information or their
representations subsequently do not capture sufficient discriminative information.
To address this issue, we propose a novel framework called SEM: SElf-weighted
Multi-view contrastive learning with reconstruction regularization. Specifically,
SEM is a general framework where we propose to first measure the discrepancy be-
tween pairwise representations and then minimize the corresponding self-weighted
contrastive loss, and thus making SEM adaptively strengthen the useful pairwise
views and also weaken the unreliable pairwise views. Meanwhile, we impose a
self-supervised reconstruction term to regularize the hidden features of encoders,
to assist CL in accessing sufficient discriminative information of data. Experiments
on public multi-view datasets verified that SEM can mitigate representation de-
generation in existing CL methods and help them achieve significant performance
improvements. Ablation studies also demonstrated the effectiveness of SEM with
different options of weighting strategies and reconstruction terms.

1 Introduction

Contrastive learning (CL) explicitly enlarges the feature representation similarity between semantic-
relevant samples, and it is adept at capturing high-level semantics while discarding irrelevant infor-
mation. This learning paradigm has facilitated many research and application fields, such as visual
representation [1, 2], text understanding [3, 4], and cross-modal agreement [5, 6, 7]. Samples with
consistent semantics are typically constructed as positive sample pairs for CL loss (e.g., InfoNCE [8]),
which motivates multi-view learning scenarios [9, 10] where researchers focus on exploring common
semantics among multi-view data. However, this kind of data usually is with heterogeneous views
and thus cannot be directly processed by previous CL methods with two shared network branches.

To handle this situation, many multi-view contrastive learning (MCL) methods [11, 12, 13, 14]
have been proposed, which treats multiple views as positive sample pairs and achieves important
progresses in exploring multi-view common semantics (see Sec. 2 for details). Nevertheless, we find
that CL might cause representation degeneration that the representations of high-quality views tend
to degenerate. This may make the MCL methods perform worse than the optimal single view (see
Sec. 3.1 and Sec. 4.1), and thus heavily limiting the usability of MCL in practical scenarios. Although
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several CL work [15, 16] proposed different CL losses aiming at increasing robustness to noise and
made important advances on vision and graph data, our experiments discover that these CL losses are
still fragile in multi-view scenarios as multi-view data are with more diversity than single-view data.
Different from changing CL loss, recent MCL methods [14, 17] focused on changing model structures
and successfully improved the effectiveness of clustering the learned representations. Nevertheless,
representation degeneration still exists in many cases and it requires further solutions.

We find that there could be two reasons leading to representation degeneration in MCL. I) The
quality difference among multiple views. The success of CL is based on the priori condition that the
constructed positive sample pair has semantic consistency, which generally holds in previous CL
applications [1, 5, 8]. Unfortunately, for multi-view learning, the collected views usually have quality
difference and the semantic of positive sample pairs might be inconsistent due to view diversity.
Consequently, CL causes the representation degeneration of high-quality views due to the existence
of low-quality views. II) Losing discriminative information during data processing. Multi-view data
typically involve heterogeneous data forms [9, 18], e.g., different dimensions, modalities, and sparsity.
For achieving MCL, the model needs to transform heterogeneous multi-view data into the same form
with different encoders. However, data transformation could lose discriminative information as this
process has no supervised signals for maintaining information. As a result, CL might miss multiple
views’ common semantics and focus on semantic-irrelevant information due to inductive bias.

Figure 1: The framework of SEM. It leverages
different networks to extract information of dif-
ferent views and conducts the proposed self-
weighted multi-view contrastive learning with
reconstruction regularization.

To this end, we propose SElf-weighted Multi-view con-
trastive learning with reconstruction regularization
(SEM) as shown in Figure 1 that takes the m,n, o-th
views in V views as an example (where Wm,n denotes
the pairwise weight, Lm,n

CL is the contrastive loss, and
Zm is the learned representations). Specifically, SEM
minimizes self-weighted contrastive losses Wm,nLm,n

CL
and Wn,oLn,o

CL after measuring the discrepancy be-
tween pairwise views’ representations, i.e., (Zm,Zn)
and (Zn,Zo), respectively. This makes SEM adaptively
strengthen CL between the useful pairwise views and
also weaken CL between the unreliable pairwise views.
Meanwhile, SEM takes self-supervised reconstruction
objectives as regularization terms (Rm, Rn, and Ro)
on the hidden features (Hm, Hn, and Ho) of encoders
for individual views, respectively. This reconstruction
regularization assists CL in accessing sufficient dis-
criminative information hidden in raw input data (Xm,
Xn, and Xo), which could be implemented by exist-
ing information encoder-decoder models, e.g., AE [19], DAE [20], and MAE [21]. In SEM, the
representations and pairwise weights are alternatively updated to mutually enhance one another.

In summary, our contributions are: I) We propose a novel general framework SEM that leverages
self-weighting and information reconstruction to address representation degeneration in MCL. II) We
provide three options with different advantages to implement the weighting strategy of SEM including
class mutual information, JS divergence, and maximum mean discrepancy. III) Theoretical and
experimental analysis verified the effectiveness of SEM. It helps many CL methods (e.g., InfoNCE [8],
RINCE [15], and PSCL [16]) achieve significant performance improvements in multi-view scenarios.

2 Related Work

Contrastive learning (CL) As a popular self-supervised learning paradigm, CL focuses on learning
semantically informative representations for downstream tasks [22, 23, 24, 25]. The most widely
used loss function is InfoNCE [8] which pulls in the representations between positive sample pairs
while pushing away that between negative sample pairs. Some work have attempted to explain the
reasons for the success of applying InfoNCE, e.g., from perspectives of mutual information [8, 26],
task-dependent view [27], or deep metric learning [28, 29]. Furthermore, [30, 31] pointed out to
conduct CL with reconstruction regularization to achieve robust representations for downstream
tasks. RINCE [15] (a short name of Robust InfoNCE) is a variant of InfoNCE contrastive loss
that considers noise in false positive sample pairs. The recent work [16] investigates CL without
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(a) ACC vs. Views (b) Loss and similarity vs. Epoch (c) ACC vs. Epoch

Figure 2: (a) Clustering accuracy of individual views on Caltech dataset. (b) Contrastive loss and representation
similarity between view 1 and view 4. (c) Clustering accuracy of view 1 and view 4 during contrastive learning.

conditional independence assumption on positive sample pairs and proposes a population spectral
contrastive loss (we call it PSCL for short). Despite important progresses have been made, in this
work, we discover that these CL losses are still fragile in multi-view scenarios where data qualities
are hard to be guaranteed, and even the reconstruction regularized CL is not enough.

Multi-view contrastive learning (MCL) Different from many CL methods that usually generate two
inputs by data augmentation [32], MCL aims to handle multi-view data widely exiting in real-world
applications. Multi-view data often contain more than two views/modalities and they naturally form
multiple inputs [33, 34, 35]. Since the semantic consistency among multiple views is not guaranteed,
it is challenging to capture the useful information in multi-view data, while considering the side effects
of harmful information. Therefore, MCL attracts increasing attention in recent years [36, 37, 38].
For example, CMC [11] empirically shows that MCL performed with more scene views obtains the
better representations with semantic information. DCP [39] leverages the maximization of mutual
information to conduct consistency learning across different views and aims to achieve a provable
sufficient and minimal representation. MFLVC [14] observes the conflict between consistency and
reconstruction objectives in encoder-decoder frameworks and proposes to learn multi-level features
for multiple views. DSIMVC [17] establishes a theoretical framework to reduce the risk of clustering
performance degradation from semantic inconsistent views. Although satisfactory results are achieved
in many cases, the representation degeneration caused by CL is still not well considered and addressed.
In this paper, we point out that the representation degeneration could seriously limit the application
of CL in multi-view scenarios, and propose the discrepancy-based self-weighted MCL to address it.

Notations This paper leverages bold uppercase characters and bold lowercase characters to denote
matrices and vectors, respectively. Operator ∥ · ∥2 denotes vector ℓ2-norm and operator ∥ · ∥F is
matrix F -norm. {xv

i ∈ Xv}v=1,2,...,V
i=1,2,...,N denotes the multi-view dataset with N samples in V views.

3 Methodology

This section first illustrates the phenomenon of representation degeneration in multi-view contrastive
learning. To address this issue, we then establish a general framework of SEM: SElf-weighed Multi-
view contrastive learning with reconstruction regularization. To implement the SEM framework, we
further provide different options of weighing strategy, contrastive loss, and reconstruction term.

3.1 Motivation: Representation Degeneration in Multi-View Contrastive Learning

Researchers proposed many contrastive learning approaches and also achieved plenty of progress
in multi-view learning. However, multi-view contrastive learning might result in the representation
degeneration of high-quality views (i.e., those views contain rich semantic information) due to the
diversity of multi-view data. Specifically, we illustrate it in Figure 2 that takes a popular multi-view
dataset Caltech [40] (6 views) as an example. We leverage unsupervised linear clustering accuracy
obtained by K-Means [41] to evaluate the representation quality of containing class-level semantics.

Firstly, we leverage self-supervised autoencoders (the setting is shown in Appendix B) to pretrain the
representations of each view’s data. In Figure 2(a), one can find that different views inherently have
different levels of discriminative information and exhibit different qualities, where the worst (view 1)
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and the best (view 4) have a large gap. Then, we adopt InfoNCE loss to perform contrastive learning
between view 1 and view 4 in Figure 2(b), and record the clustering accuracy of their representations
in Figure 2(c). We can observe that InfoNCE loss is well-minimized, which makes the representation
similarity (evaluated by cosine) between view 1 and view 4 converge to 1.0. The performance on
view 1 gradually increases. Nevertheless, the cost is that the representations of view 4 degenerate, on
which the useful discriminative information reduces and thus the performance gradually decreases.

In multi-view learning, quality difference among multiple views is a common phenomenon. However,
the representation degeneration in multi-view contrastive learning might make the representations of
some high-quality views tend to be mediocre and thus miss their useful discriminative information.

3.2 Self-Weighted Multi-View Contrastive Learning with Reconstruction Regularization

To mitigate representation degeneration in multi-view contrastive learning, we propose a simple but
effective framework called SEM: SElf-weighted Multi-view contrastive learning with reconstruction
regularization as shown in Figure 1. Specifically, given view-specific data Xv ∈ RN×dv , we let
Zv ∈ RN×z denote the corresponding new representations learned by a view-specific encoder.
Between Xv and Zv, we record a precursor state of representations as Hv ∈ RN×hv (termed as
hidden features), and the encoder is partitioned into two parts (the front and back parts are stacked
and denoted as fv and gv sequentially). For the v-th view, we let Ψv and Φv denote the network
parameters of fv and gv , respectively, and then the view-specific model can be formulated as follows:

Zv = gv(Hv; Φv) = gv(fv(Xv; Ψv); Φv). (1)
In SEM, we leverage Lm,n

CL (Zm,Zn) to denote a contrastive loss2, and let λ > 0 denote a trade-off
coefficient on regularization terms. Then, SEM is trained by minimizing the following objective:∑

m,n
Wm,nLm,n

CL (Zm,Zn) + λ
∑

v
Rv(Xv,Hv), (2)

where Wm,n is the pairwise weight between the m-th and the n-th views, and Rv(Xv,Hv) denotes
the reconstruction regularization on Hv . We define D(Zm,Zn) as the discrepancy between Zm and
Zn and denote F as a negative correlation function. Then, in SEM, the pairwise weight is updated by

Wm,n = F(D(Zm,Zn)). (3)
Self-weighting In unsupervised settings, it is hard to know which representations within {Zv}Vv=1
contain useful semantic information and which are with more noise. To mitigate the representation
degeneration caused by contrastive learning, SEM needs to be adaptive to quality difference among
multiple views. Therefore, different from using equal-sum manner [11, 14, 17] (e.g.,

∑
m,n L

m,n
CL ),

we propose to use the pairwise weighted multi-view contrastive loss, i.e.,
∑

m,n Wm,nLm,n
CL . Here,

Wm,n leverages the discrepancy to achieve the adaptive self-weighting. Concretely, if two views are
useful pairwise views and both with informative semantics, contrastive learning between them is
adaptively strengthened; if two views are unreliable pairwise views (for example, one or two of them
are with less informative semantics), contrastive learning between them is adaptively weakened.

Reconstruction regularization In Eq. (2), Rv(Xv,Hv) acts as a self-supervised objective to transfer
as much discriminative information as possible from Xv to Hv. When we record Hv as the hidden
features in encoder networks, the information transfer path can be described as Xv → Hv → Zv, v ∈
{1, 2, . . . , V }. However, information losing might occur in the processing of Xv → Hv such that
discriminative information from some views’ data is lost, and thus making contrastive learning among
{Zv}Vv=1 focus on harmful noise instead of common semantics across multiple views. To this end, on
hidden features Hv, our SEM leverages Xv to build the reconstruction regularization Rv(Xv,Hv)
to assist contrastive learning in accessing sufficient discriminative information from raw data.

2Lm,n
CL (Zm,Zn) can be easily replaced by previous contrastive losses, e.g., InfoNCE [8], RINCE [15], and

PSCL [16]. Let P denote the set of positive sample pairs and N is the set of negative sample pairs in the m,n-th
views, q and α are hyper-parameters of RINCE, then the three contrastive losses could be formulated as follows:

Lm,n
InfoNCE = −Es+∈P

[
s+ − log

(
es

+

+
∑

s−∈N
es

−)]
,

Lm,n
RINCE = −Es+∈P

[
1

q
· eq·s

+

− 1

q
·
(
α ·

(
es

+

+
∑

s−∈N
es

−))q
]
,

Lm,n
PSCL = −Es+∈P

[
2 · s+

]
+ Es−∈N

[
(s−)2

]
,

where s+ (s−) denotes the cosine distance between the representations of positive (negative) sample pair.
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3.3 Different Options for Implementing the SEM Framework

The crucial components of our proposed SEM as Eq. (2) include the weighting strategy Wm,n,
contrastive loss Lm,n

CL , and regularization term Rv . Next, we concentrate on the implementations of
Wm,n (including JSD, MMD, and CMI) and briefly introduce the implementations of Lm,n

CL and Rv .

Discrepancy measurements of weighting strategy When implementing Wm,n = F(D(Zm,Zn))
in Eq. (3), many methods can measure the discrepancy D(Zm,Zn). Firstly, we can transfer represen-
tations to a probability distribution and leverage Jensen-Shannon divergence (JSD) to compute the
discrepancy DJSD(Zm,Zn). The advantages of JSD are its symmetry and simplicity, but it might be
inapplicable when two distributions are non-overlapping. Furthermore, we can leverage maximum
mean discrepancy (MMD) as the second method to obtain the discrepancy DMMD(Zm,Zn). MMD
can effectively measure non-overlapping two distributions, but it has higher complexity than JSD3.

Actually, both JSD and MMD leverage all information of representations Zm and Zn. However, the
semantic-irrelevant information or random noise might also be embedded in Zm and Zn. Moreover,
what we expect to obtain is the mutual relation of their most representative semantic information. To
this end, we propose Class Mutual Information (CMI) as the third method to obtain the discrepancy
DCMI(Z

m,Zn). To be specific, since it is difficult to accurately estimate the mutual information
(denoted as I) for multi-dimensional continuous variables I(Zm;Zn), we denote ym and yn as
1-dimensional discrete vectors and change estimating I(Zm;Zn) to computing I(ym;yn) such that:

Wm,n ≈ F(1/I(Zm;Zn)) ≈ F(1/I(ym;yn)), s.t. argmax
ym,yn

I(Zm;ym) + I(Zn;yn). (4)

Intuitively, discrete class information in Zv (v ∈ {m,n}) is 1-dimensional as well as the most repre-
sentative information. Hence, we can optimize K-Means objective to extract the class information:

Yv∗ = argmax
Yv,Cv

∥Zv −YvCv∥2F , s.t.Yv(Yv)
T
= IN ,Yv ∈ {0, 1}N×K , (5)

where Cv ∈ RK×z denotes the K cluster centers of Zv. Yv∗ ∈ {0, 1}N×K is the indicator matrix
that can be further transformed to 1-dimensional discrete vector yv by defining yvi := argmaxj y

v∗
ij

where yvi ∈ yv, yv∗ij ∈ Yv∗. In this way, the class information in Zm and Zn can be compressed
into ym and yn, respectively. Then, the class mutual information I(ym;yn) is normalized and the
discrepancy measurement DCMI(Z

m,Zn) between pairwise views is defined as follows:

DCMI(Z
m,Zn) =

H(ym) +H(yn)

2 · I(ym;yn)
, (6)

where H(ym) = −
∑N

i=1 p(y
m
i ) log p(ymi ) is the cross-entropy of ym. This design of CMI has at

least two advantages: 1) It is conducive to maintaining the representative class information while
filtering out noise information; 2) Calculation is easy and owns better physical meaning.

Finally, it is also flexible to implement the negative correlation function F . Considering Wm,n ≥ 0,
we base on the three different discrepancies and simply give the following weighting strategies:

Wm,n
CMI = FCMI(DCMI(Z

m,Zn)) = e1/DCMI(Z
m,Zn) − 1,

Wm,n
JSD = FJSD(DJSD(Zm,Zn)) = e1−DJSD(Zm,Zn) − 1,

Wm,n
MMD = FMMD(DMMD(Zm,Zn)) = e−DMMD(Zm,Zn).

(7)

Compatibility for contrastive learning When implementing the contrastive loss Lm,n
CL , it should

be pointed out that multi-view contrastive learning usually has to handle more than two views (i.e.,

3We write ẑmi ∈ Ẑm = Softmax(Zm). k(zi, zj) denotes the inner product of ϕ(zi) and ϕ(zj), where
ϕ(·) denotes the mapping (e.g., by Gaussian kernel) to project representations into Reproducing Kernel Hilbert
Space (RKHS). Then, DJSD(Zm,Zn) and DMMD(Zm,Zn) can be formulated as follows:

DJSD(Zm,Zn) =
1

2

N∑
i=1

p(ẑmi ) log

(
2 · p(ẑmi )

p(ẑmi ) + p(ẑni )

)
+

1

2

N∑
i=1

p(ẑni ) log

(
2 · p(ẑni )

p(ẑni ) + p(ẑmi )

)
,

DMMD(Zm,Zn) =
1

N2

[
N∑
i=1

N∑
j=1

k(zmi , zmj ) +

N∑
i=1

N∑
j=1

k(zni , z
n
j )− 2

N∑
i=1

N∑
j=1

k(zmi , znj )

]
.
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{Zv}Vv=1, V > 2), which is different from two-view setting (e.g., {Z1,Z2}) in traditional contrastive
learning. To make our SEM framework be compatible with previous contrastive learning methods,
we construct positive/negative sample pairs as follows. Specifically, for two views {zmi ∈ Zm, znj ∈
Zn}, the positive sample pairs are {zmi , zni }i=1,...,N ; for any zmi , its negative sample pairs are
{zmi , zvj}

v=m,n
j ̸=i . Cosine with a temperature parameter τ is leveraged to measure the representation

distance between pairs, i.e., s = 1/τ · ⟨zmi , znj ⟩/∥zmi ∥2∥znj ∥2. Then, we compute the contrastive loss
between two views and sum all combinations as Eq. (2). We formulated three contrastive losses in
Sec. 3.2, and the experiments in Sec. 4.1 will verify the compatibility of our SEM framework to them.

Reconstruction regularization When implementing the regularization term Rv(Xv,Hv) in Eq. (2),
we are motivated by the information encoding-decoding process [14, 19, 30], and stack a view-specific
decoder fv

− with network parameter Ωv on each view’s Hv to perform data recovery of Xv. In this
way, the regularization term in SEM can be implemented with the reconstruction loss of autoencoders4,
whose encoder-decoder models can make hidden features preserve discriminative information of data.
When decoder generally rebuilds Xv with Hv, we can believe that Hv compresses the sufficient
information of Xv , for promoting contrastive learning fully access discriminative information of data.

Algorithm 1: Self-weighted multi-view contrastive learning with reconstruction regularization

Input: Dataset {Xv}Vv=1, Training epochs E, Step size S, Batch size n, Hyper-parameter λ
Initialize {Ψv,Ωv}Vv=1 by Eq. (8) and initialize {Wm,n}Vm,n=1 with {Hv}Vv=1 like Eq. (7)
for e ∈ {1, 2, . . . , E} do

for b ∈ {1, 2, . . . , N/n} do
Pick mini-batch data {{xv

i }bni=(b−1)n+1}
V
v=1 from {Xv}Vv=1

Compute the gradient of loss via Eq. (2) on the mini-batch data
Update {Φv,Ψv,Ωv}Vv=1 via Adam [42] optimizer

if mod(e, S) == 0 then
Update {Wm,n}Vm,n=1 with {Zv}Vv=1 by Eq. (7)

Output: Model parameters {Φv,Ψv}Vv=1

The training steps of SEM is summarized in Algorithm 1, where representations and weights are
updated alternatively to make them promote each other. E denotes total training epochs, and the step
size S denotes the number of training epochs after each update of pairwise weights. As we cannot
obtain meaningful {yv}Vv=1 before we start training neural networks, we first obtain meaningful
{Hv}Vv=1 by pre-training the model with Eq. (8), and then initialize {Wm,n}Vm,n=1 with {Hv}Vv=1.

3.4 Theoretical Analysis

In this part, we theoretically analyze the mechanism of SEM in exploring mutual information among
multiple views while mitigating representation degeneration. All proofs are given in Appendix A.

Considering SEM with InfoNCE loss and CMI weighting strategy, we have the following theorem in-
dicating that minimizing the self-weighted contrastive loss keeps maximizing the mutual information
between useful pairwise views, as well as avoiding the effects between unreliable pairwise views.

4We borrow the core ideas of information reconstruction applied in vanilla autoencoder (AE [19]), denoising
autoencoder (DAE [20]), and masked autoencoder (MAE [21]) and provide three reconstruction regularization
options. In a same form, the three kinds of reconstruction loss functions could be formulated as follows:

Rv
AE(X

v,Hv) = ∥Xv − fv
−(H

v; Ωv)∥2F = ∥Xv − fv
−(f

v(Xv; Ψv); Ωv)∥2F ,

Rv
DAE(X

v, H̃v) =
∥∥∥Xv − fv

−(H̃
v; Ωv)

∥∥∥2

F
= ∥Xv − fv

−(f
v(Xv + ϵ; Ψv); Ωv)∥2F ,

Rv
MAE(X

v, Ḧv) =
∥∥∥Xv − fv

−(Ḧ
v; Ωv)

∥∥∥2

F
= ∥Xv − fv

−(f
v(Xv ⊙A; Ψv); Ωv)∥2F ,

(8)

where Xv + ϵ denotes the data disturbed by random Gaussian noise ϵ ∈ RN×dv in DAE. Xv ⊙A is the data
masked by random 0 − 1 matrix A ∈ {0, 1}N×dv in MAE. H̃v and Ḧv denote the representations inferred
from data Xv + ϵ and Xv ⊙A in DAE and MAE, respectively.
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Theorem 1. For any three views (v ∈ {m,n, o}), if class mutual information only exists in two views,
e.g., I(ym;yo) → 0, I(yn;yo) → 0, and I(ym;yn) = δ, δ > 0, we have minimizing the weighted
InfoNCE losses Wm,nLm,n

InfoNCE(Z
m,Zn)+Wm,oLm,o

InfoNCE(Z
m,Zo)+Wn,oLn,o

InfoNCE(Z
n,Zo)

is equivalent to maximizing the mutual information between the two views (eδ/ logN − 1)I(Zm;Zn).

Combining with the information losing of each layer through encoder networks, the following
theorem further reveals that reconstruction regularization on the hidden features Hv is conducive to
alleviating the losing of discriminative semantic information through data transformation. Hence, we
treat the layer output closest to Zv in encoders as hidden features to maximize

∏Lm

l=tm+1(1− γm
l )

and
∏Ln

l=tn+1(1− γn
l ), aiming at maintaining useful semantic information for contrastive learning.

Theorem 2. For any two views (v ∈ {m,n}) with positive class mutual information, denoting
Lv as the total layer number of the v-th view’s encoder network before representation Zv, the l-th
layer has the information losing rate γv

l ≥ 0. If S is an oracle variable that contains and only
contains multiple views’ discriminative semantic information, and Hv is the tv-th layer’s features, we
have minimizing the regularized loss Wm,nLm,n

InfoNCE(Z
m,Zn) + λ

∑
v Rv(Xv,Hv) is expected

to obtain I(S;Zm;Zn) ≤ min{I(S;Xm) ·
∏Lm

l=tm+1(1− γm
l ), I(S;Xn) ·

∏Ln

l=tn+1(1− γn
l )}.

4 Experiments

This section validates the effectiveness of our SEM. Specifically, we first conduct comparison experi-
ments on state-of-the-art contrastive learning baselines and SEM with three options of contrastive
losses (i.e., LInfoNCE ,LPSCL,LRINCE). We then conduct ablation studies with three options of
weighting strategies (i.e., WCMI ,WJSD,WMMD), as well as with three options of reconstruction
terms (i.e., RAE ,RDAE ,RMAE). Evaluation is built on the concatenation of all views’ representa-
tions learned by methods. Finally, we show SEM’s training process and its hyper-parameter analysis.
We provided more experimental results as well as all implementation details of SEM in Appendix.

Table 1: Information of datasets
Name View Size Class
DHA 2 483 23
CCV 3 6,773 20
NUSWIDE 5 5,000 5
Caltech 6 1,400 7
YoutubeVideo 3 101,499 31

Datasets Our experiments employ five open-source
multi-view datasets. Their information is shown in Ta-
ble 1, where DHA [43] is a depth-included human ac-
tion dataset where each action has RGB and depth fea-
tures; CCV [44] refers to the columbia consumer video
database whose samples are described with SIFT, STIP,
and MFCC features; NUSWIDE [45] collects web im-
ages with multiple views (color histogram, block-wise
color moments, color correlogram, edge direction histogram, and wavelet texture); Caltech [40] is a
widely-used image dataset which leverages six views (Gabor, Wavelet moments, CENTRIST, HOG,
GIST, and LBP) to represent samples; YoutubeVideo [46] is a large-scale dataset where each sample
has three views including cuboids histogram, HOG, and vision misc. These datasets are diverse in
forms and are often organized to comprehensively evaluate the performance of multi-view methods.

4.1 Comparison Experiments on Contrastive Learning

Baselines K-Means-BSV denotes K-Means clustering results on the best single-view of raw data,
and we leverage this baseline to investigate the representation degeneration in comparison methods.
InfoNCE [8], PSCL [16], and RINCE [15] are three kinds of CL methods. Since their original versions
are designed to handle single views, we extended them to multi-view scenarios as did in [11, 17].
CMC [11], DCP [39], MFLVC [14], and DSIMVC [17] are four kinds of MCL methods. We evaluate
our SEM with different contrastive losses (i.e., SEM+InfoNCE, SEM+PSCL, and SEM+RINCE),
where the weighting strategy and reconstruction term are fixed to WCMI and RAE , respectively.

We leverage the linear clustering method K-Means to evaluate the performance of learning represen-
tations and report the average results of 10 runs in Table 2. The results indicate that: I) Our SEM
framework is compatible with different contrastive losses (e.g., InfoNCE, PSCL, and RINCE) and
we can clearly observe that SEM+InfoNCE/PSCL/RINCE successfully improve the baselines for
large margins. For instance, SEM+InfoNCE respectively outperforms InfoNCE by about 25%, 13%,
4%, 7%, 12% ACC on the five datasets. II) MCL approaches could access the semantic information
from multiple views, and thus outperforming that from single views. However, a side effect is
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Table 2: Linear clustering performance evaluated by ACC and NMI (mean±std%)
Method DHA CCV NUSWIDE Caltech YoutubeVideo

ACC NMI ACC NMI ACC NMI ACC NMI ACC NMI
K-Means-BSV 66.6±2.6 78.0±1.3 19.5±0.3 17.8±0.3 39.7±0.0 11.6±0.0 85.1±0.1 75.6±0.1 16.5±0.6 15.9±0.4
InfoNCE [8] 54.9±3.8 77.7±2.1 25.8±0.9 25.9±0.7 56.3±2.2 30.3±1.4 79.9±1.0 71.4±0.9 19.6±0.1 19.7±0.0
PSCL [16] 39.8±2.8 72.9±2.0 21.5±1.6 24.3±1.0 53.4±0.4 27.4±0.5 67.8±2.8 69.5±2.8 15.4±0.3 14.3±0.5
RINCE [15] 49.9±6.2 76.3±2.6 22.5±0.4 23.5±0.2 56.6±1.4 30.8±1.3 80.3±2.2 72.0±2.2 14.7±0.3 13.6±0.2
CMC [11] 65.0±2.1 79.2±1.3 21.3±0.4 21.8±0.6 56.2±1.5 24.7±0.9 72.7±1.4 60.3±1.4 19.4±0.3 19.6±0.1
DCP [39] 69.8±2.2 82.9±1.6 24.1±1.2 20.6±0.9 48.1±1.4 24.5±1.1 69.6±6.6 66.2±5.3 14.0±0.3 12.3±0.4
MFLVC [14] 70.7±1.4 81.4±0.8 31.6±0.0 31.3±0.0 55.9±0.0 27.4±0.0 77.1±0.5 67.1±0.6 18.3±0.1 18.7±0.2
DSIMVC [17] 63.8±3.0 77.2±1.7 31.8±0.9 30.8±0.6 56.7±2.3 28.0±1.6 76.9±1.7 67.3±1.3 18.9±0.3 18.7±0.2
SEM+InfoNCE 80.9±1.9 84.1±0.9 39.4±0.7 35.5±0.4 60.4±0.4 34.9±0.7 87.2±0.3 80.3±0.5 31.3±1.1 31.1±0.9
SEM+PSCL 69.7±4.2 81.4±1.6 39.3±1.1 35.9±0.6 57.8±1.4 32.6±0.9 86.3±1.7 78.6±2.1 32.2±0.7 32.2±0.6
SEM+RINCE 76.3±1.3 82.8±0.7 38.9±0.9 34.6±0.5 60.6±0.7 35.6±1.3 85.4±1.4 76.7±2.2 29.8±0.5 29.5±0.5

that contrastive learning directly increases the feature representation similarity of multiple views,
which might obscure useful discriminative information hidden in high-quality views and lead to the
representation degeneration. For example, on DHA and Caltech, results on many MCL methods (e.g.,
PSCL, RINCE, CMC, and MFLVC) are worse than the single-view baseline K-Means-BSV. III) Our
SEM not only outperforms all these MCL methods but also mitigates the representation degeneration
in MCL, e.g., SEM+PSCL respectively outperforms K-Means-BSV by about 3%, 20%, 18%, 1%,
16% ACC on the five datasets. This is because the framework of SEM is adaptive to multiple views’
qualities, which can reduce the side effect between unreliable views with inconsistent information,
for better extracting discriminative information and consistent semantics among useful views.

Figure 3: Classification performance on DHA.

Figure 4: Classification performance on CCV.

Additionally, we lever-
age the linear classifica-
tion method SVM [47]
to evaluate the perfor-
mance of MCL methods
to learn representations,
where we only use 30%
of the learned representa-
tions for the training set
and the rest for the test
set. Figures 3 and 4 show
the classification perfor-
mance on DHA and CCV,
respectively. Our SEM im-
proves the baseline meth-
ods (especially for PSCL
and RINCE) and consistently outperforms other MCL methods (such as CMC, DCP, MFLVC,
and DSIMVC). Since contrastive learning usually discards the information which is irrelevant to
optimization objectives, the results further indicate that the representations learned by MCL are
classification-friendly, which generally focus on catching class-level semantics among multiple views.

4.2 Ablation Experiments on Self-Weighting Strategy and Reconstruction Regularization

This part presents the ablation experiments to investigate the effectiveness of different weighting
strategies WCMI/JSD/MMD and reconstruction terms RAE/DAE/MAE in our SEM framework.

Table 3: Clustering accuracy (%) of SEM with differ-
ent options of weighting strategy W on two datasets

DHA CCV
SEM w/o W 71.3 33.5
SEM w/ WCMI 80.9 (↑ 9.6) 39.4 (↑ 5.9)
SEM w/ WJSD 80.5 (↑ 9.2) 35.6 (↑ 2.1)
SEM w/ WMMD 84.4 (↑ 13.1) 33.9 (↑ 0.4)

Table 4: Clustering accuracy (%) of SEM with differ-
ent options of reconstruction term R on two datasets

DHA CCV
SEM w/o R 60.5 28.7
SEM w/ RAE 80.9 (↑ 20.4) 39.4 (↑ 10.7)
SEM w/ RDAE 81.5 (↑ 21.0) 38.4 (↑ 9.7)
SEM w/ RMAE 83.0 (↑ 22.5) 39.5 (↑ 10.8)

Table 3 reports the linear clustering performance (evaluated by ACC) of our SEM framework
without self-weighting strategy (i.e., SEM w/o W) and that with three weighting strategies (i.e.,
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(a) Weight vs. Iteration (b) Loss vs. Epoch (c) ACC vs. Iteration

Figure 5: (a) The change trend of weights W1,4 and W4,5 in SEM. (b) Loss values L1,4
InfoNCE and L4,5

InfoNCE
during contrastive learning. (c) Clustering accuracy on the learned representations of view 1, view 4, and view 5.

WCMI ,WJSD,WMMD), where the contrastive loss and reconstruction term are fixed to LInfoNCE

and RAE , respectively. Compared with SEM w/o W (this setting is the reconstruction regularized
multi-view contrastive learning) that equally treats contrastive learning between any two views,
SEM w/ WCMI/JSD/MMD can adaptively weight the contrastive learning according to specific two
views and thus all these three variants of SEM obtain significant improvements. For example, SEM w/
WMMD has a 13.1% improvement on DHA and SEM w/ WCMI has a 5.9% improvement on CCV.
Results on more datasets and time costs are shown in Appendix C, where we find that the proposed
weighting strategy of class mutual information WCMI generally achieves the best performance on
accuracy and time consumption among the three options of weighting strategy.

Table 4 reports the linear clustering performance (evaluated by ACC) of our SEM framework
without reconstruction regularization (i.e., SEM w/o R) and that with three reconstruction terms (i.e.,
RAE ,RDAE ,RMAE), where the contrastive loss and weighting strategy are fixed to LInfoNCE and
WCMI , respectively. We can easily find that the proposed SEM with reconstruction terms obviously
outperforms that without reconstruction terms. For instance, compared with SEM w/o R, SEM
w/ WMAE has 22.5% and 10.8% improvements on DHA and CCV, respectively. This is because
the reconstruction regularization makes the hidden features {Hv}Vv=1 avoid losing discriminative
information, which promotes the multi-view contrastive learning performed on subsequent {Zv}Vv=1.
Meanwhile, SEM w/ RMAE and SEM w/ RDAE perform better than SEM w/ RAE . This is because,
compared with vanilla AE, DAE or MAE (by adding noise or masking on raw data) can make our
model more conducive to removing semantic-irrelevant noise as well as capturing hidden patterns.

4.3 Experimental Analysis on Mechanism of SEM

This part presents the visualization and analysis on SEM to give an intuition of its behavior and
mechanism, where the combination of LInfoNCE+WCMI+RAE is taken as an example.

Let’s first recall the views of Caltech dataset in Figure 2(a), we can consider that view 4 and view 5
are high-quality views, while view 1 is a low-quality view. The performance relation among them is
ACCview 4 > ACCview 5 > ACCview 1. In Figure 2(c), view 4’s representation degeneration occurs.

Figure 5 shows the pairwise weights, losses, and clustering accuracy on Caltech dataset during SEM’s
training process, where 1 iteration corresponds to 100 epochs, i.e., the step size is set to 100 epochs.
Our SEM is a self-weighted multi-view contrastive learning framework that automatically infers
different weights for different pairwise views as shown in Figure 5(a), where we can observe that
weights W4,5 > W1,4 and they were dynamically updated for 4 times. As a result, contrastive
learning between view 4 and view 5 is strengthened by W4,5, while contrastive learning between
view 1 and view 4 is weakened by W1,4. Meanwhile, loss L4,5

InfoNCE is minimized earlier than loss
L1,4
InfoNCE as shown in Figure 5(b). In other words, since the mutual effect between view 4 and view

5 is strengthened, the effect of view 1 on view 4/view 5 is weakened such that view 4/view 5 does
not degenerate. At the same time, the effect of view 4/view 5 on view 1 remains and promotes the
representation learning of view 1. Consequently, all views’ performance in Figure 5(c) increases
through our SEM, and the representation degeneration of view 4 occurring in Figure 2(c) is mitigated.
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Hyper-parameter analysis Since different datasets have different levels of reconstruction er-
rors, the trade-off coefficient λ is introduced to balance the contrastive learning and infor-
mation recovery in our SEM framework. In Figure 6(a), we change λ within the range of
[10−3, 10−2, 10−1, 100, 101, 102, 103] and report the clustering accuracy tested on representations.
The experimental results indicate that SEM is not sensitive to λ in [10−1, 101]. In our experiments, λ
is consistently set to 1 for all the five datasets. Regarding self-supervised learning, frameworks with
fewer manually set hyper-parameters might be more convenient for their applications.

Figure 6: (a) ACC vs. λ. (b) ACC vs. K.

Additionally, we investigate the
effect of cluster number when
the weight strategy of our SEM
framework is selected as WCMI

which needs to pre-define the
cluster number when applying
K-Means algorithm. As shown
in Figure 6(b), when comput-
ing the class mutual informa-
tion, we change the number
of clusters within the range of
[K/2,K, 2K, 4K] where K de-
notes the truth class number of
multi-view datasets. Compared with K, K/2 leads to more coarse-grained class mutual information,
while 2K and 4K come in more fine-grained class mutual information. The experimental results
demonstrate that SEM with WCMI is not sensitive to the choices of cluster number.

5 Conclusion

In this paper, we showcase that the representation degeneration could seriously limit the application of
contrastive learning in multi-view scenarios. To mitigate this issue, we propose self-weighted multi-
view contrastive learning with reconstruction regularization (SEM), which is a general framework
that is compatible with different options of the contrastive loss, weighting strategy, and reconstruction
term. Theoretical and experimental analysis verified the effectiveness of SEM, and it can significantly
improve many existing contrastive learning methods in multi-view scenarios. Moreover, ablation
studies indicated that SEM is effective with different weighting strategies and reconstruction terms.

Our future work is to extend the proposed SEM to be useful not only for multi-view scenarios, but also
for other contrastive learning based domains, such as contrastive learning in sequences. Conceptually,
the limitation of the self-weighting strategy is that it is more effective when there are over two
views. When there are only two views, the self-weighted multi-view contrastive learning framework
transforms into traditional contrastive learning but with reconstruction regularization. Therefore,
another future work is to extend the view-level weighting of SEM to sample-level weighting.
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